JP2003040648A - Optical device - Google Patents

Optical device

Info

Publication number
JP2003040648A
JP2003040648A JP2001229029A JP2001229029A JP2003040648A JP 2003040648 A JP2003040648 A JP 2003040648A JP 2001229029 A JP2001229029 A JP 2001229029A JP 2001229029 A JP2001229029 A JP 2001229029A JP 2003040648 A JP2003040648 A JP 2003040648A
Authority
JP
Japan
Prior art keywords
low melting
melting point
optical device
holder
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001229029A
Other languages
Japanese (ja)
Inventor
Masahiko Sakamoto
雅彦 坂元
Nobuyoshi Takagi
伸欣 高木
Kenta Nogawa
謙太 野川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001229029A priority Critical patent/JP2003040648A/en
Publication of JP2003040648A publication Critical patent/JP2003040648A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/08Frit compositions, i.e. in a powdered or comminuted form containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To remove PbO from low melting point glass for environmental protection, and to solve the problems that in a conventional optical device and a holder uses a PbO-B2 O3 based low melting point glass, it is difficult to reduce a calcinations temperature to 450 deg.C or less. SOLUTION: The optical device is composed of the optical device 1 and the holder 2 by using the low melting point glass whose lead content is 0.1 mass% or less.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は光ファイバ通信用の
各種モジュールに用いる光学素子とホルダを低融点ガラ
スによって接合された光デバイスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical device in which an optical element used in various modules for optical fiber communication and a holder are joined by a low melting point glass.

【0002】[0002]

【従来の技術】従来の光学素子をホルダで保持してなる
光デバイスとしては、低融点ガラスを用いてホルダに接
合したものがある。その構造を図5に示す。例えば、光
学素子1は熱膨張係数120×10-7/℃のレンズであ
り、ホルダ2は熱膨張係数170×10-7/℃のステン
レス鋼からなっており、さらに低融点ガラス3は軟化点
350℃で熱膨張係数110×10-7/℃の鉛ガラスを
主成分として作製される。
2. Description of the Related Art As an optical device in which a conventional optical element is held by a holder, there is one that is bonded to the holder by using a low melting point glass. The structure is shown in FIG. For example, the optical element 1 is a lens having a thermal expansion coefficient of 120 × 10 −7 / ° C., the holder 2 is made of stainless steel having a thermal expansion coefficient of 170 × 10 −7 / ° C., and the low-melting glass 3 has a softening point. It is made mainly of lead glass having a thermal expansion coefficient of 110 × 10 −7 / ° C. at 350 ° C.

【0003】なお、ホルダ2としてパイプ状のものを用
いたが、これに限るものではなく、また素材もステンレ
ス鋼を用いたが、低融点ガラス3の熱膨張係数に近けれ
ば、他の金属やセラミックであっても差し支えない。ま
た、低融点ガラス3は軟化点350℃で熱膨張係数11
0×10-7/℃の鉛ガラスを主成分とするものを用いた
が、軟化点250℃〜400℃で熱膨張係数80〜13
0×10-7/℃の範囲の低融点ガラスであれば構わな
い。
Although the pipe-shaped holder 2 is used, the holder 2 is not limited to this, and stainless steel is used as the material. However, if the coefficient of thermal expansion of the low-melting glass 3 is close, other metals or Even ceramic may be used. The low melting point glass 3 has a thermal expansion coefficient of 11 at a softening point of 350 ° C.
The main component was 0 × 10 −7 / ° C. lead glass, but the coefficient of thermal expansion was 80 to 13 at a softening point of 250 to 400 ° C.
Any low melting point glass in the range of 0 × 10 −7 / ° C. may be used.

【0004】以上の従来の光学素子1とホルダ2からな
る光デバイスは、上記低融点ガラス3の代わりに、接着
剤を用いる方法と鉛と錫の合金半田を用いる方法も知ら
れている。しかし、接着剤を用いる場合、接着剤は一般
に吸湿性が高いため、環境条件によっては脆くなり易
い。しかも、ガラス転移点温度が低いため、接着剤を用
いた光デバイスの使用温度は相対的に狭くなる。また、
アウトガスが生じるという問題もあることから、長期的
な信頼性に欠けるという問題点もある。
As the conventional optical device comprising the optical element 1 and the holder 2 described above, a method of using an adhesive and a method of using an alloy solder of lead and tin in place of the low melting point glass 3 are known. However, when an adhesive is used, the adhesive generally has a high hygroscopic property, and thus tends to become brittle depending on environmental conditions. Moreover, since the glass transition temperature is low, the operating temperature of the optical device using the adhesive becomes relatively narrow. Also,
Since there is also a problem of outgassing, there is also a problem of lack of long-term reliability.

【0005】一方、鉛と錫の合金半田は、相対的に融点
が低いため、特に、半田接合部に重力等の荷重が常にか
かる場合には、半田が時間とともに歪んでいくというク
リープ現象を生じ易い。このため、光学素子1とホルダ
2をこの半田で固定した場合、光学素子1の位置が時間
と共に変化していくことになり、長期にわたる光学系の
安定性が確保できないという問題がある。さらに、鉛と
錫の合金半田は250×10-7/℃であり、光学素子1
の熱膨張係数120×10-7/℃に比較して大きな差が
ある。したがって、光学素子1とこの半田で固定する場
合、熱膨張係数の違いにより、半田の冷却時に光学素子
に応力が加わり、亀裂や複屈折化等の問題が生じること
がある。また、温度変化や電子回路の発熱等による周囲
温度の変化があると、半田接合部に引っ張りと圧縮の応
力が繰り返しかかる。この熱的疲労により半田に亀裂が
生じて光学素子1の位置が変化し、光軸がずれるという
問題もある(特開平2−281201号公報参照)。
On the other hand, since the solder alloy of lead and tin has a relatively low melting point, a creep phenomenon occurs in which the solder is distorted with time, especially when a load such as gravity is constantly applied to the solder joint. easy. Therefore, when the optical element 1 and the holder 2 are fixed by this solder, the position of the optical element 1 changes with time, and there is a problem that the stability of the optical system cannot be secured for a long period of time. Furthermore, the alloy solder of lead and tin is 250 × 10 −7 / ° C.
There is a big difference compared with the thermal expansion coefficient of 120 × 10 −7 / ° C. Therefore, when the optical element 1 and the solder are fixed to each other, stress may be applied to the optical element during cooling of the solder due to the difference in thermal expansion coefficient, and problems such as cracking and birefringence may occur. Further, when the ambient temperature changes due to temperature change or heat generation of the electronic circuit, tensile and compressive stress is repeatedly applied to the solder joint. There is also a problem in that the thermal fatigue causes a crack in the solder to change the position of the optical element 1 and shift the optical axis (see JP-A-2-281201).

【0006】以上のような理由により、前述した低融点
ガラス3を用いた光デバイスが使用されている。
For the above reasons, the optical device using the above-mentioned low melting point glass 3 is used.

【0007】[0007]

【発明が解決しようとする課題】昨今の光学素子では、
図6に示すように、光学素子1に反射防止膜4を施した
ものがほとんどであるが、反射防止膜4の耐熱性は40
0℃以下である。これに対し、通常使用されるPbO−
23系の低融点ガラス3は、焼成温度を450℃以下
にすることが困難であり、上記反射防止膜4の耐熱温度
以下とすることができなかった。さらに、環境保護の観
点から、PbOを低融点ガラスから除外することが望ま
れていた(特開平8−259262号公報参照)。
With the recent optical elements,
As shown in FIG. 6, most of the optical elements 1 are provided with the antireflection film 4, but the antireflection film 4 has a heat resistance of 40%.
It is 0 ° C or lower. On the other hand, PbO-which is normally used
For the B 2 O 3 -based low melting point glass 3, it is difficult to set the firing temperature to 450 ° C. or lower, and it has not been possible to set the temperature below the heat resistant temperature of the antireflection film 4. Further, from the viewpoint of environmental protection, it has been desired to exclude PbO from the low melting point glass (see JP-A-8-259262).

【0008】また、図5および図6に示すように、低融
点ガラス3は、光学素子1およびホルダ2との接合面以
外に外気露出表面があり、低融点ガラス3が、高湿度環
境において劣化が促進される恐れがあった。
Further, as shown in FIGS. 5 and 6, the low melting glass 3 has an outside air exposed surface other than the bonding surface with the optical element 1 and the holder 2, and the low melting glass 3 deteriorates in a high humidity environment. Could be promoted.

【0009】[0009]

【課題を解決するための手段】上記課題に鑑みて本発明
は、光学素子とこれを保持するホルダからなる光デバイ
スにおいて、鉛の含有量が0.1重量%以下の低融点ガ
ラスを用いて、光学素子とホルダを接合したことを特徴
とする。
In view of the above problems, the present invention provides an optical device comprising an optical element and a holder for holding the same, using a low melting point glass containing 0.1% by weight or less of lead. The optical element and the holder are joined together.

【0010】また、上記低融点ガラスが、P25、Sn
O、Ag2OもしくはMoO3の少なくとも一種を主成分
とすることを特徴とする。
Further, the low melting point glass is composed of P 2 O 5 and Sn.
It is characterized in that at least one of O, Ag 2 O and MoO 3 is contained as a main component.

【0011】また、上記低融点ガラスの熱膨張係数が、
50×10-7〜130×10-7/℃の範囲であることを
特徴とする。
Further, the coefficient of thermal expansion of the low melting point glass is
It is characterized by being in the range of 50 × 10 −7 to 130 × 10 −7 / ° C.

【0012】また、上記光学素子の鉛の含有量が0.1
重量%以下であることを特徴とする。
The lead content of the optical element is 0.1.
It is characterized by being less than or equal to wt%.

【0013】また、上記低融点ガラスの外気露出表面に
被覆部材を備えたことを特徴とする。
Further, the low melting point glass is characterized in that a covering member is provided on the exposed surface of the outside air.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を図に
よって説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0015】図1に本発明の実施形態である光デバイス
の断面図を示す。図1に示すように本光デバイスの基本
構成は、光学素子1と、これを保持するホルダ2と、両
者を固定する低融点ガラス3からなる。例えば、光学素
子1には円筒形ガラスレンズを用い、ホルダ2にFe−
Ni合金を用いて、低融点ガラス3として、例えばP 2
5を主成分とし、鉛の含有量が0.1重量%以下の低
融点ガラスを用いて接合を行うものである。
FIG. 1 shows an optical device according to an embodiment of the present invention.
FIG. As shown in Fig. 1, the basics of this optical device
The structure is such that the optical element 1, the holder 2 for holding the same, and the both
It consists of a low melting point glass 3 for fixing the person. For example, optical element
A cylindrical glass lens is used for the child 1, and Fe- is used for the holder 2.
As the low melting point glass 3, a Ni alloy is used, for example, P 2
OFiveWith lead as a main component and a low lead content of 0.1% by weight or less.
The joining is performed using a melting point glass.

【0016】なお、上記光学素子1として、円筒形ガラ
スレンズを用いたが、用途に応じて、ボールレンズ、平
板レンズ、角形レンズ等の各種レンズを用いても良い。
また、レンズに限らず、気密窓、プリズム、偏光子等の
光学ガラスや複屈折ガラス、ファラデー回転子などの光
学結晶等を用いることもできる。また、これらの光学部
品の材料には、環境に対する悪影響を防止するため、鉛
の含有量が0.1重量%以下のものを用いることが望ま
しい。
Although a cylindrical glass lens is used as the optical element 1, various lenses such as a ball lens, a flat plate lens, and a rectangular lens may be used depending on the application.
Further, not only the lens but also an optical glass such as an airtight window, a prism, a polarizer, a birefringent glass, an optical crystal such as a Faraday rotator, or the like can be used. Further, it is desirable to use a lead content of 0.1% by weight or less as the material of these optical components in order to prevent adverse effects on the environment.

【0017】また、上記ホルダ2は、各種光学素子1の
熱膨張係数や機械的強度に応じて選定するものである。
また、本発明の光デバイスをさらに他のデバイスに取り
付けるときの方法によってもホルダ2の材質は選定すべ
きである。上記に述べたFe−Ni合金の他、ステンレ
ス鋼、銅合金、真鍮、アルミニウム合金などあらゆる金
属、また、金属に限らず、アルミナ、ジルコニア等の各
種セラミックから選定できる。
The holder 2 is selected according to the thermal expansion coefficient and mechanical strength of the various optical elements 1.
Further, the material of the holder 2 should also be selected depending on the method of attaching the optical device of the present invention to another device. In addition to the Fe-Ni alloy described above, any metal such as stainless steel, copper alloy, brass, aluminum alloy, and not only metal but also various ceramics such as alumina and zirconia can be selected.

【0018】さらに、本発明では、低融点ガラス3とし
て、鉛の含有量0.1重量%以下のものを用いることに
よって、焼成温度を400℃と反射防止膜4の耐熱温度
以下にすることができるとともに、環境に対する悪影響
を防止できる。なお、上記低融点ガラス3では、P25
を主成分とするものの他、SnOを主成分とするもの、
もしくはAg2Oを主成分とするもの、もしくはMoO3
を主成分とするものも選択できる。なお、本発明におけ
る主成分とは、低融点ガラス3に含まれている各種成分
の含有量において、最も含有量(重量%)の多いものを
示す。
Further, in the present invention, by using the low melting point glass 3 having a lead content of 0.1% by weight or less, the firing temperature can be kept at 400 ° C. or lower than the heat resistant temperature of the antireflection film 4. In addition, it is possible to prevent adverse effects on the environment. In addition, in the above-mentioned low melting point glass 3, P 2 O 5
In addition to those containing SnO as a main component, those containing SnO as a main component,
Alternatively, those containing Ag 2 O as a main component, or MoO 3
Those containing as a main component can also be selected. In addition, the main component in this invention shows the thing with the largest content (weight%) in the content of various components contained in the low melting glass 3.

【0019】これらの主成分は、PbOを主成分とする
低融点ガラス3より、さらに低温化する効果があり、そ
れぞれの好ましい含有量は、P25 20〜70重量
%、SnO 10〜50重量%、Ag2O 8〜60重
量%、MoO3 20〜50重量%である。上記低融点
ガラス3の材料には、上記主成分の他、ZnO、TeO
2、V25等の成分を副成分として、含有しても良い。
これらの副成分の好ましい含有量は、ZnO 1〜6重
量%、TeO2 30〜55重量%、V25 5〜19
重量%であり、低融点ガラス3を安定化させる効果があ
る。
These main components have the effect of further lowering the temperature than the low-melting glass 3 containing PbO as the main component, and the preferable contents of each of them are 20 to 70% by weight of P 2 O 5 and 10 to 50 of SnO. wt%, Ag 2 O 8 to 60% by weight, MoO 3 20 to 50 wt%. The material of the low melting point glass 3 includes ZnO and TeO in addition to the above main components.
Components such as 2 , V 2 O 5 and the like may be contained as auxiliary components.
The preferred contents of these subcomponents are ZnO 1 to 6% by weight, TeO 2 30 to 55% by weight, V 2 O 5 5 to 19% by weight.
It is a weight% and has an effect of stabilizing the low melting point glass 3.

【0020】以上の主成分、副成分は、焼成温度、膨張
係数等に応じて、混合比を変えたものを選択する。
The above-mentioned main components and sub-components are selected with different mixing ratios depending on the firing temperature, expansion coefficient and the like.

【0021】これらの成分からなる低融点ガラス3は、
鉛を含むPbO系の低融点ガラス3では困難であった2
50〜400℃の焼成温度を実現することができる。こ
の焼成温度であれば、光学素子1の光学面に加工されて
いる反射防止膜4の耐熱温度以下に抑えることが可能と
なる。
The low melting point glass 3 composed of these components is
Difficult to use PbO-based low melting point glass 3 containing lead 2
Firing temperatures of 50-400 ° C can be achieved. With this baking temperature, it is possible to suppress the temperature to the heat resistant temperature of the antireflection film 4 processed on the optical surface of the optical element 1 or lower.

【0022】また、この低融点ガラス3の熱膨張係数
は、光学素子1とホルダ2の接合による応力を緩和する
ため、50×10-7〜130×10-7/℃の範囲とする
ことが好ましい。さらに、ホルダ2の熱膨張係数は、低
融点ガラス3の熱膨張係数の0.6〜1.4倍の範囲と
することにより、歪みを減じることができる。このと
き、光学素子1の熱膨張係数についても、50〜130
×10-7/℃の範囲で、低融点ガラス3の熱膨張係数の
0.6〜1.4倍の範囲内とすることにより、同様に歪
みを減じることができる。
Further, the coefficient of thermal expansion of the low melting point glass 3 is set in the range of 50 × 10 −7 to 130 × 10 −7 / ° C. in order to relieve the stress due to the joining of the optical element 1 and the holder 2. preferable. Further, by setting the coefficient of thermal expansion of the holder 2 to be in the range of 0.6 to 1.4 times the coefficient of thermal expansion of the low melting point glass 3, distortion can be reduced. At this time, the coefficient of thermal expansion of the optical element 1 is also 50 to 130.
The strain can be similarly reduced by setting the thermal expansion coefficient within a range of 0.6 to 1.4 times the thermal expansion coefficient of the low melting point glass 3 in the range of × 10 -7 / ° C.

【0023】この光学素子1の光学面に加工されている
反射防止膜4は、通常3層以上となっており、光学素子
の材料や目的の反射率に応じて、SiO2、TiO2、Z
rO 2、Ta25等から選択が可能である。また、この
反射防止膜4は、要求特性や用途により、光学素子1の
光学面の両面、もしくは片面に施されたり、もしくは反
射防止膜4を施さない場合もある。
The optical surface of this optical element 1 is processed
The antireflection film 4 usually has three or more layers,
SiO depending on the material and target reflectance2, TiO2, Z
rO 2, Ta2OFiveEtc. can be selected. Also this
The antireflection film 4 may be used for the optical element 1 depending on required characteristics and applications.
It may be applied on both sides or one side of the optical surface, or
In some cases, the anti-reflection film 4 may not be applied.

【0024】また、他の実施形態の断面図を図2に示
す。反射防止膜4が施された光学素子1とホルダ2を低
融点ガラス3により接合し、その低融点ガラス3の外気
露出表面に被覆部材5を備えたものである。この被覆部
材5は、外気に露出した低融点ガラス3の表面を、湿度
等の、低融点ガラス3を劣化させる可能性のあるものか
ら保護することを目的とする。この被覆部材5はリング
状で、ホルダ2と同様に、Fe−Ni合金の他、ステン
レス鋼、銅合金、真鍮、アルミニウム合金などあらゆる
金属、また、金属に限らず、アルミナ、ジルコニア等の
各種セラミックから選定できる他、各種金属を蒸着する
などの方法でも成形可能である。
A sectional view of another embodiment is shown in FIG. The optical element 1 provided with the antireflection film 4 and the holder 2 are bonded together by a low melting point glass 3, and the covering member 5 is provided on the exposed surface of the low melting point glass 3 to the outside air. This covering member 5 is intended to protect the surface of the low-melting glass 3 exposed to the outside air from humidity, which may deteriorate the low-melting glass 3. This covering member 5 is ring-shaped, and like the holder 2, in addition to Fe-Ni alloys, all metals such as stainless steel, copper alloys, brass, aluminum alloys, etc., and not limited to metals, various ceramics such as alumina and zirconia. Besides, it is possible to form by various methods such as vapor deposition of various metals.

【0025】接合方法は、光学素子1をホルダ2に搭載
し、リング状に成形された低融点ガラス3を光学素子1
とホルダ2の接合箇所に配置させ、温度コントロールが
可能な焼成炉に入れて5〜10℃/分で350℃まで上
昇させ、350℃で10分間保持後、20〜50℃/分
で室温まで降下させた後、焼成炉から取り出すものであ
る。接合方法はこれに限らず、低融点ガラスとしてバイ
ンダーを混合したペースト状のものを使用しても構わな
い。また、焼成炉に限らず、ホットプレート等のヒータ
ー付きの高温器具であれば、構わない。温度条件も、上
記に限らず、使用部材、器具に応じて変更しても構わな
い。
The joining method is as follows. The optical element 1 is mounted on the holder 2, and the ring-shaped low-melting glass 3 is attached to the optical element 1.
It is placed at the joint between the holder 2 and the holder 2 and put in a temperature-controllable firing furnace to raise the temperature to 350 ° C. at 5 to 10 ° C./minute, hold at 350 ° C. for 10 minutes, and then to room temperature at 20 to 50 ° C./minute. After being lowered, it is taken out from the firing furnace. The joining method is not limited to this, and a paste-like material in which a binder is mixed as the low melting point glass may be used. Further, it is not limited to the firing furnace, and any high temperature device with a heater such as a hot plate may be used. The temperature condition is not limited to the above, and may be changed according to the member used and the device.

【0026】また、被覆部材5は、低融点ガラス3と同
時に焼成接合か、低融点ガラス3の接合後に別途蒸着で
成形する方法がある。
Further, the covering member 5 may be formed by firing bonding at the same time as the low-melting glass 3 or by separately forming after bonding the low-melting glass 3.

【0027】[0027]

【実施例】ここで、本発明にかかる光デバイスを試作
し、信頼性試験を実施し、反射率での評価を行った。
EXAMPLES Here, an optical device according to the present invention was prototyped, a reliability test was carried out, and the reflectance was evaluated.

【0028】光学素子1に外径1.8mmで熱膨張係数
が88×10-7/℃の円筒形ガラスレンズ、ホルダ2に
熱膨張係数97×10-7/℃のFe−Ni合金、低融点
ガラス3にP25を60重量%含有した焼成温度380
℃のものを用いて光デバイスを作製した。これを本発明
の実施例1とする。
The optical element 1 is a cylindrical glass lens having an outer diameter of 1.8 mm and a thermal expansion coefficient of 88 × 10 −7 / ° C., and the holder 2 is a Fe—Ni alloy having a thermal expansion coefficient of 97 × 10 −7 / ° C. Firing temperature 380 containing 60 wt% of P 2 O 5 in the melting point glass 3
An optical device was manufactured by using the one at ℃. This is Embodiment 1 of the present invention.

【0029】また、光学素子1に外径1.8mmで熱膨
張係数が88×10-7/℃の円筒形ガラスレンズ、ホル
ダ2に熱膨張係数97×10-7/℃のFe−Ni合金、
低融点ガラス3にMoO3を30重量%含有した焼成温
度370℃のものを用いて光デバイスを作製した。これ
を本発明の実施例2とする。
Further, the optical element 1 is a cylindrical glass lens having an outer diameter of 1.8 mm and a thermal expansion coefficient of 88 × 10 −7 / ° C., and the holder 2 is a Fe—Ni alloy having a thermal expansion coefficient of 97 × 10 −7 / ° C. ,
An optical device was manufactured using a low melting point glass 3 containing 30% by weight of MoO 3 at a firing temperature of 370 ° C. This is Embodiment 2 of the present invention.

【0030】これに対し、比較例として、光学素子1に
外径1.8mmで熱膨張係数が88×10-7/℃の円筒
形ガラスレンズ、ホルダ2に熱膨張係数97×10-7
℃のFe−Ni合金、低融点ガラス3にPbOを60重
%含有した焼成温度450℃のものを用いて光デバイス
を作製した。
On the other hand, as a comparative example, the optical element 1 has a cylindrical glass lens having an outer diameter of 1.8 mm and a thermal expansion coefficient of 88 × 10 −7 / ° C., and the holder 2 has a thermal expansion coefficient of 97 × 10 −7 /.
An optical device was prepared by using a Fe-Ni alloy at 60 ° C. and a low melting point glass 3 containing 60 wt% of PbO at a firing temperature of 450 ° C.

【0031】まず、本発明の実施例1、本発明の実施例
2、比較例をそれぞれ100個ずつ作製し、作製後の反
射防止膜4の反射率測定を行った。それを焼成前の反射
率からの変動値に変換しそれを図3に示す。
First, 100 of each of Example 1 of the present invention, Example 2 of the present invention, and Comparative Example were produced, and the reflectance of the antireflection film 4 after the production was measured. It is converted into a variation value from the reflectance before firing, which is shown in FIG.

【0032】本発明の実施例1、本発明の実施例2にお
いては、すべて0.2%以下の反射率変動に抑えられて
いるが、比較例においては、0.5〜1.0%の反射率
変動となったものが100個中3個発生した。
In Example 1 of the present invention and Example 2 of the present invention, the reflectance fluctuation was suppressed to 0.2% or less, but in the comparative example, the reflectance fluctuation was 0.5 to 1.0%. Three out of 100 variations in reflectance occurred.

【0033】次に、反射率変動が0.2%以下であった
ものすべてを85℃、85%、2000時間の恒温恒湿
試験に投入し、その後の反射率を測定し、投入前からの
反射率変動値に変換したものを図4に示す。
Next, all those whose fluctuation in reflectance was 0.2% or less were put into a constant temperature and humidity test at 85 ° C., 85% for 2000 hours, and the reflectance was measured after that. FIG. 4 shows the values converted into reflectance fluctuation values.

【0034】本発明の実施例1、本発明の実施例2にお
いては、すべて0.2%以下の反射率変動に抑えられて
いるが、比較例においては、0.3〜1.8%の反射率
のものが、97個中32個発生した。
In Example 1 of the present invention and Example 2 of the present invention, the reflectance fluctuation was suppressed to 0.2% or less, but in the comparative example, it was 0.3 to 1.8%. 32 of 97 reflectances were generated.

【0035】この結果より、本発明の光デバイスは従来
の物と比べ、反射率変動という光学特性において明らか
に性能が向上した
From these results, the optical device of the present invention clearly has improved performance in optical characteristics such as reflectance fluctuation, as compared with the conventional one.

【0036】[0036]

【発明の効果】以上のように本発明によれば、鉛の含有
量が0.1%重量%以下の低融点ガラスで光学素子を接
合して光デバイスを構成したことによって、焼成温度を
400℃以下に抑えることができ、光学特性の信頼性を
向上することができた。
As described above, according to the present invention, the optical device is constructed by bonding the optical elements with the low melting point glass containing 0.1% by weight or less of lead, so that the firing temperature is 400%. It was possible to suppress the temperature to below 0 ° C. and improve the reliability of optical characteristics.

【0037】また、鉛の含有量が0.1重量%以下の低
融点ガラスを用いたことにより、地球環境に優しい光デ
バイスの製造が可能となった。
Further, by using a low melting point glass having a lead content of 0.1% by weight or less, it becomes possible to manufacture an optical device which is friendly to the global environment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光デバイスを示す断面図である。FIG. 1 is a sectional view showing an optical device of the present invention.

【図2】本発明の光デバイスの他の実施形態を示す断面
図である。
FIG. 2 is a cross-sectional view showing another embodiment of the optical device of the present invention.

【図3】本発明と比較例の光デバイスにおける反射率変
動を示すグラフである。
FIG. 3 is a graph showing reflectance fluctuations in the optical devices of the present invention and the comparative example.

【図4】本発明と比較例の光デバイスにおける信頼性試
験後の反射率変動を示すグラフである。
FIG. 4 is a graph showing reflectance fluctuations after a reliability test in optical devices of the present invention and a comparative example.

【図5】従来の光デバイスを示す断面図である。FIG. 5 is a cross-sectional view showing a conventional optical device.

【図6】反射防止膜が施された従来の光デバイスを示す
断面図である。
FIG. 6 is a cross-sectional view showing a conventional optical device provided with an antireflection film.

【符号の説明】[Explanation of symbols]

1:光学素子 2:ホルダ 3:低融点ガラス 4:反射防止膜 5:被覆部材 1: Optical element 2: Holder 3: Low melting glass 4: Antireflection film 5: Cover member

フロントページの続き Fターム(参考) 2H043 AE02 AE23 4G061 AA00 BA07 BA12 CA03 CB13 CC03 CD05 CD10 DA32 4G062 AA08 BB09 DA01 DB01 DC01 DD04 DD05 DD06 DE03 DF01 DF02 EA01 EA10 EB01 EC01 ED01 EE01 EF01 EG01 FA01 FB01 FC01 FD01 FE04 FE05 FF03 FF04 FG01 FH01 FJ01 FK01 FL01 GA01 GB01 GC01 GD05 GD06 GE01 HH01 HH03 HH04 HH05 HH07 HH08 HH09 HH11 HH13 HH15 HH17 HH20 JJ01 JJ03 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM04 NN29 NN32 Continued front page    F-term (reference) 2H043 AE02 AE23                 4G061 AA00 BA07 BA12 CA03 CB13                       CC03 CD05 CD10 DA32                 4G062 AA08 BB09 DA01 DB01 DC01                       DD04 DD05 DD06 DE03 DF01                       DF02 EA01 EA10 EB01 EC01                       ED01 EE01 EF01 EG01 FA01                       FB01 FC01 FD01 FE04 FE05                       FF03 FF04 FG01 FH01 FJ01                       FK01 FL01 GA01 GB01 GC01                       GD05 GD06 GE01 HH01 HH03                       HH04 HH05 HH07 HH08 HH09                       HH11 HH13 HH15 HH17 HH20                       JJ01 JJ03 JJ05 JJ07 JJ10                       KK01 KK03 KK05 KK07 KK10                       MM04 NN29 NN32

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】光学素子とこれを保持するホルダからなる
光デバイスにおいて、鉛の含有量が0.1重量%以下の
低融点ガラスを用いて上記光学素子とホルダを接合した
ことを特徴とする光デバイス。
1. An optical device comprising an optical element and a holder for holding the optical element, wherein the optical element and the holder are joined using a low melting point glass having a lead content of 0.1% by weight or less. Optical device.
【請求項2】上記低融点ガラスが、P25、SnO、A
2OもしくはMoO3の少なくとも一種を主成分とする
ことを特徴とする請求項1記載の光デバイス。
2. The low-melting glass is P 2 O 5 , SnO, A
The optical device according to claim 1, wherein at least one of g 2 O and MoO 3 is a main component.
【請求項3】上記低融点ガラスの熱膨張係数が、50×
10-7〜130×10-7/℃の範囲であることを特徴と
する請求項1記載の光デバイス。
3. The thermal expansion coefficient of the low melting glass is 50 ×
The optical device according to claim 1, which is in the range of 10 -7 to 130 × 10 -7 / ° C.
【請求項4】上記光学素子の鉛の含有量が、0.1重量
%以下であることを特徴とする請求項1〜3のいずれか
に記載の光デバイス。
4. The optical device according to claim 1, wherein the lead content of the optical element is 0.1% by weight or less.
【請求項5】上記低融点ガラスの外気露出表面に被覆部
材を備えたことを特徴とする請求項1〜4のいずれかに
記載の記載の光デバイス。
5. The optical device according to claim 1, wherein a covering member is provided on the exposed surface of the low melting point glass to the outside air.
JP2001229029A 2001-07-30 2001-07-30 Optical device Pending JP2003040648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001229029A JP2003040648A (en) 2001-07-30 2001-07-30 Optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001229029A JP2003040648A (en) 2001-07-30 2001-07-30 Optical device

Publications (1)

Publication Number Publication Date
JP2003040648A true JP2003040648A (en) 2003-02-13

Family

ID=19061437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001229029A Pending JP2003040648A (en) 2001-07-30 2001-07-30 Optical device

Country Status (1)

Country Link
JP (1) JP2003040648A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192990A (en) * 2006-01-18 2007-08-02 Hitachi Maxell Ltd Holder with lens
KR100752078B1 (en) * 2006-10-18 2007-08-27 (주)금오물산 Retaining wall block
US7313292B2 (en) 2003-09-19 2007-12-25 Mitsubishi Denki Kabushiki Kaisha Optical component using optical transmission element joining metal holder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7313292B2 (en) 2003-09-19 2007-12-25 Mitsubishi Denki Kabushiki Kaisha Optical component using optical transmission element joining metal holder
JP2007192990A (en) * 2006-01-18 2007-08-02 Hitachi Maxell Ltd Holder with lens
KR100752078B1 (en) * 2006-10-18 2007-08-27 (주)금오물산 Retaining wall block

Similar Documents

Publication Publication Date Title
US20190071346A1 (en) Coefficient of thermal expansion filler for vanadium-based frit materials and/or methods of making and/or using the same
JPH02161328A (en) Pressure sensor and manufacture thereof
JP6148813B2 (en) Low melting point composition, sealing material and electronic component
JP3806434B2 (en) Thermistor for high temperature
JP4091773B2 (en) Optical device
JP2003040648A (en) Optical device
JP4491657B2 (en) Optical components and metal holders
WO2020012974A1 (en) Package, method of manufacturing package, lid body with bonding material, and method of manufacturing lid body with bonding material
WO2022158457A1 (en) Lamination member and glass composition
US20090091418A1 (en) Coated wire and film resistor
CN112262112B (en) Sealing material
JP2007165551A (en) Optical cap component
JP2001297628A (en) Electrically conductive paste and ceramic electronic component
JP2006309193A (en) Optical device and method for manufacturing same
KR101807283B1 (en) Temperature sensor element and preparation method thereof
JP2021161021A (en) Molten glass and use thereof
JP3095646B2 (en) Joint structure
WO2016114075A1 (en) Lead-free glass and sealing material
WO2020022002A1 (en) Optical component
JP2024526239A (en) Glass-containing joint connector, glass, in particular glass for producing a joint connector, and feed-through containing glass and/or a joint connector, and method for producing the same
JPH0410644A (en) Package for housing glass-sealed semiconductor element
JPH0211762Y2 (en)
JPH10199708A (en) Temperature sensor
JPS59176639A (en) Semiconductor pressure transducer
JPH0261604A (en) Structure for fixing rod lens