JP2003038940A - Selective separating membrane - Google Patents

Selective separating membrane

Info

Publication number
JP2003038940A
JP2003038940A JP2001230259A JP2001230259A JP2003038940A JP 2003038940 A JP2003038940 A JP 2003038940A JP 2001230259 A JP2001230259 A JP 2001230259A JP 2001230259 A JP2001230259 A JP 2001230259A JP 2003038940 A JP2003038940 A JP 2003038940A
Authority
JP
Japan
Prior art keywords
membrane
water
permeation rate
performance
ufr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001230259A
Other languages
Japanese (ja)
Other versions
JP4164730B2 (en
Inventor
Hidehiko Sakurai
秀彦 櫻井
Noriaki Kato
典昭 加藤
Hitoshi Ono
仁 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2001230259A priority Critical patent/JP4164730B2/en
Publication of JP2003038940A publication Critical patent/JP2003038940A/en
Application granted granted Critical
Publication of JP4164730B2 publication Critical patent/JP4164730B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a selective separating membrane which is a cleaning membrane for blood containing protein existing therein at a high concentration and a treating membrane for waste water and city water containing suspended components existing therein at a high concentration, lessens the degradation in performance during treatment with lapse of time and permits the easy restoration of the once degrade performance. SOLUTION: In the selective separating membrane, the water permeation rate in a physiological salt solution increases by >=1.07 times than the water permeation rate in pure water. The membrane is swollen by liquid, such as blood, containing ions, by which the adsorption and deposition of the protein on the membrane surface are suppressed and the degradation in the permeation performance with lapse of time is suppressed. The membrane is shrunk and the membrane structure is changed by cleaning the membrane with a solution not containing the ions, by which the adsorbed and deposited protein is made easily peelable and the degraded membrane performance is recovered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、安定な分離特性を
維持、回復できる分離膜を提供するものである。特に、
蛋白が高濃度に存在する液の処理に用いる血液浄化膜
や、懸濁成分が高濃度に存在する廃水および浄水処理膜
などの選択分離膜による処理において、処理中の経時的
な性能低下が少なく、かつ一旦低下した性能を容易に回
復できる選択分離膜を提供するものである。
TECHNICAL FIELD The present invention provides a separation membrane capable of maintaining and recovering stable separation characteristics. In particular,
There is little performance deterioration over time during treatment with blood purification membranes used for treatment of liquids with high protein concentration or selective separation membranes such as wastewater and water purification membranes with high concentration of suspended components. The present invention also provides a selective separation membrane capable of easily recovering the once lowered performance.

【0002】[0002]

【従来の技術】選択分離膜は現在、廃水処理、海水淡水
化、浄水処理、ガス分離、血液浄化用途など、幅広く用
いられている。廃水処理や飲料水製造、あるいは血液処
理などに用いられる選択分離膜において、処理液中に含
まれる溶質、懸濁成分、不溶解成分が、膜面に吸着、沈
着し堆積すると、膜細孔の目詰まり、膜表面のケーク層
形成をもたらし、その結果、透水速度や溶質透過速度の
低下など膜の性能が経時的に劣化する。
2. Description of the Related Art Selective separation membranes are currently widely used for wastewater treatment, seawater desalination, water purification treatment, gas separation, blood purification and the like. In selective separation membranes used for wastewater treatment, drinking water production, blood treatment, etc., when solutes, suspension components, and insoluble components contained in the treatment liquid are adsorbed, deposited and deposited on the membrane surface, This results in clogging and formation of a cake layer on the surface of the membrane, which results in deterioration of membrane performance over time, such as a reduction in water permeation rate or solute permeation rate.

【0003】そのため、このような用途に用いられる選
択分離膜に対して、低下した性能を回復させるための手
段が必要になる。例えば、廃水処理や飲料水製造に用い
られる精密濾過膜(MF膜)や限外濾過膜(UF膜)
は、定期的に逆洗作業(濾過と逆方向に水や気体を流し
て、膜表面に堆積したケーク層を破壊し、細孔に目詰ま
りした物質を除去する)や薬剤処理等で膜を洗浄する。
血液処理膜の場合、例えば、使用後に血球成分や蛋白質
が膜面に付着し性能が低下した血液透析器(ダイアライ
ザー)を薬剤で洗浄し、膜性能を回復させ、再使用する
事が米国などで広くおこなわれている。
Therefore, it is necessary to provide a means for recovering the lowered performance of the selective separation membrane used in such applications. For example, microfiltration membranes (MF membranes) and ultrafiltration membranes (UF membranes) used for wastewater treatment and drinking water production.
Is regularly backwashed (flowing water or gas in the opposite direction of filtration to destroy the cake layer deposited on the surface of the membrane to remove the substances clogged in the pores) and chemical treatment of the membrane. To wash.
In the case of blood treatment membranes, for example, in the United States, it is possible to recover the membrane performance by using a chemical to clean the hemodialyzer (dialyzer) whose performance has deteriorated due to blood cell components and proteins adhering to the membrane surface after use. It is widely practiced.

【0004】膜を製造する立場からも、膜性能の経時劣
化を防ぐ観点から、膜素材の改良が行われている。例え
ば、血液中の蛋白質は疎水性表面に吸着しやすい事か
ら、血液透析膜素材の親水化が積極的に行われている。
From the standpoint of producing a membrane, the membrane material has been improved from the viewpoint of preventing deterioration of membrane performance over time. For example, since proteins in blood are easily adsorbed on a hydrophobic surface, the hemodialysis membrane material is actively hydrophilized.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、性能の
耐経時劣化性、および低下した性能の回復性について、
十分満足する選択分離膜は未だ得られていないのが現状
である。
However, with respect to the deterioration resistance of performance over time and the recoverability of degraded performance,
The present situation is that a selective separation membrane that is sufficiently satisfactory has not yet been obtained.

【0006】[0006]

【課題を解決するための手段】選択分離膜の耐経時劣化
性、および低下した性能の回復性について、本発明者ら
は鋭意検討をおこなった結果、本発明に至った。すなわ
ち、本発明は、 1)生理食塩水中の透水速度(UFR(S))と純水中
の透水速度(UFR(P))の比が、下記式を満足する
ことを特徴とする選択分離膜、 UFR(S)/UFR(P)≧ 1.07 2)膜構造が実質的にマクロボイドが観測されない実質
的に均一膜であって、且つ、膜厚が10〜50μmの範
囲である)記載の選択分離膜、である。
Means for Solving the Problems As a result of intensive investigations by the present inventors, the present invention has been made with respect to the deterioration resistance of the selective separation membrane over time and the recoverability of the deteriorated performance. That is, the present invention is: 1) A selective separation membrane characterized in that the ratio of the water permeation rate in physiological saline (UFR (S)) and the water permeation rate in pure water (UFR (P)) satisfies the following formula: , UFR (S) / UFR (P) ≧ 1.072 2) The film structure is a substantially uniform film in which macrovoids are not substantially observed, and the film thickness is in the range of 10 to 50 μm). Is a selective separation membrane of.

【0007】透水速度とは、被処理液(純水中または生
理食塩水)を選択分離膜で濾過処理した際に、単位時
間、単位圧力、単位膜面積当たりに濾過される被処理液
体積を表す。一般に、透水速度は、被処理液の粘度に依
存する。37℃における純水の粘度は0.70cP、生
理食塩水の粘度は0.71cPであり、生理食塩水の粘
度は約1%純水より高い値を持つので、食塩に対して排
除性を持たない一般的な膜の場合、生理食塩水中の透水
速度は、純水中の透水速度より低い値になる。しかしな
がら、本発明者らが検討を行ったところ、ある種の膜で
は驚くべきことに生理食塩水中の透水速度が純水中の透
水速度より高い値を持ち、かつその比が1.07以上の
膜は、安定な分離特性を維持し、かつ、一旦低下した膜
の性能を容易に回復できることを見出した。
The water permeation rate means the volume of the liquid to be treated per unit time, unit pressure, and unit membrane area when the liquid to be treated (in pure water or physiological saline) is filtered through a selective separation membrane. Represent Generally, the water permeation rate depends on the viscosity of the liquid to be treated. At 37 ° C, the viscosity of pure water is 0.70 cP, the viscosity of physiological saline is 0.71 cP, and the viscosity of physiological saline is higher than that of about 1% pure water. In the case of a common membrane, the water permeation rate in saline is lower than that in pure water. However, as a result of investigations by the present inventors, it was surprisingly found that a certain type of membrane has a water permeation rate higher than that in pure water and a ratio of 1.07 or more. It has been found that the membrane maintains stable separation properties and can easily recover once degraded membrane performance.

【0008】この現象の機構については、明確ではない
が、選択分離膜を形成する分子鎖中にある正および負の
荷電があり静電引力によって収縮を保っている選択分離
膜の場合、イオンを含む生理食塩水中では、電荷を持っ
たイオンのため膜分子中の荷電が打ち消され、収縮が緩
和されて膜が膨潤し、細孔径が増大し、その結果、純水
よりも生理食塩水中の透水速度が増加するものと考えら
れる。
Although the mechanism of this phenomenon is not clear, in the case of a selective separation membrane having positive and negative charges in the molecular chain forming the selective separation membrane and keeping contraction by electrostatic attraction, ions are In the saline solution containing the ions, the charged ions in the membrane molecules are canceled by the charged ions, the contraction is alleviated, the membrane swells, and the pore size increases. It is believed that speed will increase.

【0009】このような生理食塩水中で透水速度が増加
する選択分離膜を、血液透析などの血液浄化膜に用いる
と、血液はイオン含むので膜が膨潤し、膜面への蛋白質
の吸着や堆積が抑えられ、経時的な性能低下が少ない利
点を有する。さらに、イオンを含まない溶液で洗浄する
ことで、膜を収縮させ、膜構造を変化させることによ
り、吸着および堆積した蛋白質がはがれやすくなり、低
下した膜性能を容易に回復させることができる。
When such a selective separation membrane having an increased water permeation rate in physiological saline is used for a blood purification membrane such as hemodialysis, since blood contains ions, the membrane swells and protein is adsorbed or deposited on the membrane surface. Is suppressed, and there is an advantage that performance deterioration with time is small. Furthermore, by washing with a solution containing no ions, the membrane is contracted and the membrane structure is changed, so that the adsorbed and deposited proteins are easily peeled off, and the lowered membrane performance can be easily recovered.

【0010】本発明の選択膜は、排水処理や水道水製造
などのイオンをほとんど含まない被処理液に用いた場合
においても、被処理液中の不純物や溶質の目詰まりおよ
びケーク層形成で低下した性能を、イオン強度が強い水
溶液を流す事で、膜を膨潤させ、目詰まりやケーク層を
解消させる事ができる点で有用である。イオン強度の強
い水溶液とは、例えば食塩水などを挙げる事ができる。
食塩水は、そのまま廃棄しても環境汚染などの点で、現
在一般に使われている洗剤や薬液よりも安全である。
The selective membrane of the present invention is reduced due to clogging of impurities and solutes in a liquid to be treated and formation of a cake layer even when used in a liquid to be treated containing almost no ions such as in waste water treatment and tap water production. The above performance is useful in that it is possible to swell the membrane and eliminate clogging and the cake layer by flowing an aqueous solution having strong ionic strength. Examples of the aqueous solution having a strong ionic strength include saline.
Saline is safer than the detergents and chemicals that are commonly used at present because of environmental pollution even if it is discarded as it is.

【0011】本発明において、生理食塩水中の透水速度
と純水中の透水速度の比は1.07以上である。これ
は、血液のようなイオンを含む被処理液中で膜構造を変
化させ、蛋白質や血球成分の吸着や堆積などによる膜の
経時的性能低下を防ぎ、膜の経時的性能維持と、低下し
た膜性能を回復させるためである。生理食塩水中の透水
速度と純水中の透水速度の比が1.07より小さいと、
膜構造変化が小さく、前述のような効果が得られない。
もちろん、膜構造が全く変化しない場合、透水速度は被
処理液の粘度に依存するので、従来技術の膜においては
生理食塩水中と純水中の透水速度の比は約0.99であ
る。生理食塩水中の透水速度と純水中の透水速度の比が
1.07以上の範囲においては、より大きな透水速度の
比であれば、膜構造変化が大きく、より大きな効果が得
られるので、1.10以上が好ましく、1.15以上で
あれば更に好ましい。
In the present invention, the ratio of the water permeation rate in physiological saline to the water permeation rate in pure water is 1.07 or more. This changes the membrane structure in the liquid to be treated containing ions such as blood, prevents deterioration of the membrane performance over time due to adsorption or deposition of proteins and blood cell components, and maintains the performance of the membrane over time. This is to restore the membrane performance. When the ratio of the water permeation rate in physiological saline to the water permeation rate in pure water is less than 1.07,
The change in the film structure is small, and the effects described above cannot be obtained.
Of course, when the membrane structure does not change at all, the water permeation rate depends on the viscosity of the liquid to be treated, so in the prior art membrane, the ratio of the water permeation rate in physiological saline to pure water is about 0.99. When the ratio of the water permeation rate in physiological saline to the water permeation rate in pure water is 1.07 or more, the larger the water permeation rate, the larger the change in the membrane structure and the greater the effect. 10 or more is preferable, and 1.15 or more is more preferable.

【0012】本発明においては、生理食塩水中の透水速
度と純水中の透水速度の変化が可逆的であることが好ま
しい。可逆的に変化すれば、使用後の膜性能回復を繰り
返し実施することで、何回でも膜を再使用することが出
来、その結果、膜モジュールのランニングコストを低下
できる。
In the present invention, it is preferable that the changes in the water permeation rate in physiological saline and the water permeation rate in pure water are reversible. If it changes reversibly, the membrane performance can be reused any number of times by repeatedly performing the membrane performance recovery after use, and as a result, the running cost of the membrane module can be reduced.

【0013】本発明の選択分離膜の構造は、特に限定さ
れるものではないが、実質的にマクロボイドが観測され
ない実質的に均一な膜であることが好ましい。膜の内表
面あるいは外表面に緻密なスキン層を持ち中間部にボイ
ドを含有する支持層を持つ構造では、スキン層の構造変
化が起きにくいためか本発明の効果が得られにくい。ま
た、選択分離膜にマクロボイドが存在すると、膜構成分
子間の距離が大きく、膜構成分子間の静電引力による膜
収縮が働きにくくなるためか本発明の効果が得られにく
い。ここで、実質的にマクロボイドが観察されない実質
的に均一な膜とは、膜断面を走査型電子顕微鏡により1
000倍で観察したときに、直径が0.5μm以上の大
きさのボイドやスポンジ構造に由来する空隙が観察され
ない均一構造を示す。素材によっては、さらに高倍率
(5000倍以上)の観察によって直径が0.5μm未
満のボイドや空隙が観察される。ボイドや空隙の直径が
0.5μm未満の場合は、存在しても、生理食塩水中の
透水速度と純水中の透水速度の比を1.07以上にする
ことが可能である。一方、実質的に均一な膜であるにも
かかわらず、製膜時の欠陥(例えば異物や気泡の混入)
により、0.5μm以上の大きさのボイドや空隙が観察
され、該欠陥が膜全体の極一部分の場合は、該比1.0
7以上を達成することが可能である。従って、このよう
な欠陥による選択分離膜の極一部分に存在するマクロボ
イドなら観察されても構わない。
The structure of the selective separation membrane of the present invention is not particularly limited, but is preferably a substantially uniform membrane in which macrovoids are not substantially observed. In the structure having a dense skin layer on the inner surface or outer surface of the film and a supporting layer containing voids in the middle portion, the effect of the present invention is difficult to obtain, probably because the structure change of the skin layer is hard to occur. Further, if macrovoids are present in the selective separation membrane, the distance between the membrane-constituting molecules is large, and the membrane contraction due to electrostatic attraction between the membrane-constituting molecules is difficult to work. Here, a substantially uniform film in which macrovoids are not substantially observed means that the cross section of the film is 1
It shows a uniform structure in which voids having a diameter of 0.5 μm or more and voids derived from the sponge structure are not observed when observed at a magnification of 000. Depending on the material, voids and voids having a diameter of less than 0.5 μm are observed by observation at a higher magnification (5000 times or more). When the voids or voids have a diameter of less than 0.5 μm, even if they exist, the ratio of the water permeation rate in physiological saline to the water permeation rate in pure water can be 1.07 or more. On the other hand, even though the film is substantially uniform, defects during film formation (for example, inclusion of foreign matter or bubbles)
As a result, voids and voids having a size of 0.5 μm or more are observed, and when the defects are a very small portion of the entire film, the ratio is 1.0
It is possible to achieve 7 or more. Therefore, macrovoids existing in a very small portion of the selective separation film due to such defects may be observed.

【0014】本発明の選択分離膜の膜厚は、10〜50
μmの範囲であると膜構造の変化を起こしやすく好まし
い。膜厚が50μmより大きい場合は、膜構造が強固に
なりすぎ、膜構造の荷電による静電引力による膜収縮が
起こりにくくなるため本発明の効果が得られにくいと考
えられる。一方、選択膜の膜厚が10μmより小さい場
合は、膜構造中の電荷の分布が狭く、純水中と生理食塩
水中の透水速度の差が生じにくくなるためと考えられ
る。
The selective separation membrane of the present invention has a thickness of 10 to 50.
The range of μm is preferable because the film structure is likely to change. When the film thickness is larger than 50 μm, the film structure becomes too strong, and the film shrinkage due to electrostatic attraction due to the charge of the film structure is less likely to occur, so that the effect of the present invention is considered to be difficult to obtain. On the other hand, it is considered that when the thickness of the selective membrane is smaller than 10 μm, the distribution of electric charges in the membrane structure is narrow, and the difference in water permeation rate between pure water and physiological saline is less likely to occur.

【0015】[0015]

【発明の実施の形態】本発明において選択分離膜の素材
は、特に限定されるものではなく、再生セルロース、セ
ルロースアセテート、ポリスルホン、ポリアクリロニト
リル、ポリメチルメタクリレート、エチレンビニルアル
コール共重合体、ポリビニルアルコールなどが挙げられ
るが、特に、分子内に陰性あるいは陽性荷電を持つポリ
アクリロニトリル系重合体、あるいは分子内に極性を持
つポリメチルメタクリレートやエチレンビニルアルコー
ル共重合体が、好適に使用できる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the material for the selective separation membrane is not particularly limited, and includes regenerated cellulose, cellulose acetate, polysulfone, polyacrylonitrile, polymethylmethacrylate, ethylene vinyl alcohol copolymer, polyvinyl alcohol and the like. In particular, a polyacrylonitrile-based polymer having a negative or positive charge in the molecule, or a polymethyl methacrylate or ethylene vinyl alcohol copolymer having a polarity in the molecule can be preferably used.

【0016】本発明の分離膜の製法は特に限定されるも
のではなく、中空糸膜や平膜などの形で製造され得る
が、特に中空糸膜の場合、以下の条件を満足することに
より、好適に得ることが出来る。 ・中空糸膜形成ポリマー溶液中に塩化リチウム、塩化ナ
トリウムなど溶液中で解離度の高い電解質を1重量%以
上含むこと。 ・中空糸膜成型時、ポリマー溶液の口金部のドラフト比
(凝固浴突入線速度/口金部吐出線速度)を5以上と
し、かつ中空形成材として吐出する芯液のドラフト比
を、1.5以下とすること。 ・ポリマー溶液中のポリマー濃度を15重量%以上とす
ること。以上の3点により、本発明の選択分離膜が好適
に得られる。
The method for producing the separation membrane of the present invention is not particularly limited, and it may be produced in the form of a hollow fiber membrane or a flat membrane. Especially, in the case of a hollow fiber membrane, the following conditions are satisfied: It can be suitably obtained. -The hollow fiber membrane-forming polymer solution contains 1 wt% or more of an electrolyte having a high dissociation degree such as lithium chloride or sodium chloride in the solution.・ During hollow fiber membrane molding, the draft ratio of the polymer solution at the die (the linear velocity of the coagulation bath entry / the ejection linear velocity of the die) is 5 or more, and the draft ratio of the core liquid discharged as a hollow forming material is 1.5. Do the following: -The polymer concentration in the polymer solution should be 15% by weight or more. Due to the above three points, the selective separation membrane of the present invention can be suitably obtained.

【0017】ここで、口金部吐出線速度とは、ポリマー
溶液あるいは芯液の吐出量を、口金吐出部面積で割った
ものである。凝固浴突入線速度は、実際に測定すること
は出来ないので、口金から吐出された中空糸の導かれる
最初のローラー速度を指す。また、チューブインオリフ
ィス型口金の場合、ポリマー溶液の吐出部面積は、スリ
ット外側とスリット内側の間隙面積である。チューブイ
ンオリフィス型口金には、芯液を吐出するための孔があ
るが、吐出された芯液は直ちに、スリット内側まで拡張
するため、芯液の口金吐出部面積とは、スリット内側面
積である。
Here, the discharge linear velocity of the die is the amount of discharge of the polymer solution or the core liquid divided by the area of the die discharge part. Since the coagulation bath entry linear velocity cannot be actually measured, it refers to the initial roller velocity at which the hollow fiber discharged from the die is guided. Further, in the case of the tube-in-orifice type die, the area of the discharge portion of the polymer solution is the area of the gap between the outside of the slit and the inside of the slit. The tube-in-orifice type mouthpiece has a hole for discharging the core liquid, but since the discharged core liquid immediately expands to the inside of the slit, the area of the core liquid mouthpiece discharge part is the area inside the slit. .

【0018】詳細な機構は不明であるが、ポリマー溶液
中に電解質を含有させることにより、溶液中のポリマー
分子同士の静電反発が抑制でき、更に、口金部のポリマ
ー溶液のドラフト比を5以上にし、かつ芯液のドラフト
比を1.5以下とし、ポリマー溶液中のポリマー濃度を
15重量%以上とすると、中空糸成型時に、ポリマー分
子同士の絡み合いを強く持たせる効果があるものと考え
られる。
Although the detailed mechanism is unknown, by incorporating an electrolyte in the polymer solution, electrostatic repulsion between the polymer molecules in the solution can be suppressed, and further, the draft ratio of the polymer solution in the die part is 5 or more. When the draft ratio of the core liquid is 1.5 or less and the concentration of the polymer in the polymer solution is 15% by weight or more, it is considered that there is an effect of strongly entangling polymer molecules with each other during hollow fiber molding. .

【0019】[0019]

【実施例】以下に本発明について実施例を用いて具体的
に説明する。
EXAMPLES The present invention will be specifically described below with reference to examples.

【0020】(実施例1) (中空糸およびモジュールの作製)ポリアクリロニトリ
ル系共重合体(分子量170,000:アクリロニトリ
ル90重量%、メタリルスルホン酸10重量%の共重合
体)を21重量%、塩化リチウム2重量%になるよう
に、N−メチル−2−ピロリドン(NMP)/ジメチル
アセトアミド(DMAc)/トリエチレングリコール
(TEG):45/45/10重量比の組成の混合溶媒
に溶解させ、中空糸膜形成ポリマー溶液を得た。これを
スリット内径200μm、スリット外径800μm、芯
液吐出径100μmのチューブインオリフィス型口金か
ら2.0cc/分の割合で吐出した。このチューブイン
オリフィス型ノズルのポリマー溶液吐出部断面積は4.
7×10-72で、芯液吐出部断面積は、3.1×10
-82である。芯液は、NMP/DMAc/TEG:4
5/45/10の85重量%水溶液を1.6cc/分の
割合で吐出した。この時の、ポリマー溶液吐出線速度
は、4.3m/分であり、芯液吐出線速度は50.9m
/分であった。これをエアギャップ2cmでNMP/D
MAc/TEG=45/45/10の40重量%水溶液
の凝固液からなる40℃の凝固浴に導き、凝固浴外部の
速度50m/分のローラーに導いた。この時のポリマー
溶液口金部のドラフト比は、11.6(=50÷4.
3)であり、芯液ドラフト比は、0.98(=50÷5
0.9)であった。その後、水洗してから巻取り、50
重量%のグリセリン水溶液に浸漬した後、乾燥して中空
糸膜を得た。得られた中空糸膜は、内径200μm、膜
厚40μmで、マクロボイドの観察されない均一な膜で
あった。得られた中空糸膜10800本を束ねて、有効
膜面積1.5m2のモジュールを作製した。
(Example 1) (Production of hollow fiber and module) 21% by weight of polyacrylonitrile-based copolymer (molecular weight 170,000: acrylonitrile 90% by weight, methallylsulfonic acid 10% by weight) Lithium chloride was dissolved in a mixed solvent having a composition of N-methyl-2-pyrrolidone (NMP) / dimethylacetamide (DMAc) / triethylene glycol (TEG): 45/45/10 weight ratio so as to be 2% by weight, A polymer solution for forming a hollow fiber membrane was obtained. This was discharged at a rate of 2.0 cc / min from a tube-in-orifice type mouthpiece having a slit inner diameter of 200 μm, a slit outer diameter of 800 μm, and a core liquid discharge diameter of 100 μm. The cross-sectional area of the polymer solution discharge part of this tube-in-orifice type nozzle is 4.
The cross-sectional area of the core fluid discharge part is 7 × 10 −7 m 2 and is 3.1 × 10.
-8 m 2 . Core fluid is NMP / DMAc / TEG: 4
An 85 wt% aqueous solution of 5/45/10 was discharged at a rate of 1.6 cc / min. The polymer solution discharge linear velocity at this time was 4.3 m / min, and the core liquid discharge linear velocity was 50.9 m.
/ Min. NMP / D with an air gap of 2 cm
It was led to a coagulation bath of 40 ° C., which was composed of a coagulation liquid of a 40 wt% aqueous solution of MAc / TEG = 45/45/10, and was guided to a roller outside the coagulation bath at a speed of 50 m / min. The draft ratio of the polymer solution mouthpiece at this time was 11.6 (= 50/4.
3), and the core liquid draft ratio is 0.98 (= 50/5).
It was 0.9). Then, wash with water and wind up, 50
After immersing in a wt% glycerin aqueous solution, it was dried to obtain a hollow fiber membrane. The obtained hollow fiber membrane had an inner diameter of 200 μm and a thickness of 40 μm, and was a uniform membrane in which macrovoids were not observed. 10800 hollow fiber membranes obtained were bundled to produce a module having an effective membrane area of 1.5 m 2 .

【0021】(透水速度の測定)透水速度の測定は、ダ
イアライザー性能評価基準(日本人工臓器学会、昭和5
7年9月)のC法(STOP法)に準拠して行った。透
水速度(UFR)は以下の式で表される。 UFR=QF/A/TMP 上記の式において、QFは濾過流量(mL/時)、Aは
膜面積(m2)、TMPは膜間圧力差(mmHg)を示
す。但し、膜間圧力差(TMP)は、以下の式で求め
た。 TMP=(PBi+PBo)/2 PBiはダイアライザーの血液ないし原液の入口側圧
力、PBoはダイアライザーの血液ないし原液の出口側
圧力を示す。TMPを4点変更し、その際の濾過流量
(QF)を測定した。QFとTMPの関係をプロット
し、傾きから透水速度を求めた。温度は37±1℃とし
た。純水中の透水速度(UFR(P))は、純水として
イオン交換水を用いて未使用の中空糸膜モジュールにつ
いて測定した。生理食塩水中の透水速度(UFR
(S))は、UFR(P)測定後に、イオン交換水に食
塩を0.9重量%溶解した生理食塩水を用いて測定し
た。実施例1で作製した中空糸膜モジュールの純水中の
透水速度(UFR(P))は、180mL/時/m2
mmHgであり、生理食塩水中の透水速度(UFR
(S))は、215mL/時/m2/mmHg、UFR
(S)/UFR(P)比は1.19であった。
(Measurement of water permeation rate) The water permeation rate was measured by a dialyzer performance evaluation standard (Japan Society for Artificial Organs, Showa 5).
It was performed in accordance with the C method (STOP method) of September, 7). The water penetration rate (UFR) is expressed by the following equation. UFR = QF / A / TMP In the above formula, QF is the filtration flow rate (mL / hour), A is the membrane area (m 2 ), and TMP is the transmembrane pressure difference (mmHg). However, the transmembrane pressure difference (TMP) was calculated by the following formula. TMP = (PBi + PBo) / 2 PBi is the inlet side pressure of the dialyzer blood or stock solution, and PBo is the outlet side pressure of the dialyzer blood or stock solution. The TMP was changed at 4 points and the filtration flow rate (QF) at that time was measured. The relationship between QF and TMP was plotted, and the water permeation rate was calculated from the slope. The temperature was 37 ± 1 ° C. The water permeation rate (UFR (P)) in pure water was measured for an unused hollow fiber membrane module using ion-exchanged water as pure water. Permeability rate in physiological saline (UFR)
(S)) was measured using physiological saline in which 0.9 wt% of salt was dissolved in ion-exchanged water after UFR (P) measurement. The water permeation rate (UFR (P)) in pure water of the hollow fiber membrane module produced in Example 1 was 180 mL / hour / m 2 / m 2 .
mmHg, water permeation rate in physiological saline (UFR)
(S)) is 215 mL / hour / m 2 / mmHg, UFR
The (S) / UFR (P) ratio was 1.19.

【0022】(透水速度の可逆性の評価)上記のUFR
(P)とUFR(S)を測定した後、もう一度、上記の
方法で純水中の透水速度UFR(P)を測定した。2回
目のUFR(P)の測定値は180mL/時/m2/m
mHgであり、透水速度は可逆的に最初の測定値に戻っ
ていた。
(Evaluation of reversibility of water permeation rate) The above UFR
After measuring (P) and UFR (S), the water permeation rate UFR (P) in pure water was measured again by the above method. The second measured value of UFR (P) is 180 mL / hour / m 2 / m
It was mHg and the water permeation rate reversibly returned to the first measured value.

【0023】(牛血液を用いた透水速度の経時劣化性と
回復性の評価)牛血液(ヘマトクリット30%、総タン
パク質濃度6.5g/dL)を用い、温度37±1℃、
血液側流量200mL/分、濾過流量40mL/分で、
120分間、血液濾過実験を行った。血液濾過開始から
15分後の膜間圧力差TMP(15)と120分後にお
ける膜間圧力差TMP(120)から、下式に示すC%
の値を求めた。 C%=TMP(120)×100/TMP(15) 中空糸膜モジュールが経時劣化しない場合は、C%の値
は100%である。C%の値が大きくなるほど経時劣化
が大きいことを示す。実施例1の中空糸膜モジュールに
ついて血液濾過開始後15分後のTMP(15)は47
mmHg、120分後のTMP(120)は52mmH
g、C%は111%であった。血液濾過実験終了後、ダ
イアライザーを回路から外し、透析液側から血液側に向
け、イオン交換水を500mL/分の割合で10分間通
して逆洗した。逆洗後の純水の透水速度を求めたとこ
ろ、UFR(P)は172mL/時/m2/mmHgで
あり、血液処理前に比べ95.5%の回復率であった。
(Evaluation of time-dependent deterioration and recovery of water permeability using bovine blood) Bovine blood (hematocrit 30%, total protein concentration 6.5 g / dL) was used at a temperature of 37 ± 1 ° C.
Blood side flow rate 200mL / min, filtration flow rate 40mL / min,
A hemofiltration experiment was performed for 120 minutes. From the transmembrane pressure difference TMP (15) after 15 minutes from the start of hemofiltration and the transmembrane pressure difference TMP (120) after 120 minutes, C% shown in the following formula
The value of was calculated. C% = TMP (120) × 100 / TMP (15) When the hollow fiber membrane module does not deteriorate with time, the value of C% is 100%. The larger the C% value, the greater the deterioration over time. Regarding the hollow fiber membrane module of Example 1, TMP (15) 15 minutes after the start of hemofiltration was 47.
mmHg, TMP (120) after 120 minutes is 52 mmH
The g and C% were 111%. After the blood filtration experiment was completed, the dialyzer was removed from the circuit, and the dialysate was directed from the blood side to ion-exchanged water at a rate of 500 mL / min for 10 minutes for backwashing. When the water permeation rate of pure water after backwashing was determined, the UFR (P) was 172 mL / hour / m 2 / mmHg, which was a recovery rate of 95.5% compared with that before the blood treatment.

【0024】(比較例1)ポリアクリロニトリル系共重
合体(分子量170,000:アクリロニトリル90重
量%、メタリルスルホン酸10重量%の共重合体)を2
1重量%になるように、N−メチル−2−ピロリドン
(NMP)/ジメチルアセトアミド(DMAc)/トリ
エチレングリコール(TEG):45/45/10重量
比の組成の混合溶媒に溶解させ、中空糸膜形成ポリマー
溶液を得た。これをスリット内径250μm、スリット
外径400μm、芯液吐出径150μmのチューブイン
オリフィス型口金から2.0cc/分の割合で吐出し
た。このチューブインオリフィス型ノズルのポリマー溶
液吐出部断面積は7.7×10-82で、芯液吐出部断
面積は、4.9×10-82である。芯液は、NMP/
DMAc/TEG=45/45/10の85重量%水溶
液を1.6cc/分の割合で吐出した。この時のポリマ
ー溶液吐出線速度は、26.1m/分であり、芯液吐出
線速度は32.6m/分であった。これをエアギャップ
2cmでNMP/DMAc/TEG=45/45/10
の40重量%水溶液の凝固液からなる40℃の凝固浴に
導き、凝固浴外部の速度50m/分のローラーに導い
た。この時のポリマー溶液口金部のドラフト比は、1.
92(=50÷26.1)、芯液のドラフト比は、1.
53(=50÷32.6)であった。その後、水洗して
から巻取り、50重量%のグリセリン水溶液に浸漬した
後、乾燥して中空糸膜を得た。得られた中空糸膜は、内
径200μm、膜厚40μmで、マクロボイドの観察さ
れない均一な膜であった。得られた中空糸膜10800
本を束ねて、有効膜面積1.5m2のモジュールを作製
した。
Comparative Example 1 Polyacrylonitrile-based copolymer (molecular weight 170,000: acrylonitrile 90% by weight, methallyl sulfonic acid 10% by weight) was used in 2 parts.
The hollow fiber was dissolved in a mixed solvent having a composition of N-methyl-2-pyrrolidone (NMP) / dimethylacetamide (DMAc) / triethylene glycol (TEG): 45/45/10 weight ratio so as to be 1% by weight. A film-forming polymer solution was obtained. This was discharged at a rate of 2.0 cc / min from a tube-in-orifice type mouthpiece having a slit inner diameter of 250 μm, a slit outer diameter of 400 μm, and a core liquid discharge diameter of 150 μm. The cross-sectional area of the polymer solution discharge part of this tube-in-orifice type nozzle is 7.7 × 10 −8 m 2 , and the cross-sectional area of the core liquid discharge part is 4.9 × 10 −8 m 2 . The core fluid is NMP /
An 85 wt% aqueous solution of DMAc / TEG = 45/45/10 was discharged at a rate of 1.6 cc / min. The polymer solution discharge linear velocity at this time was 26.1 m / min, and the core liquid discharge linear velocity was 32.6 m / min. NMP / DMAc / TEG = 45/45/10 with an air gap of 2 cm
Was introduced into a coagulation bath of 40 ° C. consisting of a coagulation liquid of a 40 wt% aqueous solution of, and led to a roller outside the coagulation bath at a speed of 50 m / min. The draft ratio of the polymer solution mouthpiece at this time was 1.
92 (= 50 / 26.1), the draft ratio of the core liquid was 1.
It was 53 (= 50 / 32.6). Then, it was washed with water, wound up, immersed in a 50% by weight glycerin aqueous solution, and then dried to obtain a hollow fiber membrane. The obtained hollow fiber membrane had an inner diameter of 200 μm and a thickness of 40 μm, and was a uniform membrane in which macrovoids were not observed. Obtained hollow fiber membrane 10800
The books were bundled into a module having an effective film area of 1.5 m 2 .

【0025】得られた中空糸膜モジュールを実施例1と
同様に評価した結果、UFR(P)は205mL/分、
UFR(S)は203mL/分、UFR(S)/UFR
(P)比は0.99であった。UFR(S)/UFR
(P)比は、被処理液の粘度に依存した変化であり、膜
構造は変化していないと考えられた。2回目に測定した
UFR(P)は205mL/時/m2/mmHgであっ
た。血液濾過実験では、TMP(15)は52mmHg
で、TMP(120)は90mmHgであり、C%は1
73%であった。実施例1に比べ、初期から高いTMP
値を持ち、またC%も大きい値であり、血液中の成分に
よる膜の性能低下および経時劣化が激しいことがわか
る。実施例1と同様に逆洗した後に測定した純水中の透
水速度(UFR(P))は131mL/時/m2/mm
Hgであり、血液処理前に比較した回復率は63.9%
であり、実施例1に比べ、中空糸膜の性能の回復率が低
かった。
The obtained hollow fiber membrane module was evaluated in the same manner as in Example 1, and as a result, UFR (P) was 205 mL / min,
UFR (S) is 203 mL / min, UFR (S) / UFR
The (P) ratio was 0.99. UFR (S) / UFR
The (P) ratio was a change depending on the viscosity of the liquid to be treated, and it was considered that the film structure did not change. The UFR (P) measured the second time was 205 mL / hour / m 2 / mmHg. In hemofiltration experiment, TMP (15) was 52 mmHg
And, TMP (120) is 90mmHg, C% is 1
It was 73%. Higher TMP than in the first embodiment
It also has a large value, and C% is also a large value, and it can be seen that the performance of the membrane is deteriorated and deteriorated with time due to components in blood. The water permeation rate (UFR (P)) in pure water measured after backwashing in the same manner as in Example 1 was 131 mL / hour / m 2 / mm.
Hg, recovery rate was 63.9% compared to before blood treatment
And the recovery rate of the performance of the hollow fiber membrane was lower than that in Example 1.

【0026】[0026]

【発明の効果】本発明の選択分離膜は、処理中の経時的
な性能低下が少なく、かつ、一旦低下した性能を容易に
回復することができる。従って、蛋白質が高濃度に存在
する液の処理に用いる血液浄化膜や、懸濁成分が高濃度
に存在する廃水および水道水処理膜などの選択分離膜等
として有用である。
EFFECTS OF THE INVENTION The selective separation membrane of the present invention has little performance deterioration over time during treatment, and can easily recover the once deteriorated performance. Therefore, it is useful as a blood purification membrane used for treating a liquid containing a high concentration of protein, a selective separation membrane such as a waste water and tap water treatment membrane containing a high concentration of suspended components.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4C077 AA01 AA05 BB01 BB02 EE01 KK12 LL02 LL05 PP03 PP04 PP09 PP10 PP15 4D006 GA06 GA07 MA01 MA03 MA11 MA21 MA31 MB02 MC12 MC18 MC33 MC34 MC37 MC39X MC62 NA05 PB08 PB15 PC47   ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4C077 AA01 AA05 BB01 BB02 EE01                       KK12 LL02 LL05 PP03 PP04                       PP09 PP10 PP15                 4D006 GA06 GA07 MA01 MA03 MA11                       MA21 MA31 MB02 MC12 MC18                       MC33 MC34 MC37 MC39X                       MC62 NA05 PB08 PB15 PC47

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 生理食塩水中の透水速度(UFR
(S))と純水中の透水速度(UFR(P))の比が、
下記式を満足することを特徴とする選択分離膜。 UFR(S)/UFR(P)≧ 1.07
1. A water permeation rate (UFR) in physiological saline.
(S)) and the water permeation rate in pure water (UFR (P)),
A selective separation membrane characterized by satisfying the following formula. UFR (S) / UFR (P) ≧ 1.07
【請求項2】 膜構造が実質的にマクロボイドが観測さ
れない実質的に均一膜であって、且つ、膜厚が10〜5
0μmの範囲である請求項1記載の選択分離膜。
2. The film structure is a substantially uniform film in which substantially no macrovoids are observed, and the film thickness is 10 to 5.
The selective separation membrane according to claim 1, which is in a range of 0 μm.
JP2001230259A 2001-07-30 2001-07-30 Selective separation membrane Expired - Fee Related JP4164730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001230259A JP4164730B2 (en) 2001-07-30 2001-07-30 Selective separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001230259A JP4164730B2 (en) 2001-07-30 2001-07-30 Selective separation membrane

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007321746A Division JP4164774B2 (en) 2007-12-13 2007-12-13 Method for producing selective separation membrane

Publications (2)

Publication Number Publication Date
JP2003038940A true JP2003038940A (en) 2003-02-12
JP4164730B2 JP4164730B2 (en) 2008-10-15

Family

ID=19062496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001230259A Expired - Fee Related JP4164730B2 (en) 2001-07-30 2001-07-30 Selective separation membrane

Country Status (1)

Country Link
JP (1) JP4164730B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029908A1 (en) * 2008-09-10 2010-03-18 東レ株式会社 Hollow-fiber membrane and process for production of hollow-fiber membrane
US9186374B2 (en) 2005-08-17 2015-11-17 Par Pharmaceutical, Inc. Vitamin B12 nasal spray and method of use
US9415007B2 (en) 2003-03-04 2016-08-16 Par Pharmaceutical, Inc. Cyanocobalamin low viscosity aqueous formulations for intranasal delivery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9415007B2 (en) 2003-03-04 2016-08-16 Par Pharmaceutical, Inc. Cyanocobalamin low viscosity aqueous formulations for intranasal delivery
US9186374B2 (en) 2005-08-17 2015-11-17 Par Pharmaceutical, Inc. Vitamin B12 nasal spray and method of use
US10052344B2 (en) 2005-08-17 2018-08-21 Endo Pharmaceuticals Inc. Vitamin B12 nasal spray and method of use
US10251908B2 (en) 2005-08-17 2019-04-09 Endo Pharmaceuticals Inc. Vitamin B12 nasal spray and method of use
WO2010029908A1 (en) * 2008-09-10 2010-03-18 東レ株式会社 Hollow-fiber membrane and process for production of hollow-fiber membrane
CN102149449A (en) * 2008-09-10 2011-08-10 东丽株式会社 Hollow-fiber membrane and process for production of hollow-fiber membrane
JPWO2010029908A1 (en) * 2008-09-10 2012-02-02 東レ株式会社 Hollow fiber membrane and method for producing hollow fiber membrane
TWI472370B (en) * 2008-09-10 2015-02-11 Toray Industries Method for producing hollow fiber membrane

Also Published As

Publication number Publication date
JP4164730B2 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
CA2458378C (en) Porous membrane and method of manufacturing the same
CN100457242C (en) Dialysis membrane having improved average molecular distance
JP6694326B2 (en) Composite membrane
CN105636677B (en) Improve the chemical stability of filter membrane
WO1997034687A1 (en) Hollow yarn membrane used for blood purification and blood purifier
KR20160065047A (en) Porous membrane, blood purifying module incorporating porous membrane, and method for producing porous membrane
JP3617194B2 (en) Permselective separation membrane and method for producing the same
JP5952159B2 (en) Separation membrane and manufacturing method thereof
JP2000140589A (en) Porous polysulfone film
JP3934340B2 (en) Blood purifier
TWI787505B (en) Intrinsically anti-microbial hollow fiber membrane for filtration of liquids, process of making an intrinsically anti-microbial hollow fiber membrane and device for liquid filtration
JP4164730B2 (en) Selective separation membrane
JP4164774B2 (en) Method for producing selective separation membrane
JP3317975B2 (en) Polyacrylonitrile hollow fiber filtration membrane
JP4103037B2 (en) Diaphragm cleaning hollow fiber membrane and method for producing the same
WO1996035504A1 (en) Hollow-fiber membrane of polysulfone polymer and process for the production thereof
WO2016182015A1 (en) Porous hollow fiber membrane and manufacturing method therefor
JPH0929078A (en) Production of hollow yarn membrane
JP2000225326A (en) Method for cleaning selective permeable membrane
JP3424810B2 (en) High performance blood purification membrane
JPH09308685A (en) Hollow fiber membrane for blood purification and blood purifying device
JP3169404B2 (en) Method for producing semipermeable membrane with high water permeability
JPH07155570A (en) Laminated membrane
JP6707880B2 (en) Hollow fiber membrane and hollow fiber membrane module
KR930003740B1 (en) Producing method of polysulfon membrane

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071213

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20080410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080716

R151 Written notification of patent or utility model registration

Ref document number: 4164730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees