JP5952159B2 - Separation membrane and manufacturing method thereof - Google Patents

Separation membrane and manufacturing method thereof Download PDF

Info

Publication number
JP5952159B2
JP5952159B2 JP2012228711A JP2012228711A JP5952159B2 JP 5952159 B2 JP5952159 B2 JP 5952159B2 JP 2012228711 A JP2012228711 A JP 2012228711A JP 2012228711 A JP2012228711 A JP 2012228711A JP 5952159 B2 JP5952159 B2 JP 5952159B2
Authority
JP
Japan
Prior art keywords
separation membrane
membrane
mass
hollow fiber
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012228711A
Other languages
Japanese (ja)
Other versions
JP2014079687A (en
Inventor
千礼 榊原
千礼 榊原
橋野 昌年
昌年 橋野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2012228711A priority Critical patent/JP5952159B2/en
Publication of JP2014079687A publication Critical patent/JP2014079687A/en
Application granted granted Critical
Publication of JP5952159B2 publication Critical patent/JP5952159B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、疎水性高分子と親水性高分子とを含む分離膜に関する。詳しくは、酵素やタンパク質を濃縮する用途において、薬品洗浄に強く、分離膜が持つ親水性及び分画性能を長期に渡って維持できる分離膜に関する。   The present invention relates to a separation membrane containing a hydrophobic polymer and a hydrophilic polymer. More specifically, the present invention relates to a separation membrane that is resistant to chemical washing and can maintain the hydrophilicity and fractionation performance of the separation membrane over a long period of time in the use of concentrating enzymes and proteins.

従来、酵素やタンパク質の濃縮には、選択透過性分離膜が広く用いられてきた。酵素やタンパク質が膜に吸着すると、目詰まりして濾過性能が低下するだけでなく、製品の回収率が下がってしまうという問題が生じる。このため、選択透過性分離膜の中でも、膜表面への吸着のしにくさから、セルロース系やポリアクリロニトリル系等の親水性素材で製膜した膜が好適であることが知られている。   Conventionally, permselective separation membranes have been widely used for the concentration of enzymes and proteins. When the enzyme or protein is adsorbed on the membrane, not only will clogging result in a decrease in filtration performance, but also a problem that the product recovery rate is lowered. For this reason, it is known that among the selectively permeable separation membranes, membranes made of a hydrophilic material such as cellulose or polyacrylonitrile are suitable because they are difficult to adsorb on the membrane surface.

しかしながら、これらの親水性素材は、一般的に耐薬品性や機械的強度が低いという欠点があった。使用後の膜から酵素やタンパク質を除去するには、水酸化ナトリウム水溶液や次亜塩素酸ナトリウム水溶液等のアルカリ性の洗浄液により高温で洗浄することが効果的であることが知られている。しかし、これら親水性素材の膜は、高温やアルカリ性溶液に対する耐性が低いため、最適な洗浄条件を用いることができなかった。そのため、温度やpHが穏やかな条件で洗浄を行っているが、それでもなお薬品曝露を繰り返すうちに膜が劣化し、徐々に分画性能が低下してしまうため、膜の寿命が短いという課題があった。   However, these hydrophilic materials generally have a drawback of low chemical resistance and mechanical strength. In order to remove enzymes and proteins from the membrane after use, it is known that it is effective to wash at high temperature with an alkaline cleaning solution such as an aqueous sodium hydroxide solution or an aqueous sodium hypochlorite solution. However, since these hydrophilic materials have low resistance to high temperatures and alkaline solutions, it was not possible to use optimum cleaning conditions. For this reason, cleaning is performed under conditions where the temperature and pH are gentle, but the film deteriorates as the chemical exposure is repeated, and the fractionation performance gradually deteriorates. there were.

この課題を解決するために、機械的、化学的強度の優れたポリスルホン系、ポリフッ化ビニリデン系等の疎水性素材に、親水性のポリマーや添加剤を配合、もしくはコーティングすること等によって、親水性を付与した膜が開発されている。   In order to solve this problem, hydrophilicity is improved by blending or coating hydrophilic polymers and additives with hydrophobic materials such as polysulfone and polyvinylidene fluoride, which have excellent mechanical and chemical strength. Membranes that have been added have been developed.

疎水性素材に親水性を付与する方法としては、例えば、特許文献1及び2に開示されているように、製膜原液中に親水性高分子であるポリエチレングリコールを配合する方法や、特許文献3及び4に開示されているように、ポリビニルピロリドンを添加する方法が知られている。   As a method for imparting hydrophilicity to a hydrophobic material, for example, as disclosed in Patent Documents 1 and 2, a method of blending polyethylene glycol, which is a hydrophilic polymer, in a film forming stock solution, or Patent Document 3 And 4 discloses methods of adding polyvinylpyrrolidone.

しかしながら、ポリエチレングリコールやポリビニルピロリドンは水溶性であるため、初期は良好な性能を示しても、使用中に徐々にこれらが処理液中に溶け出し、親水性が失われるという問題がある。また同時に、親水性ポリマーの脱落した部分が空隙になり、分画性能が低下する。   However, since polyethylene glycol and polyvinyl pyrrolidone are water-soluble, there is a problem that even when initially showing good performance, they are gradually dissolved in the treatment liquid during use and the hydrophilicity is lost. At the same time, the part where the hydrophilic polymer is dropped becomes voids, and the fractionation performance decreases.

特許文献5では、強酸化剤に耐性を持つ親水化ポリスルホン系膜として、膜に分子量35000のポリエチレングリコールを保持させる方法が提案されている。ここで、ポリエチレングリコールは基材のポリスルホンよりは親水性であるため、分離膜としての効果はある程度あるが、耐ファウリング性の観点では、より親水性が高くかつ均一な水和層が形成できるポリビニルピロリドンの方が優れている。   Patent Document 5 proposes a method of retaining polyethylene glycol having a molecular weight of 35000 in a membrane as a hydrophilized polysulfone-based membrane resistant to strong oxidizing agents. Here, since polyethylene glycol is more hydrophilic than the base polysulfone, there is some effect as a separation membrane, but from the viewpoint of fouling resistance, a more hydrophilic and uniform hydrated layer can be formed. Polyvinylpyrrolidone is superior.

ポリビニルピロリドンの溶出を防ぐために、特許文献6に開示されているように、ポリビニルピロリドンをアルカリ等で架橋して、不溶化する技術が開発されている。このような不溶化処理を行うことにより、水中へのポリビニルピロリドンの溶出が防止できるようになったため、現在透析膜等の医療分野で広く使われている。   In order to prevent the elution of polyvinyl pyrrolidone, as disclosed in Patent Document 6, a technique for cross-linking polyvinyl pyrrolidone with an alkali or the like to insolubilize has been developed. By performing such insolubilization treatment, elution of polyvinylpyrrolidone into water can be prevented, and it is now widely used in medical fields such as dialysis membranes.

特開昭61−232860号公報JP-A-61-232860 特開昭58−114702号公報JP 58-114702 A 特開2008−6327号公報JP 2008-6327 A 特許第3117575号Japanese Patent No. 3117575 特開2007−307463号公報JP 2007-307463 A 国際公開第04/018085号International Publication No. 04/018085

しかしながら、これらは主に血液処理用等のシングルユースでの使用を想定しているため、繰り返し用いるときの課題を考慮していない。たとえ親水性高分子を架橋して水に不溶化したとしても、薬品による親水性高分子の分解は抑えられないため、やはり長期間にわたって親水性と分画性能を維持することが困難である。このように、膜の親水性と膜寿命はトレードオフの関係にあり、また親水性がどの程度あれば満足な濾過性能が得られるか定かでなかったため、結局双方を十分に高くしようと試みが続けられてきたが、これまで達成されていない。   However, since these are mainly assumed to be used for single use, such as for blood treatment, the problem of repeated use is not considered. Even if the hydrophilic polymer is cross-linked and insolubilized in water, it is difficult to maintain the hydrophilicity and fractionation performance over a long period of time because the decomposition of the hydrophilic polymer by chemicals cannot be suppressed. Thus, the hydrophilicity of the membrane and the membrane life are in a trade-off relationship, and since it was not clear how much hydrophilicity would provide satisfactory filtration performance, an attempt was made to make both sufficiently high after all. It has been continued but has not been achieved so far.

本発明は、親水性を有し、耐薬品性が高く、酵素溶液を濾過したときの透水量の保持率が高く、酵素除去率も高い分離膜及びその製造方法を提供することを目的とする。本発明はまた、当該分離膜を備えるモジュール、並びに当該分離膜を用いる酵素濃縮方法及び濾過方法を提供することを目的とする。   An object of the present invention is to provide a separation membrane having hydrophilicity, high chemical resistance, a high water permeability retention rate when an enzyme solution is filtered, and a high enzyme removal rate, and a method for producing the same. . Another object of the present invention is to provide a module including the separation membrane, and an enzyme concentration method and a filtration method using the separation membrane.

本発明者らは上記課題を解決するために鋭意検討した結果、親水性高分子と疎水性高分子を含むある種の分離膜が、親水性を有し、耐薬品性が高く、酵素溶液を濾過したときの透水量の保持率が高く、酵素除去率も高いことを見出した。   As a result of intensive studies to solve the above problems, the present inventors have found that a certain type of separation membrane containing a hydrophilic polymer and a hydrophobic polymer has hydrophilicity, high chemical resistance, and an enzyme solution. It was found that the retention rate of water permeability when filtered was high and the enzyme removal rate was also high.

すなわち、本発明は以下の[1]〜[16]を提供するものである。
[1]疎水性高分子と親水性高分子とを含む分離膜であって、前記親水性高分子が、重量平均分子量2000以上50000未満のポリビニルピロリドンを含有し、前記分離膜の一方の表面の接触角と、他方の表面の接触角との差が6度以上である、分離膜。
[2]前記ポリビニルピロリドンの重量平均分子量が2500以上32000以下である、[1]に記載の分離膜。
[3]前記分離膜の一方の表面の接触角と、他方の表面の接触角との差が10度以上である、[1]又は[2]に記載の分離膜。
[4]前記疎水性高分子が、ポリエーテルスルホン又はポリスルホンを含有し、前記ポリビニルピロリドンの割合が、該ポリビニルピロリドンと前記ポリエーテルスルホン又は前記ポリスルホンとの総量を基準として、2質量%以上8質量%以下である、[1]〜[3]のいずれか一つに記載の分離膜。
[5]前記ポリビニルピロリドンの割合が、該ポリビニルピロリドンと前記ポリエーテルスルホン又は前記ポリスルホンとの総量を基準として、2質量%以上4.1質量%以下である、[4]に記載の分離膜。
[6]前記疎水性高分子が、ポリフッ化ビニリデンを含有し、前記ポリビニルピロリドンの割合が、該ポリビニルピロリドンと前記ポリフッ化ビニリデンとの総量を基準として、0.2質量%以上2質量%以下である、[1]〜[3]のいずれか一つに記載の分離膜。
[7]前記ポリビニルピロリドンの割合が、該ポリビニルピロリドンと前記ポリフッ化ビニリデンとの総量を基準として、1.5質量%以上2質量%以下である、[6]に記載の分離膜。
[8]中空糸膜である、[1]〜[7]のいずれかに記載の分離膜。
[9][1]〜[8]のいずれかに記載の分離膜を備えるモジュール。
[10][1]〜[8]のいずれかに記載の分離膜を用いる酵素濃縮方法。
[11][1]〜[8]のいずれかに記載の分離膜を用いる濾過方法。
[12]疎水性高分子、親水性高分子、並びに、該疎水性高分子及び該親水性高分子を溶解させる共通溶媒を少なくとも含有する製膜原液を、水を主成分とする溶液中で凝固させて分離膜を作製する工程を備え、前記親水性高分子は、重量平均分子量が2000以上50000未満のポリビニルピロリドンを含む、分離膜の製造方法。
[13]前記製膜原液が、前記疎水性高分子に対する貧溶剤であり、分子量300以下の貧溶剤を更に含有する、[12]に記載の分離膜の製造方法。
[14]前記製膜原液を中空糸状に吐出する、[12]又は[13]に記載の分離膜の製造方法。
[15]前記製膜原液を中空糸状に吐出する際に用いる中空剤の主成分が、水である、[14]に記載の分離膜の製造方法。
[16]空走時間が0.1秒以上10秒未満である、[12]〜[15]のいずれかに記載の分離膜の製造方法。
That is, the present invention provides the following [1] to [16].
[1] A separation membrane comprising a hydrophobic polymer and a hydrophilic polymer, wherein the hydrophilic polymer contains polyvinyl pyrrolidone having a weight average molecular weight of 2000 or more and less than 50000, and is formed on one surface of the separation membrane. A separation membrane, wherein the difference between the contact angle and the contact angle of the other surface is 6 degrees or more.
[2] The separation membrane according to [1], wherein the polyvinyl pyrrolidone has a weight average molecular weight of 2500 or more and 32000 or less.
[3] The separation membrane according to [1] or [2], wherein a difference between a contact angle on one surface of the separation membrane and a contact angle on the other surface is 10 degrees or more.
[4] The hydrophobic polymer contains polyether sulfone or polysulfone, and the proportion of the polyvinyl pyrrolidone is 2% by mass or more and 8% by mass based on the total amount of the polyvinyl pyrrolidone and the polyether sulfone or the polysulfone. % Of the separation membrane according to any one of [1] to [3].
[5] The separation membrane according to [4], wherein a ratio of the polyvinyl pyrrolidone is 2% by mass or more and 4.1% by mass or less based on a total amount of the polyvinyl pyrrolidone and the polyether sulfone or the polysulfone.
[6] The hydrophobic polymer contains polyvinylidene fluoride, and the ratio of the polyvinyl pyrrolidone is 0.2% by mass or more and 2% by mass or less based on the total amount of the polyvinyl pyrrolidone and the polyvinylidene fluoride. The separation membrane according to any one of [1] to [3].
[7] The separation membrane according to [6], wherein a ratio of the polyvinyl pyrrolidone is 1.5% by mass or more and 2% by mass or less based on a total amount of the polyvinyl pyrrolidone and the polyvinylidene fluoride.
[8] The separation membrane according to any one of [1] to [7], which is a hollow fiber membrane.
[9] A module comprising the separation membrane according to any one of [1] to [8].
[10] An enzyme concentration method using the separation membrane according to any one of [1] to [8].
[11] A filtration method using the separation membrane according to any one of [1] to [8].
[12] A film-forming stock solution containing at least a hydrophobic polymer, a hydrophilic polymer, and a common solvent for dissolving the hydrophobic polymer and the hydrophilic polymer is coagulated in a solution containing water as a main component. And a process for producing a separation membrane, wherein the hydrophilic polymer contains polyvinylpyrrolidone having a weight average molecular weight of 2,000 or more and less than 50,000.
[13] The method for producing a separation membrane according to [12], wherein the membrane-forming stock solution is a poor solvent for the hydrophobic polymer and further contains a poor solvent having a molecular weight of 300 or less.
[14] The method for producing a separation membrane according to [12] or [13], wherein the membrane-forming stock solution is discharged into a hollow fiber shape.
[15] The method for producing a separation membrane according to [14], wherein the main component of the hollow agent used when the membrane-forming stock solution is discharged into a hollow fiber is water.
[16] The method for producing a separation membrane according to any one of [12] to [15], wherein the idle running time is 0.1 second or more and less than 10 seconds.

本発明によれば、親水性を有し、耐薬品性が高く、酵素溶液を濾過したときの透水量の保持率が高く、酵素除去率も高い分離膜及びその製造方法を提供することができる。また、本発明によれば、当該分離膜を備えるモジュール、並びに当該分離膜を用いる酵素濃縮方法及び濾過方法を提供することができる。より具体的には、本発明の分離膜を用いることにより、タンパク質や酵素の濾過に特有の高温のアルカリ性溶液を用いた過酷な洗浄条件下でも、膜の親水性を維持できるため、タンパク質や酵素が膜表面に付着しにくく良好な濾過性を保つことができる。すなわち、従来よりも繰り返し使用に適した分離膜を提供することができる。   According to the present invention, it is possible to provide a separation membrane having a hydrophilic property, high chemical resistance, a high water permeability retention rate when an enzyme solution is filtered, and a high enzyme removal rate, and a method for producing the same. . In addition, according to the present invention, it is possible to provide a module including the separation membrane, and an enzyme concentration method and a filtration method using the separation membrane. More specifically, by using the separation membrane of the present invention, the hydrophilicity of the membrane can be maintained even under harsh washing conditions using a high-temperature alkaline solution unique to the filtration of proteins and enzymes. Can hardly adhere to the membrane surface and can maintain good filterability. That is, it is possible to provide a separation membrane that is more suitable for repeated use than in the past.

以下、本発明の好適な実施形態について詳細に説明する。
本実施形態の分離膜は、疎水性高分子と親水性高分子とを含む。疎水性高分子は、高い機械的及び化学的強度を有するため、分離膜の強度を担保する役割を持つ。一方、親水性高分子は、分離膜の表面を親水性に保ち、タンパク質や酵素を付着しにくくするため、良好な濾過性能に寄与する。
Hereinafter, preferred embodiments of the present invention will be described in detail.
The separation membrane of this embodiment includes a hydrophobic polymer and a hydrophilic polymer. Since the hydrophobic polymer has high mechanical and chemical strength, it has a role of ensuring the strength of the separation membrane. On the other hand, the hydrophilic polymer keeps the surface of the separation membrane hydrophilic and makes it difficult for proteins and enzymes to adhere to it, thus contributing to good filtration performance.

ここで分離膜とは、精密濾過や限外濾過等の分離プロセスに用いられる膜を意味し、多孔質膜であることが好ましい。孔径は、0.1nm以上5μm以下が好ましく、1nm以上0.5μm以下がより好ましい。また、分離膜の形状は特に限定されない。分離膜の形状としては、例えば平膜、中空糸膜、多層化された複合膜等が挙げられるが、その中でも、中空糸膜は、単位設置面積当たりの集積度が高くでき、膜面積を稼げるため特に好ましい。   Here, the separation membrane means a membrane used in a separation process such as microfiltration or ultrafiltration, and is preferably a porous membrane. The pore diameter is preferably from 0.1 nm to 5 μm, and more preferably from 1 nm to 0.5 μm. Further, the shape of the separation membrane is not particularly limited. Examples of the shape of the separation membrane include a flat membrane, a hollow fiber membrane, a multilayered composite membrane, etc. Among them, the hollow fiber membrane can increase the degree of integration per unit installation area and can increase the membrane area. Therefore, it is particularly preferable.

疎水性高分子としては、耐熱性、耐薬品性等に優れた疎水性の樹脂成分を含むことが好ましく、樹脂成分としては、例えばポリスルホン、ポリエーテルスルホン、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等が挙げられる。この中でも特に、酵素やタンパク質の洗浄で用いられるアルカリ性水溶液に対して非常に優れた耐性を持ち、かつ親水性高分子との相溶性が良好であることから、ポリスルホン、ポリエーテルスルホン等の、ポリスルホン系の高分子が好ましい。   The hydrophobic polymer preferably includes a hydrophobic resin component having excellent heat resistance, chemical resistance, and the like. Examples of the resin component include polysulfone, polyethersulfone, polyethylene, polypropylene, polytetrafluoroethylene, and polyfluoride. And vinylidene chloride. Of these, polysulfone such as polysulfone and polyethersulfone is particularly preferred because of its excellent resistance to alkaline aqueous solutions used in enzyme and protein washing and good compatibility with hydrophilic polymers. Polymers of the type are preferred.

本実施形態の分離膜は、親水性高分子として、重量平均分子量2000以上50000未満のポリビニルピロリドン(以下「PVP」ともいう。)を含有する。重量平均分子量が2000以上50000未満のPVPを用いることで、優れた親水性と繰り返し使用に耐える強度を高いレベルで兼ね備えた膜を作製できる。また、重量平均分子量が2500以上32000以下のPVPを用いることが好ましい。重量平均分子量が2500以上32000以下のPVPを用いることで、より優れた親水性と繰り返し使用に耐える強度をより高いレベルで兼ね備えた膜を作製できる。また、PVPは、安全性や疎水性高分子との高い相溶性の観点からも、親水性高分子として好ましい。   The separation membrane of this embodiment contains polyvinylpyrrolidone (hereinafter also referred to as “PVP”) having a weight average molecular weight of 2000 or more and less than 50000 as a hydrophilic polymer. By using PVP having a weight average molecular weight of 2,000 or more and less than 50,000, it is possible to produce a film having excellent hydrophilicity and strength to withstand repeated use at a high level. Moreover, it is preferable to use PVP having a weight average molecular weight of 2500 or more and 32000 or less. By using PVP having a weight average molecular weight of 2500 or more and 32000 or less, it is possible to produce a film having a higher level of superior hydrophilicity and strength to withstand repeated use. PVP is also preferred as a hydrophilic polymer from the viewpoint of safety and high compatibility with hydrophobic polymers.

親水性高分子としては他に、例えば、ポリエチレングリコール、ポリビニルアルコール、ポリヒドロキシメタクリレート、ポリアクリロニトリル、ポリアクリルアミン、ポリエチレンイミン、界面活性剤(例えば、アルキル硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩、アルキルベンゼンスルフォン酸塩、脂肪酸塩等の陰イオン性界面活性剤;ポリオキシエチレンアルキルエーテル、ポリオキシアルキレン誘導体、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル等の非イオン性界面活性剤;アルキルアミン塩、第四級アンモニウム塩等の陽イオン性界面活性剤)を含有していてもよい。   Other hydrophilic polymers include, for example, polyethylene glycol, polyvinyl alcohol, polyhydroxymethacrylate, polyacrylonitrile, polyacrylamine, polyethyleneimine, surfactants (for example, alkyl sulfate salts, polyoxyethylene alkyl ether sulfate salts) Anionic surfactants such as alkylbenzene sulfonates and fatty acid salts; polyoxyethylene alkyl ethers, polyoxyalkylene derivatives, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene sorbitol fatty acid esters, glycerin fatty acid esters, Contains nonionic surfactants such as polyoxyethylene fatty acid esters; cationic surfactants such as alkylamine salts and quaternary ammonium salts) It may be.

これまでの分離膜には、重量平均分子量が50000以上の高分子量のPVPが多く用いられてきた。例えば、PVPの分子量の指標となるK値(粘度特性値)が30(重量平均分子量約50000)や、90(重量平均分子量約1600000)のものが広く使われている。これは、高分子量のPVPは膜に残存しやすいため、容易に膜に親水性の効果を持たせることができるためである。しかしこれらの膜は、製造した直後は高い親水性を示すが、架橋等の後処理を行わない場合、使用中に徐々に処理液中に溶出し減少していき、親水性が低下してしまう。架橋等でPVPを不溶化すると、溶出による減少は抑えられるが、洗浄剤として用いられる次亜塩素酸ナトリウム等の薬品による分解は防止できない。よって、分離膜を薬品洗浄しながら繰り返し使用する用途では、やはりPVPの喪失が避けられない。   Conventionally, high molecular weight PVP having a weight average molecular weight of 50,000 or more has been used in many separation membranes. For example, those having a K value (viscosity characteristic value) of 30 (weight average molecular weight of about 50000) or 90 (weight average molecular weight of about 1600000), which are indicators of the molecular weight of PVP, are widely used. This is because the high molecular weight PVP tends to remain in the membrane, so that the membrane can easily have a hydrophilic effect. However, these membranes show high hydrophilicity immediately after production, but when post-treatment such as cross-linking is not performed, the membrane gradually elutes into the processing solution during use, and the hydrophilicity is lowered. . When PVP is insolubilized by crosslinking or the like, a decrease due to elution can be suppressed, but decomposition by chemicals such as sodium hypochlorite used as a cleaning agent cannot be prevented. Therefore, in applications where the separation membrane is repeatedly used while being chemically cleaned, the loss of PVP is unavoidable.

分離膜中のPVPが減少すると、親水性が失われるだけでなく、孔径が大きくなり、初期の分画性能を維持することができなくなる。これは、製膜直後は、膜の基材となる疎水性高分子が形成する微細孔に、PVPの分子鎖が伸びて広がっており、見かけ上、孔径が小さく見えるためだと推測される。ここに、洗浄剤として用いられる次亜塩素酸ナトリウム等の酸化剤が接触すると、PVPの分子鎖が切れて、微細孔を埋めていたPVPが脱落するため、見かけ上阻止率が低下すると考えられる。このように、これまでの技術では、過酷な洗浄条件下において、膜の寿命の観点で問題があった。しかし、分子量が50000(K値で30相当)未満の低分子量のPVPを用いることで、これらを解決することができる。また、分子量が2000未満のPVPを用いた場合、分離膜に親水性を付与することが困難となる。   When the PVP in the separation membrane decreases, not only the hydrophilicity is lost, but also the pore size becomes large and the initial fractionation performance cannot be maintained. This is presumably because, immediately after the film formation, the molecular chain of PVP extends and spreads into the micropores formed by the hydrophobic polymer serving as the membrane substrate, and the pore diameter appears to be small. When an oxidizing agent such as sodium hypochlorite used as a cleaning agent comes into contact therewith, the molecular chain of PVP is cut and the PVP filling the micropores is dropped, so that the apparent blocking rate is considered to decrease. . As described above, the conventional techniques have a problem in terms of the lifetime of the film under severe cleaning conditions. However, these problems can be solved by using a low molecular weight PVP having a molecular weight of less than 50000 (corresponding to a K value of 30). In addition, when PVP having a molecular weight of less than 2000 is used, it is difficult to impart hydrophilicity to the separation membrane.

一般的に、低分子量のPVPを用いると、PVPは紡糸中や水洗中にほとんどが膜に残らずに抜けてしまうため、膜を親水化する効果が小さい。また効果を増すために添加量を増やすと、一時的には膜に残るものの、特開平6−296686号公報の比較例2のように、使用中の溶出量が大きくなることが問題であった。   In general, when PVP having a low molecular weight is used, since the PVP is almost completely removed from the membrane during spinning or washing with water, the effect of hydrophilizing the membrane is small. Further, when the amount added is increased in order to increase the effect, the amount of elution during use becomes large as in Comparative Example 2 of JP-A-6-296686, although it temporarily remains in the membrane. .

しかしながら、低分子量のPVPを多量に疎水性高分子中に残存させることにより、高い親水性を発揮しつつ、更に意外なことに、膜に薬品洗浄を行っても、阻止率の変化は、低分子量のPVPを用いた方が高分子量のPVPを用いたときと比較して明らかに小さいことがわかった。これは、PVPの分子鎖が短いため、元々の疎水性高分子が形成する微細孔の大きさが、見かけの孔径とほぼ一致するためだと考えられる。そのため酸化剤と接触してPVPが分解、脱落しても、孔径変化が小さく分画性能への影響が小さいと考えられる。   However, by leaving a large amount of low molecular weight PVP in the hydrophobic polymer, while maintaining high hydrophilicity, more surprisingly, even when the membrane is subjected to chemical cleaning, the change in the blocking rate is low. It was found that the molecular weight PVP was clearly smaller than when the high molecular weight PVP was used. This is thought to be because the size of the micropores formed by the original hydrophobic polymer almost matches the apparent pore size because the molecular chain of PVP is short. For this reason, even if PVP decomposes and falls off in contact with an oxidizing agent, it is considered that the change in pore size is small and the influence on the fractionation performance is small.

分離膜中に存在するPVPの割合の好ましい範囲は、共存する疎水性高分子の種類によって異なる。疎水性高分子がポリエーテルスルホン又はポリスルホンを含有する場合、ポリビニルピロリドンの割合は、ポリビニルピロリドンとポリエーテルスルホン又はポリスルホンとの総量を基準として、2質量%以上8質量%以下であることが好ましく、2質量%以上4.1質量%以下であることがより好ましい。一方、疎水性高分子がポリフッ化ビニリデンを含む場合、ポリビニルピロリドンの割合は、ポリビニルピロリドンとポリフッ化ビニリデンとの総量を基準として、0.2質量%以上2質量%以下であることが好ましく、1.5質量%以上2質量%以下であることがより好ましい。それぞれの場合において、PVPの含有割合が上記下限値以上であれば、膜に親水性をより付与することができ、良好な濾過性を得ることができる。また、PVPの含有割合が上記上限値以下であれば、濾過した際の溶出もより抑えられ、PVPの脱落による孔径の変化も小さい。   The preferable range of the proportion of PVP present in the separation membrane varies depending on the type of the hydrophobic polymer that coexists. When the hydrophobic polymer contains polyethersulfone or polysulfone, the proportion of polyvinylpyrrolidone is preferably 2% by mass or more and 8% by mass or less based on the total amount of polyvinylpyrrolidone and polyethersulfone or polysulfone. More preferably, the content is 2% by mass or more and 4.1% by mass or less. On the other hand, when the hydrophobic polymer contains polyvinylidene fluoride, the proportion of polyvinylpyrrolidone is preferably 0.2% by mass or more and 2% by mass or less based on the total amount of polyvinylpyrrolidone and polyvinylidene fluoride. More preferably, it is 5 mass% or more and 2 mass% or less. In each case, if the content ratio of PVP is not less than the above lower limit value, hydrophilicity can be further imparted to the membrane, and good filterability can be obtained. Moreover, if the content rate of PVP is below the said upper limit, the elution at the time of filtration will be suppressed more, and the change of the hole diameter by the drop-out of PVP will also be small.

本実施形態の分離膜は、一方の表面(二次側表面)の接触角が、他方の表面(一次側表面)より6度以上大きい。ここで一次側表面とは、膜の被処理液が直接接する側を指し、二次側表面は、濾液が接する側を示す。二次側表面の接触角が一次側表面より大きいということは、二次側表面の方がより疎水性に近いということを示している。すなわち、二次側表面の接触角が一次側表面より大きいということは、分離膜中の親水性高分子の存在量には分布があり、一次側表面に近い側により多くの親水性高分子が存在していることを意味する。   In the separation membrane of this embodiment, the contact angle of one surface (secondary side surface) is 6 degrees or more larger than the other surface (primary side surface). Here, the primary side surface refers to the side of the membrane in direct contact with the liquid to be treated, and the secondary side surface refers to the side in contact with the filtrate. That the contact angle of the secondary surface is larger than the primary surface indicates that the secondary surface is more hydrophobic. That is, the contact angle of the secondary side surface is larger than the primary side surface, which means that there is a distribution in the amount of hydrophilic polymer in the separation membrane, and more hydrophilic polymer is present on the side closer to the primary side surface. It means that it exists.

被処理液の中には、目的濃縮物であるタンパク質や酵素の他にも、微量の低分子量の不純物成分が含まれており、これらは一般的に一次側表面の孔径よりも小さいため、膜を通過し濾液に混入する。しかし、二次側表面を一次側表面よりも疎水性にすることで、これらの不純物が膜に吸着するため、一次側表面を通過した不純物を捕捉する事ができ、濾液をより清澄化することができる。そのため不純物を含めた阻止率をより高くできる。   In addition to proteins and enzymes, which are target concentrates, the liquid to be treated contains trace amounts of low-molecular-weight impurity components, which are generally smaller than the pore size of the primary surface, so that the membrane And pass through the filtrate. However, by making the secondary side surface more hydrophobic than the primary side surface, these impurities are adsorbed on the membrane, so that the impurities that have passed through the primary side surface can be captured and the filtrate becomes more clarified. Can do. Therefore, the rejection rate including impurities can be further increased.

また、分離膜の表面の接触角は、上記一次側表面及び二次側表面の少なくとも一方の表面の接触角が75度以下であることが好ましい。空気中における水の接触角は、膜表面の親水性の程度を表す指標であり、値が小さいほど親水性であることを示す。例えば、ポリスルホンやポリフッ化ビニリデン等の単一の疎水性素材で作製した膜の接触角は、80度以上であり、一方、ポリアクリロニトリル等の単一の親水性素材の膜の接触角は、80度未満である。本発明者らは、タンパク質や酵素の濾過においては、被処理液が直接接触する面の接触角が75度以下であると、親水性素材で作製した膜と同程度の良好な濾過性が得られやすいことを見出した。接触角が75度以下であれば、膜表面への酵素やタンパク質の吸着を十分に小さく抑えられ、濾過性能の低下を十分に抑止できる。また、接触角の下限としては、55°以上であれば、薬品による膜表面での劣化を抑止し、孔径変化を実用上十分に小さく抑えられるため好ましい。接触角の下限は、更に好ましくは60度以上70度以下である。   The contact angle of the surface of the separation membrane is preferably 75 degrees or less with respect to the contact angle of at least one of the primary side surface and the secondary side surface. The contact angle of water in the air is an index representing the degree of hydrophilicity of the film surface, and the smaller the value, the more hydrophilic it is. For example, the contact angle of a membrane made of a single hydrophobic material such as polysulfone or polyvinylidene fluoride is 80 degrees or more, while the contact angle of a membrane of a single hydrophilic material such as polyacrylonitrile is 80 Less than degrees. In the filtration of proteins and enzymes, the present inventors have obtained a good filterability equivalent to a membrane made of a hydrophilic material when the contact angle of the surface directly in contact with the liquid to be treated is 75 degrees or less. I found it easy to be. If the contact angle is 75 degrees or less, the adsorption of enzymes and proteins to the membrane surface can be suppressed sufficiently small, and the decrease in filtration performance can be sufficiently suppressed. Further, the lower limit of the contact angle is preferably 55 ° or more because deterioration on the film surface due to chemicals can be suppressed and the change in pore diameter can be suppressed sufficiently small in practice. The lower limit of the contact angle is more preferably 60 degrees or more and 70 degrees or less.

本実施形態の分離膜は、初期の阻止率の値(A)が50%以上95%未満であるデキストランを用いて、500ppmの次亜塩素酸ナトリウム水溶液に60℃で3時間浸漬させた後に再度阻止率を測定したときの阻止率の値(B)が、B≧A×0.5を満たす分離膜であることが好ましい。これはつまり、分離膜の洗浄剤への耐性(耐薬品性)の指標として、次亜塩素酸ナトリウム水溶液への浸漬前後での、分離膜のデキストラン阻止率の保持率を用いていることを示している。   The separation membrane of the present embodiment was again immersed in 500 ppm sodium hypochlorite aqueous solution at 60 ° C. for 3 hours using dextran having an initial rejection rate value (A) of 50% or more and less than 95%. It is preferable that the separation membrane satisfy the B ≧ A × 0.5 value (B) when the rejection rate is measured. This means that the retention rate of the dextran blocking rate of the separation membrane before and after immersion in an aqueous sodium hypochlorite solution is used as an indicator of the resistance of the separation membrane to the cleaning agent (chemical resistance). ing.

次亜塩素酸ナトリウム水溶液は、タンパク質や酵素を含む液を濾過した際の洗浄剤として汎用的に用いられるものであり、更に膜中のPVPを酸化分解させる作用があるため、好適である。耐薬品性の指標として、より好ましくはB≧A×0.6、更に好ましくはB≧A×0.7である。   A sodium hypochlorite aqueous solution is generally used as a cleaning agent when a liquid containing protein or enzyme is filtered, and further has an action of oxidatively decomposing PVP in the membrane, and thus is suitable. As an index of chemical resistance, B ≧ A × 0.6 is more preferable, and B ≧ A × 0.7 is more preferable.

デキストランは、上記のとおり分離膜の初期の阻止率の値Aが、50%以上95%未満であるものを使用する。これは、Aが50%以上95%未満のデキストランを用いると、膜の孔径が変化したときに、明確に変化が検知できるためである。初期の阻止率が50%未満、もしくは95%以上であると、元々の膜の孔径がデキストランより十分に大きい、もしくは小さいため、薬品浸漬により膜の孔径が少々変化しても、阻止率の変化で検知することが難しい。薬品浸漬前後におけるデキストラン阻止率の保持率B/Aが0.5以上であれば、孔径の変化は小さく、タンパク質や酵素の濾過において、長期に渡って安定した性能を保持できる。   As described above, dextran having a separation membrane having an initial rejection rate value A of 50% or more and less than 95% is used. This is because when dextran having A of 50% or more and less than 95% is used, a change can be clearly detected when the pore size of the membrane changes. If the initial blocking rate is less than 50% or 95% or more, the pore size of the original membrane is sufficiently larger or smaller than dextran, so even if the pore size of the membrane changes slightly due to chemical immersion, the blocking rate changes. It is difficult to detect with. When the retention ratio B / A of the dextran blocking ratio before and after chemical immersion is 0.5 or more, the change in pore diameter is small, and stable performance can be maintained for a long time in the filtration of proteins and enzymes.

本実施形態においては、分離膜を純水で抽出した際の、抽出液のUV吸光度が0.10未満であることが好ましい。抽出液のUV吸光度が0.10未満であるということは、親水性高分子の溶出量が十分少なく、分離膜中に残存している親水性高分子が疎水性高分子鎖に強固に絡み合っていることを示している。抽出液のUV吸光度が0.10未満であると、より長期に渡り安定な濾過性能を得ることができる。抽出方法は、医療分野で使用される、人工腎臓装置承認基準(昭和58年厚生省規定)の溶出試験に準拠して実施することができる。   In this embodiment, it is preferable that the UV absorbance of the extract when the separation membrane is extracted with pure water is less than 0.10. When the UV absorbance of the extract is less than 0.10, the amount of elution of the hydrophilic polymer is sufficiently small, and the hydrophilic polymer remaining in the separation membrane is strongly entangled with the hydrophobic polymer chain. It shows that. When the UV absorbance of the extract is less than 0.10, stable filtration performance can be obtained over a longer period. The extraction method can be carried out in accordance with the dissolution test of the artificial kidney device approval standard (specified by the Ministry of Health and Welfare in 1983) used in the medical field.

本実施形態の分離膜は、後述する実施例に記載の測定方法により測定することができる重量平均分子量10000のデキストランの阻止率が、20%以上であることが好ましい。目的濃縮物であるタンパク質や酵素の分子量は、数千〜数万程度であり、重量平均分子量10000のデキストランの阻止率が20%以上あれば、より高い分画性能を得ることができる。当該阻止率は、より好ましくは30%以上、更に好ましくは40%以上である。   The separation membrane of the present embodiment preferably has a dextran rejection rate of 20% or more, which can be measured by the measurement method described in the Examples described later. The molecular weight of the target concentrate protein or enzyme is about several thousand to several tens of thousands, and if the inhibition rate of dextran having a weight average molecular weight of 10,000 is 20% or more, higher fractionation performance can be obtained. The blocking rate is more preferably 30% or more, and further preferably 40% or more.

本実施形態の分離膜は、実施例記載の測定方法により測定した純水透水量が、100L/m/h以上10000L/m/h未満であることが好ましい。純水透水量が100L/m/h以上であれば、低い膜間差圧(TransMembrane Pressure、以下「TMP」ともいう)でより十分な処理能力を得ることができる。また10000L/m/h未満であれば、ポンプ等付帯設備の能力を懸念する必要がなく、汎用的に使用できる。 Separation membrane of the present embodiment, pure water permeation amount measured by the measuring method described in Examples is preferably less than 100L / m 2 / h or more 10000L / m 2 / h. When the pure water permeation amount is 100 L / m 2 / h or more, a sufficient treatment capacity can be obtained with a low transmembrane pressure (hereinafter also referred to as “TMP”). Moreover, if it is less than 10000 L / m < 2 > / h, it is not necessary to worry about the capability of incidental facilities, such as a pump, and it can be used universally.

本実施形態において、分離膜の純水透水量をC(L/m/h)、酵素溶液を濾過したときの透水量をD(L/m/h)とすると、D/C≧0.05 であり、かつ、酵素溶液を濾過したときの酵素の阻止率が、99.0%以上であることが好ましい。 In this embodiment, if the pure water permeation amount of the separation membrane is C (L / m 2 / h) and the water permeation amount when the enzyme solution is filtered is D (L / m 2 / h), D / C ≧ 0 And the enzyme blocking rate when the enzyme solution is filtered is preferably 99.0% or more.

本実施形態の分離膜において、酵素溶液の濾過能力は、酵素溶液を濾過したときの透水量の保持率と、酵素の阻止率で評価する。酵素の阻止率が99.0%以上で、かつ透水量の保持率D/Cが0.05以上であれば、酵素を濾液側に通過させず、かつ膜表面への吸着も少ないことから、酵素を高効率に濃縮回収することができる。また、透水量の保持率が高いということは、酵素溶液の濾過時においても膜本来の透水量が良く反映されることを示しており、設備に導入する際に必要な膜面積の判断が容易になる。より好ましくはD/C≧0.10、更に好ましくはD/C≧0.12である。   In the separation membrane of this embodiment, the filtration ability of the enzyme solution is evaluated by the retention rate of the water permeability when the enzyme solution is filtered and the inhibition rate of the enzyme. If the enzyme blocking rate is 99.0% or more and the water permeability retention ratio D / C is 0.05 or more, the enzyme is not allowed to pass to the filtrate side, and the adsorption to the membrane surface is small. Enzyme can be concentrated and recovered with high efficiency. In addition, the high retention rate of the water permeability means that the original water permeability of the membrane is well reflected even when the enzyme solution is filtered, and it is easy to determine the membrane area required for introduction into the facility. become. More preferably, D / C ≧ 0.10, and further preferably D / C ≧ 0.12.

本発明の分離膜は、中空糸膜であることが好ましい。中空糸膜であることにより、平面状の膜に比べて、モジュール単位体積当たりの膜面積を大きくすることが可能である。   The separation membrane of the present invention is preferably a hollow fiber membrane. By being a hollow fiber membrane, it is possible to increase the membrane area per module unit volume as compared to a planar membrane.

以下、本実施形態の分離膜の製造方法について説明する。
本実施形態の分離膜は、製膜原液に対して凝固力のある凝固溶液中に吐出して凝固させる、いわゆる湿式製膜法、或いは、製膜原液を吐出した後に所定の空走区間を確保する、いわゆる非溶剤誘起型相分離法によって製造することができる。
Hereinafter, the manufacturing method of the separation membrane of this embodiment is demonstrated.
The separation membrane according to the present embodiment secures a predetermined idle running section after discharging the film-forming stock solution, or so-called wet film-forming method, in which the film-forming stock solution is discharged and coagulated in a coagulation solution having a coagulation power. It can be produced by a so-called non-solvent induced phase separation method.

本実施形態における製膜原液は、疎水性高分子、親水性高分子、並びに、該疎水性及び親水性高分子成分を溶解させる共通溶媒を少なくとも含有する。共通溶媒としては、上記の疎水性及び親水性高分子成分を溶解することができるものであれば特に限定されるものではなく、公知の溶媒を適宜選択して用いることができる。製膜原液の安定性を向上させる観点で、共通溶媒として、N−メチルピロリドン(NMP)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAC)及びジメチルスルホキシド(DMSO)からなる群より選択される少なくとも1種の溶媒を用いることが好ましい。取扱いの簡便性及びより高い透水性が得られる観点から、N−メチルピロリドンを用いることが特に好ましい。また、上記の群から選択される少なくとも1種の共通溶媒と他の溶媒との混合溶媒を用いてもよい。この場合、前記の群から選択される共通溶媒の合計量が、混合溶媒全量を基準として、好ましくは80質量%以上、より好ましくは90質量%以上含む混合溶媒を用いることが好ましい。   The film-forming stock solution in this embodiment contains at least a hydrophobic polymer, a hydrophilic polymer, and a common solvent that dissolves the hydrophobic and hydrophilic polymer components. The common solvent is not particularly limited as long as it can dissolve the hydrophobic and hydrophilic polymer components described above, and a known solvent can be appropriately selected and used. From the viewpoint of improving the stability of the film-forming stock solution, the common solvent is at least one selected from the group consisting of N-methylpyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide (DMAC), and dimethylsulfoxide (DMSO). It is preferred to use a seed solvent. From the viewpoint of easy handling and higher water permeability, it is particularly preferable to use N-methylpyrrolidone. Moreover, you may use the mixed solvent of the at least 1 sort (s) of common solvent selected from said group, and another solvent. In this case, it is preferable to use a mixed solvent in which the total amount of the common solvent selected from the above group is preferably 80% by mass or more, more preferably 90% by mass or more based on the total amount of the mixed solvent.

上記「製膜原液に対して凝固力のある凝固溶液」としては、水、エタノール等のアルコール類、溶媒の水溶液等が挙げられるが、本実施形態においては、凝固力の高い水を主成分とする溶液を用いることが好ましい。ここで、「主成分として含む」とは、50質量%以上含むことを意味する。凝固溶液中の水の割合は、70質量%以上がより好ましく、80質量%以上が更に好ましい。   Examples of the above-mentioned “coagulating solution having coagulation ability with respect to the film-forming stock solution” include water, alcohols such as ethanol, aqueous solutions of solvents, and the like. It is preferable to use a solution to be used. Here, “including as a main component” means including 50 mass% or more. The ratio of water in the coagulation solution is more preferably 70% by mass or more, and still more preferably 80% by mass or more.

分離膜に低分子量のPVPを用いる際の課題の一つとして、粘度が低いため可紡性が非常に悪く、特許第4724914号の比較例2に示されるように、製膜が困難であるということがあった。しかし、本実施形態の分離膜の製造方法では、凝固溶液に水を主成分とする溶液を用いることで、可紡性を大きく改善できる。   As one of the problems when using low molecular weight PVP for the separation membrane, the spinnability is very poor due to low viscosity, and it is difficult to form a membrane as shown in Comparative Example 2 of Japanese Patent No. 4724914. There was a thing. However, in the method for producing a separation membrane of the present embodiment, the spinnability can be greatly improved by using a solution containing water as a main component for the coagulation solution.

製膜原料には貧溶剤を含むことが好ましい。貧溶剤としては、特に分子量300以下の貧溶剤がよい。ここでいう貧溶剤とは、疎水性高分子5gを100gの溶剤に25℃で溶解したときに、不溶成分が観察される溶剤をいう。   The film forming raw material preferably contains a poor solvent. As the poor solvent, a poor solvent having a molecular weight of 300 or less is particularly preferable. The poor solvent here means a solvent in which insoluble components are observed when 5 g of the hydrophobic polymer is dissolved in 100 g of a solvent at 25 ° C.

製膜原料に貧溶剤を加えると、分離膜内に残存させる親水性高分子の含有効率が増加するため、低分子量のPVPを効率よく疎水性高分子中に含有させることができる。これは、非溶剤誘起型相分離法による製膜において、相分離が起こるときに、これらの貧溶剤が疎水性高分子の希薄相(すなわち溶剤を主とする相で、最終的に空孔部になる部分)側に優先的に抜けていき、親水性高分子が疎水性高分子の濃厚層(最終的に分離膜の柱部を形成する相)に残留しやすくなる。その結果として最終的に作製された分離膜の疎水性高分子から成る構造体中に親水性高分子が多く残留していると考えられる。貧溶剤の分子量が大きくなると、貧溶剤の分子鎖が親水性及び疎水性高分子の分子鎖と絡み合い、製膜原液中から抜けにくくなり、効果が低減してしまうが、分子量が300以下であると、貧溶剤が希薄相側に速やかに抜けていくため優れた効果を得られる。これによって、親水性高分子を少ない添加量でも効率よく残存させることができるので、コスト面でも有利である。   When a poor solvent is added to the membrane-forming raw material, the content efficiency of the hydrophilic polymer that remains in the separation membrane increases, so that low molecular weight PVP can be efficiently contained in the hydrophobic polymer. This is because when a phase separation occurs in film formation by a non-solvent induced phase separation method, these poor solvents are dilute phases of a hydrophobic polymer (that is, a phase mainly composed of a solvent, and finally a void portion). The hydrophilic polymer tends to remain in the concentrated layer of the hydrophobic polymer (the phase that finally forms the column part of the separation membrane). As a result, it is considered that a large amount of hydrophilic polymer remains in the structure made of the hydrophobic polymer of the separation membrane finally produced. When the molecular weight of the poor solvent is increased, the molecular chain of the poor solvent is entangled with the molecular chains of the hydrophilic and hydrophobic polymers, making it difficult to escape from the film-forming stock solution and the effect is reduced, but the molecular weight is 300 or less. And, since the poor solvent quickly escapes to the lean phase side, an excellent effect can be obtained. Accordingly, the hydrophilic polymer can be efficiently left even with a small addition amount, which is advantageous in terms of cost.

貧溶剤の例としては、水、グリセリン、エタノール等のアルコール類、エチレングリコール類等が挙げられるが、比較的親水性高分子との相溶性が悪く、また取り扱いが容易であること等から、テトラエチレングリコール(以下、「TEG」という)、トリエチレングリコール、エチレングリコール等の低分子量のエチレングリコール系の物質が特に好ましい。   Examples of poor solvents include water, alcohols such as glycerin and ethanol, ethylene glycols, etc., but they are relatively poorly compatible with hydrophilic polymers and easy to handle. Low molecular weight ethylene glycol-based substances such as ethylene glycol (hereinafter referred to as “TEG”), triethylene glycol, and ethylene glycol are particularly preferable.

本実施形態の分離膜の製造方法では、分離膜を中空状に成形することが好ましい。   In the separation membrane manufacturing method of the present embodiment, it is preferable to form the separation membrane into a hollow shape.

中空状に成形する方法としては、製膜時の成形用ノズルとして二重管状のノズルを用い、製膜原液を中空剤とともにその二重管状のノズルから押し出し、水を主成分とする溶液中に吐出する方法を用いることができる。これにより製膜原液が凝固し、中空糸膜が作製される。中空剤とは、中空部に流す液体のことである。中空剤として、水、アルコール、溶剤を含む水溶液等が用いられる。本実施形態では、中空剤の主成分が水であることが好ましい。また、水の割合が70質量%以上であることがより好ましく、80質量%以上であることが更に好ましい。   As a method of forming into a hollow shape, a double tubular nozzle is used as a forming nozzle at the time of film formation, and a film-forming stock solution is extruded from the double tubular nozzle together with a hollow agent, into a solution containing water as a main component. A discharging method can be used. Thereby, the membrane-forming stock solution is solidified to produce a hollow fiber membrane. The hollow agent is a liquid that flows in the hollow portion. As the hollow agent, water, alcohol, an aqueous solution containing a solvent, or the like is used. In this embodiment, it is preferable that the main component of the hollow agent is water. Moreover, it is more preferable that the ratio of water is 70 mass% or more, and it is still more preferable that it is 80 mass% or more.

中空剤に凝固力の強い純水を用いることによって、可紡性の悪い製膜原液を用いた場合でも、内表面側を早く凝固させることで糸切れを防止し、良好な生産性を得ることができる。これによって、製膜が困難な、低分子量PVPを用いた場合でも、良好な可紡性を維持することができる。   By using pure water with strong coagulation power for the hollow agent, even when a film-forming stock solution with poor spinnability is used, yarn breakage can be prevented by solidifying the inner surface side quickly, and good productivity can be obtained. Can do. Thereby, even when low molecular weight PVP, which is difficult to form a film, is used, good spinnability can be maintained.

本実施形態の分離膜の製造方法では、空走時間は0.1秒以上10秒未満であることが好ましく、0.3秒以上3秒未満であることがより好ましい。空走時間が0.1秒以上であれば、凝固水浴に進入するまでに十分内表面を凝固させることができ、着水したときに、外表面側から急激な力が加わっても膜が偏平するのを防ぐことができる。また、空走時間が10秒未満であれば、膜が空走中に伸びて糸切れするのを防止することができる。ここで空走時間とは、乾湿式紡糸において、製膜原液を紡糸口金から紡出してから、凝固のための水浴に着水するまでに、分離膜が空気中を通過する時間を指す。   In the separation membrane manufacturing method of the present embodiment, the idle running time is preferably 0.1 seconds or more and less than 10 seconds, and more preferably 0.3 seconds or more and less than 3 seconds. If the idling time is 0.1 seconds or more, the inner surface can be sufficiently solidified before entering the coagulation water bath, and the membrane can be flattened even when a sudden force is applied from the outer surface side when it reaches the water. Can be prevented. Further, if the idle running time is less than 10 seconds, it is possible to prevent the film from stretching during idle running and causing yarn breakage. Here, the idle running time refers to the time during which the separation membrane passes through the air from dry spinning from the spinneret to landing in the water bath for coagulation in dry and wet spinning.

上述の分離膜は、多数の膜を収納した、モジュールとして用いることができる。ここで、分離膜モジュールは、浸漬式膜モジュールと加圧式膜モジュールとに大別される。浸漬式膜モジュールとしては、分離膜と、該分離膜の少なくとも一端を固定する端部固定部を備え、分離膜が露出した分離膜モジュールであって、当該分離膜が上記処理済分離膜である分離膜モジュールが挙げられる。加圧式膜モジュールは、分離膜の周りにケーシングを有するものであって、ケーシング内に分離膜が固定された一体型のタイプと、ケーシングと分離膜がそれぞれ独立していて、分離膜をケーシングに挿入して使用するカートリッジタイプがあり、両タイプにおいて、分離膜として上記分離膜が適用できる。酵素やタンパクの濃縮においては、コンタミを嫌うため、閉鎖系で使用でき、かつ交換も容易な加圧式膜モジュールが好ましい。   The separation membrane described above can be used as a module containing a large number of membranes. Here, the separation membrane module is roughly classified into an immersion membrane module and a pressure membrane module. The submerged membrane module includes a separation membrane and an end fixing portion that fixes at least one end of the separation membrane, and the separation membrane is exposed. The separation membrane is the treated separation membrane. Examples include a separation membrane module. The pressure membrane module has a casing around the separation membrane, and is an integral type in which the separation membrane is fixed in the casing, and the casing and the separation membrane are independent of each other. There are cartridge types that are inserted and used, and in both types, the separation membrane can be applied as a separation membrane. In concentrating enzymes and proteins, since they dislike contamination, a pressurized membrane module that can be used in a closed system and can be easily replaced is preferred.

上述の分離膜を用いた濾過方法としては、デッドエンド濾過、クロスフロー濾過のどちらでも用いることができるが、クロスフロー濾過の方が、膜表面と水平方向に加わるせん断力によって、ファウリングを抑制できるので特に好ましい。   As the filtration method using the separation membrane described above, either dead-end filtration or crossflow filtration can be used. However, crossflow filtration suppresses fouling by the shear force applied in the horizontal direction with the membrane surface. This is particularly preferable because it can be performed.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に何ら限定されるものではない。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment.

以下、実施例及び比較例を挙げて本発明の内容をより具体的に説明する。なお、本発明は下記実施例に限定されるものではない。また、特に記載がない場合、測定は25℃でおこなった。   Hereinafter, the contents of the present invention will be described more specifically with reference to examples and comparative examples. In addition, this invention is not limited to the following Example. Moreover, when there was no description in particular, the measurement was performed at 25 degreeC.

(分離膜の接触角の測定方法)
分離膜表面を平坦にして、測定したい面を上にしてスライドガラスの上に両面テープで固定した。膜表面に水滴を滴下させ、接触角測定器(協和界面科学製、FACE CONTACT−ANGULEMEYER)を使用して、θ/2法によって接触角を求めた。θ/2法とは、水滴の左もしくは右の端点と頂点を結ぶ直線の、膜表面に対する角度(θ/2)から接触角θを得る方法である。
(Measurement method of contact angle of separation membrane)
The surface of the separation membrane was flattened, and the surface to be measured was fixed on the slide glass with double-sided tape with the surface to be measured facing up. A water droplet was dropped on the surface of the membrane, and the contact angle was obtained by the θ / 2 method using a contact angle measuring device (FACE CONACT-ANGULEYYER, manufactured by Kyowa Interface Science). The θ / 2 method is a method of obtaining the contact angle θ from the angle (θ / 2) of the straight line connecting the left or right end point and the apex of the water droplet to the film surface.

一次側、二次側それぞれについて各5回ずつ測定を行い、その平均値を求めた。また、中空糸膜の場合は、以下の方法で平らな表面を得た。外表面の接触角の測定時は、ガラス製の丸棒を用いて膜表面を押しつぶして平らにした。内表面の接触角の測定時は中空糸を長さ方向に切断して、中空糸の内表面側を露出させた状態で、膜表面をガラス製の丸棒で押しつぶして平らにした。   The measurement was performed 5 times for each of the primary side and the secondary side, and the average value was obtained. In the case of a hollow fiber membrane, a flat surface was obtained by the following method. When measuring the contact angle of the outer surface, the membrane surface was crushed and flattened using a glass round bar. When measuring the contact angle of the inner surface, the hollow fiber was cut in the length direction, and the membrane surface was flattened with a glass round bar with the inner surface side of the hollow fiber exposed.

(デキストラン阻止率の測定方法)
未使用の分離膜を複数本準備しておき、その半数を用いてデキストラン阻止率(A)を測定した。残りの半数の分離膜は下記の(薬品浸漬方法)に記載のとおり処理し、その後デキストラン阻止率(B)を測定した。
(Dextran blocking rate measurement method)
A plurality of unused separation membranes were prepared, and half of them were used to measure the dextran blocking rate (A). The remaining half of the separation membranes were treated as described in (Chemical immersion method) below, and then the dextran blocking rate (B) was measured.

市販のデキストランを水で0.1質量%に希釈し、デキストラン水溶液を作製した。約20cm長の湿潤中空糸膜の両端に注射針を入れ、片端の注射針はチューブを介してポンプに接続し、デキストラン水溶液が送液できるようにした。もう片端の注射針にはチューブを取り付け、チューブの先をデキストラン水溶液の入った容器に入れ、中空部を通ったデキストラン水溶液が容器に戻るように回路を組んだ。またデキストラン水溶液の容器は分離膜の下部に設置し、分離膜の内表面から外表面側に濾過されてきた濾液を回収できるようにした。また、分離膜からの流出圧を測定できるようにした。分離膜の中空部を、デキストラン水溶液1.0m/秒の流速で流れるように送液した。この際、流出圧は0.05MPaになるよう調整した。この状態で、分離膜の中空部にデキストラン水溶液を還流させ、一部を濾過するクロスフロー濾過を実施した。   A commercially available dextran was diluted to 0.1% by mass with water to prepare an aqueous dextran solution. An injection needle was inserted into both ends of a wet hollow fiber membrane having a length of about 20 cm, and the injection needle at one end was connected to a pump via a tube so that an aqueous dextran solution could be fed. A tube was attached to the other end of the injection needle, the tip of the tube was placed in a container containing a dextran aqueous solution, and a circuit was constructed so that the dextran aqueous solution that passed through the hollow portion returned to the container. A dextran aqueous solution container was placed under the separation membrane so that the filtrate filtered from the inner surface to the outer surface side of the separation membrane could be recovered. In addition, the outflow pressure from the separation membrane can be measured. The hollow part of the separation membrane was fed so that it flowed at a flow rate of 1.0 m / sec dextran aqueous solution. At this time, the outflow pressure was adjusted to be 0.05 MPa. In this state, cross flow filtration was performed in which a dextran aqueous solution was refluxed in the hollow portion of the separation membrane and a part thereof was filtered.

濾過開始から30分が経過した時点でデキストラン水溶液と濾液をそれぞれサンプリングして、RI測定器(東ソー製、RI−8021)にてシグナルの積分値を測定した。デキストラン阻止率は次式により算出した。
デキストラン阻止率[%]=100−(濾液のシグナルの積分値/デキストラン水溶液のシグナルの積分値×100)
When 30 minutes passed from the start of filtration, the dextran aqueous solution and the filtrate were sampled, and the integrated value of the signal was measured with an RI measuring instrument (RI-8021, manufactured by Tosoh Corporation). The dextran inhibition rate was calculated by the following formula.
Dextran rejection [%] = 100− (integral value of filtrate signal / integral value of signal of dextran aqueous solution × 100)

(薬品浸漬方法)
湿潤状態の分離膜を、500ppmの次亜塩素酸ナトリウム水溶液に、60℃で3時間浸漬させ、その後十分に水洗した。
(Chemical immersion method)
The wet separation membrane was immersed in a 500 ppm sodium hypochlorite aqueous solution at 60 ° C. for 3 hours, and then thoroughly washed with water.

(分離膜に含まれるPVPの分子量の測定方法)
分離膜を溶媒に溶解させ、その後水を加えて膜の基材となる疎水性高分子を析出させた。疎水性高分子を除去し、PVPの溶出した液を蒸発させ、固体のPVPを析出させた。GPCを用いて、以下の条件で得られたPVPの分子量を測定した。
(Measurement method of molecular weight of PVP contained in separation membrane)
The separation membrane was dissolved in a solvent, and then water was added to precipitate a hydrophobic polymer serving as a membrane substrate. The hydrophobic polymer was removed, the liquid from which PVP was eluted was evaporated, and solid PVP was precipitated. The molecular weight of PVP obtained under the following conditions was measured using GPC.

[測定条件]
カラム:Suprema linear M (直径8mm、長さ30cm)
カラム温度:40度
溶媒:水/アセトニトリル(80/20)+0.15mol/L NaCl+0.03mol/L NaHPO、pH=9
検出器:UV−Photometer GAT−LCD (波長254nm)
指標物質:光散乱法(方法は、M.J.R.Cantow,J.Polym.Sci.,A−1,5(1967)に記載)にて、Kollidon90、Kollidon30、SokalanHP165の分子量を測定し、指標物質とした。
[Measurement condition]
Column: Suprema linear M (diameter 8 mm, length 30 cm)
Column temperature: 40 degrees Solvent: Water / acetonitrile (80/20) +0.15 mol / L NaCl + 0.03 mol / L NaH 2 PO 4 , pH = 9
Detector: UV-Photometer GAT-LCD (wavelength 254 nm)
Indicator substance: The molecular weight of Kollidon 90, Kollidon 30, Sokalan HP165 was measured by a light scattering method (described in MJR Cantow, J. Polym. Sci., A-1, 5 (1967)), Used as an indicator substance.

(膜中のPVP含有割合の測定方法)
多孔質膜のH−NMR測定を下記の条件で実施して、得られたスペクトルから以下の方法でPVPの含有割合を算出した。
(Measurement method of PVP content ratio in membrane)
1 H-NMR measurement of the porous membrane was carried out under the following conditions, and the content ratio of PVP was calculated from the obtained spectrum by the following method.

[測定条件]
装置:ECS400(日本電子株式会社)
共鳴周波数:399.78MHz
溶媒:d−DMF
測定温度:25℃
試料濃度:約5質量%
積算回数:256回
[Measurement condition]
Device: ECS400 (JEOL Ltd.)
Resonance frequency: 399.78 MHz
Solvent: d 7 -DMF
Measurement temperature: 25 ° C
Sample concentration: about 5% by mass
Integration count: 256 times

(1)ポリエーテルスルホンの場合
得られたスペクトルにおいて、2ppm付近に現れるポリビニルピロリドン(4H分)由来のシグナルの積分値(IPvP)と8ppm付近に現れるポリエーテルスルホン(4H分)由来のシグナルの積分値(IPES)から、下記式によって算出した。
PVP含有割合(質量%)=111(IPVP/4)/{232(IPES/4)+111(IPVP/4)}×100
(1) In the case of polyether sulfone In the obtained spectrum, the integral value (I PvP ) of the signal derived from polyvinyl pyrrolidone (4H min) appearing in the vicinity of 2 ppm and the signal derived from the polyether sulfone (4H min) appearing in the vicinity of 8 ppm. It was calculated from the integral value (I PES ) by the following formula.
PVP content ratio (mass%) = 111 (I PVP / 4) / {232 (I PES / 4) +111 (I PVP / 4)} × 100

(2)ポリスルホンの場合
得られたスペクトルにおいて、2ppm付近に現れるポリビニルピロリドン(4H分)由来のシグナルの積分値(IPvP)と7.3ppm付近に現れるポリスルホン(4H分)由来のシグナルの積分値(IPSf)から、下記式によって算出した。
PVP含有割合(質量%)=111(IPVP/4)/{443(IPSf/4)+111(IPVP/4)}×100
(2) In the case of polysulfone In the obtained spectrum, the integral value (I PvP ) of the signal derived from polyvinyl pyrrolidone (4H min) appearing in the vicinity of 2 ppm and the integral value of the signal derived from polysulfone (4H min) appearing in the vicinity of 7.3 ppm It calculated from the following formula from (I PSf ).
PVP content ratio (mass%) = 111 (I PVP / 4) / {443 (I PSf / 4) +111 (I PVP / 4)} × 100

(抽出液の吸光度測定方法)
分離膜の抽出は、日本薬局方の人工腎臓装置承認基準の溶出試験に準拠して行った。すなわち、中空糸膜を乾燥させ2cm長(平膜であれば2cm角とする)に切断し、膜1.5gと注射用蒸留水150mLをガラス容器に入れ、70±5℃で1時間加温した。冷却後、膜を取り除いて、蒸留水を加えて150mLとした。この液をUV測定器で、220以上350nm未満での最大吸収波長を示す波長の吸光度を測定し、その条件下での抽出液の吸光度とした。
(Method for measuring absorbance of extract)
The extraction of the separation membrane was performed in accordance with the elution test of Japanese Pharmacopoeia artificial kidney device approval criteria. That is, the hollow fiber membrane is dried and cut to a length of 2 cm (2 cm square if it is a flat membrane), 1.5 g of the membrane and 150 mL of distilled water for injection are placed in a glass container and heated at 70 ± 5 ° C. for 1 hour. did. After cooling, the membrane was removed and distilled water was added to 150 mL. The absorbance of this solution was measured with a UV measuring instrument at a wavelength showing the maximum absorption wavelength at 220 or more and less than 350 nm, and the absorbance of the extract under that condition was determined.

(純水透水量の測定方法)
まず、中空糸膜を膜長手方向に垂直な向きにカミソリ等で薄く切り、顕微鏡を用いて膜の内径を測定した。その後、約10cm長の湿潤中空糸膜の一端を封止し、他端の中空部内へ注射針を入れ、25℃の環境下にて注射針から0.1MPaの圧力にて25℃の純水を中空部内へ注入し、外面から透過してくる水量を測定して下記式から純水透水量を測定した。この測定を4本行い、その算術平均をそれぞれの膜の純水透水量とした。
(Measurement method of pure water permeability)
First, the hollow fiber membrane was thinly cut with a razor or the like in a direction perpendicular to the longitudinal direction of the membrane, and the inner diameter of the membrane was measured using a microscope. Thereafter, one end of a wet hollow fiber membrane having a length of about 10 cm is sealed, and an injection needle is inserted into the hollow portion at the other end, and pure water at 25 ° C. is applied at a pressure of 0.1 MPa from the injection needle in an environment at 25 ° C. Was injected into the hollow portion, the amount of water permeating from the outer surface was measured, and the pure water permeation amount was measured from the following formula. This measurement was performed four times, and the arithmetic average was defined as the pure water permeability of each membrane.

Figure 0005952159
Figure 0005952159

(酵素溶液の作製)
酵素溶液は、分離膜の孔径に応じて以下の2種類を使用した。
(1)デキストラン阻止率の測定で用いたデキストランの分子量が、100,000未満のとき(低分子量の酵素を想定。多くの酵素はこちらに含まれる)
市販のNOVOZYME社製のSavineaseを、水で10倍に希釈したものを酵素溶液とした。
(Preparation of enzyme solution)
The following two types of enzyme solutions were used according to the pore size of the separation membrane.
(1) When the molecular weight of dextran used in the measurement of dextran blocking rate is less than 100,000 (assuming low molecular weight enzymes. Many enzymes are included here)
What diluted commercially available NOVAZYME Savinease 10 times with water was used as the enzyme solution.

(2)デキストラン阻止率の測定で用いたデキストランの分子量が、100,000以上のとき(高分子量の酵素を想定。プロテアソーム(分子量約200万)等)
高分子量のポリエチレンオキサイド水溶液を酵素溶液の模擬液とする。ポリエチレンオキサイド(明星化学工業株式会社製、アルコックスE−160)の0.1質量%水溶液を作製し、酵素溶液とした。
(2) When the molecular weight of dextran used in the measurement of the dextran blocking rate is 100,000 or more (assuming a high molecular weight enzyme, proteasome (molecular weight about 2 million), etc.)
A high molecular weight polyethylene oxide aqueous solution is used as a simulated solution of the enzyme solution. A 0.1 mass% aqueous solution of polyethylene oxide (manufactured by Meisei Chemical Industry Co., Ltd., Alcox E-160) was prepared and used as the enzyme solution.

(酵素濾過時透水量の測定方法)
約20cm長の湿潤中空糸膜の両端に注射針を入れ、片端の注射針はチューブを介してポンプに接続し、酵素溶液が送液できるようにした。もう片端の注射針にはチューブを取り付け、チューブの先を酵素溶液の入った容器に入れ、中空部を通った酵素溶液が容器に戻るように回路を組んだ。また酵素溶液の容器は分離膜の下部に設置し、分離膜の内表面から外表面側に濾過されてきた濾液を回収できるようにした。また、分離膜からの酵素溶液の流出圧を測定できるようにした。分離膜の中空部を、酵素溶液1.0m/秒の流速で流れるように送液した。この際、流出圧は0.05MPaになるように調整した。また、TMPは0.1MPaになるよう調整した。この状態で、分離膜の中空部に酵素溶液を還流させ、一部を濾過するクロスフロー濾過を実施した。
酵素濾過時透水量[L/m/h]=1分あたりの酵素溶液濾過量[L/min]×60[min/h]/A[m
ただし、Aはモジュールの膜面積[m]、TMP=((流入圧)+(流出圧))/2[MPa]である。
(Measurement method of water permeability during enzyme filtration)
Injection needles were placed at both ends of a wet hollow fiber membrane having a length of about 20 cm, and the injection needle at one end was connected to a pump via a tube so that the enzyme solution could be fed. A tube was attached to the other end of the injection needle, the tip of the tube was placed in a container containing the enzyme solution, and a circuit was constructed so that the enzyme solution that passed through the hollow portion returned to the container. The container for the enzyme solution was installed at the lower part of the separation membrane so that the filtrate filtered from the inner surface to the outer surface side of the separation membrane could be recovered. In addition, the outflow pressure of the enzyme solution from the separation membrane can be measured. The hollow part of the separation membrane was fed so as to flow at a flow rate of 1.0 m / sec of the enzyme solution. At this time, the outflow pressure was adjusted to be 0.05 MPa. Moreover, TMP was adjusted to be 0.1 MPa. In this state, cross-flow filtration was performed in which the enzyme solution was refluxed in the hollow part of the separation membrane and a part was filtered.
Water permeability during enzyme filtration [L / m 2 / h] = Enzyme solution filtration per minute [L / min] × 60 [min / h] / A [m 2 ]
However, A is the membrane area [m 2 ] of the module, TMP = ((inflow pressure) + (outflow pressure)) / 2 [MPa].

(酵素阻止率の測定方法)
酵素阻止率は、以下の方法により濾液中の酵素活性量から求めた。上記の酵素濾過時において、濾過開始から30分が経過した時点で、酵素溶液と濾液をサンプリングし、それぞれジメチルカゼイン、TNBS(2,4,6−trinitro benzen sulphonic acid)を添加した。このサンプルを酵素自動分析装置(Thermo Fisher Scientific 製)にて、波長425nmにおける吸光度を測定した。酵素阻止率は次式により算出した。
酵素阻止率[%]=100−(濾液吸光度/酵素溶液吸光度)×100
(Measurement method of enzyme blocking rate)
The enzyme inhibition rate was determined from the amount of enzyme activity in the filtrate by the following method. In the above enzyme filtration, when 30 minutes passed from the start of filtration, the enzyme solution and the filtrate were sampled, and dimethylcasein and TNBS (2,4,6-trinitrobenzene sulphonic acid) were added, respectively. The absorbance at a wavelength of 425 nm was measured for this sample with an enzyme automatic analyzer (manufactured by Thermo Fisher Scientific). The enzyme inhibition rate was calculated by the following formula.
Enzyme inhibition rate [%] = 100− (filtrate absorbance / enzyme solution absorbance) × 100

(不純物を含めた阻止率の測定方法)
不純物を含めた全体の阻止率は、以下の方法により濾液の紫外線吸光度から求めた。上記の酵素濾過時において、濾過開始から30分が経過した時点で、酵素溶液と濾液をサンプリングし、それぞれ30倍に希釈した。希釈した液を、UV測定器(SHIMADZU製、UVmini1240)にて、波長280nmにおける吸光度を測定した。酵素阻止率は次式により算出した。
不純物を含めた阻止率[%]=100−(濾液吸光度/酵素溶液吸光度)×100
(Measurement method of rejection rate including impurities)
The total rejection including impurities was determined from the ultraviolet absorbance of the filtrate by the following method. At the time of the above enzyme filtration, when 30 minutes passed from the start of filtration, the enzyme solution and the filtrate were sampled and each diluted 30 times. The diluted solution was measured for absorbance at a wavelength of 280 nm with a UV measuring instrument (manufactured by SHIMADZU, UVmini 1240). The enzyme inhibition rate was calculated by the following formula.
Blocking rate including impurities [%] = 100− (filtrate absorbance / enzyme solution absorbance) × 100

(実施例1)
ポリエーテルスルホン(BASF製、EP6020)が22質量%、PVPK17(BASF製、LuvitecK17、重量平均分子量9000)が5質量%、NMPが43質量%、貧溶剤としてTEG(分子量194)が30質量%からなる原料を混合溶解して製膜原液を得た。この製膜原液を二重管ノズルの外側から押し出し、中心からは、内部凝固液として水を送り込んで、1.2秒の空走時間を経た後に温度50℃の水中を通過させて凝固させ、内径0.75mm、外径1.30mmの中空糸膜を得た(ゆえに、可紡性の評価を「○」とした)。
Example 1
Polyethersulfone (manufactured by BASF, EP6020) is 22% by mass, PVPK17 (manufactured by BASF, LuvitecK17, weight average molecular weight 9000) is 5% by mass, NMP is 43% by mass, and TEG (molecular weight 194) is 30% by mass as a poor solvent. The raw materials to be mixed were dissolved to obtain a film forming stock solution. This film-forming stock solution is extruded from the outside of the double-tube nozzle, and from the center, water is sent as an internal coagulation liquid, and after passing through an idle running time of 1.2 seconds, it is allowed to pass through water at a temperature of 50 ° C. to solidify, A hollow fiber membrane having an inner diameter of 0.75 mm and an outer diameter of 1.30 mm was obtained (thus, the evaluation of spinnability was “◯”).

この中空糸膜中のPVP量は、ポリエーテルスルホン及びPVPの総量を基準として2.7質量%であり、一次側表面と二次側表面の接触角は、それぞれ65度、76度であった。また、この中空糸膜を純水で抽出し、抽出液の吸光度を測定したところ、0.057であった。   The amount of PVP in this hollow fiber membrane was 2.7% by mass based on the total amount of polyethersulfone and PVP, and the contact angles of the primary surface and the secondary surface were 65 degrees and 76 degrees, respectively. . In addition, this hollow fiber membrane was extracted with pure water, and the absorbance of the extract was measured and found to be 0.057.

阻止率測定には、分子量10000のデキストランを用いた。未使用の中空糸膜のデキストラン阻止率(A)は60%であった。一方、500ppmの次亜塩素酸ナトリウム水溶液に、60度で3時間浸漬させた中空糸膜の阻止率(B)は、53%であり、(A)×0.5=30<(B)、すなわちB>A×0.5となっており、薬品浸漬による顕著な劣化がないことが確認できた。   Dextran with a molecular weight of 10,000 was used for the blocking rate measurement. The unused hollow fiber membrane had a dextran rejection (A) of 60%. On the other hand, the rejection (B) of the hollow fiber membrane immersed in a 500 ppm sodium hypochlorite aqueous solution at 60 ° C. for 3 hours is 53%, and (A) × 0.5 = 30 <(B), That is, B> A × 0.5, and it was confirmed that there was no significant deterioration due to chemical immersion.

また、この中空糸膜の純水透水量(C)は140L/m/hであった。酵素濾過時の透水量(D)は20L/m/hであり、D/C>0.05となった。また酵素阻止率は99.9%であり、良好な酵素の濾過性を示した。 Moreover, the pure water permeation amount (C) of this hollow fiber membrane was 140 L / m 2 / h. The water permeation amount (D) during enzyme filtration was 20 L / m 2 / h, and D / C> 0.05. Moreover, the enzyme blocking rate was 99.9%, indicating good enzyme filterability.

(実施例2)
原料のPVPのグレードを、K17の代わりにK25(BASF製、KollidonK25、重量平均分子量31000)を用いたこと以外は、実施例1と同じ方法で中空糸膜を作製した。
(Example 2)
A hollow fiber membrane was produced in the same manner as in Example 1 except that K25 (manufactured by BASF, Kollidon K25, weight average molecular weight 31000) was used as the raw material PVP grade instead of K17.

この中空糸膜中のPVP量は、ポリエーテルスルホン及びPVPの総量を基準として4.1質量%であり、一次側表面と二次側表面の接触角は、それぞれ60度、72度であった。また、この中空糸膜を純水で抽出し、抽出液の吸光度を測定したところ、0.08であった。   The amount of PVP in this hollow fiber membrane was 4.1% by mass based on the total amount of polyethersulfone and PVP, and the contact angles of the primary side surface and the secondary side surface were 60 ° and 72 °, respectively. . The hollow fiber membrane was extracted with pure water, and the absorbance of the extract was measured and found to be 0.08.

阻止率測定には、分子量10000のデキストランを用いた。未使用の中空糸膜のデキストラン阻止率(A)は70%、実施例1と同じ方法で次亜塩素酸浸漬した中空糸膜の阻止率(B)は、52%であり、B>A×0.5となっており、薬品浸漬による顕著な劣化がないことが確認できた。   Dextran with a molecular weight of 10,000 was used for the blocking rate measurement. The dextran rejection (A) of the unused hollow fiber membrane is 70%, the rejection (B) of the hollow fiber membrane immersed in hypochlorous acid in the same manner as in Example 1 is 52%, and B> A × It was 0.5, and it was confirmed that there was no significant deterioration due to chemical immersion.

また、この中空糸膜の純水透水量(C)、酵素濾過時の透水量(D)は、それぞれ82L/m/h、12L/m/hであり、D/C>0.05となった。酵素阻止率は99.9%であった。 Further, pure water permeation amount of the hollow fiber membrane (C), water permeation amount at the time of the enzyme filtration (D) are each 82L / m 2 / h, 12L / m 2 / h, D / C> 0.05 It became. The enzyme inhibition rate was 99.9%.

(実施例3)
原料のPVPのグレードを、K17の代わりにK12(BASF社製、KollidonK12PF、重量平均分子量2500)を用いたこと以外は、実施例1と同じ方法で中空糸膜を作製した。
Example 3
A hollow fiber membrane was produced in the same manner as in Example 1 except that K12 (BASF, Kollidon K12PF, weight average molecular weight 2500) was used as the raw material PVP grade instead of K17.

この中空糸膜中のPVP量は、ポリエーテルスルホン及びPVPの総量を基準として2.0質量%であり、一次側表面と二次側表面の接触角は、それぞれ70度、80度であった。また、この中空糸膜を純水で抽出し、抽出液の吸光度を測定したところ、0.02であった。   The amount of PVP in the hollow fiber membrane was 2.0% by mass based on the total amount of polyethersulfone and PVP, and the contact angles of the primary surface and the secondary surface were 70 degrees and 80 degrees, respectively. . The hollow fiber membrane was extracted with pure water, and the absorbance of the extract was measured and found to be 0.02.

阻止率測定には、分子量10000のデキストランを用いた。未使用の中空糸膜のデキストラン阻止率(A)は51%、実施例1と同じ方法で次亜塩素酸浸漬した中空糸膜の阻止率(B)は、48%であり、B>A×0.5となっており、薬品浸漬による顕著な劣化がないことが確認できた。   Dextran with a molecular weight of 10,000 was used for the blocking rate measurement. The dextran rejection (A) of the unused hollow fiber membrane is 51%, the rejection (B) of the hollow fiber membrane immersed in hypochlorous acid in the same manner as in Example 1 is 48%, and B> A × It was 0.5, and it was confirmed that there was no significant deterioration due to chemical immersion.

また、この中空糸膜の純水透水量(C)、酵素濾過時の透水量(D)は、それぞれ185L/m/h、21L/m/hであり、D/C>0.05となった。酵素阻止率は99.9%であった。 Moreover, the pure water permeation amount (C) of this hollow fiber membrane and the water permeation amount (D) at the time of enzyme filtration are 185 L / m 2 / h and 21 L / m 2 / h, respectively, and D / C> 0.05 It became. The enzyme inhibition rate was 99.9%.

(実施例4)
ポリスルホン(Solvey製、ユーデルP−3500)が20質量%、PVPK17が5質量%、NMPが45質量%、貧溶剤としてTEGが30質量%からなる原料を混合溶解して製膜原液を得た。この製膜原液を用いて、実施例1と同じ方法で製膜して中空糸膜を作製した。
Example 4
Polysulfone (manufactured by Solvey, Udel P-3500) was 20% by mass, PVPK17 was 5% by mass, NMP was 45% by mass, and a raw material consisting of 30% by mass of TEG as a poor solvent was mixed and dissolved to obtain a film forming stock solution. Using this membrane-forming stock solution, a hollow fiber membrane was produced in the same manner as in Example 1.

この中空糸膜中のPVP量は、ポリスルホン及びPVPの総量を基準として2.5質量%であり、一次側表面と二次側表面の接触角は、それぞれ70度、82度であった。また、この中空糸膜を純水で抽出し、抽出液の吸光度を測定したところ、0.03であった。   The amount of PVP in the hollow fiber membrane was 2.5% by mass based on the total amount of polysulfone and PVP, and the contact angles of the primary surface and the secondary surface were 70 degrees and 82 degrees, respectively. The hollow fiber membrane was extracted with pure water, and the absorbance of the extract was measured and found to be 0.03.

阻止率測定には、分子量10000のデキストランを用いた。未使用の中空糸膜のデキストラン阻止率(A)は50%、実施例1と同じ方法で次亜塩素酸浸漬した中空糸膜の阻止率(B)は、43%であり、B>A×0.5となっており、薬品浸漬による顕著な劣化がないことが確認できた。   Dextran with a molecular weight of 10,000 was used for the blocking rate measurement. The dextran rejection (A) of the unused hollow fiber membrane is 50%, the rejection (B) of the hollow fiber membrane immersed in hypochlorous acid in the same manner as in Example 1 is 43%, and B> A × It was 0.5, and it was confirmed that there was no significant deterioration due to chemical immersion.

また、この中空糸膜の純水透水量(C)、酵素濾過時の透水量(D)は、それぞれ116L/m/h、13L/m/hであり、D/C>0.05となった。酵素阻止率は99.0%であった。 Further, pure water permeation amount of the hollow fiber membrane (C), water permeation amount at the time of the enzyme filtration (D) are each 116L / m 2 / h, 13L / m 2 / h, D / C> 0.05 It became. The enzyme inhibition rate was 99.0%.

(実施例5)
ポリエーテルスルホンが22質量%、PVPK17が25質量%、NMPが23質量%、貧溶剤としてTEGが30質量%からなる原料を混合溶解して製膜原液を得た。実施例1と同じ方法で製膜して中空糸膜を得た。
(Example 5)
A raw material composed of 22% by mass of polyethersulfone, 25% by mass of PVPK17, 23% by mass of NMP, and 30% by mass of TEG as a poor solvent was mixed and dissolved to obtain a film forming stock solution. A hollow fiber membrane was obtained by film formation in the same manner as in Example 1.

この中空糸膜中のPVP量は、ポリエーテルスルホン及びPVPの総量を基準として12.8質量%であり、一次側表面と二次側表面の接触角は、それぞれ55度、65度であった。また、この中空糸膜を純水で抽出し、抽出液の吸光度を測定したところ、0.25であった。   The amount of PVP in this hollow fiber membrane was 12.8% by mass based on the total amount of polyethersulfone and PVP, and the contact angles of the primary surface and the secondary surface were 55 ° and 65 °, respectively. . The hollow fiber membrane was extracted with pure water, and the absorbance of the extract was measured and found to be 0.25.

阻止率測定には、分子量10000のデキストランを用いた。未使用の中空糸膜のデキストラン阻止率(A)は71%、実施例1と同じ方法で次亜塩素酸浸漬した中空糸膜の阻止率(B)は、40%であり、B>A×0.5となっており、薬品浸漬による顕著な劣化がないことが確認できた。   Dextran with a molecular weight of 10,000 was used for the blocking rate measurement. The dextran rejection (A) of the unused hollow fiber membrane is 71%, the rejection (B) of the hollow fiber membrane immersed in hypochlorous acid in the same manner as in Example 1 is 40%, and B> A × It was 0.5, and it was confirmed that there was no significant deterioration due to chemical immersion.

また、この中空糸膜の純水透水量(C)、酵素濾過時の透水量(D)は、それぞれ53L/m/h、8L/m/hであり、D/C>0.05となった。酵素阻止率は99.9%であった。 Further, pure water permeation amount of the hollow fiber membrane (C), water permeation amount at the time of the enzyme filtration (D) are each 53L / m 2 / h, 8L / m 2 / h, D / C> 0.05 It became. The enzyme inhibition rate was 99.9%.

(実施例6)
ポリフッ化ビニリデン(アルケマ製、RC10231)が20質量%、PVPK17が5質量%、NMPが45質量%、貧溶剤としてTEGが30質量%からなる原料を混合溶解して製膜原液を得た。この製膜原液を用いて、実施例1と同じ方法で製膜して中空糸膜を作製した。この中空糸膜中のPVP量は、ポリフッ化ビニリデン及びPVPの総量を基準として1.8質量%であり、一次側表面と二次側表面の接触角は、それぞれ65度、77度であった。また、この中空糸膜を純水で抽出し、抽出液の吸光度を測定したところ、0.06であった。
(Example 6)
A raw material solution comprising 20% by mass of polyvinylidene fluoride (manufactured by Arkema, RC10231), 5% by mass of PVPK17, 45% by mass of NMP, and 30% by mass of TEG as a poor solvent was obtained by mixing and dissolving. Using this membrane-forming stock solution, a hollow fiber membrane was produced in the same manner as in Example 1. The amount of PVP in the hollow fiber membrane was 1.8% by mass based on the total amount of polyvinylidene fluoride and PVP, and the contact angles of the primary side surface and the secondary side surface were 65 ° and 77 °, respectively. . The hollow fiber membrane was extracted with pure water, and the absorbance of the extract was measured and found to be 0.06.

阻止率測定には、分子量200000のデキストランを用いた。未使用の中空糸膜のデキストラン阻止率(A)は84%、実施例1と同じ方法で次亜塩素酸浸漬した中空糸膜の阻止率(B)は、74%であり、B>A×0.5となっており、薬品浸漬による顕著な劣化がないことが確認できた。   Dextran having a molecular weight of 200,000 was used for measuring the rejection rate. The dextran rejection (A) of the unused hollow fiber membrane is 84%, the rejection (B) of the hollow fiber membrane immersed in hypochlorous acid in the same manner as in Example 1 is 74%, and B> A × It was 0.5, and it was confirmed that there was no significant deterioration due to chemical immersion.

また、この中空糸膜の純水透水量(C)、酵素濾過時の透水量(D)は、それぞれ1500L/m/h、202L/m/hであり、D/C>0.05となった。酵素阻止率は99.5%であった。 Further, pure water permeation amount of the hollow fiber membrane (C), water permeation amount at the time of the enzyme filtration (D) are each 1500L / m 2 / h, 202L / m 2 / h, D / C> 0.05 It became. The enzyme inhibition rate was 99.5%.

(実施例7)
ポリフッ化ビニリデン(アルケマ製、RC10231)が20質量%、PVPK17が5質量%、NMPが75質量%からなる原料を混合溶解して製膜原液を得た。この製膜原液を用いて、実施例1と同じ方法で製膜して中空糸膜を作製した。この中空糸膜中のPVP量は、ポリフッ化ビニリデン及びPVPの総量を基準として0.5質量%であり、一次側表面と二次側表面の接触角は、それぞれ70度、80度であった。また、この中空糸膜を純水で抽出し、抽出液の吸光度を測定したところ、0.02であった。
(Example 7)
A raw material composed of 20% by mass of polyvinylidene fluoride (manufactured by Arkema, RC10231), 5% by mass of PVPK17, and 75% by mass of NMP was mixed and dissolved to obtain a film forming stock solution. Using this membrane-forming stock solution, a hollow fiber membrane was produced in the same manner as in Example 1. The amount of PVP in this hollow fiber membrane was 0.5% by mass based on the total amount of polyvinylidene fluoride and PVP, and the contact angles of the primary surface and the secondary surface were 70 degrees and 80 degrees, respectively. . The hollow fiber membrane was extracted with pure water, and the absorbance of the extract was measured and found to be 0.02.

阻止率測定には、分子量200000のデキストランを用いた。未使用の中空糸膜のデキストラン阻止率(A)は80%、実施例1と同じ方法で次亜塩素酸浸漬した中空糸膜の阻止率(B)は、75%であり、B>A×0.5となっており、薬品浸漬による顕著な劣化がないことが確認できた。   Dextran having a molecular weight of 200,000 was used for measuring the rejection rate. The dextran rejection (A) of the unused hollow fiber membrane is 80%, the rejection (B) of the hollow fiber membrane immersed in hypochlorous acid in the same manner as in Example 1 is 75%, and B> A × It was 0.5, and it was confirmed that there was no significant deterioration due to chemical immersion.

また、この中空糸膜の純水透水量(C)、酵素濾過時の透水量(D)は、それぞれ1750L/m/h、153L/m/hであり、D/C>0.05となった。酵素阻止率は99.2%であった。 Moreover, the pure water permeation amount (C) of this hollow fiber membrane and the water permeation amount (D) at the time of enzyme filtration were 1750 L / m 2 / h and 153 L / m 2 / h, respectively, and D / C> 0.05 It became. The enzyme inhibition rate was 99.2%.

(比較例1)
ポリエーテルスルホンが22質量%、PVPK30(BASF製、LuvitecK30、重量平均分子量50000)が5質量%、NMPが73質量%からなる原料を混合溶解して製膜原液を得た。この製膜原液を用いて、実施例1と同じ方法で製膜して中空糸膜を作製した。
(Comparative Example 1)
A raw material consisting of 22% by mass of polyethersulfone, 5% by mass of PVPK30 (manufactured by BASF, LuvitecK30, weight average molecular weight 50000) and 73% by mass of NMP was mixed and dissolved to obtain a film forming stock solution. Using this membrane-forming stock solution, a hollow fiber membrane was produced in the same manner as in Example 1.

この中空糸膜中のPVP量は、ポリエーテルスルホン及びPVPの総量を基準として1.3質量%であり、一次側表面と二次側表面の接触角は、それぞれ73度、77度であった。また、この中空糸膜を純水で抽出し、抽出液の吸光度を測定したところ、0.13であった。   The amount of PVP in the hollow fiber membrane was 1.3% by mass based on the total amount of polyethersulfone and PVP, and the contact angles of the primary surface and the secondary surface were 73 ° and 77 °, respectively. . The hollow fiber membrane was extracted with pure water, and the absorbance of the extract was measured and found to be 0.13.

阻止率測定には、分子量10000のデキストランを用いた。未使用の中空糸膜のデキストラン阻止率(A)は67%、実施例1と同じ方法で次亜塩素酸浸漬した中空糸膜の阻止率(B)は、17%であり、B<A×0.5となっており、薬品浸漬により膜の孔径が大きく変化したことが確認された。   Dextran with a molecular weight of 10,000 was used for the blocking rate measurement. The dextran blocking rate (A) of the unused hollow fiber membrane is 67%, the blocking rate (B) of the hollow fiber membrane immersed in hypochlorous acid in the same manner as in Example 1 is 17%, and B <A × It was 0.5, and it was confirmed that the pore diameter of the membrane was greatly changed by chemical immersion.

また、この中空糸膜の純水透水量(C)、酵素濾過時の透水量(D)は、それぞれ74L/m/h、8L/m/hであり、D/C>0.05となった。酵素阻止率は98.5%であった。 Further, pure water permeation amount of the hollow fiber membrane (C), water permeation amount at the time of the enzyme filtration (D) are each 74L / m 2 / h, 8L / m 2 / h, D / C> 0.05 It became. The enzyme blocking rate was 98.5%.

(比較例2)
ポリエーテルスルホンが22質量%、PVPK90(BASF製、LuvitecK90、重量平均分子量1600000)が5質量%、NMPが73質量%からなる原料を混合溶解して製膜原液を得た。この製膜原液を用いて、実施例1と同じ方法で製膜して中空糸膜を作製した。
(Comparative Example 2)
A raw material consisting of 22% by mass of polyethersulfone, 5% by mass of PVPK90 (manufactured by BASF, Luvitec K90, weight average molecular weight 1600000) and 73% by mass of NMP was mixed and dissolved to obtain a membrane forming stock solution. Using this membrane-forming stock solution, a hollow fiber membrane was produced in the same manner as in Example 1.

この中空糸膜中のPVP量は、ポリエーテルスルホン及びPVPの総量を基準として3.2質量%であり、一次側表面と二次側表面の接触角は、それぞれ65度、70度であった。また、この中空糸膜を純水で抽出し、抽出液の吸光度を測定したところ、0.15であった。   The amount of PVP in this hollow fiber membrane was 3.2% by mass based on the total amount of polyethersulfone and PVP, and the contact angles of the primary side surface and the secondary side surface were 65 ° and 70 °, respectively. . The hollow fiber membrane was extracted with pure water, and the absorbance of the extract was measured and found to be 0.15.

阻止率測定には、分子量10000のデキストランを用いた。未使用の中空糸膜のデキストラン阻止率(A)は87%、実施例1と同じ方法で次亜塩素酸浸漬した中空糸膜の阻止率(B)は、27%であり、B<A×0.5となっており、薬品浸漬により膜の孔径が大きく変化したことが確認された。   Dextran with a molecular weight of 10,000 was used for the blocking rate measurement. The unused hollow fiber membrane has a dextran rejection rate (A) of 87%, and the hollow fiber membrane immersed in hypochlorous acid in the same manner as in Example 1 has a rejection rate (B) of 27%, and B <A × It was 0.5, and it was confirmed that the pore diameter of the membrane was greatly changed by chemical immersion.

また、この中空糸膜の純水透水量(C)、酵素濾過時の透水量(D)は、それぞれ44L/m/h、6L/m/hであり、D/C>0.05となった。酵素阻止率は98.6%であった。 Further, the pure water permeation amount (C) and the water permeation amount (D) during enzyme filtration of this hollow fiber membrane are 44 L / m 2 / h and 6 L / m 2 / h, respectively, and D / C> 0.05 It became. The enzyme inhibition rate was 98.6%.

(比較例3)
ポリエーテルスルホンが22質量%、PVPK30が5質量%、NMPが43質量%、貧溶剤としてTEGが30質量%からなる原料を混合溶解して製膜原液を得た。この製膜原液を用いて、実施例1と同じ方法で製膜して中空糸膜を作製した。
(Comparative Example 3)
A raw material consisting of 22% by mass of polyethersulfone, 5% by mass of PVPK30, 43% by mass of NMP, and 30% by mass of TEG as a poor solvent was mixed and dissolved to obtain a film forming stock solution. Using this membrane-forming stock solution, a hollow fiber membrane was produced in the same manner as in Example 1.

この中空糸膜中のPVP量は、ポリエーテルスルホン及びPVPの総量を基準として2.5質量%であり、一次側表面と二次側表面の接触角は、それぞれ70度、72度であった。また、この中空糸膜を純水で抽出し、抽出液の吸光度を測定したところ、0.13であった。   The amount of PVP in the hollow fiber membrane was 2.5% by mass based on the total amount of polyethersulfone and PVP, and the contact angles of the primary surface and the secondary surface were 70 degrees and 72 degrees, respectively. . The hollow fiber membrane was extracted with pure water, and the absorbance of the extract was measured and found to be 0.13.

阻止率測定には、分子量10000のデキストランを用いた。未使用の中空糸膜のデキストラン阻止率(A)は80%、実施例1と同じ方法で次亜塩素酸浸漬した中空糸膜の阻止率(B)は、12%であり、B<A×0.5となっており、薬品浸漬により膜の孔径が大きく変化したことが確認された。   Dextran with a molecular weight of 10,000 was used for the blocking rate measurement. The dextran rejection (A) of the unused hollow fiber membrane is 80%, the rejection (B) of the hollow fiber membrane immersed in hypochlorous acid in the same manner as in Example 1 is 12%, and B <A × It was 0.5, and it was confirmed that the pore diameter of the membrane was greatly changed by chemical immersion.

また、この中空糸膜の純水透水量(C)、酵素濾過時の透水量(D)は、それぞれ52L/m/h、7L/m/hであり、D/C>0.05となった。酵素阻止率は97.3%であった。 Further, pure water permeation amount of the hollow fiber membrane (C), water permeation amount at the time of the enzyme filtration (D) are each 52L / m 2 / h, 7L / m 2 / h, D / C> 0.05 It became. The enzyme inhibition rate was 97.3%.

(比較例4)
ポリエーテルスルホンが22質量%、NMPが78質量%からなる原料を混合溶解して製膜原液を得た。この製膜原液を用いて、実施例1と同じ方法で製膜して中空糸膜を作製した。
(Comparative Example 4)
A raw material composed of 22% by mass of polyethersulfone and 78% by mass of NMP was mixed and dissolved to obtain a film forming stock solution. Using this membrane-forming stock solution, a hollow fiber membrane was produced in the same manner as in Example 1.

この中空糸膜中の親水性高分子の量は、ポリエーテルスルホンに対して0質量%で、一次側表面と二次側表面の接触角は、それぞれ84度、84度であり、一次側、二次側ともに疎水性であることが確認された。また、この中空糸膜を純水で抽出し、抽出液の吸光度を測定したところ、0.005であった。   The amount of the hydrophilic polymer in the hollow fiber membrane is 0% by mass with respect to the polyethersulfone, and the contact angles between the primary surface and the secondary surface are 84 degrees and 84 degrees, respectively. It was confirmed that the secondary side was hydrophobic. The hollow fiber membrane was extracted with pure water, and the absorbance of the extract was measured and found to be 0.005.

阻止率測定には、分子量10000のデキストランを用いた。未使用の中空糸膜のデキストラン阻止率(A)は66%、実施例1と同じ方法で次亜塩素酸浸漬した中空糸膜の阻止率(B)は、64%であり、B>A×0.5となっており、薬品浸漬による影響はなかった。   Dextran with a molecular weight of 10,000 was used for the blocking rate measurement. The unused hollow fiber membrane has a dextran rejection rate (A) of 66%, and the hollow fiber membrane immersed in hypochlorous acid in the same manner as in Example 1 has a rejection rate (B) of 64%, and B> A × It was 0.5, and there was no influence by chemical immersion.

また、この中空糸膜の純水透水量(C)、酵素濾過時の透水量(D)は、それぞれ131L/m/h、4L/m/hであり、D/C<0.05となり、親水性高分子を添加した系と比較して、酵素濾過時の透水性能が悪かった。酵素阻止率は93.5%であった。 Further, pure water permeation amount of the hollow fiber membrane (C), water permeation amount at the time of the enzyme filtration (D) are each 131L / m 2 / h, 4L / m 2 / h, D / C <0.05 Thus, the water permeability at the time of enzyme filtration was poor as compared with the system to which a hydrophilic polymer was added. The enzyme blocking rate was 93.5%.

以上の結果をまとめて、以下の表1及び表2に示す。

Figure 0005952159
The above results are summarized in Table 1 and Table 2 below.
Figure 0005952159

Figure 0005952159
Figure 0005952159

Claims (16)

疎水性高分子と親水性高分子とを含む分離膜であって、
前記親水性高分子が、重量平均分子量2000以上50000未満のポリビニルピロリドンを含有し、
前記分離膜の一方の表面の接触角と、他方の表面の接触角との差が6度以上である、分離膜。
A separation membrane comprising a hydrophobic polymer and a hydrophilic polymer,
The hydrophilic polymer contains polyvinylpyrrolidone having a weight average molecular weight of 2000 or more and less than 50000,
A separation membrane, wherein a difference between a contact angle of one surface of the separation membrane and a contact angle of the other surface is 6 degrees or more.
前記ポリビニルピロリドンの重量平均分子量が2500以上32000以下である、請求項1に記載の分離膜。   The separation membrane according to claim 1, wherein the polyvinyl pyrrolidone has a weight average molecular weight of 2500 or more and 32000 or less. 前記分離膜の一方の表面の接触角と、他方の表面の接触角との差が10度以上である、請求項1又は2に記載の分離膜。   The separation membrane according to claim 1 or 2, wherein a difference between a contact angle of one surface of the separation membrane and a contact angle of the other surface is 10 degrees or more. 前記疎水性高分子が、ポリエーテルスルホン又はポリスルホンを含有し、
前記ポリビニルピロリドンの割合が、該ポリビニルピロリドンと前記ポリエーテルスルホン又は前記ポリスルホンとの総量を基準として、2質量%以上8質量%以下である、請求項1〜3のいずれか一項に記載の分離膜。
The hydrophobic polymer contains polyethersulfone or polysulfone;
The separation according to any one of claims 1 to 3, wherein a ratio of the polyvinyl pyrrolidone is 2% by mass or more and 8% by mass or less based on a total amount of the polyvinyl pyrrolidone and the polyether sulfone or the polysulfone. film.
前記ポリビニルピロリドンの割合が、該ポリビニルピロリドンと前記ポリエーテルスルホン又は前記ポリスルホンとの総量を基準として、2質量%以上4.1質量%以下である、請求項4に記載の分離膜。   The separation membrane according to claim 4, wherein a ratio of the polyvinyl pyrrolidone is 2% by mass or more and 4.1% by mass or less based on a total amount of the polyvinyl pyrrolidone and the polyether sulfone or the polysulfone. 前記疎水性高分子が、ポリフッ化ビニリデンを含有し、
前記ポリビニルピロリドンの割合が、該ポリビニルピロリドンと前記ポリフッ化ビニリデンとの総量を基準として、0.2質量%以上2質量%以下である、請求項1〜3のいずれか一項に記載の分離膜。
The hydrophobic polymer contains polyvinylidene fluoride;
The separation membrane according to any one of claims 1 to 3, wherein a ratio of the polyvinyl pyrrolidone is 0.2% by mass or more and 2% by mass or less based on a total amount of the polyvinyl pyrrolidone and the polyvinylidene fluoride. .
前記ポリビニルピロリドンの割合が、該ポリビニルピロリドンと前記ポリフッ化ビニリデンとの総量を基準として、1.5質量%以上2質量%以下である、請求項6に記載の分離膜。   The separation membrane according to claim 6, wherein a ratio of the polyvinyl pyrrolidone is 1.5% by mass or more and 2% by mass or less based on a total amount of the polyvinyl pyrrolidone and the polyvinylidene fluoride. 中空糸膜である、請求項1〜7のいずれか一項に記載の分離膜。   The separation membrane according to any one of claims 1 to 7, which is a hollow fiber membrane. 請求項1〜8のいずれか一項に記載の分離膜を備える、モジュール。   A module comprising the separation membrane according to claim 1. 請求項1〜8のいずれか一項に記載の分離膜を用いる、酵素濃縮方法。   The enzyme concentration method using the separation membrane as described in any one of Claims 1-8. 請求項1〜8のいずれか一項に記載の分離膜を用いる、濾過方法。   The filtration method using the separation membrane as described in any one of Claims 1-8. 疎水性高分子、親水性高分子、並びに、該疎水性高分子及び該親水性高分子を溶解させる共通溶媒を少なくとも含有する製膜原液を、水を主成分とする溶液中で凝固させて分離膜を作製する工程を備え、
前記親水性高分子は、重量平均分子量が2000以上50000未満のポリビニルピロリドンを含み、
前記分離膜の一方の表面の接触角と、他方の表面の接触角との差が6度以上である、分離膜の製造方法。
A membrane-forming stock solution containing at least a hydrophobic polymer, a hydrophilic polymer, and a common solvent for dissolving the hydrophobic polymer and the hydrophilic polymer is coagulated in a solution containing water as a main component and separated. Comprising the step of producing a film,
The hydrophilic polymer has a weight average molecular weight of viewing contains polyvinylpyrrolidone less 50000 2000 or more,
A method for producing a separation membrane, wherein a difference between a contact angle of one surface of the separation membrane and a contact angle of the other surface is 6 degrees or more .
前記製膜原液が、前記疎水性高分子に対する貧溶剤であり、分子量300以下の貧溶剤を更に含有する、請求項12に記載の分離膜の製造方法。   The method for producing a separation membrane according to claim 12, wherein the membrane-forming stock solution is a poor solvent for the hydrophobic polymer and further contains a poor solvent having a molecular weight of 300 or less. 前記製膜原液を中空糸状に吐出する、請求項12又は13に記載の分離膜の製造方法。   The method for producing a separation membrane according to claim 12 or 13, wherein the membrane-forming stock solution is discharged in the form of a hollow fiber. 前記製膜原液を中空糸状に吐出する際に用いる中空剤の主成分が、水である、請求項14に記載の分離膜の製造方法。   The manufacturing method of the separation membrane of Claim 14 whose main component of the hollow agent used when discharging the said membrane-forming stock solution in the shape of a hollow fiber is water. 空走時間が0.1秒以上10秒未満である、請求項12〜15のいずれか一項に記載の分離膜の製造方法。   The method for producing a separation membrane according to any one of claims 12 to 15, wherein the idle running time is 0.1 second or more and less than 10 seconds.
JP2012228711A 2012-10-16 2012-10-16 Separation membrane and manufacturing method thereof Active JP5952159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012228711A JP5952159B2 (en) 2012-10-16 2012-10-16 Separation membrane and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012228711A JP5952159B2 (en) 2012-10-16 2012-10-16 Separation membrane and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014079687A JP2014079687A (en) 2014-05-08
JP5952159B2 true JP5952159B2 (en) 2016-07-13

Family

ID=50784415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012228711A Active JP5952159B2 (en) 2012-10-16 2012-10-16 Separation membrane and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5952159B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017080674A (en) * 2015-10-28 2017-05-18 日東電工株式会社 Separation membrane, and protein separation-recovery system
WO2017104557A1 (en) * 2015-12-15 2017-06-22 東洋紡株式会社 Hollow-fiber membrane and hollow-fiber module for cell culturing
JP7099467B2 (en) * 2017-09-25 2022-07-12 三菱ケミカル株式会社 Hollow fiber membrane
WO2020059769A1 (en) * 2018-09-18 2020-03-26 旭化成株式会社 Forward osmosis membrane and membrane module including same
KR20220121802A (en) * 2019-12-24 2022-09-01 주식회사 쿠라레 Polyvinyl alcohol film and manufacturing method of polarizing film using same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3617194B2 (en) * 1995-06-30 2005-02-02 東レ株式会社 Permselective separation membrane and method for producing the same
EP1359995A4 (en) * 2001-01-23 2004-04-07 Innovasep Technology Corp Asymmetric hollow fiber membranes
JP4015653B2 (en) * 2004-09-14 2007-11-28 ヤマシンフィルタ株式会社 Method for producing porous separation membrane
JP2006255502A (en) * 2005-03-15 2006-09-28 Nok Corp Manufacturing method of porous polyphenylsulfone resin hollow fiber membrane
CN102164656B (en) * 2008-09-26 2015-04-08 旭化成化学株式会社 Porous membrane, process for producing porous membrane, process for producing clarified liquid, and porous-membrane module

Also Published As

Publication number Publication date
JP2014079687A (en) 2014-05-08

Similar Documents

Publication Publication Date Title
JP5754654B2 (en) Porous hollow fiber membrane for protein-containing liquid treatment
JP5433921B2 (en) Polymer porous hollow fiber membrane
JP5952159B2 (en) Separation membrane and manufacturing method thereof
CN103501878B (en) Performance enhancing additives for fiber formation and polysulfone fibers
JP2017205740A (en) Composite membrane
JP5835659B2 (en) Porous hollow fiber membrane for protein-containing liquid treatment
WO2009125598A1 (en) Hydrophilic polyethersulfone filtration membrane, method for production thereof, and stock solution of production of membrane
JP3934340B2 (en) Blood purifier
JP2005144412A (en) Polyketone hollow fiber membrane and manufacturing method of the same
JP3317975B2 (en) Polyacrylonitrile hollow fiber filtration membrane
WO2016182015A1 (en) Porous hollow fiber membrane and manufacturing method therefor
WO1996035504A1 (en) Hollow-fiber membrane of polysulfone polymer and process for the production thereof
CN110975641B (en) Method for manufacturing polysulfone porous hollow fiber membrane
JP2688564B2 (en) Cellulose acetate hollow fiber separation membrane
JP4164730B2 (en) Selective separation membrane
JP4164774B2 (en) Method for producing selective separation membrane
JP5398084B2 (en) Oxidation-resistant hydrophilic polysulfone-based hollow fiber membrane and method for producing the same
JP5068479B2 (en) Oxidation-resistant hydrophilic polysulfone-based hollow fiber membrane and method for producing the same
KR20010061733A (en) A polysulfone typed hollow fiber membrane, and a process of preparing for the same
JP6649779B2 (en) Hollow fiber type semipermeable membrane and method for producing the same
JP2011020071A (en) Method for manufacturing polysulfone-based hollow fiber membrane
JP3464000B1 (en) Manufacturing method of high performance hollow fiber microfiltration membrane
KR930003740B1 (en) Producing method of polysulfon membrane
JP2533787B2 (en) Aromatic polysulfone hollow fiber membrane
JP6533064B2 (en) Hollow fiber type semipermeable membrane and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151225

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160609

R150 Certificate of patent or registration of utility model

Ref document number: 5952159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350