JP2003034819A - Apparatus for heat treating steel plate - Google Patents

Apparatus for heat treating steel plate

Info

Publication number
JP2003034819A
JP2003034819A JP2001223527A JP2001223527A JP2003034819A JP 2003034819 A JP2003034819 A JP 2003034819A JP 2001223527 A JP2001223527 A JP 2001223527A JP 2001223527 A JP2001223527 A JP 2001223527A JP 2003034819 A JP2003034819 A JP 2003034819A
Authority
JP
Japan
Prior art keywords
temperature
heating
inductor
heat treatment
thick steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001223527A
Other languages
Japanese (ja)
Other versions
JP2003034819A5 (en
JP4998653B2 (en
Inventor
Hiroshi Sekine
宏 関根
Nobutsugu Suzuki
宣嗣 鈴木
Akira Takane
章 多賀根
Teruo Fujibayashi
晃夫 藤林
Atsushi Watanabe
厚 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001223527A priority Critical patent/JP4998653B2/en
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to EP01271125A priority patent/EP1359230B1/en
Priority to DE60133936T priority patent/DE60133936D1/en
Priority to PCT/JP2001/011086 priority patent/WO2002050317A1/en
Priority to TW090131315A priority patent/TW528808B/en
Priority to CN2008101885933A priority patent/CN101463414B/en
Priority to CNB018208444A priority patent/CN100513589C/en
Priority to KR1020037007910A priority patent/KR100549451B1/en
Publication of JP2003034819A publication Critical patent/JP2003034819A/en
Publication of JP2003034819A5 publication Critical patent/JP2003034819A5/ja
Application granted granted Critical
Publication of JP4998653B2 publication Critical patent/JP4998653B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • General Induction Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus for heat treating steel plates with the use of an induction heating device of high efficiency, which uniformizes temperature distribution across short transverse and long transverse directions, and does not cause defects in quality by setting an upper limit to the surface temperature. SOLUTION: The apparatus for heat treating the steel plates which disposes several solenoid type induction heating devices (hereafter referred to as inductors) in series, is characterized by setting the upper limit for quantity of raising temperature on each inductor, so that the surface temperature of the steel sheet may not exceed the target upper limit temperature which is lower than the magnetic transformation temperature (Curie temperature).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は熱処理材厚鋼板の焼
入れ・焼鈍し・焼戻しの熱処理プロセスにおいて従来の
雰囲気加熱炉より高能率な、急速加熱に好適のソレノイ
ド型誘導加熱装置を適用した厚鋼板の熱処理装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thick steel plate to which a solenoid type induction heating device suitable for rapid heating is applied, which is more efficient than the conventional atmosphere heating furnace in the heat treatment process of quenching, annealing and tempering of a heat treated steel plate. The present invention relates to a heat treatment apparatus.

【0002】[0002]

【従来の技術】厚鋼板の焼入れ・焼鈍し・焼戻しの熱処
理プロセスに急速加熱に好適の誘導加熱装置を適用する
場合、ステンレスを除く被加熱物が常温の強磁性体であ
ることに起因する幾つかの問題を解決することが必要で
ある。すなわち、 板厚および板幅方向の温度分布を均一に加熱するこ
と。すなわち板厚中心と表面の温度差を最小化するこ
と。温度不均一の場合、熱処理の品質に大きな影響を与
える。 加熱過程で目標上限温度を超えないこと。上記に定め
られた目標上限温度を超えると鋼中添加元素の析出が起
こり品質に影響を与えると同時に、磁気変態点を超えた
場合浸透深さが増大し加熱効率を悪化させる。 誘導加熱装置の加熱周波数を被加熱材の板厚の範囲内
で最適な選定をすること。これは板厚方向均一性および
エッジ過加熱防止の均熱特性や加熱効率や生産性に大き
な影響を与える。
2. Description of the Related Art When an induction heating apparatus suitable for rapid heating is applied to a heat treatment process such as quenching, annealing, and tempering of a thick steel plate, some objects due to the fact that objects to be heated except stainless steel are ferromagnetic materials at room temperature. It is necessary to solve that problem. That is, to uniformly heat the thickness distribution and the temperature distribution in the width direction. That is, minimize the temperature difference between the center of thickness and the surface. When the temperature is not uniform, the quality of heat treatment is greatly affected. Do not exceed the target upper temperature limit during the heating process. When the target upper limit temperature defined above is exceeded, precipitation of additive elements in the steel occurs and the quality is affected. At the same time when the magnetic transformation point is exceeded, the penetration depth increases and heating efficiency deteriorates. Select the optimum heating frequency for the induction heating device within the range of the thickness of the material to be heated. This has a great influence on the uniformity in the plate thickness direction, the soaking property for preventing edge overheating, the heating efficiency and the productivity.

【0003】特開昭48−25237号には、ソレノイ
ド型誘導加熱装置を直列に複数個配置した時の板長手方
向の先後端の温度不均一防止について対策が示されてい
る。
Japanese Unexamined Patent Publication (Kokai) No. 48-25237 discloses a measure for preventing temperature nonuniformity at the front and rear ends in the longitudinal direction of the plate when a plurality of solenoid type induction heating devices are arranged in series.

【0004】また、特開昭48―64534号には、キ
ュリー点以下の加熱であれば低周波数誘導加熱と高周波
数誘導加熱の交互加熱により不等厚断面材料の均一な昇
温が可能と示されている。
Further, Japanese Unexamined Patent Publication (Kokai) No. 48-64534 discloses that if heating is performed at a Curie point or lower, it is possible to uniformly raise the temperature of a material having a non-uniform thickness by alternating heating of low frequency induction heating and high frequency induction heating. Has been done.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記し
た従来技術には次のような問題がある。
However, the above-mentioned conventional technique has the following problems.

【0006】特開昭48−25237号では、加熱歪に
よる板変形を防止する観点及び板厚方向の温度不均一に
ついて記載されてなく、板断面全体の熱処理を均一に行
うことができない。
Japanese Unexamined Patent Publication (Kokai) No. 48-25237 does not describe the viewpoint of preventing plate deformation due to heating strain and the temperature nonuniformity in the plate thickness direction, and the heat treatment of the entire plate cross section cannot be performed uniformly.

【0007】また、特開昭48―64534号では、キ
ュリー点以下の加熱であれば低周波数誘導加熱と高周波
数誘導加熱の交互加熱により不等厚断面材料の均一な昇
温が可能とあるが、被加熱材料板厚が薄い場合は十分な
昇温ができないという問題がある。これは約50〜20
0Hzの商用周波数付近の低周波数誘導加熱の場合、下
式(1)に示すように、入熱電力が周波数に比例して低
下しさらに十分な磁界を得るためには電流を莫大にとる
必要があること、加熱周波数が低いと加熱できる板厚の
下限値が存在すること(例えば加熱周波数200Hzの
場合、下限値は約17mmとなる。)から、工業的に成
立する加熱装置にはなりにくい。この技術では多種の厚
みを有する厚鋼板の熱処理が困難となる。
Further, in JP-A-48-64534, if the heating is performed at the Curie point or lower, it is possible to uniformly raise the temperature of the material having a non-uniform thickness by the alternating heating of the low frequency induction heating and the high frequency induction heating. However, if the material to be heated has a small thickness, there is a problem that the temperature cannot be sufficiently raised. This is about 50-20
In the case of low-frequency induction heating near the commercial frequency of 0 Hz, as shown in the following formula (1), the heat input power decreases in proportion to the frequency, and it is necessary to take an enormous amount of current in order to obtain a sufficient magnetic field. If the heating frequency is low, there is a lower limit of the plate thickness that can be heated (for example, when the heating frequency is 200 Hz, the lower limit is about 17 mm). This technique makes it difficult to heat treat steel plates having various thicknesses.

【0008】 P= π・μ・f・H2・S・L・Q ・・・(1) ここで、P:加熱吸収電力、μ:透磁率、f:周波数、
H:磁界の強さ、S:材料断面積、L:材料長、Q:吸
収係数を示す。
P = π · μ · f · H 2 · S · L · Q (1) where P: heat absorption power, μ: permeability, f: frequency,
H: magnetic field strength, S: material cross-sectional area, L: material length, Q: absorption coefficient.

【0009】本発明の目的は、上記した従来技術の問題
点を解決し、高効率な誘導加熱装置を用いて板厚および
板幅方向の温度分布の均一化を図り、さらに表面温度上
限を加えることにより品質不良が発生しない厚鋼板の熱
処理装置を提供することにある。
The object of the present invention is to solve the above-mentioned problems of the prior art, to make the temperature distribution in the plate thickness and plate width direction uniform using a highly efficient induction heating device, and to add a surface temperature upper limit. Accordingly, the object is to provide a heat treatment apparatus for thick steel plates that does not cause quality defects.

【0010】[0010]

【課題を解決するための手段】すなわち、本発明の厚鋼
板の熱処理装置は以下のような特徴を有する。
That is, the heat treatment apparatus for a thick steel plate of the present invention has the following features.

【0011】(1)複数台のソレノイド型誘導加熱装置
(以下インダクターという)を直列に配置した厚鋼板の
熱処理装置において、鋼板表面温度が磁気変態点(キュ
リー温度)以下の目標上限温度を超えないように、各イ
ンダクターの単機昇温量を設定することを特徴とする厚
鋼板の熱処理装置。
(1) In a heat treatment apparatus for a thick steel plate in which a plurality of solenoid type induction heating devices (hereinafter referred to as inductors) are arranged in series, the steel plate surface temperature does not exceed a target upper limit temperature below a magnetic transformation point (Curie temperature). As described above, the heat treatment apparatus for a thick steel plate is characterized by setting the single unit temperature rise amount of each inductor.

【0012】(2)インダクター間で表面温度を低下さ
せた後、次インダクターで加熱する間欠加熱することを
特徴とする請求項1に記載の厚鋼板の熱処理装置。
(2) The heat treatment apparatus for a thick steel plate according to claim 1, wherein after the surface temperature is lowered between the inductors, intermittent heating is performed by heating with the next inductor.

【0013】(3)各インダクター出側の、厚鋼板の平
均温度が当該目標値を満足するように各インダクターの
投入電力配分を変化させることを特徴とする請求項1ま
たは2に記載の厚鋼板の熱処理装置。
(3) The thick steel sheet according to claim 1 or 2, characterized in that the distribution of input power of each inductor is changed so that the average temperature of the thick steel sheet on the output side of each inductor satisfies the target value. Heat treatment equipment.

【0014】(4)各インダクターの加熱周波数を20
0Hz〜2000Hzとすることを特徴とする請求項1
乃至3のいずれかに記載の厚鋼板の熱処理装置。
(4) The heating frequency of each inductor is set to 20
The frequency is set to 0 Hz to 2000 Hz.
4. The heat treatment apparatus for a thick steel plate according to any one of 1 to 3.

【0015】(5)各インダクターの単機昇温量を40
0℃以下とし、3台以上のインダクターを直列に配置す
ることを特徴とする請求項1乃至4のいずれかに記載の
厚鋼板の熱処理装置。
(5) The single unit temperature rise of each inductor is set to 40
The heat treatment apparatus for a thick steel plate according to any one of claims 1 to 4, wherein the temperature is 0 ° C or lower and three or more inductors are arranged in series.

【0016】(6)各インダクターのコイル長さを1.
5m以下とすることを特徴とする請求項1乃至5のいず
れかに記載の厚鋼板の熱処理装置。
(6) The coil length of each inductor is 1.
The heat treatment apparatus for a thick steel plate according to any one of claims 1 to 5, which has a length of 5 m or less.

【0017】(7)各インダクターを300mm以上の
距離を隔てて配置することを特徴とする請求項1乃至6
のいずれかに記載の厚鋼板の熱処理装置。
(7) The inductors are arranged at a distance of 300 mm or more from each other.
The heat treatment apparatus for a thick steel plate according to any one of 1.

【0018】[0018]

【発明の実施の形態】本発明の複数台のソレノイド型誘
導加熱装置(以下インダクターという)を直列に配置し
た厚鋼板の熱処理装置は、鋼板表面温度が磁気変態点
(キュリー温度)以下の目標上限温度を超えないよう
に、各インダクターの単機昇温量を設定している。加熱
過程で鋼板表面温度が目標上限温度を超えると、鋼中添
加元素の析出が起こり品質に影響を与えると同時に、磁
気変態点を超えた場合浸透深さが増大し加熱効率を悪化
させるからである。
BEST MODE FOR CARRYING OUT THE INVENTION A heat treatment apparatus for a thick steel plate in which a plurality of solenoid type induction heating devices (hereinafter referred to as inductors) of the present invention are arranged in series has a target upper limit of a steel plate surface temperature equal to or lower than a magnetic transformation point (Curie temperature). The single unit temperature rise of each inductor is set so that it does not exceed the temperature. If the steel plate surface temperature exceeds the target upper limit temperature during the heating process, precipitation of additive elements in the steel will occur and the quality will be affected, and if the magnetic transformation point is exceeded, the penetration depth will increase and the heating efficiency will deteriorate. is there.

【0019】本発明の要件は、複数台直列配置したソレ
ノイド型インダクターの加熱電力分布とインダクター間
の通過時間(均熱時間)の最適化を図り、特に加熱範囲
の中で厚物(板厚14mm以上)の板厚方向温度の均一
化を図ることである。薄物は厚物に比べ熱拡散しやす
く、均熱条件が厚物より有利となる。
The requirement of the present invention is to optimize the heating power distribution of a plurality of solenoid-type inductors arranged in series and the passage time (soaking time) between the inductors, and particularly for a thick material (plate thickness 14 mm The above is to make the temperature in the plate thickness direction uniform. Thin materials are more likely to diffuse heat than thick materials, and soaking conditions are more advantageous than thick materials.

【0020】これらの範囲内で板厚方向温度分布の均一
化を可能とした厚鋼板の熱処理装置の好ましい条件は以
下の通りである。 各インダクターの単機昇温量を400℃以下とし、イ
ンダクターを3台以上直列配置すること。 各インダクターの加熱周波数は200Hz〜2000
Hzとすること。 各インダクターを300mm以上の距離を隔てて配置
すること。 各インダクターのコイル長さを1.5m以下とする。 板厚方向温度均一化に対しては、複数個直列配置した
インダクターおよびインダクター間距離を通過時間換算
で1秒〜20秒分あけた配置とし、均熱度の高い加熱電
力配分すなわち前段インダクター強加熱を用いる。 表面過加熱防止に対してはインダクター1台あたり昇
温量を規定し、インダクター間距離を通過時間換算で1
秒〜20秒分の均熱時間内で表面温度を下げられる配置
として、次インダクターで加熱する間欠加熱する。
The preferable conditions of the heat treatment apparatus for a thick steel plate capable of making the temperature distribution in the plate thickness direction uniform within these ranges are as follows. Set the temperature rise of each inductor to 400 ° C or less, and arrange three or more inductors in series. The heating frequency of each inductor is 200Hz-2000
Be Hz. Place each inductor at a distance of 300mm or more. The coil length of each inductor is 1.5 m or less. In order to equalize the temperature in the plate thickness direction, a plurality of inductors arranged in series and the distance between the inductors are separated by 1 to 20 seconds in terms of transit time, and heating power distribution with a high degree of soaking, that is, strong heating of the preceding inductor, is achieved. To use. To prevent surface overheating, the amount of temperature rise per inductor is specified, and the distance between inductors is calculated as 1 in terms of transit time.
The surface temperature can be lowered within the soaking time of 20 seconds to 20 seconds, and intermittent heating is performed by heating with the next inductor.

【0021】以下に問題解決の根拠について示す。 [表面温度上昇に基づく加熱方法とインダクター間距離
の考え方]インダクターの台数は、少なくとも3台以上
直列に配置する必要がある。以下にインダクターの台数
および加熱制御方法の根拠を示す。
The grounds for solving the problems will be shown below. [Heating method based on surface temperature rise and concept of distance between inductors] It is necessary to arrange at least three inductors in series. The basis of the number of inductors and the heating control method is shown below.

【0022】表面および板エッジ温度上限に基づく加
熱方法の必要性 厚鋼板の熱処理においては例えば650℃まで加熱する
ことが考えられる。この加熱は応力除去を目的とした熱
処理として一般に知られている。炭素鋼で450℃以上
650℃の範囲に加熱し、その後徐冷あるいは空冷する
プロセスである。この時、650℃以上に加熱される
と、機械強度の低下といった問題、板厚および板幅方向
に温度むらがあると、応力開放の不均一といった問題が
生じる。従って加熱過程においても、表面温度上限を厳
守して加熱する必要がある。これはインダクターの後段
側(高温域)で大電力を投入できないことを意味する。
このように厚鋼板の熱処理においては前段強加熱、後段
弱加熱として各インダクターの投入電力配分を変化させ
ることが好ましい。
Necessity of heating method based on upper limit of surface and plate edge temperature In heat treatment of thick steel plate, it is conceivable to heat up to 650 ° C., for example. This heating is generally known as heat treatment for the purpose of stress relief. This is a process in which carbon steel is heated in the range of 450 ° C. to 650 ° C. and then gradually cooled or air cooled. At this time, if it is heated to 650 ° C. or higher, there arises a problem that the mechanical strength is lowered, and if there is temperature unevenness in the plate thickness and the plate width direction, there is a problem that the stress release becomes uneven. Therefore, also in the heating process, it is necessary to strictly adhere to the upper limit of the surface temperature for heating. This means that high power cannot be applied to the latter part (high temperature range) of the inductor.
As described above, in the heat treatment of the thick steel plate, it is preferable to change the distribution of the input power of each inductor by performing the first-stage strong heating and the second-stage weak heating.

【0023】表面温度上限加熱とインダクター間距離
の関係 次に、均熱時間(表面と中心温度の均一化)の確保につ
いて考える。誘導加熱の原理上、厚物(板厚14mm以
上)の方が均熱時間を長く確保する必要があるので、厚
物を中心に検討する。また前段強加熱の原則から、第1
あるいは第2加熱インダクターの均熱時間を板厚8mm
〜50mm材で比較する。図3は同一能率で加熱した時
の、厚鋼板の板厚別必要均熱時間と厚鋼板の誘導加熱装
置間の通過時間の比較である。図3を求めるのに際し、
下記の計算用定数を用いた。 空冷放射率ε:0.78、平均熱伝導率λ:37(kcal/
mh℃)、平均密度ρ:7800(kg /m3)、平均比熱Cp:
0.132(kcal/kg℃) (0.16kcal/kg=670J/kgを100℃
換算) これによれば、板厚50mm材の均熱には約20秒かか
ることから、3.5mpmで通板した場合、1.15m
以上インダクター間距離を確保する必要がある。また、
8mm材の均熱には約1秒確保する必要から18mpm
で通板した場合、0.3m以上のインダクター間距離と
する必要がある。よって、各インダクターを300mm
以上の距離を隔てて配置することが好ましい。
Relationship between Upper Surface Temperature Upper Limit Heating and Distance Between Inductors Next, consideration will be given to securing a soaking time (uniformization of surface and central temperature). Because of the principle of induction heating, it is necessary to secure a longer soaking time for a thick material (plate thickness 14 mm or more), so we will focus on thick materials. Moreover, from the principle of the previous stage strong heating,
Alternatively, the soaking time of the second heating inductor can be adjusted to a plate thickness of 8 mm.
-50 mm material is compared. FIG. 3 is a comparison of required soaking time for each plate thickness of thick steel plates and passage time between induction heating devices for thick steel plates when heated at the same efficiency. In determining Fig. 3,
The following constants for calculation were used. Air-cooling emissivity ε: 0.78, average thermal conductivity λ: 37 (kcal /
mh ℃), average density ρ: 7800 (kg / m3), average specific heat Cp:
0.132 (kcal / kg ℃) (0.16kcal / kg = 670J / kg is 100 ℃
According to this, it takes about 20 seconds to soak a plate having a thickness of 50 mm. Therefore, when the plate is passed at 3.5 mpm, 1.15 m
It is necessary to secure the distance between the inductors. Also,
18 mpm because it is necessary to secure about 1 second for soaking 8 mm material
In case of passing through, the distance between the inductors should be 0.3 m or more. Therefore, each inductor is 300mm
It is preferable to dispose the above distance.

【0024】この均熱時間はインダクター1台当りの昇
温量に対し単調増加の関係にあるため、均熱時間からイ
ンダクター間距離が規定され、さらに昇温量が規定され
ることになる。この場合単機昇温量400℃以下であれ
ば、0.65m以上インダクター間を確保することによ
り、20mmまでの厚鋼板を高能率で加熱できる。ま
た、1.15mまでインダクター間を離隔すれば、50
mmまでの厚鋼板を20mm材と同一能率で加熱でき
る。
Since the soaking time has a monotonically increasing relationship with the temperature rise amount per inductor, the distance between the inductors is defined from the soaking time, and the temperature rise amount is further defined. In this case, if the temperature rise amount of the single machine is 400 ° C. or less, a thick steel plate up to 20 mm can be heated with high efficiency by ensuring a space between the inductors of 0.65 m or more. Also, if the inductors are separated by 1.15m, 50
A thick steel plate up to mm can be heated with the same efficiency as a 20 mm material.

【0025】インダクター台数が3台以上必要な根拠 インダクターは被加熱材表層からエネルギーを投入する
ものであり、原理的に均一加熱と矛盾する。したがって
均熱化を指向する場合、上記に示すような均熱化プロ
セスを持つと同時に、加熱インダクターにも極力均熱特
性を持たせる。
Grounds for requiring three or more inductors Inductors input energy from the surface of the material to be heated, which is in principle inconsistent with uniform heating. Therefore, when aiming at soaking, the heating inductor should have soaking characteristics as much as possible while having the soaking process as described above.

【0026】インダクター長を可能な限り長くし、均熱
特性を持たせたいがロールによって厚鋼板を支持できる
ロール間隔は、1.5mが鋼板がたわみロールに突っか
ける限界なので、インダクター長は1.5m以下に制約
することが好ましい。
Although it is desired to make the inductor length as long as possible and have a uniform heating characteristic, the roll interval at which the thick steel plate can be supported by the roll is 1.5 m, which is the limit at which the steel plate strikes the flexible roll. It is preferable to limit the length to 5 m or less.

【0027】この限界インダクター長(コイル長さ)に
おける最大可能昇温量は実用的には400℃が限界とな
る。板厚20mm、板幅4500mm、インダクター通
過速度0.6mpm、インダクター長1.5m、加熱入
口温度20℃(常温)から目標温度650℃まで上昇さ
せたときのインダクター1台当たりの最大昇温量は約4
00℃が限界であった。これは商用周波数以上で加熱す
ると板エッジ温度が板中央温度の約1.5倍上昇するた
めであり、図4に昇温の関係を示す。またインダクター
通過速度の根拠はガス焚き炉の能率25T/Hと等価能
率で誘導加熱した場合の速度である。
The maximum possible temperature rise amount in the limit inductor length (coil length) is practically 400 ° C. as a limit. Plate thickness 20mm, plate width 4500mm, inductor passing speed 0.6mpm, inductor length 1.5m, maximum temperature rise per inductor when heating inlet temperature 20 ℃ (normal temperature) to target temperature 650 ℃ About 4
The limit was 00 ° C. This is because the plate edge temperature rises by about 1.5 times the plate center temperature when heated at a commercial frequency or higher, and FIG. 4 shows the temperature rise relationship. The basis of the inductor passing speed is the speed when induction heating is performed at an equivalent efficiency of 25 T / H of the gas-fired furnace.

【0028】このような検討から630℃(650−2
0)昇温を考えた場合、加熱インダクターは630/4
00>1であるからインダクターは2台以上必要とな
る。また板エッジ温度を目標上限温度未満とする均一加
熱条件を制約条件として加熱計画を考えると、 第1インダクターのエッジ温度制約 630℃=1.5×θ1(第1インダクター平均昇温
量)よりθ1=420℃ 第2インダクター以降の必要昇温量は630−420=
210℃ 第2インダクターのエッジ温度制約 210℃=1.5×θ2(第2インダクター平均昇温
量)よりθ2=140℃ 第3インダクター以降の必要昇温量は210−140=
70℃ 第3インダクターのエッジ温度制約 70℃=1.5×θ3(第3インダクター平均昇温量)
よりθ3=47℃ θ1〜θ3の総和は607℃であるから630℃昇温の
場合、単機昇温量が400℃以下で少なくとも3台以上
のインダクターが好ましい。
From such a study, 630 ° C. (650-2
0) Considering the temperature rise, the heating inductor is 630/4
Since 00> 1, two or more inductors are required. Further, considering the heating plan with the uniform heating condition that the plate edge temperature is less than the target upper limit temperature as a constraint condition, when the edge temperature constraint of the first inductor 630 ° C. = 1.5 × θ1 (first inductor average temperature rise amount), θ1 = 420 ° C The required temperature rise after the second inductor is 630-420 =
210 ° C. Edge temperature restriction of the second inductor 210 ° C. = 1.5 × θ2 (average temperature rise of the second inductor) θ2 = 140 ° C. The required temperature rise after the third inductor is 210-140 =
70 ℃ Third inductor edge temperature constraint 70 ℃ = 1.5 × θ3 (third inductor average temperature rise)
Therefore, the sum of θ3 = 47 ° C. θ1 to θ3 is 607 ° C. Therefore, in the case of 630 ° C. temperature increase, it is preferable that the single machine temperature increase amount is 400 ° C. or less and at least three inductors or more.

【0029】さらに、この問題は一般的な最適化問題と
して取り扱うことが可能であり、例えば(7)式におい
て定式化される。
Further, this problem can be treated as a general optimization problem, and is formulated, for example, in the equation (7).

【0030】すなわち、各インダクター出口均熱後の平
均昇熱温度θi(i=1,n)、目標平均昇熱温度θr
ef、各インダクター出口の平均温度と板エッジ温度の
偏差Ki(i=1,n)、加熱効率ηi(i=1,n)
とすると、 θ1+θ2+・・・+θn =θref (昇熱温度の収支) Σθi-1+Ki <θmax (上限温度制約) J=Σω・(θmax―Σθi-1―Ki)2 →min(温度偏差最小化…(7) これは数理計画法で簡単に解ける一般的な最適化問題で
あり、この数式により加熱計画を立てれば良いことがわ
かる。これによればn≧3において厚鋼板の熱処理可能
な温度領域に到達できる。
That is, the average heat-up temperature θi (i = 1, n) after soaking at the outlet of each inductor, the target average heat-up temperature θr
ef, deviation Ki between the average temperature at each inductor outlet and the plate edge temperature Ki (i = 1, n), heating efficiency ηi (i = 1, n)
Then, θ1 + θ2 + ... + θn = θref (Balance of heat-up temperature) Σθi-1 + Ki <θmax (upper limit temperature constraint) J = Σω ・ (θmax-Σθi-1-Ki) 2 → min (Temperature deviation Minimization (7) This is a general optimization problem that can be easily solved by mathematical programming, and it can be seen that a heating plan can be established by this mathematical formula. Can reach a wide temperature range.

【0031】[周波数選定の考え方]加熱周波数を2
00Hz未満の商用周波数付近としても均一加熱効果が
少ない。
[Concept of frequency selection] The heating frequency is set to 2
The uniform heating effect is small even in the vicinity of the commercial frequency of less than 00 Hz.

【0032】板厚方向の温度差を下記の式で定義する。The temperature difference in the plate thickness direction is defined by the following formula.

【0033】 Δθ = θs − θc ・・・(2) Δθ:表面と中心の温度差、θs:表面温度、θc:中心
温度また、Δθは(3)式により加熱条件において計算
される。
Δθ = θs−θc (2) Δθ: temperature difference between surface and center, θs: surface temperature, θc: center temperature Further, Δθ is calculated under the heating condition according to the equation (3).

【0034】 Δθ = F・p・t / k ・・・(3) ここで、F:温度差の発生具合を表す係数、p:断面単
位面積当りの加熱吸収電力でP/(W・L)(P:
(1)式の加熱吸収電力、S:材料断面積=t・W)、
t:材料板厚、W:材料幅、k:熱伝導率を示す。
Δθ = F · p · t / k (3) Here, F is a coefficient indicating the degree of temperature difference generation, p is the heat absorption power per unit area of the cross section, P / (W · L) (P:
Heat absorption power of the equation (1), S: material cross-sectional area = t · W),
t: material plate thickness, W: material width, k: thermal conductivity.

【0035】今、可能な範囲でΔθを小さくするには、
(a)Fを小さくする方法と、(b)pを小さくする方
法とがあり、両者について検討する。
Now, in order to reduce Δθ within a possible range,
There are (a) a method of making F small and (b) a method of making p small, and both will be examined.

【0036】(a)Fを小さくする方法。(A) A method of reducing F.

【0037】 浸透深さδと板厚tの関係 χ = t / δ ・・・(4) を用いて表現すると、Fは(5)式で表現される。[0037]   Relationship between penetration depth δ and plate thickness t χ = t / δ (4) When expressed using, F is expressed by equation (5).

【0038】 F = 1 − ( W − 1 ) / χ / Y ・・・(5) W = 1/2・( cosh(χ) + cos(χ) ) Y = sinh(χ) − sin(χ) となる。図1に(5)式に基づいて常温付近約20℃か
ら加熱を開始する時のFとχの関係を示す。
F = 1- (W-1) / χ / Y (5) W = 1/2 ・ (cosh (χ) + cos (χ)) Y = sinh (χ) -sin (χ) Becomes FIG. 1 shows the relationship between F and χ when heating is started from about 20 ° C. near room temperature based on equation (5).

【0039】強磁性体の600℃付近の抵抗率ρを75
(μΩ・cm)、600℃付近の比透磁率μが加熱周波数1
00Hzのとき15、加熱周波数1500Hzのとき3
2として、加熱周波数fが100〜1500Hzの範囲
で浸透深さδは2.0mm<δ<11.2mmとなる。
よって、板厚30mmとすると、χは2.7<χ<1
5.0となる。この時のFの値域は0.88<F<0.
97であり、周波数fを1/15倍に低下させてもFの
低減効果は9%程度しか得られない。この加熱装置は鋼
の磁性領域の加熱であるため、浸透深さが元々小さく、
加熱周波数fを大幅に下げても温度差の発生具合を表す
係数であるFの低減効果は極めて低いことがわかる。
The resistivity ρ near 600 ° C. of the ferromagnetic material is 75
(μΩ · cm), relative permeability μ around 600 ℃ is heating frequency 1
15 at 00 Hz, 3 at heating frequency 1500 Hz
2, the penetration depth δ is 2.0 mm <δ <11.2 mm when the heating frequency f is in the range of 100 to 1500 Hz.
Therefore, if the plate thickness is 30 mm, χ is 2.7 <χ <1.
It will be 5.0. At this time, the range of F is 0.88 <F <0.
Therefore, even if the frequency f is reduced 1/15 times, the effect of reducing F is only about 9%. Since this heating device is for heating the magnetic region of steel, the penetration depth is originally small,
It can be seen that even if the heating frequency f is significantly reduced, the effect of reducing F, which is a coefficient indicating the degree of temperature difference, is extremely low.

【0040】(b)pを小さくする方法。(B) A method for reducing p.

【0041】断面単位面積当りの加熱吸収電力pは昇温
のエネルギーであるから、温度差最小化だけを考えれば
十分小さくpを規定すれば良いが、インダクター個数が
増えたりインダクター長が長くなったりするという問題
が生じる。また、装置台数が増えれば空冷抜熱による損
失も増大し加熱効率が低下するという問題も無視でき
ず、単純にpを低下させることはできない。pを低下さ
せたらインダクター長を長くする必要がある。したがっ
てインダクター装置の加熱能力を最大限向上しながら、
限られた板厚範囲(熱処理厚鋼板は8mm〜50mm)
の中で均一加熱を実現する単機昇温量を見出す必要があ
る。
Since the heat absorption power p per unit area of the cross section is the energy for temperature rise, it suffices to define p sufficiently small considering only the temperature difference minimization, but the number of inductors increases and the inductor length increases. The problem arises. In addition, the problem that the loss due to air cooling and removal increases as the number of devices increases and the heating efficiency lowers cannot be ignored, and p cannot be simply lowered. If p is lowered, it is necessary to lengthen the inductor length. Therefore, while maximizing the heating capacity of the inductor device,
Limited thickness range (heat treated thick steel plate is 8mm-50mm)
It is necessary to find out the single unit temperature rise amount that achieves uniform heating.

【0042】単位表面積当たりの加熱吸収電力pは
(6)式で表される。
The heat absorption power p per unit surface area is expressed by the equation (6).

【0043】 p= π・μ・f・H2・t・Q ・・・(6) ここで、p:単位面積当りの加熱吸収電力、f:加熱周
波数、H:磁界の強さ、μ:透磁率、Q:電力吸収係数
を示す。
P = π · μ · f · H2 · t · Q (6) where p: heat absorption power per unit area, f: heating frequency, H: magnetic field strength, μ: transmission Magnetic susceptibility, Q: Power absorption coefficient.

【0044】Maxwellの方程式から誘導加熱の基本方程
式を導出すると、∇2 H = μ/ρ・∂H/∂t
となり、図2に平板(幅方向無限遠方条件)に関する条
件でQの推移を求めたものを示す。
When the basic equation of induction heating is derived from Maxwell's equation, ∇2 H = μ / ρ · ∂H / ∂t
Therefore, FIG. 2 shows the change in Q obtained under the conditions related to the flat plate (widthwise infinity condition).

【0045】χ=t/δに対するQの推移は、前項で求め
たχの範囲(2.7<χ<15.0)では約1/6程度
になることがわかる。従って(6)式においてpを決定
する時、1500Hzを選定すれば加熱周波数fは15
倍となるので磁界の強さHを大きく取る必要がない。磁
界Hを大きく取るということはインダクターの起磁力・
磁束密度も大きくすることになり、装置全体の設計の難
しさが増大する。
It can be seen that the transition of Q with respect to χ = t / δ is about 1/6 in the range of χ obtained in the previous section (2.7 <χ <15.0). Therefore, when p is determined in the equation (6), if 1500 Hz is selected, the heating frequency f is 15
Since it is doubled, it is not necessary to take a large magnetic field strength H. Taking a large magnetic field H means that the magnetomotive force of the inductor
The magnetic flux density is also increased, which increases the difficulty in designing the entire device.

【0046】一方、加熱周波数は先に示したように10
倍以上変化させることは容易であるから、周波数を高く
することにより高い加熱吸収電力を得ることができる。
ここで、60Hzと600Hzで加熱したときの吸収電
力の比較を行う。加熱材の板厚を30mm、600℃付
近の比透磁率μを、60Hzと600Hzで加熱したと
きそれぞれ12および25とし、600℃付近の抵抗率
ρを75(μΩ・cm)として、χを計算すると、 60Hz加熱時、δ=16.2mmより、χ=30mm
/16.2=1.9 600Hz加熱時、δ=3.6mmより、χ=30mm
/3.6=8.3 f×Qが入熱量に比例するのでf×Qの値を比較する
と、 60Hz加熱時はf×Q=60×0.3=18程度 600Hz加熱時のf×Q=600×0.12=72程
度 以上のように、加熱周波数を商用周波数の10倍程度に
設定することにより、4倍近い吸収電力を得ることがで
きる。
On the other hand, the heating frequency is 10 as shown above.
Since it is easy to change the frequency more than twice, it is possible to obtain high heat absorption power by increasing the frequency.
Here, the absorbed power when heated at 60 Hz and 600 Hz is compared. Χ is calculated with the thickness of the heating material being 30 mm and the relative permeability μ near 600 ° C. being 12 and 25 respectively when heated at 60 Hz and 600 Hz, and the resistivity ρ near 600 ° C. being 75 (μΩcm). Then, when heating at 60 Hz, δ = 16.2 mm, χ = 30 mm
/ 16.2 = 1.9 600Hz heating, from δ = 3.6mm, χ = 30mm
/3.6=8.3 f × Q is proportional to the amount of heat input, so comparing the values of f × Q, f × Q = 60 × 0.3 = 18 at 60 Hz, f × Q at 600 Hz = 600 × 0.12 = 72 or more As described above, by setting the heating frequency to approximately 10 times the commercial frequency, it is possible to obtain nearly four times the absorbed power.

【0047】現在数千KWの出力を得られる周波数上限
は1500Hz程度であるので、少なくとも200Hz
以上で加熱するのは装置技術上何ら問題ない。以上のこ
とから加熱吸収電力確保を重視して加熱周波数を高くす
ることが必要であると同時に、温度差低減のために加熱
吸収電力pをインダクター長を延ばせる範囲内で低減す
ることが必要となる。(p=P/(W・L)であるか
ら、L=0.3mとL=1.5mでは5倍異なる。ま
た、厚板のロール間隔の限界は通板上1.5mであるの
で、インダクター長限界は1.5mとなる。) 加熱周波数を200Hz〜2000Hzとすると加熱
能力を確保し、均一加熱効果も得られる。
At present, the upper limit of the frequency at which an output of several thousand KW can be obtained is about 1500 Hz, so at least 200 Hz.
The above heating causes no problem in terms of device technology. From the above, it is necessary to increase the heating frequency with an emphasis on securing the heat absorption power, and at the same time, it is necessary to reduce the heat absorption power p within the range in which the inductor length can be extended in order to reduce the temperature difference. . (P = P / (W · L), so L = 0.3 m and L = 1.5 m are 5 times different. Also, the limit of the roll interval of the thick plate is 1.5 m on the threaded plate, The inductor length limit is 1.5 m.) When the heating frequency is 200 Hz to 2000 Hz, the heating capacity is secured and a uniform heating effect is also obtained.

【0048】図2のQ値ピークとなるχ=t/δ=2.3
よりχ値が小さくなると、加熱効率が著しく低下するこ
とにより、加熱周波数が200Hz未満では薄物(板厚
14mm未満)の加熱ができない。つまり、加熱周波数
が低いと加熱できる板厚の下限値が存在する。(例えば
加熱周波数200Hzの場合、下限値は約17mmとな
る。) 加熱周波数が200Hz〜2000Hzとすると、薄物
から厚物(板厚14mm以上)までの均一加熱が可能と
なり好ましい。
Χ = t / δ = 2.3 which is the Q value peak in FIG.
If the χ value becomes smaller, the heating efficiency is significantly reduced, and therefore, if the heating frequency is less than 200 Hz, it is impossible to heat a thin material (thickness less than 14 mm). That is, when the heating frequency is low, there is a lower limit of the plate thickness that can be heated. (For example, when the heating frequency is 200 Hz, the lower limit value is about 17 mm.) When the heating frequency is 200 Hz to 2000 Hz, it is possible to uniformly heat a thin material to a thick material (sheet thickness 14 mm or more), which is preferable.

【0049】一方、加熱周波数が2000Hzを超える
と、厚物の場合、加熱周波数が200Hz〜2000H
zのときに比べてエッジの温度上昇量が高くなる。これ
は、加熱周波数が2000Hzを超えると、浸透深さδ
と板厚の比(χ値)が小さくなり、厚鋼板のコーナーに
も回りこみ電流があってコーナーに沿っての加熱が著し
くなりエッジ部過加熱が増大するが、加熱周波数が20
00Hz以下ではコーナー電流が小さくなって加熱され
なくなるからである。
On the other hand, when the heating frequency exceeds 2000 Hz, in the case of a thick material, the heating frequency is 200 Hz to 2000 H.
The temperature rise amount at the edge is higher than that at z. This is because when the heating frequency exceeds 2000 Hz, the penetration depth δ
The ratio (χ value) between the plate thickness and the plate thickness becomes small, and there is also a sneak current in the corners of the thick steel plate, and the heating along the corners becomes significant and the overheating of the edges increases, but the heating frequency is 20
This is because at a frequency of 00 Hz or less, the corner current becomes small and heating is stopped.

【0050】このように、被加熱材料の板厚方向均一化
を図る時には必ずしも低周波加熱(加熱周波数約200
Hz以下)が必要ではないことがわかる。
As described above, when the material to be heated is made uniform in the plate thickness direction, low frequency heating (heating frequency of about 200) is required.
It is understood that (Hz or less) is not necessary.

【0051】[0051]

【実施例】厚鋼板の加熱能率390T/Hにより板厚範
囲8〜50mm、板幅4600mmの厚鋼板の熱処理を
実施した。熱処理装置の仕様は以下の通りである。 各インダクターの加熱周波数を1000Hzとする。 各インダクターの単機昇温量を400℃以下とし、3
台以上のインダクターを直列に配置する。 各インダクターのコイル長さを1.2mとする。 各インダクターを650mmの距離を隔てて配置す
る。
[Example] The heat treatment of a thick steel plate having a plate thickness range of 8 to 50 mm and a plate width of 4600 mm was carried out at a heating efficiency of 390 T / H. The specifications of the heat treatment apparatus are as follows. The heating frequency of each inductor is 1000 Hz. Set the single unit temperature rise of each inductor to 400 ° C or less, 3
Place more than one inductor in series. The coil length of each inductor is 1.2 m. Each inductor is placed with a distance of 650 mm.

【0052】(実施例1)本発明例では、図5に板厚1
2mmの厚鋼板について、上記の仕様のインダクターを
用いて、20℃から650℃まで加熱して630℃昇温
したときの、板上面温度、板上面より1/4板内部すなわ
ち1/4板上面温度、板厚中央部温度および平均温度につ
いての温度上昇曲線を示した。昇温量630℃を実現す
るためにはインダクターが5台必要であった。また、イ
ンダクター間で表面温度を低下させた後、次インダクタ
ーで加熱する間欠加熱を実施した。
Example 1 In the example of the present invention, the plate thickness 1 is shown in FIG.
For 2 mm thick steel plate, using the inductor of the above specifications, when heating from 20 ° C to 650 ° C and raising the temperature to 630 ° C, the plate upper surface temperature, from the plate upper surface to 1/4 plate inside, that is, 1/4 plate upper surface The temperature rise curves for the temperature, the center temperature of the plate thickness and the average temperature are shown. Five inductors were required to achieve the temperature rise of 630 ° C. Moreover, after lowering the surface temperature between the inductors, intermittent heating was performed by heating with the next inductor.

【0053】(実施例2)本発明例では、図6に板厚5
0mmの厚鋼板について、上記の仕様のインダクターを
用いて、20℃から650℃まで加熱して630℃昇温
したときの、板上面温度、板上面より1/4板内部すなわ
ち1/4板上面温度、板厚中央部温度および平均温度につ
いての温度上昇曲線を示した。昇温量630℃を実現す
るためにはインダクターが8台必要であった。また、イ
ンダクター間で表面温度を低下させた後、次インダクタ
ーで加熱する間欠加熱を実施した。
(Example 2) In the example of the present invention, the plate thickness 5 is shown in FIG.
About 0 mm thick steel plate, using the inductor of the above specifications, when heating from 20 ° C to 650 ° C and raising the temperature to 630 ° C, the plate upper surface temperature, from the plate upper surface 1/4 plate inside, that is, 1/4 plate upper surface The temperature rise curves for the temperature, the center temperature of the plate thickness and the average temperature are shown. Eight inductors were required to achieve the temperature rise of 630 ° C. Moreover, after lowering the surface temperature between the inductors, intermittent heating was performed by heating with the next inductor.

【0054】[0054]

【発明の効果】従来のガス焚き炉に比べ高能率な熱処理
設備がより安価に提供できる。薄物から厚物まで、加熱
終了時点で板厚・板幅方向で±10℃の極めて精度の良
い一様加熱が実現できる。材料の加熱歪による変形、反
り、蛇行を発生させないで加熱できる。
EFFECT OF THE INVENTION As compared with the conventional gas-fired furnace, highly efficient heat treatment equipment can be provided at a lower cost. From thin to thick materials, it is possible to realize highly accurate uniform heating of ± 10 ° C in the plate thickness / plate width direction at the end of heating. It can be heated without causing deformation, warpage and meandering due to heating strain of the material.

【図面の簡単な説明】[Brief description of drawings]

【図1】常温付近約20℃から加熱を開始する時のF
(温度差の発生具合を表す係数)とχ(χ=t/δ、板
厚tと浸透深さδとの関係)の関係を示す説明図
[Fig. 1] F when heating is started from about 20 ° C near room temperature
Explanatory diagram showing the relationship between (a coefficient indicating the degree of occurrence of a temperature difference) and χ (χ = t / δ, the relationship between the plate thickness t and the penetration depth δ).

【図2】平板(幅方向無限遠方条件)に関する条件での
χ(χ=t/δ、板厚tと浸透深さδとの関係)とQ
(電力吸収係数)の関係を示す説明図
FIG. 2 shows χ (χ = t / δ, the relation between the plate thickness t and the penetration depth δ) and Q under the condition of a flat plate (width direction infinity condition).
Explanatory diagram showing the relationship of (power absorption coefficient)

【図3】同一能率で加熱した時の、厚鋼板の板厚別必要
均熱時間と厚鋼板の誘導加熱装置間の通過時間の比較
[Fig. 3] Comparison of required soaking time according to plate thickness of thick steel plates and passage time between induction heating devices for thick steel plates when heated at the same efficiency

【図4】インダクター1台当たりの最大昇温量が約40
0℃としたときの、厚鋼板(板厚20mm)の加熱の一例
を示す昇温特性グラフ
[Fig. 4] Maximum temperature rise per inductor is about 40
Temperature rising characteristic graph showing an example of heating a thick steel plate (plate thickness 20 mm) at 0 ° C.

【図5】本発明法の実施例で厚鋼板(板厚12mm)の
加熱の一例を示す昇温特性グラフ
FIG. 5 is a temperature rise characteristic graph showing an example of heating a thick steel plate (plate thickness 12 mm) in an example of the method of the present invention.

【図6】本発明法の実施例で厚鋼板(板厚50mm)の
加熱の一例を示す昇温特性グラフ
FIG. 6 is a temperature rise characteristic graph showing an example of heating a thick steel plate (plate thickness 50 mm) in an example of the method of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 多賀根 章 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 藤林 晃夫 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 渡辺 厚 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 3K059 AA09 AB25 AB28 AC12 AC33 AC37 AD05 AD34 CD65 CD72 CD75    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Akane Tagane             1-2-1, Marunouchi, Chiyoda-ku, Tokyo             Main Steel Pipe Co., Ltd. (72) Inventor Akio Fujibayashi             1-2-1, Marunouchi, Chiyoda-ku, Tokyo             Main Steel Pipe Co., Ltd. (72) Inventor Atsushi Watanabe             1-2-1, Marunouchi, Chiyoda-ku, Tokyo             Main Steel Pipe Co., Ltd. F term (reference) 3K059 AA09 AB25 AB28 AC12 AC33                       AC37 AD05 AD34 CD65 CD72                       CD75

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 複数台のソレノイド型誘導加熱装置(以
下インダクターという)を直列に配置した厚鋼板の熱処
理装置において、鋼板表面温度が磁気変態点(キュリー
温度)以下の目標上限温度を超えないように、各インダ
クターの単機昇温量を設定することを特徴とする厚鋼板
の熱処理装置。
1. In a heat treatment apparatus for a thick steel plate in which a plurality of solenoid type induction heating devices (hereinafter referred to as inductors) are arranged in series, a steel plate surface temperature does not exceed a target upper limit temperature below a magnetic transformation point (Curie temperature). In addition, a heat treatment apparatus for thick steel plates, characterized in that a single unit temperature rise amount of each inductor is set.
【請求項2】 インダクター間で表面温度を低下させた
後、次インダクターで加熱する間欠加熱することを特徴
とする請求項1に記載の厚鋼板の熱処理装置。
2. The heat treatment apparatus for a thick steel plate according to claim 1, wherein the surface temperature is lowered between the inductors, and then intermittent heating is performed by heating with the next inductor.
【請求項3】 各インダクター出側の、厚鋼板の平均温
度が当該目標値を満足するように各インダクターの投入
電力配分を変化させることを特徴とする請求項1または
2に記載の厚鋼板の熱処理装置。
3. The thick steel sheet according to claim 1 or 2, characterized in that the distribution of the input power of each inductor is changed so that the average temperature of the thick steel sheet on the output side of each inductor satisfies the target value. Heat treatment equipment.
【請求項4】 各インダクターの加熱周波数を200H
z〜2000Hzとすることを特徴とする請求項1乃至
3のいずれかに記載の厚鋼板の熱処理装置。
4. The heating frequency of each inductor is set to 200H.
The heat treatment apparatus for a thick steel plate according to any one of claims 1 to 3, wherein the heat treatment device has a frequency of z to 2000 Hz.
【請求項5】 各インダクターの単機昇温量を400℃
以下とし、3台以上のインダクターを直列に配置するこ
とを特徴とする請求項1乃至4のいずれかに記載の厚鋼
板の熱処理装置。
5. The single unit temperature rise of each inductor is 400 ° C.
The heat treatment apparatus for a thick steel plate according to any one of claims 1 to 4, wherein three or more inductors are arranged in series below.
【請求項6】 各インダクターのコイル長さを1.5m
以下とすることを特徴とする請求項1乃至5のいずれか
に記載の厚鋼板の熱処理装置。
6. The coil length of each inductor is 1.5 m
The heat treatment apparatus for a thick steel plate according to any one of claims 1 to 5, wherein:
【請求項7】 各インダクターを300mm以上の距離
を隔てて配置することを特徴とする請求項1乃至6のい
ずれかに記載の厚鋼板の熱処理装置。
7. The heat treatment apparatus for a thick steel plate according to claim 1, wherein the inductors are arranged at a distance of 300 mm or more.
JP2001223527A 2000-12-18 2001-07-24 Steel plate heat treatment equipment Expired - Lifetime JP4998653B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2001223527A JP4998653B2 (en) 2001-07-24 2001-07-24 Steel plate heat treatment equipment
DE60133936T DE60133936D1 (en) 2000-12-18 2001-12-18 METHOD FOR PRODUCING A STEEL PLATE AND EQUIPMENT THEREFOR
PCT/JP2001/011086 WO2002050317A1 (en) 2000-12-18 2001-12-18 Production method for steel plate and equipment therefor
TW090131315A TW528808B (en) 2000-12-18 2001-12-18 Method for manufacturing a steel plate and apparatus thereof
EP01271125A EP1359230B1 (en) 2000-12-18 2001-12-18 Production method for steel plate and equipment therefor
CN2008101885933A CN101463414B (en) 2000-12-18 2001-12-18 Production method for steel plate
CNB018208444A CN100513589C (en) 2000-12-18 2001-12-18 Producing method for steel plate and equipment therefor
KR1020037007910A KR100549451B1 (en) 2000-12-18 2001-12-18 Production method for steel plate and equipment therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001223527A JP4998653B2 (en) 2001-07-24 2001-07-24 Steel plate heat treatment equipment

Publications (3)

Publication Number Publication Date
JP2003034819A true JP2003034819A (en) 2003-02-07
JP2003034819A5 JP2003034819A5 (en) 2008-04-17
JP4998653B2 JP4998653B2 (en) 2012-08-15

Family

ID=19056855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001223527A Expired - Lifetime JP4998653B2 (en) 2000-12-18 2001-07-24 Steel plate heat treatment equipment

Country Status (1)

Country Link
JP (1) JP4998653B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006206927A (en) * 2005-01-25 2006-08-10 Jfe Steel Kk Heat treatment method for steel material
JP2006241537A (en) * 2005-03-04 2006-09-14 Jfe Steel Kk Heat treatment method for steel strip
JP2007270252A (en) * 2006-03-31 2007-10-18 Jfe Steel Kk Method for applying tempering-treatment to steel sheet, and tempering-treatment facility

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000051910A (en) * 1998-08-10 2000-02-22 Sumitomo Metal Ind Ltd Continued hot rolling equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000051910A (en) * 1998-08-10 2000-02-22 Sumitomo Metal Ind Ltd Continued hot rolling equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006206927A (en) * 2005-01-25 2006-08-10 Jfe Steel Kk Heat treatment method for steel material
JP2006241537A (en) * 2005-03-04 2006-09-14 Jfe Steel Kk Heat treatment method for steel strip
JP4655684B2 (en) * 2005-03-04 2011-03-23 Jfeスチール株式会社 Heat treatment method for steel sheet
JP2007270252A (en) * 2006-03-31 2007-10-18 Jfe Steel Kk Method for applying tempering-treatment to steel sheet, and tempering-treatment facility

Also Published As

Publication number Publication date
JP4998653B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
JP5387347B2 (en) Steel plate manufacturing method
KR20090115195A (en) Method of continuous annealing for steel strip with curie point and continuous annealing apparatus therefor
CN106929659B (en) Heat-treatment furnace and heat-treating methods and method for manufacturing motor vehicle component are carried out for the plate slab to precoated shet
JP2964351B2 (en) Induction heating method for sheet metal
JP2003034819A (en) Apparatus for heat treating steel plate
JP5135534B2 (en) Continuous annealing method and continuous annealing equipment for steel strip with Curie point
JP3925149B2 (en) Continuous heat treatment equipment for thick steel plates.
CN104775021A (en) Carbon steel sheet continuous annealing production line rapid heating method and apparatus
RU2405841C1 (en) Manufacturing method of plate anisotropic electric steel
JP4066652B2 (en) Heat treatment method and apparatus for steel
JP2003034819A5 (en)
JP2012026011A (en) Method for determining furnace temperature of continuous heat treating furnace
JP5217542B2 (en) Continuous annealing method and continuous annealing equipment for steel strip with Curie point
JPH088051A (en) Method and device for induction heating of metallic plate
JP4066603B2 (en) Heat treatment method for steel
JP4490789B2 (en) Continuous annealing method for steel sheet
JPH11290931A (en) Method for controlling heating electric power of induction heating device for strip edge and device for controlling heating electric power
JP5098201B2 (en) Method for tempering thick steel plates
JP2984869B2 (en) Manufacturing method of high quality cold rolled steel sheet by material control
JP3820974B2 (en) Heat treatment method and heat treatment apparatus for steel
JP2003013133A (en) Method and device for heat-treating thick steel plate
JP3025090B2 (en) Heat treatment method for R section of large diameter square steel pipe corner
JP4945853B2 (en) Heat treatment method and apparatus for steel sheet
JP4635456B2 (en) Continuous annealing method for steel sheet
JP2002173709A (en) Method for heat-treating thick steel plate and its heat- treating facility

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20030422

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20030422

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080305

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120418

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120501

R150 Certificate of patent or registration of utility model

Ref document number: 4998653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term