JP2003034530A - Electrically conductive metallic oxide particles, method for producing electrically conductive metallic oxide particles, basic material with transparent electrically conductive coating, and displaying device - Google Patents

Electrically conductive metallic oxide particles, method for producing electrically conductive metallic oxide particles, basic material with transparent electrically conductive coating, and displaying device

Info

Publication number
JP2003034530A
JP2003034530A JP2001218522A JP2001218522A JP2003034530A JP 2003034530 A JP2003034530 A JP 2003034530A JP 2001218522 A JP2001218522 A JP 2001218522A JP 2001218522 A JP2001218522 A JP 2001218522A JP 2003034530 A JP2003034530 A JP 2003034530A
Authority
JP
Japan
Prior art keywords
metal oxide
conductive metal
particles
coating
transparent conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001218522A
Other languages
Japanese (ja)
Other versions
JP4033646B2 (en
Inventor
Yuuji Tawarasako
迫 祐 二 俵
Toshiharu Hirai
井 俊 晴 平
Michio Komatsu
松 通 郎 小
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2001218522A priority Critical patent/JP4033646B2/en
Publication of JP2003034530A publication Critical patent/JP2003034530A/en
Application granted granted Critical
Publication of JP4033646B2 publication Critical patent/JP4033646B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide electrically conductive metallic oxide particles, having a low surface resistance as low as 10<2> -10<4> Ω/(square), excellent in antistaticity, antireflective property, and electromagnetic shielding property and also excellent in transparency and reliability of a coating, and capable of being used for forming a transparent electrically conductive coating. SOLUTION: The electrically conductive metallic oxide particles comprise an electrically conductive metallic oxide. The particles contain a component for improving the electric conductivity comprising one or more metallic elements selected from among Au, Ag, Pd, Pt, Rh, Ru, Cu, Fe, Ni, and Co, and have the content of the component for improving electric conductivity within the range of 0.01-1.5 wt.%, which is reduced to a metal weight. An indium oxide doped with Sn, Zn, Zr or F is preferable for the electrically conductive metallic oxide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の技術分野】本発明は、導電性金属酸化物粒子、
該電性金属酸化物粒子が極性溶媒に分散した透明導電性
被膜形成用塗布液、透明導電性被膜付基材および該基材
を備えた表示装置に関し、さらに詳しくは、帯電防止
性、電磁遮蔽性に優れるとともに、透明性が高く、信頼
性に優れた透明導電性被膜の形成に用いることができる
透明導電性被膜形成用塗布液、透明導電性被膜付基材お
よび該基材を備えた表示装置に関する。
TECHNICAL FIELD The present invention relates to conductive metal oxide particles,
The present invention relates to a coating liquid for forming a transparent conductive film in which the conductive metal oxide particles are dispersed in a polar solvent, a transparent conductive film-coated substrate, and a display device including the substrate, more specifically, antistatic property and electromagnetic shielding. A coating solution for forming a transparent conductive film, which has excellent transparency and high transparency and can be used for forming a highly reliable transparent conductive film, a substrate with a transparent conductive film, and a display provided with the substrate Regarding the device.

【0002】[0002]

【発明の技術的背景】従来より、陰極線管、蛍光表示
管、液晶表示板などの表示パネルのような透明基材の表
面の帯電防止および反射防止を目的として、これらの表
面に帯電防止機能および反射防止機能を有する透明被膜
を形成することが行われていた。また、陰極線管などか
ら電磁波が放出されること知られており、従来の帯電防
止、反射防止に加えてこれらの電磁波および電磁波の放
出に伴って形成される電磁場を遮蔽することが望まれて
いる。
2. Description of the Related Art Conventionally, for the purpose of antistatic and antireflection of the surface of a transparent substrate such as a display panel such as a cathode ray tube, a fluorescent display tube, a liquid crystal display panel, etc. It has been performed to form a transparent film having an antireflection function. Further, it is known that electromagnetic waves are emitted from a cathode ray tube and the like, and in addition to the conventional antistatic and antireflection properties, it is desired to shield these electromagnetic waves and the electromagnetic field formed by the emission of the electromagnetic waves. .

【0003】これらの電磁波などを遮蔽する方法の一つ
として、陰極線管などの表示パネルの表面に電磁波遮断
用の導電性被膜を形成する方法がある。しかし、従来の
帯電防止用導電性被膜であれば表面抵抗が少なくとも1
7Ω/□程度の表面抵抗を有していれば十分であるの
に対し、電磁遮蔽用の導電性被膜では102〜104Ω/
□のような低い表面抵抗を有することが必要であった。
As one of the methods of shielding these electromagnetic waves and the like, there is a method of forming a conductive coating for shielding electromagnetic waves on the surface of a display panel such as a cathode ray tube. However, the conventional antistatic conductive coating has a surface resistance of at least 1.
It is sufficient to have a surface resistance of about 0 7 Ω / □, whereas a conductive coating for electromagnetic shielding has a surface resistance of 10 2 to 10 4 Ω /
It was necessary to have a low surface resistance such as □.

【0004】このように表面抵抗の低い導電性被膜を、
従来のSbドープ酸化錫またはSnドープ酸化インジウム
のような導電性酸化物を含む塗布液を用いて形成しよう
とすると、従来の帯電防止性被膜の場合よりも膜厚を厚
くする必要があった。しかしながら、導電性被膜の膜厚
は、10〜200nm程度にしないと反射防止効果は発
現しないため、従来のSbドープ酸化錫またはSnドープ
酸化インジウムのような導電性酸化物では、表面抵抗が
低く、電磁波遮断性に優れるとともに、反射防止にも優
れた導電性被膜を得ることが困難であるという問題があ
った。
A conductive film having a low surface resistance is
If a conventional coating solution containing a conductive oxide such as Sb-doped tin oxide or Sn-doped indium oxide is used, it is necessary to make the film thicker than in the case of the conventional antistatic coating. However, since the antireflection effect is not exhibited unless the thickness of the conductive coating is set to about 10 to 200 nm, conventional conductive oxides such as Sb-doped tin oxide or Sn-doped indium oxide have a low surface resistance, There is a problem in that it is difficult to obtain a conductive coating film that is excellent in electromagnetic wave shielding properties and also in antireflection.

【0005】また、低表面抵抗の導電性被膜を形成する
方法の一つとして、Agなどの金属微粒子を含む導電性
被膜形成用塗布液を用いて基材の表面に金属微粒子含有
被膜を形成する方法がある。この方法では、金属微粒子
含有被膜形成用塗布液として、コロイド状の金属微粒子
が極性溶媒に分散したものが用いられている。このよう
な塗布液では、コロイド状金属微粒子の分散性を向上さ
せるために、金属微粒子表面がポリビニルアルコール、
ポリビニルピロリドンまたはゼラチンなどの有機系安定
剤で表面処理されている。しかしながら、このような金
属微粒子含有被膜形成用塗布液を用いて形成された導電
性被膜は、被膜中で金属微粒子同士が安定剤を介して接
触するため、粒界抵抗が大きく、被膜の表面抵抗が低く
ならないことがあった。このため、製膜後、400℃程
度の高温で焼成して安定剤を分解除去する必要がある
が、安定剤の分解除去をするため高温で焼成すると、金
属微粒子同士の融着や凝集が起こり、導電性被膜の透明
性やへーズが低下するという問題があった。また、陰極
線管などの場合は、高温に晒すと劣化してしまうという
問題もあった。
Further, as one of the methods for forming a conductive film having a low surface resistance, a coating film containing metal fine particles is formed on the surface of a substrate by using a coating liquid for forming a conductive film containing metal fine particles such as Ag. There is a way. In this method, as a coating liquid for forming a coating film containing metal fine particles, a colloidal metal fine particle dispersed in a polar solvent is used. In such a coating liquid, in order to improve the dispersibility of the colloidal metal fine particles, the surface of the metal fine particles is polyvinyl alcohol,
It is surface-treated with an organic stabilizer such as polyvinylpyrrolidone or gelatin. However, a conductive coating formed using such a coating solution for forming a coating containing metal fine particles has a large grain boundary resistance because the metal fine particles come into contact with each other through a stabilizer in the coating, and the surface resistance of the coating is large. Sometimes did not go down. For this reason, after film formation, it is necessary to bake at a high temperature of about 400 ° C. to decompose and remove the stabilizer, but if it is baked at a high temperature to decompose and remove the stabilizer, fusion and agglomeration of metal fine particles occur. However, there is a problem that the transparency and haze of the conductive coating are reduced. Further, in the case of a cathode ray tube or the like, there is a problem that it deteriorates when exposed to high temperature.

【0006】また、金属微粒子は前記導電性酸化物と異
なり本来光を透過しないために金属微粒子を用いて形成
された導電性被膜は導電性被膜中の金属微粒子の密度や
膜厚等に依存して透明性が低下する問題もあった。さら
に従来のAg等の金属微粒子を含む透明導電性被膜で
は、耐塩水性や耐酸化性が低く、金属が酸化されたり、
イオン化による粒子成長したり、また場合によっては腐
食が発生することがあり、塗膜の導電性や光透過率が低
下し、表示装置が信頼性を欠くという問題があった。
Further, unlike the above-mentioned conductive oxide, the metal fine particles originally do not transmit light. Therefore, the conductive coating formed by using the metal fine particles depends on the density, the film thickness, etc. of the metal fine particles in the conductive coating. There was also a problem that transparency was lowered. Further, in the conventional transparent conductive coating film containing fine metal particles such as Ag, the salt water resistance and the oxidation resistance are low, the metal is oxidized,
There is a problem that particle growth due to ionization or corrosion may occur in some cases, the conductivity and light transmittance of the coating film decrease, and the display device lacks reliability.

【0007】[0007]

【発明の目的】本発明は、上記のような従来技術の問題
点を解決し、102〜104Ω/□程度の低い表面抵抗を
有し、帯電防止性、反射防止性および電磁遮蔽性に優れ
るとともに、被膜の透明性や信頼性にも優れた透明導電
性被膜の形成に用いることのできる導電性金属酸化物粒
子、該微粒子を含んでなる透明導電性被膜形成用塗布
液、透明導電性被膜付基材、および該基材を備えた表示
装置を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art and has a low surface resistance of about 10 2 to 10 4 Ω / □, antistatic property, antireflection property and electromagnetic shielding property. In addition to being excellent in transparency, the conductive metal oxide particles that can be used for forming a transparent conductive coating having excellent transparency and reliability, a coating liquid for forming a transparent conductive coating containing the fine particles, and a transparent conductive material An object of the present invention is to provide a base material with a hydrophilic coating, and a display device including the base material.

【0008】[0008]

【発明の概要】本発明に係る導電性金属酸化物粒子は、
導電性金属酸化物からなる導電性金属酸化物粒子であっ
て、該粒子中に、Au,Ag,Pd,Pt,Rh,Ru,Cu,Fe,N
i,Coから選ばれる1種または2種以上の元素の金属か
らなる該導電性向上成分を含み、かつ導電性金属酸化物
粒子中の導電性向上成分の含有量が金属に換算して0.
01〜1.5重量%の範囲にあることを特徴としてい
る。
SUMMARY OF THE INVENTION The conductive metal oxide particles according to the present invention are
Conductive metal oxide particles comprising a conductive metal oxide, wherein Au, Ag, Pd, Pt, Rh, Ru, Cu, Fe, N are contained in the particles.
It contains the conductivity improving component consisting of a metal of one or more elements selected from i and Co, and the content of the conductivity improving component in the conductive metal oxide particles is 0.
It is characterized by being in the range of 01 to 1.5% by weight.

【0009】前記導電性金属酸化物がSn、Zn、Zrま
たはFがドーピングされた酸化インジウムであることが
好ましい。下記の工程(a)〜(e)からなることを特
徴とする導電性金属酸化物粒子の製造方法: (a)導電性金属酸化物の前駆体(水酸化物)粒子分散
液に導電性向上成分微粒子を添加し混合する工程、
(b)次いで、100〜250℃の範囲で水熱処理する
工程、(c)得られた粒子分散液を乾燥する工程、
(d)乾燥後の粉体を非酸化雰囲気下、400〜650
℃の温度範囲で加熱処理する工程、(e)加熱処理した
粉体を粉砕する工程。
The conductive metal oxide is preferably indium oxide doped with Sn, Zn, Zr or F. A method for producing conductive metal oxide particles, which comprises the following steps (a) to (e): (a) Conductivity improvement in a precursor (hydroxide) particle dispersion liquid of a conductive metal oxide A step of adding and mixing component fine particles,
(B) Then, a step of performing hydrothermal treatment in the range of 100 to 250 ° C., (c) a step of drying the obtained particle dispersion,
(D) 400 to 650 the powder after drying in a non-oxidizing atmosphere
Step of heat-treating in the temperature range of ° C, (e) Step of pulverizing the heat-treated powder.

【0010】本発明に係る透明導電性被膜形成用塗布液
は、上記導電性金属酸化物粒子と極性溶媒とをからなる
ことを特徴としている。前記極性溶媒の双極子モーメン
トが1.6〜5.0の範囲にあることが好ましい。前記透
明導電性被膜形成用塗布液は、酸またはアルカリイオン
を含むことが好ましい。
The coating liquid for forming a transparent conductive film according to the present invention is characterized by comprising the above-mentioned conductive metal oxide particles and a polar solvent. The dipole moment of the polar solvent is preferably in the range of 1.6 to 5.0. The coating liquid for forming the transparent conductive film preferably contains an acid or an alkali ion.

【0011】本発明に係る透明導電性被膜付基材は、基
材と、基材上の、前記導電性金属酸化物粒子を含む透明
導電性微粒子層と、該透明導電性微粒子層上に設けら
れ、該透明導電性微粒子層よりも屈折率が低い透明被膜
と、からなることを特徴としている。前記透明被膜が、
平均粒子径が5〜300nmの範囲にあり屈折率が1.
45以下の低屈折率粒子を含んでいることが望ましい。
The substrate with a transparent conductive film according to the present invention is provided with a substrate, a transparent conductive fine particle layer containing the conductive metal oxide particles on the substrate, and the transparent conductive fine particle layer. And a transparent coating having a refractive index lower than that of the transparent conductive fine particle layer. The transparent coating,
The average particle size is in the range of 5 to 300 nm and the refractive index is 1.
It is desirable to contain particles having a low refractive index of 45 or less.

【0012】本発明に係る表示装置は、前記透明導電性
被膜付基材で構成された前面板を備え、透明導電性被膜
が該前面板の外表面に形成されていることを特徴として
いる。
The display device according to the present invention is characterized by including a front plate composed of the base material with the transparent conductive film, and the transparent conductive film being formed on the outer surface of the front plate.

【0013】[0013]

【発明の具体的説明】以下、本発明について具体的に説
明する。導電性金属酸化物粒子 まず、本発明に係る導電性金属酸化物粒子について説明
する。本発明に係る導電性金属酸化物粒子は導電性金属
酸化物と、導電性向上成分とからなっている。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be specifically described below. Conductive Metal Oxide Particles First, the conductive metal oxide particles according to the present invention will be described. The conductive metal oxide particles according to the present invention are composed of a conductive metal oxide and a conductivity improving component.

【0014】[導電性金属酸化物]本発明に用いる導電性
金属酸化物としては、導電性向上成分を加えて得られる
導電性金属酸化物粒子を用いた透明導電性被膜の表面抵
抗が104Ω/□以下であれば特に制限はなく、従来公
知の導電性金属酸化物を用いることができる。導電性金
属酸化物を用いることによって、耐塩水性や耐酸化性に
優れ、長期にわたって優れた表示性能を維持することが
でき、信頼性に優れた表示装置を得ることができる。
[Conductive Metal Oxide] As the conductive metal oxide used in the present invention, the surface resistance of a transparent conductive coating film using conductive metal oxide particles obtained by adding a conductivity improving component is 10 4 There is no particular limitation as long as it is Ω / □ or less, and a conventionally known conductive metal oxide can be used. By using the conductive metal oxide, a display device having excellent salt water resistance and oxidation resistance, capable of maintaining excellent display performance for a long period of time, and having excellent reliability can be obtained.

【0015】導電性金属酸化物としては、酸化錫、S
b、FまたはPがドーピングざれた酸化錫、酸化インジ
ウム、Sn、Zn、ZrまたはFがドーピングされた酸化イ
ンジウム、酸化アンチモン、低次酸化チタンなどが挙げ
られる。これらのうち、Sn、Zn、ZrまたはFがドー
ピングされた酸化インジウムが、得られる粒子の粉体抵
抗が低く、得られる透明導電性被膜付基材は充分な電磁
遮蔽効果を有し、透明性も阻害されることがないので望
ましい。
As the conductive metal oxide, tin oxide, S
Examples thereof include tin oxide doped with b, F, or P, indium oxide, indium oxide doped with Sn, Zn, Zr, or F, antimony oxide, and low-order titanium oxide. Of these, indium oxide doped with Sn, Zn, Zr or F has a low powder resistance of the obtained particles, and the obtained substrate with a transparent conductive film has a sufficient electromagnetic shielding effect and is transparent. It is desirable because it will not be hindered.

【0016】[導電性向上成分]本発明に用いる導電性向
上成分としてはAu、Ag、Pd、Pt、Rh、Ru、Cu、
Fe、Ni、Coから選ばれる1種または2種以上の元素
の金属が挙げられる。2種以上の元素の金属からなる場
合、合金であっても、混合物であってもよい。中でも、
Ag、Pd、Ru、Auから選ばれる金属は、前記導電性金
属酸化物粒子に少量含まれても充分導電性が向上するの
で好ましい。
[Conductivity improving component] As the conductivity improving component used in the present invention, Au, Ag, Pd, Pt, Rh, Ru, Cu,
Examples include metals of one or more elements selected from Fe, Ni, and Co. When the metal is composed of two or more elements, it may be an alloy or a mixture. Above all,
A metal selected from Ag, Pd, Ru, and Au is preferable because the conductivity is sufficiently improved even if it is contained in the conductive metal oxide particles in a small amount.

【0017】導電性金属酸化物粒子に含まれる導電性向
上成分の量は、導電性向上成分を金属に換算して0.0
1〜1.5重量%、好ましくは0.02〜0.8重量%の
範囲にある。導電性金属酸化物粒子に含まれる導電性向
上成分の量が0.01重量%未満の場合は、このような
導電性向上成分が含まれる効果、即ち得られる透明導電
性被膜の表面抵抗が104Ω/□以下にならないことが
あり、電磁波遮蔽効果が不充分となることがある。
The amount of the conductivity improving component contained in the conductive metal oxide particles is 0.0 when the conductivity improving component is converted into a metal.
It is in the range of 1 to 1.5% by weight, preferably 0.02 to 0.8% by weight. When the amount of the conductivity improving component contained in the conductive metal oxide particles is less than 0.01% by weight, the effect of including such a conductivity improving component, that is, the surface resistance of the obtained transparent conductive coating is 10%. It may not be less than 4 Ω / □, and the electromagnetic wave shielding effect may be insufficient.

【0018】導電性金属酸化物粒子に含まれる導電性向
上成分の量が1.5重量%を越えると、金属成分が多す
ぎて導電性金属酸化物粒子の分散安定性が低下し、たと
えば塗布液中で導電性金属酸化物粒子が凝集し2次粒子
の平均粒子径が500nmを越えるようになり、このた
め得られる透明導電性被膜の導電性が不充分となること
がある。また、金属成分が多すぎて得られる透明導電性
被膜の透明性が低下したり、耐塩水性や耐酸化性が低下
する傾向にある。
If the amount of the conductivity improving component contained in the conductive metal oxide particles exceeds 1.5% by weight, the dispersion stability of the conductive metal oxide particles is lowered due to the excessive amount of the metal component. The conductive metal oxide particles aggregate in the liquid and the average particle diameter of the secondary particles exceeds 500 nm, which may result in insufficient conductivity of the transparent conductive coating film obtained. Moreover, the transparency of the transparent conductive coating obtained with too much metal component tends to decrease, and the salt water resistance and oxidation resistance tend to decrease.

【0019】また、導電性金属酸化物粒子の平均粒子径
は2〜200nm、好ましくは5〜150nmの範囲に
ある。このような粒径範囲にあれば、低抵抗であって、
導電性が高い被膜を形成でき、さらに得られた被膜の膜
強度も高く、基材との密着性にも優れ、ヘーズや反射率
も低いという優れた特性を有している。
The average particle diameter of the conductive metal oxide particles is 2 to 200 nm, preferably 5 to 150 nm. Within such a particle size range, the resistance is low,
It has excellent properties that a coating having high conductivity can be formed, the obtained coating has high film strength, excellent adhesion to a substrate, and low haze and reflectance.

【0020】本発明に係る導電性金属酸化物粒子におけ
る導電性金属酸化物および導電性向上成分の分散状態は
特に制限されるものではなく、たとえば、図1に示され
るように、導電性向上成分からなる微粒子が導電性金属
酸化物粒子中に分散しているものであってもよく、また
導電性金属酸化物粒子表面の全面または表面に導電性向
上成分からなる層が形成されていてもよく、さらには、
導電性向上成分からなるコア粒子の表面に導電性金属酸
化物からなる層が形成されていてもよいが、特に好まし
くは図1に示される態様である(図1は粒子の概略断面
図を示す)。図1に示されるような粒子の場合、導電性
向上成分は形成される金属酸化物粒子よりも小さく、か
つ1〜5nm程度の粒径であればよい。
The dispersed state of the conductive metal oxide and the conductivity improving component in the conductive metal oxide particles according to the present invention is not particularly limited. For example, as shown in FIG. The fine particles made of may be dispersed in the conductive metal oxide particles, and a layer made of the conductivity improving component may be formed on the entire surface or the surface of the conductive metal oxide particles. ,Moreover,
A layer made of a conductive metal oxide may be formed on the surface of the core particle made of the conductivity improving component, but the embodiment shown in FIG. 1 is particularly preferable (FIG. 1 shows a schematic sectional view of the particle). ). In the case of the particles shown in FIG. 1, the conductivity improving component may be smaller than the metal oxide particles to be formed and have a particle size of about 1 to 5 nm.

【0021】本発明に用いる導電性金属酸化物粒子の製
造方法は、従来公知の導電性金属酸化物に前記した導電
性向上成分を所定量導入して得られる導電性金属酸化物
粒子の導電性が向上し、導電性金属酸化物粒子を用いた
透明導電性被膜の表面抵抗が104Ω/□以下となる方
法であれば特に制限されるものではない。特に、本発明
に係る導電性金属酸化物粒子の製造方法で得られる粒子
は、単分散性に優れ、これを用いた透明導電性性被膜形
成用塗布液中でも単分散性が維持され、このためヘーズ
が低く充分低抵抗の透明導電性性被膜が得られるので好
適である。
The method for producing the conductive metal oxide particles used in the present invention is the conductive metal oxide particles obtained by introducing a predetermined amount of the above-mentioned conductivity improving component into a conventionally known conductive metal oxide. Is improved and the surface resistance of the transparent conductive coating film using the conductive metal oxide particles is 10 4 Ω / □ or less, and there is no particular limitation. In particular, the particles obtained by the method for producing conductive metal oxide particles according to the present invention are excellent in monodispersity, and monodispersity is maintained even in a transparent conductive film-forming coating liquid using the particles, It is preferable because a transparent conductive coating having a low haze and a sufficiently low resistance can be obtained.

【0022】導電性金属酸化物粒子の製造方法 次いで、本発明に係る導電性金属酸化物粒子分散ゾルの
製造方法について説明する。本発明に係る導電性金属酸
化物粒子の製造方法は、下記の工程(a)〜(e)から
なることを特徴としている。
Method for Producing Conductive Metal Oxide Particles Next, a method for producing the conductive metal oxide particle-dispersed sol according to the present invention will be described. The method for producing conductive metal oxide particles according to the present invention is characterized by comprising the following steps (a) to (e).

【0023】工程(a) 導電性金属酸化物の前駆体(水酸化物)粒子分散液に導
電性向上成分微粒子を添加し、混合する工程。本発明に
用いる導電性金属酸化物前駆体水酸化物としては、前記
した導電性金属酸化物を誘導するものであれば特に制限
はなく、たとえば水酸化錫(水和酸化スズ)、水酸化イ
ンジウム(水和酸化インジウム)、あるいはドーピング
剤としてFを含む水酸化錫(水和酸化スズ)、Sn、Z
n、ZrまたはFを含む水酸化インジウム(水和酸化イン
ジウム)、水酸化アンチモンなどが好適に用いられる。
なかでもSn、Zn、ZrまたはFを含む水酸化インジウ
ム(水和酸化インジウム)が、より低抵抗値の透明導電
性被膜を得ることができるので好適である。
Step (a) A step of adding fine particles of a conductivity improving component to a dispersion liquid of a precursor (hydroxide) of a conductive metal oxide and mixing them. The conductive metal oxide precursor hydroxide used in the present invention is not particularly limited as long as it induces the conductive metal oxide described above, and examples thereof include tin hydroxide (hydrated tin oxide) and indium hydroxide. (Hydrated indium oxide), or tin hydroxide (hydrated tin oxide) containing F as a doping agent, Sn, Z
Indium hydroxide containing n, Zr or F (hydrated indium oxide), antimony hydroxide, etc. are preferably used.
Among them, indium hydroxide (hydrated indium oxide) containing Sn, Zn, Zr or F is preferable because a transparent conductive film having a lower resistance value can be obtained.

【0024】このような導電性金属酸化物前駆体水酸化
物は公知の方法で調製でき、たとえば錫ドープ酸化イン
ジウム前駆体水酸化物の場合は、硝酸インジウム水溶液
に錫酸カリウムのアルカリ性水溶液を加え、必要に応じ
て熟成、洗浄等することによって調製することができ
る。次いで、導電性金属酸化物前駆体水酸化物を水等の
分散媒に分散させて導電性金属酸化物前駆体水酸化物の
分散液を調製する。
Such a conductive metal oxide precursor hydroxide can be prepared by a known method. For example, in the case of tin-doped indium oxide precursor hydroxide, an alkaline aqueous solution of potassium stannate is added to an aqueous solution of indium nitrate. It can be prepared by aging, washing, etc., if necessary. Next, the conductive metal oxide precursor hydroxide is dispersed in a dispersion medium such as water to prepare a dispersion liquid of the conductive metal oxide precursor hydroxide.

【0025】導電性金属酸化物前駆体水酸化物の分散液
の濃度は固形分として1〜30重量%、さらには5〜1
5重量%の範囲にあることが好ましい。前記導電性金属
酸化物がSn、Zn、ZrまたはFがドーピングされてい
る場合、これらドーパントの量は、金属換算で、水酸化
物中に2〜20重量%、好ましくは4〜15重量%の範
囲にあることが望ましい。
The concentration of the dispersion liquid of the conductive metal oxide precursor hydroxide is 1 to 30% by weight, more preferably 5 to 1% by weight as a solid content.
It is preferably in the range of 5% by weight. When the conductive metal oxide is doped with Sn, Zn, Zr or F, the amount of these dopants is 2 to 20% by weight, preferably 4 to 15% by weight in the hydroxide in terms of metal. It is desirable to be in the range.

【0026】分散液の固形分濃度が前記範囲内にあれ
ば、表面抵抗値が104Ω/□以下の導電性被膜を形成
可能な導電性金属酸化物粒子を製造することができる。
なお分散液の固形分濃度が1重量%未満の場合は、後述
する導電性向上成分が導電性金属酸化物前駆体水酸化物
の好適に取り込むことができないためか、最終的に得ら
れる透明導電性被膜の表面抵抗値が104Ω/□以下に
ならないことがあり、このため充分な電磁波遮蔽効果が
得られないことがある。また、分散液の固形分濃度が3
0重量%を越えると、得られる導電性金属酸化物粒子が
凝集したり、条件によっては平均粒子径が200nmを
越えることがあり、この場合も最終的に得られる透明導
電性被膜の表面抵抗値が104Ω/□以下にならないこ
とがあり、このため充分な電磁波遮蔽効果が得られない
ことがある。
When the solid content concentration of the dispersion is within the above range, conductive metal oxide particles capable of forming a conductive coating having a surface resistance value of 10 4 Ω / □ or less can be produced.
When the solid content concentration of the dispersion liquid is less than 1% by weight, it may be because the conductivity improving component described later cannot be suitably incorporated in the conductive metal oxide precursor hydroxide, or the transparent conductive material finally obtained. The surface resistance value of the conductive coating may not be 10 4 Ω / □ or less, and thus a sufficient electromagnetic wave shielding effect may not be obtained. Also, the solid content concentration of the dispersion is 3
If it exceeds 0% by weight, the obtained conductive metal oxide particles may aggregate or the average particle diameter may exceed 200 nm depending on the conditions, and in this case as well, the surface resistance value of the finally obtained transparent conductive film. May not be less than 10 4 Ω / □, and thus a sufficient electromagnetic wave shielding effect may not be obtained.

【0027】上記導電性金属酸化物前駆体水酸化物の分
散液に導電性向上成分を添加する。本発明で用いる導電
性向上成分としては、前記したものと同じものが挙げら
れる。とくに、Ag,Pd,Ru,Au,Ptから選ばれる1種
以上の金属または2種以上合金は前記導電性金属酸化物
粒子に少量含まれても充分導電性が向上するので好まし
い。
A conductivity improving component is added to the dispersion liquid of the conductive metal oxide precursor hydroxide. Examples of the conductivity improving component used in the present invention are the same as those described above. Particularly, one or more metals or two or more alloys selected from Ag, Pd, Ru, Au, and Pt are preferable because the conductivity is sufficiently improved even when the conductive metal oxide particles are contained in a small amount.

【0028】本発明では、特にこれら金属(合金を含
む)からなる金属コロイドが好適に用いることができ
る。このような金属コロイドは従来公知の方法によって
得ることができ、たとえば硝酸銀などの金属塩水溶液
に、還元剤を添加して還元したり、超音波を照射したり
する方法などによって、粒子径が約1〜50nm程度の
金属コロイドを得ることができる。
In the present invention, a metal colloid composed of these metals (including alloys) can be preferably used. Such a metal colloid can be obtained by a conventionally known method, for example, a method of adding a reducing agent to an aqueous solution of a metal salt such as silver nitrate for reduction, or irradiating with ultrasonic waves to reduce the particle diameter to about A metal colloid of about 1 to 50 nm can be obtained.

【0029】導電性向上成分の添加量は、導電性金属酸
化物粒子に含まれる導電性向上成分の量が、導電性金属
酸化物前駆体水酸化物を酸化物に換算し、導電性向上成
分を金属に換算して0.01〜1.5重量%、好ましくは
0.02〜0.8重量%の範囲となるように添加する。導
電性金属酸化物粒子に含まれる導電性向上成分の量が
0.01重量%未満の場合は、このような導電性向上成
分が含まれる効果、即ち得られる透明導電性被膜の表面
抵抗が104Ω/□以下にならないことがあり、電磁波
遮蔽効果が不充分となることがある。
The amount of the conductivity improving component added is such that the amount of the conductivity improving component contained in the conductive metal oxide particles is calculated by converting the conductive metal oxide precursor hydroxide into an oxide. Is added so as to be in the range of 0.01 to 1.5% by weight, preferably 0.02 to 0.8% by weight, calculated as metal. When the amount of the conductivity improving component contained in the conductive metal oxide particles is less than 0.01% by weight, the effect of including such a conductivity improving component, that is, the surface resistance of the obtained transparent conductive coating is 10%. It may not be less than 4 Ω / □, and the electromagnetic wave shielding effect may be insufficient.

【0030】導電性金属酸化物粒子に含まれる導電性向
上成分の量が1.5重量%を越えると、金属成分が多す
ぎて導電性金属酸化物粒子の分散安定性が低下し、たと
えば塗布液中で導電性金属酸化物粒子が凝集し2次粒子
の平均粒子径が500nmを越えるようになり、このた
め得られる透明導電性被膜の導電性が不充分となること
がある。また、金属成分が多すぎて得られる透明導電性
被膜の透明性が低下したり、耐塩水性や耐酸化性が低下
する傾向にある。
When the amount of the conductivity improving component contained in the conductive metal oxide particles exceeds 1.5% by weight, the dispersion stability of the conductive metal oxide particles is lowered due to too much metal component, and for example, coating is performed. The conductive metal oxide particles aggregate in the liquid and the average particle diameter of the secondary particles exceeds 500 nm, which may result in insufficient conductivity of the transparent conductive coating film obtained. Moreover, the transparency of the transparent conductive coating obtained with too much metal component tends to decrease, and the salt water resistance and oxidation resistance tend to decrease.

【0031】次いで、導電性金属酸化物前駆体水酸化物
の分散液に導電性向上成分を添加した後、混合する。混
合方法としては特に制限されるものではないが、超音波
照射が好適である。超音波を照射することによって導電
性金属酸化物前駆体水酸化物の凝集体の単分散化が促進
される。また、必ずしも理由は明らかではないが、超音
波を照射しない場合は、導電性向上成分の添加効果が得
られないことがある。超音波の強度は20〜400kH
z、10〜600Wの範囲にあればよい。
Then, the conductivity improving component is added to the dispersion liquid of the conductive metal oxide precursor hydroxide and then mixed. The mixing method is not particularly limited, but ultrasonic irradiation is preferable. Irradiation with ultrasonic waves promotes monodispersion of aggregates of the conductive metal oxide precursor hydroxide. Although the reason is not always clear, the effect of adding the conductivity improving component may not be obtained without irradiation of ultrasonic waves. Ultrasound intensity is 20 ~ 400kH
It suffices that z be in the range of 10 to 600 W.

【0032】工程(b) 次いで、工程(a)で得られた分散液を100〜250
℃、好ましくは120〜220℃の温度範囲で水熱処理
する。このような温度で水熱処理すれば、導電性金属酸
化物粒子中に導電性向上成分が取り込まれ、低表面抵抗
の粒子を得ることができる。なお水熱処理温度が100
℃未満の場合は、導電性向上成分の取り込みが不充分
で、得られる透明導電性被膜の表面抵抗が104Ω/□
以下にならないことがあり、透明導電性被膜の電磁波遮
蔽効果が不充分となることがある。水熱処理温度が25
0℃を越えると、Sn、Zn、ZrまたはF等のドープ剤
がドープされにくくなり、表面抵抗が低くならないこと
ある。
Step (b) Next, 100 to 250 of the dispersion liquid obtained in the step (a) is added.
Hydrothermal treatment is performed at a temperature of 120 ° C, preferably 120 to 220 ° C. By performing hydrothermal treatment at such a temperature, the conductivity improving component is incorporated into the conductive metal oxide particles, and particles having low surface resistance can be obtained. The hydrothermal treatment temperature is 100
If the temperature is lower than ℃, the incorporation of the conductivity improving component is insufficient and the surface resistance of the obtained transparent conductive film is 10 4 Ω / □.
The following may not occur, and the electromagnetic shielding effect of the transparent conductive film may be insufficient. Hydrothermal treatment temperature is 25
If it exceeds 0 ° C., the doping agent such as Sn, Zn, Zr or F becomes difficult to be doped, and the surface resistance may not be lowered.

【0033】通常、このような水熱処理は、オートクレ
ーブなどの耐圧容器内で行われることが望ましい。工程(c) 水熱処理した導電性金属酸化物前駆体水酸化物の分散液
を乾燥する。乾燥はスプレーなどの噴霧乾燥が好適に採
用される。なお乾燥温度は特に制限はなく、常温(20
℃)〜250℃程度の温度であればよい。
Usually, such hydrothermal treatment is preferably carried out in a pressure resistant container such as an autoclave. Step (c) The hydrothermally treated dispersion liquid of the conductive metal oxide precursor hydroxide is dried. For drying, spray drying such as spraying is preferably adopted. The drying temperature is not particularly limited and may be room temperature (20
(° C) to 250 ° C.

【0034】このように乾燥しておくと安定的に低抵抗
の導電性金属酸化物粒子を得ることができる。乾燥後の
粉体中の水分量は、導電性向上成分の種類、粒子径など
によって異なるが、概ね20重量%以下であることが好
ましい。工程(d) 乾燥して得た導電性金属酸化物前駆体水酸化物粉体を非
酸化雰囲気、たとえば不活性ガス、還元ガス、真空下、
400〜650℃で加熱処理する。
By drying in this manner, it is possible to stably obtain conductive metal oxide particles having a low resistance. The water content in the powder after drying varies depending on the type of the conductivity improving component, the particle size, etc., but is preferably about 20% by weight or less. Step (d) drying the conductive metal oxide precursor hydroxide powder obtained by drying, in a non-oxidizing atmosphere such as an inert gas, a reducing gas, or a vacuum,
Heat treatment is performed at 400 to 650 ° C.

【0035】加熱処理温度が前記範囲内にあれば、導電
性金属酸化物成分が結晶化し、高い導電性を有する導電
性金属酸化物粒子を得ることができる。なお、加熱処理
温度が400℃未満の場合は、結晶化が不充分であった
り、ドーピング効果が充分に発揮せず、また、加熱処理
温度が650℃を越えると、得られる導電性金属酸化物
粒子が焼結したり、粒子同士が融着することがあり、そ
の結果、得られる透明導電性被膜のヘーズが上昇した
り、導電性向上成分が酸化され、表面抵抗が10 4Ω/
□以下にならないことがある。
If the heat treatment temperature is within the above range, conductivity
Conductive with high conductivity due to crystallization of the conductive metal oxide component
Metal oxide particles can be obtained. In addition, heat treatment
When the temperature was lower than 400 ° C, the crystallization was insufficient.
, The doping effect is not fully exerted, and heat treatment
Conductive metal oxide obtained when the temperature exceeds 650 ° C
The particles may sinter, or the particles may fuse together.
As a result, the haze of the obtained transparent conductive film was increased.
The conductivity improving component is oxidized and the surface resistance is 10 FourΩ /
□ May not fall below.

【0036】上記温度範囲で加熱処理することによって
導電性金属酸化物前駆体水酸化物が結晶性導電性金属酸
化物となる。このような本発明に係る導電性金属酸化物
粒子は、導電性向上成分を含んでいるので、導電性金属
酸化物のみからなる粒子と比較して、高い導電性を有し
ている。工程(e) こうして得られた加熱処理後の粉体を粉砕する。粉砕は
乾式粉砕でも、湿式粉砕でもよいが、特に湿式粉砕が均
一に粉砕できるので望ましい。なお、湿式粉砕を行う場
合、導電性金属酸化物粒子を水、有機溶媒に分散させる
が、このようにすると導電性金属酸化物粒子分散ゾルが
調製される。
The heat treatment in the above temperature range transforms the conductive metal oxide precursor hydroxide into a crystalline conductive metal oxide. Since the conductive metal oxide particles according to the present invention include the conductivity improving component, they have higher conductivity than particles made of only the conductive metal oxide. Step (e) The powder after the heat treatment thus obtained is pulverized. The pulverization may be dry pulverization or wet pulverization, but wet pulverization is particularly preferable because it can be uniformly pulverized. When performing wet pulverization, the conductive metal oxide particles are dispersed in water and an organic solvent. By doing so, a conductive metal oxide particle dispersed sol is prepared.

【0037】なお加熱処理した粉体は多くの場合凝集し
ており、容易に分散しない場合があるので、必要に応じ
て、凝集体を粉砕してもよい。上記加熱処理した粉体の
水および/または有機溶媒分散液を調製する。このとき
の粉体の濃度は10〜40重量%の範囲にあることが好
ましい。粉体分散液の濃度が10重量%未満の場合は、
粉砕効率が低く、また後述する透明導電性被膜形成用塗
布液に用いるには濃度が低すぎる場合がある。また、こ
のため濃縮などを必要とすることがある。粉体分散液の
濃度が40重量%を越えると、得られるゾルの粘度が高
すぎたり安定性が不充分となることがある。
Since the heat-treated powder is often agglomerated and may not be easily dispersed, the agglomerate may be crushed if necessary. A water and / or organic solvent dispersion of the heat-treated powder is prepared. The concentration of the powder at this time is preferably in the range of 10 to 40% by weight. If the concentration of the powder dispersion is less than 10% by weight,
The pulverization efficiency is low, and the concentration may be too low for use in the coating liquid for forming a transparent conductive film described later. Further, for this reason, concentration may be required. When the concentration of the powder dispersion exceeds 40% by weight, the viscosity of the obtained sol may be too high or the stability may be insufficient.

【0038】また有機溶媒としては、後述する塗布液で
例示される極性溶媒と同じものが例示される。必要に応
じて分散液に分散促進剤を添加してもよい。分散促進剤
としては、たとえば、硝酸、塩酸、硫酸等の鉱酸、酢
酸、蟻酸等の有機酸、水酸化カリウム、水酸化ナトリウ
ム等のアルカリが挙げられる。
The organic solvent may be the same as the polar solvent exemplified in the coating liquid described later. If necessary, a dispersion accelerator may be added to the dispersion liquid. Examples of the dispersion accelerator include mineral acids such as nitric acid, hydrochloric acid and sulfuric acid, organic acids such as acetic acid and formic acid, and alkalis such as potassium hydroxide and sodium hydroxide.

【0039】このときの分散剤の添加量は、導電性金属
酸化物粒子100重量部に対して0.5〜10重量部の
範囲にあることが好ましい。また、分散促進剤として酸
を用いる場合は分散液のpHが2.5〜5.0の範囲とな
るように調整することが好ましく、またアルカリを用い
る場合は分散液のpHが9.0〜12.0の範囲となるよ
うに調整することが好ましい。
The amount of the dispersant added at this time is preferably in the range of 0.5 to 10 parts by weight with respect to 100 parts by weight of the conductive metal oxide particles. When an acid is used as the dispersion accelerator, it is preferable to adjust the pH of the dispersion so as to be in the range of 2.5 to 5.0, and when an alkali is used, the pH of the dispersion is 9.0 to 9.0. It is preferable to adjust the range to be 12.0.

【0040】こうして分散促進剤が添加された粉体の分
散液を湿式粉砕処理する。このときの粉砕方法として
は、粉砕後の平均粒子径を2〜200nmの範囲となる
ようにできれば特に制限はなく従来公知の方法を採用す
ることができる。たとえば、サンドミル、コロイドミ
ル、ボールミル、超音波ホモジナイザー、ベントシェー
カーなどによって粉砕処理することができる。
The dispersion liquid of the powder thus added with the dispersion accelerator is subjected to wet pulverization. The pulverization method at this time is not particularly limited as long as the average particle diameter after pulverization can be in the range of 2 to 200 nm, and a conventionally known method can be adopted. For example, it can be pulverized by a sand mill, colloid mill, ball mill, ultrasonic homogenizer, vent shaker or the like.

【0041】得られた導電性金属酸化物粒子分散ゾル
は、必要に応じて濃縮したり希釈して導電性金属酸化物
粒子の濃度を10〜40重量%、好ましくは15〜30
重量%の範囲に調節することができる。上記のようにし
て得られる導電性金属酸化物粒子の平均粒子径は2〜2
00nmの範囲にある。
The conductive metal oxide particle-dispersed sol thus obtained is concentrated or diluted as necessary so that the conductive metal oxide particle concentration is 10 to 40% by weight, preferably 15 to 30.
It can be adjusted in the range of weight%. The average particle diameter of the conductive metal oxide particles obtained as described above is 2 to 2
It is in the range of 00 nm.

【0042】透明導電性被膜形成用塗布液 次に、本発明に係る透明導電性被膜形成用塗布液につい
て説明する。本発明に係る透明導電性被膜形成用塗布液
は、前記した導電性金属酸化物粒子と極性溶媒とからな
っている。 [導電性金属酸化物粒子]導電性金属酸化物粒子としては
前記したと同様の導電性金属酸化物粒子を用いることが
できる。
Coating Liquid for Forming Transparent Conductive Film Next, the coating liquid for forming the transparent conductive film according to the present invention will be described. The coating liquid for forming a transparent conductive film according to the present invention comprises the above-mentioned conductive metal oxide particles and a polar solvent. [Conductive Metal Oxide Particles] As the conductive metal oxide particles, the same conductive metal oxide particles as described above can be used.

【0043】[極性溶媒]本発明で用いられる極性溶媒と
しては、水;メタノール、エタノール、プロパノール、
ブタノール、ジアセトンアルコール、フルフリルアルコ
ール、テトラヒドロフルフリルアルコール、エチレング
リコール、ヘキシレングリコール、イソプロピルグリコ
ールなどのアルコール類;酢酸メチルエステル、酢酸エ
チルエステルなどのエステル類;ジエチルエーテル、エ
チレングリコールモノメチルエーテル、エチレングリコ
ールモノエチルエーテル、エチレングリコールモノブチ
ルエーテル、ジエチレングリコールモノメチルエーテ
ル、ジエチレングリコールモノエチルエーテルなどのエ
ーテル類;アセトン、メチルエチルケトン、アセチルア
セトン、アセト酢酸エステルなどのケトン類などが挙げ
られる。これらは単独で使用してもよく、また2種以上
混合して使用してもよい。
[Polar Solvent] The polar solvent used in the present invention includes water; methanol, ethanol, propanol,
Alcohols such as butanol, diacetone alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol, ethylene glycol, hexylene glycol, isopropyl glycol; esters such as acetic acid methyl ester, acetic acid ethyl ester; diethyl ether, ethylene glycol monomethyl ether, ethylene Examples include ethers such as glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, and diethylene glycol monoethyl ether; ketones such as acetone, methyl ethyl ketone, acetylacetone, and acetoacetic acid ester. These may be used alone or in combination of two or more.

【0044】前記極性溶媒は双極子モーメントが1.6
〜5.0の範囲にあることが好ましい。極性溶媒の双極
子モーメントが1.6未満の場合は、塗布液中での金属
酸化物粒子の単分散性や分散安定性が不充分となること
があり、緻密な導電性金属酸化物粒子層が形成できない
場合や、得られる透明導電性被膜のヘーズが高くなるこ
とがある。
The polar solvent has a dipole moment of 1.6.
It is preferably in the range of to 5.0. If the dipole moment of the polar solvent is less than 1.6, the monodispersity and dispersion stability of the metal oxide particles in the coating solution may be insufficient, resulting in a dense conductive metal oxide particle layer. May not be formed, or the haze of the obtained transparent conductive film may be increased.

【0045】極性溶媒の双極子モーメントが5.0を越
えるのものは、通常入手困難であったり、さらに塗布液
中での金属酸化物粒子の単分散性や分散安定性が向上す
ることもない。本発明で好適に使用される有機溶媒とし
ては、水;メタノール、エタノール、プロパノール、ブ
タノール、ジアセトンアルコール、フルフリルアルコー
ル、テトラヒドロフルフリルアルコール、エチレングリ
コール、イソプロピルグリコールなどのアルコール類;
酢酸メチルエステル、酢酸エチルエステルなどのエステ
ル類;ジエチルエーテル、エチレングリコールモノメチ
ルエーテル、エチレングリコールモノエチルエーテル、
エチレングリコールモノブチルエーテル、ジエチレング
リコールモノメチルエーテル、ジエチレングリコールモ
ノエチルエーテルなどのエーテル類;アセトン、メチル
エチルケトン、アセト酢酸エステルなどのケトン類など
が挙げられる。
A polar solvent having a dipole moment of more than 5.0 is usually difficult to obtain, and the monodispersity and dispersion stability of the metal oxide particles in the coating solution are not improved. . As the organic solvent preferably used in the present invention, water; alcohols such as methanol, ethanol, propanol, butanol, diacetone alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol, ethylene glycol and isopropyl glycol;
Esters such as acetic acid methyl ester, acetic acid ethyl ester; diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether,
Examples thereof include ethers such as ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, and diethylene glycol monoethyl ether; ketones such as acetone, methyl ethyl ketone, and acetoacetic acid ester.

【0046】また、本発明の塗布液には、前記酸または
アルカリなどの分散促進剤を含んでいてもよい。分散促
進剤として酸を用いる場合は分散液のpHが2.5〜5.
0の範囲となるように調整することが好ましく、またア
ルカリを用いる場合は分散液のpHが9.0〜12.0の
範囲となるように調整することが好ましい。
The coating liquid of the present invention may contain a dispersion accelerator such as the above-mentioned acid or alkali. When an acid is used as the dispersion accelerator, the pH of the dispersion is 2.5 to 5.
It is preferable to adjust the pH to be in the range of 0, and it is preferable to adjust the pH of the dispersion to be in the range of 9.0 to 12.0 when an alkali is used.

【0047】本発明に係る透明導電性被膜形成用塗布液
中に、導電性金属酸化物粒子が、0.1〜7重量%、好
ましくは0.5〜5重量%の量で含まれていることが望
ましい。透明導電性被膜形成用塗布液中の導電性金属酸
化物粒子が0.1重量%未満の場合は、得られる被膜の
膜厚が薄くなることがあり、このため充分な導電性が得
られないことがある。また導電性金属酸化物粒子が7重
量%を越えると、塗布液中で導電性金属酸化物粒子が凝
集して2次粒子を形成することがあり、この2次粒子の
平均粒子径が500nmを越えると充分な導電性が得ら
れないことがある上、被膜自体が厚くなり、光透過率が
低下して透明性が悪化したり、外観が悪くなったりする
ことがある。
The coating liquid for forming a transparent conductive film according to the present invention contains conductive metal oxide particles in an amount of 0.1 to 7% by weight, preferably 0.5 to 5% by weight. Is desirable. If the content of the conductive metal oxide particles in the coating liquid for forming the transparent conductive coating film is less than 0.1% by weight, the film thickness of the coating film obtained may be small, and thus sufficient conductivity cannot be obtained. Sometimes. If the conductive metal oxide particles exceed 7% by weight, the conductive metal oxide particles may aggregate in the coating liquid to form secondary particles. The average particle diameter of the secondary particles is 500 nm. If it exceeds the above range, sufficient conductivity may not be obtained, and the coating itself may become thick, resulting in a decrease in light transmittance and deterioration in transparency or a deterioration in appearance.

【0048】このような透明導電性被膜形成用塗布液に
は、必要に応じて微粒子カーボン、染料、顔料等を含ん
でいてもよい。微粒子カーボンを配合する場合、平均粒
子径が2〜200nm、好ましくは2〜150nmの範
囲にある微粒子カーボンが好ましい。また、微粒子カー
ボンの配合量は、導電性金属酸化物粒子100重量部に
対して0.15重量部以下であることが好ましい。微粒
子カーボンの配合量が0.15重量部以下であれば、透
明導電性被膜の導電性を大きく下げることなく透過率を
調整することができ、コントラストを向上することがで
きる。
The coating liquid for forming the transparent conductive film may contain fine particle carbon, a dye, a pigment, etc., if necessary. When fine particle carbon is blended, fine particle carbon having an average particle diameter of 2 to 200 nm, preferably 2 to 150 nm is preferable. Further, the blending amount of the particulate carbon is preferably 0.15 parts by weight or less with respect to 100 parts by weight of the conductive metal oxide particles. When the blending amount of the particulate carbon is 0.15 parts by weight or less, the transmittance can be adjusted without significantly lowering the conductivity of the transparent conductive coating, and the contrast can be improved.

【0049】本発明に係る透明導電性被膜形成用塗布液
には、被膜形成後の導電性粒子のバインダーとして作用
するマトリックス形成成分が含まれていてもよい。この
ようなマトリックス形成成分としては、シリカからなる
ものが好ましく、具体的には、アルコキシシランなどの
有機ケイ素化合物の加水分解重縮合物またはアルカリ金
属ケイ酸塩水溶液を脱アルカリして得られるケイ酸重縮
合物、あるいは塗料用樹脂などが挙げられる。このマト
リックス形成成分は、前記導電性金属酸化物粒子1重量
部当たり、固形分として0.01〜0.5重量部、好まし
くは0.03〜0.3重量部の量で含まれていればよい。
The coating liquid for forming a transparent conductive film according to the present invention may contain a matrix-forming component which acts as a binder for the conductive particles after the film is formed. Such a matrix-forming component is preferably made of silica, specifically, a silicic acid obtained by dealkalizing a hydrolyzed polycondensate of an organosilicon compound such as alkoxysilane or an alkali metal silicate aqueous solution. Examples thereof include polycondensates and coating resins. If the matrix-forming component is contained in an amount of 0.01 to 0.5 parts by weight, preferably 0.03 to 0.3 parts by weight, as a solid content per 1 part by weight of the conductive metal oxide particles. Good.

【0050】透明導電性被膜形成用塗布液中の固形分濃
度(導電性金属酸化物粒子と必要に応じて添加される導
電性金属酸化物粒子以外の導電性微粒子、染料、顔料な
どの添加剤の総量)は、液の流動性、塗布液中の複合金
属微粒子などの粒状成分の分散性などの点から、15重
量%以下、好ましくは0.15〜5重量%であることが
好ましい。
Solid content concentration in the coating liquid for forming the transparent conductive film (conductive metal oxide particles and additives such as conductive fine particles other than conductive metal oxide particles, if necessary, additives such as dyes and pigments) From the viewpoint of fluidity of the liquid and dispersibility of particulate components such as composite metal fine particles in the coating liquid, it is preferably 15% by weight or less, preferably 0.15 to 5% by weight.

【0051】このような本発明に係る透明導電性被膜形
成用塗布液は、本発明に係る金属酸化物粒子を、有機溶
媒に公知の方法で分散させ、さらに必要に応じて、マト
リックス形成成分を、その他の導電性微粒子、染料、顔
料などを混合すれば調製できる。また、前記した金属酸
化物粒子分散ゾルにマトリックス形成成分、その他導電
性微粒子、染料、顔料を混合し、必要に応じて濃度調整
することで調製することもできる。
In the coating liquid for forming a transparent conductive film according to the present invention, the metal oxide particles according to the present invention are dispersed in an organic solvent by a known method, and if necessary, a matrix-forming component is added. It can be prepared by mixing other conductive fine particles, dyes, pigments and the like. It can also be prepared by mixing the above-mentioned metal oxide particle-dispersed sol with a matrix-forming component, other conductive fine particles, a dye, and a pigment, and adjusting the concentration as necessary.

【0052】透明導電性被膜付基材 次に、本発明に係る透明導電性被膜付基材について具体
的に説明する。本発明に係る透明導電性被膜付基材で
は、ガラス、プラスチック、セラミックなどからなるフ
ィルム、シートあるいはその他の成形体などの基材上
に、前記した平均粒子径が5〜500nm、好ましくは
10〜300nmの導電性金属酸化物粒子からなる透明
導電性微粒子層と、該透明導電性微粒子層上に透明被膜
が形成されている。
Substrate with Transparent Conductive Film Next, the substrate with a transparent conductive film according to the present invention will be specifically described. In the substrate with a transparent conductive film according to the present invention, the above-mentioned average particle size is 5 to 500 nm, preferably 10 to 10 on a substrate such as a film, sheet or other molded body made of glass, plastic, ceramic or the like. A transparent conductive fine particle layer made of 300 nm conductive metal oxide particles, and a transparent coating film is formed on the transparent conductive fine particle layer.

【0053】導電性金属酸化物粒子としては、前記と同
様のものが挙げられる。 [透明導電性微粒子層]透明導電性微粒子層の膜厚は、
50〜500nm、好ましくは50〜300nmの範囲
にあることが好ましく、この範囲の膜厚であれば電磁遮
蔽効果に優れた透明導電性被膜付基材を得ることができ
る。
Examples of the conductive metal oxide particles are the same as those mentioned above. [Transparent conductive fine particle layer] The film thickness of the transparent conductive fine particle layer is
The thickness is preferably in the range of 50 to 500 nm, preferably 50 to 300 nm, and if the thickness is in this range, it is possible to obtain a transparent conductive film-coated substrate having an excellent electromagnetic shielding effect.

【0054】このような透明導電性微粒子層には、必要
に応じて、上記導電性金属酸化物粒子以外の金属微粒
子、マトリックス成分、有機系安定剤等を含んでいても
よく、具体的には、前記と同様のものが挙げられる。 [透明被膜]本発明に係る透明導電性被膜付基材では、
前記透明導電性微粒子層の上に、前記透明導電性微粒子
層よりも屈折率の低い透明被膜が形成されている。
If necessary, such a transparent conductive fine particle layer may contain metal fine particles other than the above conductive metal oxide particles, a matrix component, an organic stabilizer, and the like. , And the same as the above. [Transparent coating] In the substrate with a transparent conductive coating according to the present invention,
A transparent coating having a refractive index lower than that of the transparent conductive fine particle layer is formed on the transparent conductive fine particle layer.

【0055】このときの透明被膜の膜厚は、50〜30
0nm、好ましくは80〜200nmの範囲にあること
が好ましい。透明被膜の膜厚が50nm未満の場合は、
膜の強度や反射防止性能が劣ることがある。透明被膜の
膜厚が300nmを越えると、膜にクラックが発生した
り膜の強度が低下することがあり、また膜が厚すぎて反
射防止性能が不充分となることがある。
The thickness of the transparent coating film at this time is 50 to 30.
It is preferably in the range of 0 nm, preferably 80 to 200 nm. When the thickness of the transparent film is less than 50 nm,
The strength and antireflection performance of the film may be poor. If the film thickness of the transparent film exceeds 300 nm, cracks may occur in the film or the strength of the film may decrease, and the film may be too thick and the antireflection performance may be insufficient.

【0056】このような透明被膜は、たとえば、シリ
カ、チタニア、ジルコニアなどの無機酸化物、およびこ
れらの複合酸化物などから形成される。本発明では、透
明被膜として、特に加水分解性有機ケイ素化合物の加水
分解重縮合物、またはアルカリ金属ケイ酸塩水溶液を脱
アルカリして得られるケイ酸重縮合物からなるシリカ系
被膜が好ましい。このような透明被膜が形成された透明
導電性被膜付基材は、反射防止性能に優れている。
Such a transparent film is formed of, for example, an inorganic oxide such as silica, titania, zirconia, or a composite oxide thereof. In the present invention, the transparent coating is preferably a silica-based coating made of a hydrolyzed polycondensate of a hydrolyzable organosilicon compound or a silicic acid polycondensate obtained by dealkalizing an aqueous alkali metal silicate solution. The transparent conductive film-coated substrate having such a transparent film formed thereon has excellent antireflection performance.

【0057】前記透明被膜には、さらに平均粒子径が5
〜300nm、好ましくは10〜200nmの範囲にあ
り屈折率が1.45以下、好ましくは1.40以下の低屈
折率粒子を含むことが望ましい。使用される低屈折率粒
子の平均粒子径は、形成される透明被膜の厚さに応じて
適宜選択される。
The transparent coating has an average particle size of 5
It is desirable to include particles having a low refractive index in the range of ˜300 nm, preferably 10 to 200 nm and having a refractive index of 1.45 or less, preferably 1.40 or less. The average particle size of the low refractive index particles used is appropriately selected according to the thickness of the transparent coating formed.

【0058】低屈折率粒子の屈折率が1.45以下であ
れば、得られる透明導電性被膜付基材は、ボトム反射率
および視感反射率が低く、優れた反射防止性能を発揮す
ることができる。透明被膜中の低屈折率粒子の含有量は
酸化物に換算して、10〜90重量%、好ましくは20
〜80重量%の範囲にあることが望ましい。
When the refractive index of the low refractive index particles is 1.45 or less, the resulting transparent conductive film-coated substrate has low bottom reflectance and luminous reflectance, and exhibits excellent antireflection performance. You can The content of low refractive index particles in the transparent coating is 10 to 90% by weight, preferably 20 in terms of oxide.
It is desirable to be in the range of -80% by weight.

【0059】本発明に用いる低屈折率粒子としては、平
均粒子径および屈折率が上記範囲にあれば特に制限はな
く従来公知の粒子を用いることができる。このような低
屈折率粒子としては、たとえばシリカ、アルミナ、シリ
カアルミナ、ジルコニア等の金属酸化物から構成される
粒子が挙げられる。また、本願出願人の出願による特開
平7−133105号公報に開示した複合酸化物ゾル、
WO00/37359号公報に開示した被覆層を有する
多孔質の複合酸化物粒子、および特願2000−482
77号で提案しているシリカ系微粒子は屈折率が1.4
0以下と低く、このようなシリカ系微粒子を用いて得ら
れる透明低反射導電性被膜付基材は反射防止性能に優
れ、視感反射率が低く、このため目で感じる反射(映り
込み)は弱く、反射色の色付を抑えることができるので
好適である。
The low refractive index particles used in the present invention are not particularly limited as long as the average particle diameter and the refractive index are within the above ranges, and conventionally known particles can be used. Examples of such low refractive index particles include particles composed of metal oxides such as silica, alumina, silica-alumina and zirconia. Also, the composite oxide sol disclosed in Japanese Patent Application Laid-Open No. 7-133105 filed by the applicant of the present application,
Porous composite oxide particles having a coating layer disclosed in WO00 / 37359, and Japanese Patent Application No. 2000-482.
The silica-based fine particles proposed in No. 77 have a refractive index of 1.4.
It is as low as 0 or less, and the transparent low-reflection conductive film-coated substrate obtained by using such silica fine particles has excellent antireflection performance and low luminous reflectance, and therefore the reflection (reflection) felt by the eye It is preferable because it is weak and the coloring of the reflection color can be suppressed.

【0060】さらに、上記透明被膜中には、必要に応じ
て、フッ化マグネシウムなどの低屈折率材料で構成され
た微粒子、染料、顔料などの添加剤が含まれていてもよ
い。 [透明導電性被膜付基材の製造方法]次に、上記した透明
導電性被膜付基材の製造方法について説明する。上記透
明導電性被膜付基材は、前記した導電性金属酸化物粒子
を含む透明導電性被膜形成用塗布液を基材上に塗布・乾
燥して透明導電性微粒子層を形成し、次いで該微粒子層
上に透明被膜形成用塗布液を塗布して前記透明導電性微
粒子層上に該微粒子層よりも屈折率の低い透明被膜を形
成することによって製造することができる。 [透明導電性微粒子層の形成]まず、上記透明導電性被
膜形成用塗布液を基材上に塗布し・乾燥して、透明導電
性微粒子層を基材上に形成する。
Further, if necessary, the transparent film may contain additives such as fine particles, dyes and pigments, which are made of a low refractive index material such as magnesium fluoride. [Manufacturing Method of Substrate with Transparent Conductive Coating] Next, a manufacturing method of the above-mentioned base material with a transparent conductive coating will be described. The substrate with a transparent conductive coating is formed by coating and drying a coating liquid for forming a transparent conductive coating containing the above-mentioned conductive metal oxide particles on a substrate to form a transparent conductive fine particle layer, and then the fine particles. It can be manufactured by applying a coating liquid for forming a transparent film on the layer to form a transparent film having a refractive index lower than that of the fine particle layer on the transparent conductive fine particle layer. [Formation of transparent conductive fine particle layer] First, the transparent conductive film forming coating solution is applied onto a substrate and dried to form a transparent conductive fine particle layer on the substrate.

【0061】透明導電性微粒子層を形成する方法として
は、たとえば、透明導電性被膜形成用塗布液をディッピ
ング法、スピナー法、スプレー法、ロールコーター法、
フレキソ印刷法などの方法で、基材上に塗布したのち、
常温〜約90℃の範囲の温度で乾燥する。透明導電性被
膜形成用塗布液中に上記のようなマトリックス形成成分
が含まれている場合には、マトリックス形成成分の硬化
処理を行ってもよい。
The method for forming the transparent conductive fine particle layer is, for example, a dipping method, a spinner method, a spray method, a roll coater method using a coating solution for forming a transparent conductive film.
After applying it on the substrate by a method such as flexographic printing,
Dry at a temperature ranging from room temperature to about 90 ° C. When the coating liquid for forming the transparent conductive film contains the above-mentioned matrix-forming component, the matrix-forming component may be cured.

【0062】たとえば、透明導電性被膜形成用塗布液を
塗布して形成した被膜を、乾燥時、または乾燥後に、1
50℃以上で加熱するか、未硬化の被膜に可視光線より
も波長の短い紫外線、電子線、X線、γ線などの電磁波
を照射するか、あるいはアンモニアなどの活性ガス雰囲
気中に晒してもよい。このようにすると、被膜形成成分
の硬化が促進され、得られる被膜の硬度が高くなる。
For example, a film formed by applying a coating liquid for forming a transparent conductive film is dried at the time of drying or after drying.
Even if it is heated at 50 ° C or higher, or the uncured film is irradiated with electromagnetic waves such as ultraviolet rays, electron rays, X-rays, and γ rays having a wavelength shorter than visible light, or exposed to an atmosphere of active gas such as ammonia. Good. By doing so, the hardening of the film-forming component is promoted, and the hardness of the film obtained is increased.

【0063】上記のような方法によって形成された透明
導電性微粒子層の膜厚は約50〜500nm、さらには
50〜300nmの範囲が望ましく、この範囲の膜厚で
あれば帯電防止性および電磁遮蔽性に優れた透明導電性
被膜付基材を得ることができる。 [透明被膜の形成]本発明では、上記のようにして形成
された透明導電性微粒子層の上に、該微粒子層よりも屈
折率の低い透明被膜を形成する。
The thickness of the transparent conductive fine particle layer formed by the above method is preferably in the range of about 50 to 500 nm, more preferably 50 to 300 nm. If the thickness is in this range, the antistatic property and the electromagnetic shielding will be improved. It is possible to obtain a substrate with a transparent conductive coating having excellent properties. [Formation of transparent coating] In the present invention, a transparent coating having a refractive index lower than that of the fine particle layer is formed on the transparent conductive fine particle layer formed as described above.

【0064】透明被膜の膜厚は、50〜300nm、好
ましくは80〜200nmの範囲であることが好まし
く、このような範囲の膜厚であると優れた反射防止性を
発揮する。透明被膜の形成方法としては、特に制限はな
く、この透明被膜の材質に応じて、真空蒸発法、スパッ
タリング法、イオンプレーティング法などの乾式薄膜形
成方法、あるいは上述したようなディッピング法、スピ
ナー法、スプレー法、ロールコーター法、フレキソ印刷
法などの湿式薄膜形成方法を採用することができる。
The thickness of the transparent coating is preferably in the range of 50 to 300 nm, preferably 80 to 200 nm, and in such a range, excellent antireflection property is exhibited. The method for forming the transparent coating is not particularly limited, and depending on the material of the transparent coating, a dry thin film forming method such as a vacuum evaporation method, a sputtering method, an ion plating method, or a dipping method or a spinner method as described above. A wet thin film forming method such as a spray method, a roll coater method, or a flexographic printing method can be used.

【0065】上記透明被膜を湿式薄膜形成方法で形成す
る場合、従来公知の透明被膜形成用塗布液を用いること
ができる。このような透明被膜形成用塗布液としては、
具体的に、シリカ、チタニア、ジルコニアなどの無機酸
化物、またはこれらの複合酸化物を透明被膜形成成分と
して含む塗布液が用いられる。本発明では、透明被膜形
成用塗布液として加水分解性有機ケイ素化合物の加水分
解重縮合物、またはアルカリ金属ケイ酸塩水溶液を脱ア
ルカリして得られるケイ酸液を含むシリカ系透明被膜形
成用塗布液が好ましく、特に下記一般式[1]で表され
るアルコキシシランの加水分解重縮合物を含有している
ことが好ましい。このような塗布液から形成されるシリ
カ系被膜は、導電性金属酸化物粒子含有の導電性微粒子
層よりも屈折率が小さく、得られる透明被膜付基材は反
射防止性に優れている。
When forming the above-mentioned transparent film by the wet thin film forming method, a conventionally known coating liquid for forming a transparent film can be used. As such a transparent film forming coating solution,
Specifically, a coating liquid containing an inorganic oxide such as silica, titania or zirconia, or a composite oxide of these as a transparent film forming component is used. In the present invention, as a coating liquid for forming a transparent film, a hydrolytic polycondensate of a hydrolyzable organosilicon compound, or a silica-based transparent film forming coating containing a silicic acid solution obtained by dealkalizing an aqueous alkali metal silicate solution. The liquid is preferable, and it is particularly preferable that the liquid contains a hydrolytic polycondensate of an alkoxysilane represented by the following general formula [1]. The silica-based coating formed from such a coating solution has a smaller refractive index than the conductive fine particle layer containing conductive metal oxide particles, and the obtained transparent coated substrate has excellent antireflection properties.

【0066】RaSi(OR')4-a [1] (式中、Rはビニル基、アリール基、アクリル基、炭素
数1〜8のアルキル基、水素原子またはハロゲン原子で
あり、R'はビニル基、アリール基、アクリル基、炭系
数1〜8のアルキル基、−C24OCn2n+1(n=1
〜4)または水素原子であり、aは1〜3の整数であ
る。) このようなアルコキシランとしては、テトラメトキシシ
ラン、テトラエトキシシラン、テトライソプロポキシシ
ラン、テトラブトキシシラン、テトラオクチルシラン、
メチルトリメトキシシラン、メチルトリエトキシシラ
ン、エチルトリエトキシシラン、メチルトリイソプロポ
キシシラン、ビニルトリメトキシシラン、フェニルトリ
メトキシシラン、ジメチルジメトキシシランなどが挙げ
られる。
R a Si (OR ') 4-a [1] (In the formula, R is a vinyl group, an aryl group, an acryl group, an alkyl group having 1 to 8 carbon atoms, a hydrogen atom or a halogen atom, and R' vinyl group, an aryl group, an acrylic group, an alkyl group of carbon-based number 1~8, -C 2 H 4 OC n H 2n + 1 (n = 1
To 4) or a hydrogen atom, and a is an integer of 1 to 3. ) Such alkoxylanes include tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, tetrabutoxysilane, tetraoctylsilane,
Examples thereof include methyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, methyltriisopropoxysilane, vinyltrimethoxysilane, phenyltrimethoxysilane and dimethyldimethoxysilane.

【0067】上記のアルコキシシランの1種または2種
以上を、たとえば水−アルコール混合溶媒中で酸触媒の
存在下、加水分解すると、アルコキシシランの加水分解
重縮合物を含む透明被膜形成用塗布液が得られる。この
ような塗布液中に含まれる被膜形成成分の濃度は、酸化
物換算で0.5〜2.0重量%であることが好ましい。本
発明で使用される透明被膜形成用塗布液には、平均粒子
径が5〜300nm、好ましくは10〜200nmの範
囲にあり屈折率が1.45以下、好ましくは1.40以下
の低屈折率粒子を含むことが望ましい。
When one or more of the above alkoxysilanes are hydrolyzed in the presence of an acid catalyst in, for example, a water-alcohol mixed solvent, a coating liquid for forming a transparent film containing a hydrolyzed polycondensate of alkoxysilane. Is obtained. The concentration of the film forming component contained in such a coating liquid is preferably 0.5 to 2.0% by weight in terms of oxide. The coating liquid for forming a transparent film used in the present invention has an average particle size of 5 to 300 nm, preferably 10 to 200 nm and a refractive index of 1.45 or less, preferably 1.40 or less. It is desirable to include particles.

【0068】使用される低屈折率粒子の平均粒子径は、
形成される透明被膜の厚さに応じて適宜選択される。ま
た、使用される低屈折率粒子の屈折率が1.45以下で
あれば、得られる透明導電性被膜付基材は、ボトム反射
率および視感反射率が低く、優れた反射防止性能を発揮
することができる。
The average particle size of the low refractive index particles used is
It is appropriately selected according to the thickness of the transparent coating formed. If the low refractive index particles used have a refractive index of 1.45 or less, the resulting transparent conductive film-coated substrate has low bottom reflectance and luminous reflectance, and exhibits excellent antireflection performance. can do.

【0069】低屈折率粒子の使用量は、透明被膜中の低
屈折率粒子の含有量が酸化物に換算して、10〜90重
量%、好ましくは20〜80重量%の範囲となるように
用いることが望ましい。本発明に用いる低屈折率粒子と
しては、平均粒子径および屈折率が上記範囲にあれば特
に制限はなく従来公知の粒子を用いることができる、た
とえば、前記したものが使用される。
The amount of the low-refractive-index particles used is such that the content of the low-refractive-index particles in the transparent coating is in the range of 10 to 90% by weight, preferably 20 to 80% by weight, calculated as oxide. It is desirable to use. The low refractive index particles used in the present invention are not particularly limited as long as the average particle diameter and the refractive index are within the above ranges, and conventionally known particles can be used, for example, those described above are used.

【0070】さらにまた、本発明で使用される透明被膜
形成用塗布液には、フッ化マグネシウムなどの低屈折率
材料で構成された微粒子、透明被膜の透明度および反射
防止性能を阻害しない程度に少量の導電性微粒子および
/または染料または顔料などの添加剤が含まれていても
よい。本発明では、このような透明被膜形成用塗布液を
塗布して形成した被膜を、乾燥時、または乾燥後に、1
50℃以上で加熱するか、未硬化の被膜に可視光線より
も波長の短い紫外線、電子線、X線、γ線などの電磁波
を照射するか、あるいはアンモニアなどの活性ガス雰囲
気中に晒してもよい。このようにすると、被膜形成成分
の硬化が促進され、得られる透明被膜の硬度が高くな
る。
Furthermore, the coating liquid for forming a transparent film used in the present invention contains fine particles composed of a low refractive index material such as magnesium fluoride, and a small amount so as not to impair the transparency and antireflection performance of the transparent film. The conductive fine particles and / or an additive such as a dye or a pigment may be included. In the present invention, a coating film formed by applying such a coating liquid for forming a transparent film is dried at the time of drying or after drying.
Even if it is heated at 50 ° C or higher, or the uncured film is irradiated with electromagnetic waves such as ultraviolet rays, electron rays, X-rays, and γ rays having a wavelength shorter than visible light, or exposed to an atmosphere of active gas such as ammonia. Good. By doing so, the hardening of the film-forming component is accelerated, and the hardness of the obtained transparent film is increased.

【0071】さらに、透明被膜形成用塗布液を塗布して
被膜を形成する際に、透明導電性微粒子層を約40〜9
0℃に保持しながら透明被膜形成用塗布液を塗布して、
前記のような処理を行うと、透明被膜の表面にリング状
の凹凸が形成し、ギラツキの少ないアンチグレアの透明
被膜付基材が得られる。表示装置 本発明に係る透明導電性被膜付基材は、電磁遮蔽に必要
な概ね102〜104Ω/□の範囲の表面抵抗を有し、ま
た透明性に優れるとともに可視光領域および近赤外領域
で充分な反射防止性能を有し、表示装置の前面板として
好適に用いられる。
Further, when the transparent coating film-forming coating liquid is applied to form a coating film, the transparent conductive fine particle layer is coated with about 40 to 9 parts.
While maintaining the temperature at 0 ° C, apply the coating liquid for forming a transparent film,
When the above-mentioned treatment is carried out, ring-shaped irregularities are formed on the surface of the transparent film, and an antiglare transparent film-coated substrate with less glare can be obtained. Display Device The substrate with a transparent conductive film according to the present invention has a surface resistance in the range of approximately 10 2 to 10 4 Ω / □ required for electromagnetic shielding, is excellent in transparency, and is in the visible light region and near red. It has sufficient antireflection performance in the outer region and is suitably used as a front plate of a display device.

【0072】本発明に係る表示装置は、ブラウン管(C
RT)、蛍光表示管(FIP)、プラズマディスプレイ
(PDP)、液晶用ディスプレイ(LCD)などのよう
な電気的に画像を表示する装置であり、上記のような透
明導電性被膜付基材で構成された前面板を備えている。
従来の前面板を備えた表示装置を作動させると、前面板
に画像が表示されると同時に電磁波が前面板から放出さ
れ、この電磁波が観察者の人体に影響を及ぼすが、本発
明に係る表示装置では、前面板が前記した概ね102
104Ω/□の表面抵抗を有する透明導電性被膜付基材
で構成されているので、このような電磁波、およびこの
電磁波の放出に伴って生じる電磁場を電磁場を効果的に
遮蔽することができる。
The display device according to the present invention comprises a cathode ray tube (C
RT), a fluorescent display tube (FIP), a plasma display (PDP), a liquid crystal display (LCD), and the like, which is an apparatus for electrically displaying an image, and is composed of the transparent conductive film-coated substrate as described above. It has a front plate.
When a conventional display device having a front plate is operated, an image is displayed on the front plate and electromagnetic waves are emitted from the front plate at the same time, and the electromagnetic waves affect the human body of an observer. In the device, the front plate is approximately 10 2 to
Since it is composed of a transparent conductive film-coated substrate having a surface resistance of 10 4 Ω / □, it is possible to effectively shield the electromagnetic field and the electromagnetic field generated by the emission of the electromagnetic wave. .

【0073】また、表示装置の前面板で反射光が生じる
と、この反射光によって表示画像が見にくくなるが、本
発明に係る表示装置では、前面板が可視光領域および近
赤外領域で充分な反射防止性能を有する透明導電性被膜
付基材で構成されているので、このような反射光を効果
的に防止することができる。さらに、ブラウン管の前面
板が、本発明に係る透明導電性被膜付基材で構成され、
この透明導電性被膜のうち、透明導電性微粒子層、その
上に形成された透明被膜の少なくとも一方に少量の染料
または顔料が含まれている場合には、これらの染料また
は顔料がそれぞれ固有な波長の光を吸収し、これにより
ブラウン管から放映される表示画像のコントラストを向
上させることができる。
Further, when reflected light is generated on the front plate of the display device, the reflected light makes it difficult to see the display image. However, in the display device according to the present invention, the front plate is sufficient in the visible light region and the near infrared region. Since the substrate is provided with a transparent conductive coating having antireflection performance, such reflected light can be effectively prevented. Furthermore, the front plate of the cathode ray tube is composed of the transparent conductive film-coated substrate according to the present invention,
When a small amount of a dye or pigment is contained in at least one of the transparent conductive fine particle layer and the transparent coating formed on the transparent conductive coating, these dyes or pigments each have a unique wavelength. Of light, which can improve the contrast of the display image projected from the cathode ray tube.

【0074】[0074]

【発明の効果】本発明によれば、帯電防止性、電磁遮蔽
性に優れ、また透明性に優れるとともに光透過率の制御
が可能であり、かつ耐塩水性や耐酸化性に優れ信頼性が
高い透明導電性被膜付基材に好適に用いることのできる
導電性金属酸化物成分と導電性向上成分とからなる導電
性金属酸化物粒子が得られる。
EFFECTS OF THE INVENTION According to the present invention, the antistatic property and the electromagnetic shielding property are excellent, the transparency is excellent and the light transmittance can be controlled, and the salt water resistance and the oxidation resistance are excellent and the reliability is high. It is possible to obtain conductive metal oxide particles that are composed of a conductive metal oxide component and a conductivity improving component that can be suitably used for a substrate having a transparent conductive coating.

【0075】また、このような導電性金属酸化物粒子を
含む透明導電性被膜形成用塗布液を用いて、透明導電性
微粒子層を形成し、該透明導電性微粒子層上に透明被膜
を形成すると、反射防止性に優れるとともに透明性の低
下が小さい、信頼性の高い透明導電性被膜付基材を提供
することができる。さらに、このような透明性に優れた
透明導電性被膜付基材を表示装置の前面板として用いれ
ば、電磁遮蔽性に優れるとともに反射防止性にも優れた
表示装置を提供することができる。
When a transparent conductive fine particle layer is formed using the coating liquid for forming a transparent conductive fine film containing such conductive metal oxide particles, and a transparent coating is formed on the transparent conductive fine particle layer. It is possible to provide a highly reliable substrate with a transparent conductive film, which has excellent antireflection properties and has a small decrease in transparency. Furthermore, when such a substrate with a transparent conductive film having excellent transparency is used as a front plate of a display device, it is possible to provide a display device having excellent electromagnetic shielding properties and antireflection properties.

【0076】[0076]

【実施例】以下、本発明を実施例により説明するが、本
発明はこれら実施例に限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

【0077】[0077]

【実施例1】導電性金属酸化物粒子(P-1)分散ゾルの
調製 工程(a) 硝酸インジウム79.9gを水686gに溶解して得ら
れた溶液と、錫酸カリウム12.7gを濃度10重量%
の水酸化カリウム溶液に溶解して得られた溶液とを調製
し、これらの溶液を、50℃に保持された1000gの
純水に2時間かけて添加した。この間、系内のpHを1
1に保持した。得られたSnドープ酸化インジウム水和
物分散液からSnドープ酸化インジウム水和物を濾別・
洗浄した後、再び水に分散させて固形分濃度10重量%
の金属酸化物前駆体水酸化物分散液(A)を調製した。
Example 1 Conductive metal oxide particle (P-1) dispersion sol
Preparation Step (a) A solution obtained by dissolving 79.9 g of indium nitrate in 686 g of water and 12.7 g of potassium stannate at a concentration of 10% by weight.
And a solution obtained by dissolving it in a potassium hydroxide solution of 1. were prepared, and these solutions were added to 1000 g of pure water kept at 50 ° C. over 2 hours. During this period, the pH of the system is set to 1
It was held at 1. The Sn-doped indium oxide hydrate is filtered from the obtained Sn-doped indium oxide hydrate dispersion.
After washing, disperse in water again to obtain a solid content of 10% by weight.
A metal oxide precursor hydroxide dispersion liquid (A) was prepared.

【0078】別途、以下のようにして銀微粒子分散液を
調製した。純水100gに、あらかじめクエン酸3ナト
リウムを銀金属1重量部当たり0.01重量部となるよ
うに加え、これに金属換算で濃度が10重量%となるよ
うに硝酸銀を加え、さらに硝酸銀のモル数と等モル数の
硫酸第一鉄の水溶液を添加し、窒素雰囲気下で1時間攪
拌して銀微粒子の分散液を得た。得られた分散液は遠心
分離器により水洗して不純物を除去した後、水に分散さ
せて濃度4重量%の銀微粒子(M-1)分散液を調製し
た。銀微粒子(M-1)の平均粒子径は20nmであっ
た。
Separately, a silver fine particle dispersion liquid was prepared as follows. To 100 g of pure water, trisodium citrate was added in advance so as to be 0.01 part by weight per 1 part by weight of silver metal, and silver nitrate was added to this so that the concentration would be 10% by weight in terms of metal. An aqueous solution of ferrous sulfate having the same number as the number of the same was added and stirred under a nitrogen atmosphere for 1 hour to obtain a dispersion liquid of silver fine particles. The obtained dispersion liquid was washed with a centrifugal separator to remove impurities and then dispersed in water to prepare a silver fine particle (M-1) dispersion liquid having a concentration of 4% by weight. The average particle size of the silver fine particles (M-1) was 20 nm.

【0079】次いで、金属酸化物前駆体水酸化物分散液
(A)100gに導電性金属酸化物粒子(すなわち酸化
物換算)中の銀の含有量が0.05重量%となるように
導電性向上成分として銀微粒子(M-1)分散液0.125
gを添加し、超音波発生装置(海上電気(株)製:AUTO
CHEDER-300,形式-5271)で27kHz、300Wの超音
波を照射した。
Then, 100 g of the metal oxide precursor hydroxide dispersion (A) was adjusted so that the content of silver in the conductive metal oxide particles (that is, as oxide) was 0.05% by weight. Silver fine particle (M-1) dispersion 0.125 as improving component
Ultrasonic wave generator (Kaijo Electric Co., Ltd .: AUTO)
CHEDER-300, type-5271) was irradiated with ultrasonic waves of 27 kHz and 300 W.

【0080】工程(b) 超音波を照射した分散液を圧力容器に入れ、200℃で
2時間水熱処理した。工程(c) 水熱処理した分散液を、温度100℃で噴霧乾燥して金
属酸化物前駆体水酸化物粉体を調製した。
Step (b) The ultrasonic-irradiated dispersion was placed in a pressure vessel and hydrothermally treated at 200 ° C. for 2 hours. Step (c) The hydrothermally treated dispersion was spray-dried at a temperature of 100 ° C. to prepare a metal oxide precursor hydroxide powder.

【0081】工程(d) 上記粉体を、窒素ガス雰囲気下、550℃で2時間加熱
処理した。工程(e) これを濃度が30重量%となるようにエタノールに分散
させ、さらに硝酸水溶液でpHを3.5に調製した後、
この混合液を30℃に保持しながらサンドミルで0.5
時間粉砕してゾルを調製した。次いで、エタノールを加
えて濃度20重量%の導電性金属酸化物(銀を含むスズ
ドープ酸化インジウム)粒子(P-1)分散ゾルを調製し
た。
Step (d) The above powder was heat-treated at 550 ° C. for 2 hours in a nitrogen gas atmosphere. Step (e) This was dispersed in ethanol to a concentration of 30% by weight, and the pH was adjusted to 3.5 with an aqueous nitric acid solution.
While keeping this mixture at 30 ° C, use a sand mill to add 0.5.
A sol was prepared by crushing for an hour. Next, ethanol was added to prepare a conductive metal oxide (tin-doped indium oxide containing silver) particles (P-1) dispersed sol having a concentration of 20% by weight.

【0082】得られた導電性金属酸化物粒子(P-1)に
ついて、SEM写真を撮影し20個の粒子について粒子
径を測定しこの平均値を平均粒子径とした。結果を表1
に示す。
With respect to the obtained conductive metal oxide particles (P-1), SEM photographs were taken, the particle diameters of 20 particles were measured, and this average value was taken as the average particle diameter. The results are shown in Table 1.
Shown in.

【0083】[0083]

【実施例2】導電性金属酸化物粒子(P-2)分散ゾルの
調製 実施例1において、導電性金属酸化物粒子中の銀の含有
量が0.1重量%となるように導電性向上成分として銀
微粒子(M-1)分散液0.25gを添加した以外は実施例
1と同様にして濃度20重量%の導電性金属酸化物粒子
(P-2)分散ゾルを調製した。
[Example 2] Conductive metal oxide particle (P-2) dispersion sol
In Preparation Example 1, except that 0.25 g of the silver fine particle (M-1) dispersion liquid was added as the conductivity improving component so that the content of silver in the conductive metal oxide particles was 0.1% by weight. In the same manner as in Example 1, a conductive metal oxide particle (P-2) dispersed sol having a concentration of 20% by weight was prepared.

【0084】得られた導電性金属酸化物粒子(P-2)の
各平均粒子径を表1に示した。
Table 1 shows each average particle size of the obtained conductive metal oxide particles (P-2).

【0085】[0085]

【実施例3】導電性金属酸化物粒子(P-3)分散ゾルの
調製 実施例1において、導電性金属酸化物粒子中の銀の含有
量が1.0重量%となるように導電性向上成分として銀
微粒子(M-1)分散液2.5gを添加した以外は実施例1
と同様にして濃度20重量%の導電性金属酸化物粒子
(P-3)分散ゾルを調製した。
[Example 3] Conductive metal oxide particle (P-3) dispersion sol
In Preparation Example 1, except that 2.5 g of the silver fine particle (M-1) dispersion liquid was added as the conductivity improving component so that the content of silver in the conductive metal oxide particles was 1.0% by weight. Example 1
A conductive metal oxide particle (P-3) dispersed sol having a concentration of 20% by weight was prepared in the same manner as in.

【0086】得られた導電性金属酸化物粒子(P-3)の
平均粒子径を表1に示した。
Table 1 shows the average particle diameters of the obtained conductive metal oxide particles (P-3).

【0087】[0087]

【実施例4】導電性金属酸化物粒子(P-4)分散ゾルの
調製 以下のようにして銀とパラジウムの合金微粒子(M-2)
分散液を調製した。純水100gに、あらかじめクエン
酸3ナトリウムを銀とパラジウムの合計金属1重量部当
たり0.01重量部となるように加え、これに金属換算
で濃度が10重量%となり、銀とパラジウムの重量比が
7/3となるように硝酸銀および硝酸パラジウム水溶液
を加え、さらに硝酸銀および硝酸パラジウムの合計モル
数と等モル数の硫酸第一鉄の水溶液を添加し、窒素雰囲
気下で1時間攪拌して銀とパラジウムの合金微粒子の分
散液を得た。得られた分散液は遠心分離器により水洗し
て不純物を除去した後、水に分散させて濃度4重量%の
銀とパラジウムの合金微粒子(M-2)分散液を調製し
た。合金微粒子(M-2)の平均粒子径は20nmであっ
た。
[Example 4] Conductive metal oxide particle (P-4) dispersion sol
Preparation Silver and palladium alloy fine particles (M-2) as follows
A dispersion was prepared. To 100 g of pure water, trisodium citrate was added in advance so as to be 0.01 parts by weight per 1 part by weight of the total metal of silver and palladium, and the concentration became 10% by weight in terms of metal. So that the ratio becomes 7/3, silver nitrate and palladium nitrate aqueous solutions are added, and further an aqueous solution of ferrous sulfate in an amount equal to the total molar number of silver nitrate and palladium nitrate is added, and the mixture is stirred under a nitrogen atmosphere for 1 hour to obtain silver. A dispersion of fine alloy particles of palladium and palladium was obtained. The resulting dispersion was washed with water by a centrifuge to remove impurities, and then dispersed in water to prepare a silver-palladium alloy fine particle (M-2) dispersion having a concentration of 4% by weight. The average particle diameter of the alloy fine particles (M-2) was 20 nm.

【0088】次いで、合金微粒子(M-2)分散液を用い
た以外は実施例2と同様にして濃度20重量%の導電性
金属酸化物粒子(P-4)分散ゾルを調製した。
Then, a conductive metal oxide particle (P-4) -dispersed sol having a concentration of 20% by weight was prepared in the same manner as in Example 2 except that the alloy fine particle (M-2) dispersion was used.

【0089】[0089]

【実施例5】導電性金属酸化物粒子(P-5)分散ゾルの
調製 以下のようにして金微粒子(M-3)分散液を調製した。
メタノール・水混合溶媒(メタノール40重量部/60
重量部)に、あらかじめポリビニルアルコールを金1重
量部当たり0.01重量部となるように加え、分散液中
の金微粒子の濃度が金属換算で2重量%となるように塩
化金酸を添加し、次いで還流器付フラスコで90℃、窒
素雰囲気下5時間加熱して、濃度4重量%の金微粒子
(M-3)分散液を調製した。金微粒子(M-3)の平均粒子
径は20nmであった。
Example 5 Conductive Metal Oxide Particle (P-5) Dispersion Sol
Preparation A gold fine particle (M-3) dispersion was prepared as follows.
Methanol / water mixed solvent (methanol 40 parts by weight / 60
Polyvinyl alcohol is added to 0.01 part by weight per 1 part by weight of gold, and chloroauric acid is added so that the concentration of the fine gold particles in the dispersion becomes 2% by weight in terms of metal. Then, the mixture was heated in a flask equipped with a reflux condenser at 90 ° C. for 5 hours in a nitrogen atmosphere to prepare a gold fine particle (M-3) dispersion liquid having a concentration of 4% by weight. The average particle size of the gold fine particles (M-3) was 20 nm.

【0090】次いで、この金微粒子(M-3)分散液を用
いた以外は実施例2と同様にして濃度20重量%の導電
性金属酸化物粒子(P-5)分散ゾルを調製した。
Then, a conductive metal oxide particle (P-5) -dispersed sol having a concentration of 20% by weight was prepared in the same manner as in Example 2 except that this gold fine particle (M-3) dispersion was used.

【0091】[0091]

【比較例1】導電性金属酸化物粒子(P-6)分散ゾルの
調製 硝酸インジウム79.9gを水686gに溶解して得ら
れた溶液と、錫酸カリウム12.7gを濃度10重量%
の水酸化カリウム溶液に溶解して得られた溶液とを調製
し、これらの溶液を、50℃に保持された1000gの
純水に2時間かけて添加した。この間、系内のpHを1
1に保持した。得られたSnドープ酸化インジウム水和
物分散液からSnドープ酸化インジウム水和物を濾別・
洗浄した後、乾燥し、次いで空気中で350℃の温度で
3時間焼成し、さらに空気中で600℃の温度で2時間
焼成することによりSnドープ酸化インジウム微粒子を
得た。これを濃度が30重量%となるように純水に分散
させ、さらに硝酸水溶液でpHを3.5に調製した後、
この混合液を30℃に保持しながらサンドミルで、3時
間粉砕してゾルを調製した。次に、このゾルをイオン交
換樹脂で処理して硝酸イオンを除去し、純水を加えて濃
度20重量%の導電性金属酸化物粒子(P-6)分散ゾルを
調製した。
[Comparative Example 1] Conductive metal oxide particle (P-6) dispersion sol
Preparation A solution obtained by dissolving 79.9 g of indium nitrate in 686 g of water and 12.7 g of potassium stannate at a concentration of 10% by weight.
And a solution obtained by dissolving it in a potassium hydroxide solution of 1. were prepared, and these solutions were added to 1000 g of pure water kept at 50 ° C. over 2 hours. During this period, the pH of the system is set to 1
It was held at 1. The Sn-doped indium oxide hydrate is filtered from the obtained Sn-doped indium oxide hydrate dispersion.
After washing, it was dried, and then calcined in air at a temperature of 350 ° C. for 3 hours, and further in air at a temperature of 600 ° C. for 2 hours to obtain Sn-doped indium oxide fine particles. This was dispersed in pure water to a concentration of 30% by weight, and the pH was adjusted to 3.5 with a nitric acid aqueous solution.
While maintaining this mixed solution at 30 ° C., the mixture was ground for 3 hours to prepare a sol. Next, this sol was treated with an ion exchange resin to remove nitrate ions, and pure water was added to prepare a conductive metal oxide particle (P-6) -dispersed sol having a concentration of 20% by weight.

【0092】[0092]

【比較例2】導電性金属酸化物粒子(P-7)分散ゾルの
調製 実施例1において、導電性金属酸化物粒子中の銀の含有
量が5.0重量%となるように導電性向上成分として銀
微粒子(M-1)分散液12.5gを添加した以外は実施例
1と同様にして濃度20重量%の導電性金属酸化物粒子
(P-7)分散ゾルを調製した。
[Comparative Example 2] Conductive metal oxide particle (P-7) dispersion sol
In Preparation Example 1, except that 12.5 g of the silver fine particle (M-1) dispersion liquid was added as the conductivity improving component so that the content of silver in the conductive metal oxide particles would be 5.0% by weight. In the same manner as in Example 1, a conductive metal oxide particle (P-7) -dispersed sol having a concentration of 20% by weight was prepared.

【0093】[0093]

【比較例3】導電性金属酸化物粒子(P-8)分散ゾルの
調製 比較例1で調製した導電性金属酸化物粒子(P-6)分散ゾ
ルと、実施例1で調製した銀微粒子(M-1)分散液と
を、導電性金属酸化物粒子(P-6)と銀微粒子(M-1)の固
形分重量比が95/5となるように混合し、濃度20重
量%の導電性金属酸化物粒子(P-8)分散ゾルを調製し
た。
[Comparative Example 3] Conductive metal oxide particle (P-8) dispersion sol
Preparation The conductive metal oxide particles (P-6) dispersion sol prepared in Comparative Example 1 and the silver fine particle (M-1) dispersion prepared in Example 1 were mixed with conductive metal oxide particles (P-6). ) And silver fine particles (M-1) were mixed at a solid content weight ratio of 95/5 to prepare a conductive metal oxide particle (P-8) -dispersed sol having a concentration of 20% by weight.

【0094】[0094]

【表1】 [Table 1]

【0095】[0095]

【実施例6〜12、比較例4〜7】a)透明導電性被膜
形成用塗布液(C-1)〜(C-7)、(C-8)〜(C-11)の調製 正珪酸エチル(SiO2:28重量%)50g、エタノ
ール194.6g、濃硝酸1.4gおよび純水34gの混
合溶液を室温で5時間攪拌してSiO2濃度5重量%の
マトリックス形成成分を含む液(A)を調製した。
Examples 6 to 12 and Comparative Examples 4 to 7 a) Transparent conductive coating
Preparation of coating liquids (C-1) to (C-7) and (C-8) to (C-11) for forming 50 g of ethyl orthosilicate (SiO 2 : 28% by weight), 194.6 g of ethanol, 1 of concentrated nitric acid A mixed solution of 0.4 g and pure water 34 g was stirred at room temperature for 5 hours to prepare a liquid (A) containing a matrix-forming component having a SiO 2 concentration of 5% by weight.

【0096】表1に示す(P-1)〜(P-8)の分散ゾルおよび
(M-1)の分散液と、上記マトリックス形成成分を含む
(A)液、水、t-ブタノール、ブチルセルソルブ、クエン
酸およびN-メチル-2-ピロリドンから表2に示す透明導
電性被膜形成用塗布液(C-1)〜(C-11)を調製した。b)透明被膜形成用塗布液(B)の調製 低屈折率粒子の調製(外殻層内部に空洞となっている粒
子) 平均粒径5nm、SiO2濃度20重量%のシリカゾル
10gと純水190gとを混合して反応母液を調製し、
95℃に加温した。この反応母液のpHは10.5であ
り、同母液にSiO2として1.5重量%のケイ酸ナト
リウム水溶液24,900gと、Al23として0.5
重量%のアルミン酸ナトリウム水溶液36,800gと
を同時に添加した。その間、反応液の温度を95℃に保
持した。反応液のpHは、ケイ酸ナトリウムおよびアル
ミン酸ナトリウムの添加直後、12.5に上昇し、その
後、ほとんど変化しなかった。添加終了後、反応液を室
温まで冷却し、限外濾過膜で洗浄して固形分濃度20重
量%のSiO2・Al23多孔質物質前駆体粒子の分散
液(F)を調製した。
The dispersion sol of (P-1) to (P-8) and the dispersion of (M-1) shown in Table 1 and the above matrix-forming component are contained.
Coating liquids (C-1) to (C-11) for forming a transparent conductive film shown in Table 2 were prepared from liquid (A), water, t-butanol, butyl cellosolve, citric acid and N-methyl-2-pyrrolidone. Prepared. b) Preparation of coating liquid (B) for forming a transparent film Preparation of low refractive index particles (particles that are hollow inside the outer shell layer
Child) A reaction mother liquor is prepared by mixing 10 g of silica sol having an average particle diameter of 5 nm and a SiO 2 concentration of 20% by weight with 190 g of pure water.
Warmed to 95 ° C. The pH of this reaction mother liquor was 10.5, and 24,900 g of a 1.5 wt% sodium silicate aqueous solution as SiO 2 and 0.5 as Al 2 O 3 were added to the mother liquor.
A 36% by weight aqueous solution of sodium aluminate of 36,800 g was added at the same time. During that time, the temperature of the reaction solution was maintained at 95 ° C. The pH of the reaction solution rose to 12.5 immediately after the addition of sodium silicate and sodium aluminate, and thereafter hardly changed. After the addition was completed, the reaction solution was cooled to room temperature and washed with an ultrafiltration membrane to prepare a dispersion liquid (F) of SiO 2 .Al 2 O 3 porous material precursor particles having a solid content concentration of 20% by weight.

【0097】次いで、この多孔質物質前駆体粒子の分散
液(F)500gを採取し、純水1,700gを加えて
98℃に加温し、この温度を保持しながら、ケイ酸ナト
リウム水溶液を陽イオン交換樹脂で脱アルカリして得ら
れたケイ酸液(SiO2濃度3.5重量%)3,000
gを添加して多孔質物質前駆体粒子表面にシリカ保護膜
を形成した。得られた多孔質物質前駆体粒子の分散液
を、限外濾過膜で洗浄して固形分濃度13重量%に調整
したのち、多孔質物質前駆体粒子の分散液500gに純
水1,125gを加え、さらに濃塩酸(35.5%)を
滴下してpH1.0とし、脱アルミニウム処理を行った
のち、pH3の塩酸水溶液10Lと純水5Lを加えなが
ら限外濾過膜で溶解したアルミニウム塩を分離し、粒子
前駆体分散液を調製した。
Next, 500 g of the dispersion liquid (F) of the porous material precursor particles was sampled, 1,700 g of pure water was added and the mixture was heated to 98 ° C., and while maintaining this temperature, an aqueous sodium silicate solution was added. Silica solution obtained by dealkalization with cation exchange resin (SiO 2 concentration 3.5% by weight) 3,000
g was added to form a silica protective film on the surface of the porous material precursor particles. The obtained dispersion liquid of porous material precursor particles was washed with an ultrafiltration membrane to adjust the solid content concentration to 13% by weight, and 1,125 g of pure water was added to 500 g of the dispersion material of porous material precursor particles. In addition, concentrated hydrochloric acid (35.5%) was added dropwise to adjust the pH to 1.0, and after dealumination treatment, aluminum salt dissolved in the ultrafiltration membrane was added while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water. Separation was performed to prepare a particle precursor dispersion liquid.

【0098】上記粒子前駆体分散液1500gと、純水
500g、エタノール1,750gおよび28%アンモ
ニア水626gとの混合液を35℃に加温した後、エチ
ルシリケート(SiO228重量%)104gを添加
し、粒子前駆体表面にエチルシリケートの加水分解重縮
合物でシリカ外殻層を形成することによって、外殻層内
部に空洞を有する粒子を作製した。次いで、エバポレー
ターで固形分濃度5重量%まで濃縮した後、濃度15重
量%のアンモニア水を加えてpH10とし、オートクレ
ーブで180℃、2時間加熱処理し、限外濾過膜を用い
て溶媒をエタノールに置換した固形分濃度20重量%の
低屈折率粒子(LP)の分散液を調製した。
A mixture of 1500 g of the above particle precursor dispersion, 500 g of pure water, 1,750 g of ethanol and 626 g of 28% ammonia water was heated to 35 ° C., and then 104 g of ethyl silicate (28% by weight of SiO 2 ) was added. Then, a silica outer shell layer was formed from the hydrolyzed polycondensate of ethyl silicate on the surface of the particle precursor to prepare particles having voids inside the outer shell layer. Then, after concentrating to a solid content concentration of 5% by weight with an evaporator, ammonia water with a concentration of 15% by weight was added to adjust the pH to 10, and heat treatment was carried out at 180 ° C for 2 hours in an autoclave, and the solvent was converted to ethanol using an ultrafiltration membrane. A dispersion liquid of low-refractive-index particles (LP) having a solid content concentration of 20% by substitution was prepared.

【0099】得られた粒子の断面を透過型電子顕微鏡
(TEM)により観察したところ、外殻層内部に空洞が
形成された粒子であった。また、平均粒子径は96n
m、屈折率は1.31であった。上記マトリックス形成
成分を含む(A)液に、エタノール/ブタノール/ジアセ
トンアルコール/イソプロパノール(2:1:1:5重
量混合比)の混合溶媒を加え、ついで上記低屈折率粒子
(LP)の分散液を加え、マトリックス形成成分のSiO
2濃度1重量%、低屈折率粒子の固形分濃度20重量%
の透明被膜形成用塗布液(B)を調製した。c)透明導電性被膜付パネルガラスの製造 ブラウン管用パネルガラス(17")の表面を45℃で保
持しながら、スピナー法で150rpm、90秒の条件で
上記透明導電性被膜形成用塗布液(C-1)〜(C-11)をそれ
ぞれ塗布し乾燥した。なお、導電性微粒子層の厚さは、
実施例6〜12、比較例4〜6の場合200nmとなる
ように、また比較例7の場合は導電性微粒子層の厚さが
30nmとなるように塗布し乾燥した。
When the cross section of the obtained particles was observed by a transmission electron microscope (TEM), it was found that cavities were formed inside the outer shell layer. The average particle size is 96n
m, and the refractive index was 1.31. A mixed solvent of ethanol / butanol / diacetone alcohol / isopropanol (2: 1: 1: 5 weight mixing ratio) was added to the liquid (A) containing the above matrix-forming components, and then the low refractive index particles (LP) were dispersed. Liquid is added, and the matrix-forming component SiO
2 concentration 1% by weight, solid content of low refractive index particles 20% by weight
A transparent coating film-forming coating solution (B) was prepared. c) Manufacture of panel glass with transparent conductive coating The above-mentioned coating solution for forming transparent conductive coating (C) under conditions of 150 rpm and 90 seconds by spinner method while maintaining the surface of panel glass for cathode ray tubes (17 ") at 45 ° C. -1) to (C-11) were applied and dried, and the conductive fine particle layer had a thickness of
In Examples 6 to 12 and Comparative Examples 4 to 6, coating was performed so as to have a thickness of 200 nm, and in Comparative Example 7, the conductive fine particle layer was coated with a thickness of 30 nm and dried.

【0100】次いで、このようにして形成された透明導
電性微粒子層上に、同じように、スピナー法で100rp
m、90秒の条件で透明被膜形成用塗布液(B)を塗布・乾
燥し、180℃で30分間焼成して透明導電性被膜付基
材を得た。このとき透明被膜の厚さはいずれも250n
mであった。なお、これとは別に、ガラス基材上に厚さ
250nm の透明被膜のみを形成し、透明被膜の屈折
率を測定したところ1.40であり、透明被膜の屈折率
は1.40であった。
Then, on the transparent conductive fine particle layer thus formed, in the same manner, 100 rpm by a spinner method.
The coating solution (B) for forming a transparent film was applied and dried under the conditions of m and 90 seconds, and baked at 180 ° C. for 30 minutes to obtain a substrate with a transparent conductive film. At this time, the thickness of the transparent coating is 250 n
It was m. Separately from this, when a transparent coating having a thickness of 250 nm was formed on the glass substrate and the refractive index of the transparent coating was measured, it was 1.40, and the refractive index of the transparent coating was 1.40. .

【0101】これらの透明導電性被膜付基材の表面抵抗
を表面抵抗計(三菱油化(株)製:LORESTA)で測定し、ヘ
ーズをヘーズコンピューター(日本電色(株)製:3000A)
で測定した。透過率は分光光度計(日本分光(株)製:U
-Vest560)で測定した。反射率は反射率計(大塚電
子(株)製:MCPD-2000)を用いて測定し、波長400〜7
00nmの範囲で反射率が最も低い波長での反射率をボト
ム反射率、波長400〜700nmの範囲の平均反射率を
視感反射率として表示した。
The surface resistance of these transparent conductive film-coated substrates was measured by a surface resistance meter (LORESTA manufactured by Mitsubishi Yuka Co., Ltd.), and haze was measured by a haze computer (3000A manufactured by Nippon Denshoku Co., Ltd.).
It was measured at. Transmittance is spectrophotometer (JASCO Corporation: U
-Vest 560). The reflectance is measured using a reflectometer (MCPD-2000 manufactured by Otsuka Electronics Co., Ltd.), and the wavelength is 400 to 7
The reflectance at the wavelength with the lowest reflectance in the range of 00 nm is shown as the bottom reflectance, and the average reflectance in the range of wavelength 400 to 700 nm is shown as the luminous reflectance.

【0102】また信頼性評価として、下記の方法によっ
て、耐塩水性および耐酸化性の試験を実施した。 [耐塩水性] 濃度5重量%の食塩水溶液に、前記実施例
および比較例で得た透明導電性被膜付基材片を、一部が
食塩水溶液中に浸漬するように浸漬させ、24時間およ
び48時間放置した後これを取り出し、未浸漬部位との
色調の変化を観察した。
As reliability evaluations, salt water resistance and oxidation resistance tests were carried out by the following methods. [Salt Water Resistance] The transparent conductive film-coated substrate pieces obtained in the above Examples and Comparative Examples were immersed in a saline solution having a concentration of 5% by weight so as to be partially immersed in the saline solution for 24 hours and 48 hours. After leaving it for a period of time, it was taken out and the change in color tone with respect to the non-immersed part was observed.

【0103】[耐酸化性] 濃度2重量%の過酸化水素水
溶液に、上記実施例および比較例で得た透明導電性被膜
付基材片を、一部が過酸化水素水溶液中に浸漬するよう
に浸漬させ、24時間放置した後これを取り出し、未浸
漬部位との色調の変化を観察した。 [表示性能]上記で得た透明導電性被膜を形成したパネル
ガラスを用いて、表示装置を組立て、表示性能として画
像および画像面から5mの距離にある蛍光灯の反射の程
度(映り込み)および着色程度を観察し、以下の基準で
評価した。
[Oxidation resistance] The transparent conductive film-coated substrate pieces obtained in the above Examples and Comparative Examples were partially immersed in a hydrogen peroxide aqueous solution having a concentration of 2% by weight. After immersing in, and leaving it for 24 hours, it was taken out, and the change in color tone with respect to the non-immersed part was observed. [Display performance] A display device was assembled using the panel glass having the transparent conductive film obtained above, and the display performance was such that the degree of reflection (reflection) of the image and the fluorescent lamp at a distance of 5 m from the image surface and The degree of coloring was observed and evaluated according to the following criteria.

【0104】 ◎:反射(映り込み)がなく、画像が鮮明であるもの ○:反射(映り込み)は弱く、画像は鮮明であるもの △:反射(映り込み)も強く、画像の一部が不鮮明であ
るもの ×:反射(映り込み)が画像より鮮明であるもの
⊚: No reflection (reflection) and clear image ○: Weak reflection (reflection), sharp image Δ: Strong reflection (reflection), part of image Unclear x: Reflection (reflection) is clearer than the image

【0105】[0105]

【表2】 [Table 2]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る導電性金属酸化物粒子の概略断面
図を示す。
FIG. 1 shows a schematic cross-sectional view of conductive metal oxide particles according to the present invention.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B32B 9/00 B32B 9/00 A H01B 1/08 H01B 1/08 1/20 1/20 Z 5/14 5/14 A (72)発明者 小 松 通 郎 福岡県北九州市若松区北湊町13番2号 触 媒化成工業株式会社若松工場内 Fターム(参考) 4D075 CA13 CA22 CB06 DA04 DA06 DA23 DB13 DB14 DB31 DC18 DC24 EA12 EB01 EB56 EB57 EC10 EC30 EC53 EC54 4F100 AA17B AA20 AA33B AT00A BA03 BA07 BA10A BA10C DE01B EH46 GB41 JD08 JG01B JG03 JN01B JN01C JN18C JN30 YY00B 5G301 DA02 DA03 DA05 DA06 DA07 DA10 DA11 DA12 DA23 DA33 DA42 DD02 5G307 FA01 FB01 FC09 FC10 Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) B32B 9/00 B32B 9/00 A H01B 1/08 H01B 1/08 1/20 1/20 Z 5/14 5/14 A (72) Inventor Toshiro Komatsu 13-2 Kitaminato-cho, Wakamatsu-ku, Kitakyushu City, Fukuoka Prefecture F-term in Wakamatsu Plant, Catalysis Chemicals Co., Ltd. (reference) 4D075 CA13 CA22 CB06 DA04 DA06 DA23 DB13 DB14 DB31 DC18 DC24 EA12 EB01 EB56 EB57 EC10 EC30 EC53 EC54 4F100 AA17B AA20 AA33B AT00A BA03 BA07 BA10A BA10C DE01B EH46 GB41 JD08 JG01B JG03 JN01B JN01C JN18C JN30 YY00B 5G301 DA02 DA01 DA02 DA02 DA03 DA02 DA02 DA02 DA23 DA02 DA02 DA23

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】導電性金属酸化物からなる導電性金属酸化
物粒子であって、 該粒子中に、Au,Ag,Pd,Pt,Rh,Ru,Cu,Fe,Ni,C
oから選ばれる1種または2種以上の元素の金属からな
る該導電性向上成分を含み、かつ導電性金属酸化物粒子
中の導電性向上成分の含有量が金属に換算して0.01
〜1.5重量%の範囲にあることを特徴とする導電性金
属酸化物粒子。
1. A conductive metal oxide particle comprising a conductive metal oxide, wherein Au, Ag, Pd, Pt, Rh, Ru, Cu, Fe, Ni, C are contained in the particles.
The conductivity improving component comprising a metal of one or more elements selected from o, and the content of the conductivity improving component in the conductive metal oxide particles is 0.01 in terms of metal.
The conductive metal oxide particles are characterized by being in the range of ˜1.5 wt%.
【請求項2】前記導電性金属酸化物がSn、Zn、Zrま
たはFがドーピングされた酸化インジウムであることを
特徴とする請求項1に記載の導電性金属酸化物粒子。
2. The conductive metal oxide particles according to claim 1, wherein the conductive metal oxide is indium oxide doped with Sn, Zn, Zr or F.
【請求項3】下記の工程(a)〜(e)からなることを
特徴とする導電性金属酸化物粒子の製造方法: (a)導電性金属酸化物の前駆体(水酸化物)粒子分散
液に導電性向上成分微粒子を添加し、混合する工程、
(b)次いで、100〜250℃の範囲で水熱処理する
工程、(c)得られた粒子分散液を乾燥する工程、
(d)乾燥後の粉体を非酸化雰囲気下、400〜650
℃の温度範囲で加熱処理する工程、(e)加熱処理した
粉体を粉砕する工程。
3. A method for producing conductive metal oxide particles, which comprises the following steps (a) to (e): (a) Dispersion of precursor (hydroxide) particles of conductive metal oxide. A step of adding the conductivity improving component fine particles to the liquid and mixing
(B) Then, a step of performing hydrothermal treatment in the range of 100 to 250 ° C., (c) a step of drying the obtained particle dispersion,
(D) 400 to 650 the powder after drying in a non-oxidizing atmosphere
Step of heat-treating in the temperature range of ° C, (e) Step of pulverizing the heat-treated powder.
【請求項4】請求項1または2に記載の導電性金属酸化
物粒子と極性溶媒とをからなることを特徴とする透明導
電性被膜形成用塗布液。
4. A coating liquid for forming a transparent conductive film, comprising the conductive metal oxide particles according to claim 1 or 2 and a polar solvent.
【請求項5】前記極性溶媒の双極子モーメントが1.6
〜5.0の範囲にあることを特徴とする請求項4に記載
の透明導電性被膜形成用塗布液。
5. The dipole moment of the polar solvent is 1.6.
The coating liquid for forming a transparent conductive film according to claim 4, wherein the coating liquid is in a range of from 5.0 to 5.0.
【請求項6】酸またはアルカリイオンを含むことを特徴
とする請求項4または5に記載の透明導電性被膜形成用
塗布液。
6. The coating liquid for forming a transparent conductive film according to claim 4, which contains an acid or an alkali ion.
【請求項7】基材と、 基材上の、請求項1または2に記載の前記導電性金属酸
化物粒子を含む透明導電性微粒子層と、 該透明導電性微粒子層上に設けられ、該透明導電性微粒
子層よりも屈折率が低い透明被膜と、 からなることを特徴とする透明導電性被膜付基材。
7. A substrate, a transparent conductive fine particle layer containing the conductive metal oxide particles according to claim 1 on the substrate, and a transparent conductive fine particle layer provided on the transparent conductive fine particle layer, A transparent conductive film-coated substrate comprising a transparent coating film having a refractive index lower than that of the transparent conductive fine particle layer.
【請求項8】前記透明被膜が、平均粒子径が5〜300
nmの範囲にあり屈折率が1.45以下の低屈折率粒子
を含むことを特徴とする請求項7に記載の透明導電性被
膜付基材。
8. The transparent coating has an average particle diameter of 5 to 300.
8. The substrate with a transparent conductive film according to claim 7, which contains low refractive index particles having a refractive index of 1.45 or less in the range of nm.
【請求項9】請求項7または8に記載の透明導電性被膜
付基材で構成された前面板を備え、透明導電性被膜が該
前面板の外表面に形成されていることを特徴とする表示
装置。
9. A front plate comprising the substrate with a transparent conductive film according to claim 7 or 8, wherein the transparent conductive film is formed on the outer surface of the front plate. Display device.
JP2001218522A 2001-07-18 2001-07-18 Conductive metal oxide particles, method for producing conductive metal oxide particles, substrate with transparent conductive film, and display device Expired - Lifetime JP4033646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001218522A JP4033646B2 (en) 2001-07-18 2001-07-18 Conductive metal oxide particles, method for producing conductive metal oxide particles, substrate with transparent conductive film, and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001218522A JP4033646B2 (en) 2001-07-18 2001-07-18 Conductive metal oxide particles, method for producing conductive metal oxide particles, substrate with transparent conductive film, and display device

Publications (2)

Publication Number Publication Date
JP2003034530A true JP2003034530A (en) 2003-02-07
JP4033646B2 JP4033646B2 (en) 2008-01-16

Family

ID=19052690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001218522A Expired - Lifetime JP4033646B2 (en) 2001-07-18 2001-07-18 Conductive metal oxide particles, method for producing conductive metal oxide particles, substrate with transparent conductive film, and display device

Country Status (1)

Country Link
JP (1) JP4033646B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6902815B2 (en) * 2001-06-04 2005-06-07 Asahi Glass Company, Limited Coating liquid for forming colored transparent conductive film, substrate with colored transparent conductive film and method for its production, and display device
JP2008165984A (en) * 2006-12-26 2008-07-17 Jiemuko:Kk Composition for transparent conductive film formation, transparent conductive film, and display
JP2011042549A (en) * 2009-08-24 2011-03-03 Mitsui Mining & Smelting Co Ltd Indium oxide powder and ito sintered compact

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6902815B2 (en) * 2001-06-04 2005-06-07 Asahi Glass Company, Limited Coating liquid for forming colored transparent conductive film, substrate with colored transparent conductive film and method for its production, and display device
JP2008165984A (en) * 2006-12-26 2008-07-17 Jiemuko:Kk Composition for transparent conductive film formation, transparent conductive film, and display
JP2011042549A (en) * 2009-08-24 2011-03-03 Mitsui Mining & Smelting Co Ltd Indium oxide powder and ito sintered compact

Also Published As

Publication number Publication date
JP4033646B2 (en) 2008-01-16

Similar Documents

Publication Publication Date Title
JP3563236B2 (en) Coating liquid for forming transparent conductive film, substrate with transparent conductive film, method for producing the same, and display device
JP4183924B2 (en) METAL PARTICLE, PROCESS FOR PRODUCING THE PARTICLE, COATING LIQUID FOR TRANSPARENT CONDUCTIVE FILM CONTAINING THE PARTICLE, SUBSTRATE WITH TRANSPARENT CONDUCTIVE COATING, DISPLAY DEVICE
JP4031624B2 (en) Substrate with transparent coating, coating liquid for forming transparent coating, and display device
JP3973330B2 (en) Substrate with transparent coating, coating liquid for forming transparent coating, and display device
JP2004055298A (en) Coating solution for forming transparent conductive film and substrate with transparent conductive coat, and display device
JP4522505B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP4002469B2 (en) Manufacturing method of indium metal fine particles, coating liquid for forming transparent conductive film containing indium metal fine particles, dispersion sol, substrate with transparent conductive film, display device
JP5068298B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP4343520B2 (en) Coating liquid for forming transparent film, substrate with transparent film, and display device
JP3779088B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP4959067B2 (en) Coating liquid for forming transparent low-reflective conductive film, substrate with transparent low-reflective conductive film, and display device
JP4837376B2 (en) Coating liquid for forming transparent film, substrate with transparent film, and display device
JP4033646B2 (en) Conductive metal oxide particles, method for producing conductive metal oxide particles, substrate with transparent conductive film, and display device
JP4002435B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP4519343B2 (en) Crystalline conductive fine particles, method for producing the fine particles, coating liquid for forming transparent conductive film, substrate with transparent conductive film, and display device
JP2003105268A (en) Coating liquid for forming transparent coated film, base material with transparent and electroconductive coated film, and display device
JP4240905B2 (en) Indium-based oxide fine particles and production method thereof, coating liquid for forming transparent conductive film containing indium-based oxide fine particles, substrate with transparent conductive film, and display device
JP4425530B2 (en) Method for producing indium oxide fine particles, coating liquid for forming transparent conductive film containing fine particles, substrate with transparent conductive film, and display device
JP2004083812A (en) Coating liquid for forming transparent film, substrate having transparent coating film and display device
JP4372301B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP5187990B2 (en) Coating liquid for forming transparent conductive film, substrate with transparent conductive film and display device
JP2003261326A (en) Indium based oxide fine particle, method of producing the fine particle, coating solution for forming transparent electrically conductive film containing the fine particle, base material with transparent electrically conductive film and display
JP4902048B2 (en) Substrate with transparent conductive film and display device
JP2004204174A (en) Coating liquid for forming transparent electeroconductive film, substrate with transparent electroconductive film and displaying device
JP2003073583A (en) Method for producing coating liquid for forming electrically conductive transparent coating film and substrate and display device provided with electrically conductive transparent coating film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4033646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term