JP2003033619A - Gas treatment device and gas treatment method - Google Patents

Gas treatment device and gas treatment method

Info

Publication number
JP2003033619A
JP2003033619A JP2001220281A JP2001220281A JP2003033619A JP 2003033619 A JP2003033619 A JP 2003033619A JP 2001220281 A JP2001220281 A JP 2001220281A JP 2001220281 A JP2001220281 A JP 2001220281A JP 2003033619 A JP2003033619 A JP 2003033619A
Authority
JP
Japan
Prior art keywords
gas
adsorption
tank
desorption
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001220281A
Other languages
Japanese (ja)
Other versions
JP4596110B2 (en
Inventor
Takeshi Hamamatsu
健 濱松
Tomoaki Ikeno
友明 池野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2001220281A priority Critical patent/JP4596110B2/en
Publication of JP2003033619A publication Critical patent/JP2003033619A/en
Application granted granted Critical
Publication of JP4596110B2 publication Critical patent/JP4596110B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To utilize an adsorption power of activated carbon fiber material more effectively than that in the conventional technique and to improve recovery efficiency of organic solvent from gas to be treated. SOLUTION: In this gas treatment device of alternately switching an adsorption treatment state which uses the activated carbon fiber material as an adsorption element and a desorption state, a discharge pipe on the bottom part of an adsorption tank (tank drain line) and a piping which discharges coagulated liquid from a cooling part (recovered liquid line) are connected independently or joinedly to a solvent recovering part in such a manner that the drain which is coagulated on desorption does not flow backward and, thereby, the wetting of the activated carbon fiber material due to the backward flow of the coagulated liquid is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、活性炭素繊維(以
下ACFと記す)を吸着材として、有機物溶剤含有ガス
の吸着を行うと同時に、吸着した有機溶剤を脱着、回収
するガス処理装置およびこの装置を用いた処理方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas treatment device which uses activated carbon fiber (hereinafter referred to as ACF) as an adsorbent to adsorb an organic solvent-containing gas and at the same time desorbs and collects the adsorbed organic solvent. The present invention relates to a processing method using an apparatus.

【0002】[0002]

【従来の技術】近年、有害大気汚染物質に対する排出濃
度規制が強化されてきており、有害大気汚染物質をガス
処理装置により処理する場合にガス処理装置出口の有害
大気汚染物質濃度をできる限り低減することが望まれて
いる。
2. Description of the Related Art In recent years, emission concentration regulations for harmful air pollutants have been strengthened, and when treating harmful air pollutants with a gas treatment device, the concentration of harmful air pollutants at the gas treatment device outlet is reduced as much as possible. Is desired.

【0003】従来、上記ガス処理装置は、活性炭素繊維
素材で被処理ガス(つまり有機溶剤含有ガス等の排気ガ
ス)を吸着する1対以上の吸着槽と、各吸着槽に対する
被処理ガス供給手段と脱着用ガス供給手段とを設け、前
記吸着槽に被処理ガスを供給する吸着処理状態と、脱着
用ガスにより吸着した被処理ガスを脱着する脱着状態と
に切り替える手段を設けて構成してあった。
Conventionally, the above-mentioned gas treatment device has one or more pairs of adsorption tanks for adsorbing a gas to be treated (that is, an exhaust gas such as a gas containing an organic solvent) with an activated carbon fiber material, and a means for supplying a gas to be treated to each adsorption tank. And a desorption gas supply means, and means for switching between an adsorption treatment state in which the gas to be treated is supplied to the adsorption tank and a desorption state in which the gas to be treated adsorbed by the desorption gas is desorbed. It was

【0004】従来、上記ガス処理装置は、吸着材にAC
Fや粒状活性炭が一般的に用いられるが、ACFは、粒
状活性炭と比べ、比表面積が1000〜2000m2
gと大きく、吸着材表面にガス吸着に有効なミクロポア
が数多く存在し、吸脱着速度に極めて優れるために、有
機溶剤回収分野ではもっとも一般的な方法として知られ
用いられている。たとえば、ACFを支持体に固定し、
または自己支持にて円筒状に構成し、芯材内にたて型に
配設した装置が特開昭51−38278号公報、特公報
64−11326号に提案されている。また、実公平7
−2028,2029,2030にも同様な吸脱着を行
うガス装置が提案されている。これらは、いずれも、A
CFを格納している芯材に水蒸気を噴出し、ACFに吸
着された有機溶剤を脱着、回収させるものである。
Conventionally, the above-mentioned gas treatment device uses AC as the adsorbent.
Although F and granular activated carbon are generally used, ACF has a specific surface area of 1000 to 2000 m 2 / m compared to granular activated carbon.
It has a large g and a large number of micropores effective for gas adsorption on the surface of the adsorbent and has an extremely high adsorption / desorption rate. Therefore, it is known and used as the most general method in the field of organic solvent recovery. For example, by fixing the ACF to a support,
Alternatively, a device in which it is formed into a cylindrical shape by self-support and arranged in a vertical mold in a core material is proposed in JP-A-51-38278 and JP-A-64-11326. Also, fairness 7
-2028, 2029, and 2030 have also proposed gas devices that perform similar adsorption and desorption. These are all A
The organic solvent adsorbed by the ACF is desorbed and collected by ejecting water vapor onto the core material containing the CF.

【0005】一般的に、ACFの有機溶剤吸着能力は、
水分の影響を受けやすく、ACFの含水率が高くなる
と、吸着能力は極端に低下する。このため、前記提案に
おいては、芯材、すなわち吸着エレメントへの水蒸気噴
出方向を上または下から、あるいは中央内部方向からな
どいろいろ工夫が凝らされている。しかし、運転開始時
などにおいて、噴出する水蒸気のドレンの飛散や、凝縮
液の逆流により吸着エレメントが水分を含み濡れてしま
い、ACFの有機溶剤吸着能力を低下させるという問題
があった。
Generally, the ability of ACF to adsorb organic solvent is
It is easily affected by moisture, and when the water content of ACF is high, the adsorption capacity is extremely reduced. For this reason, in the above-mentioned proposal, various ideas have been devised such that the direction of jetting water vapor to the core material, that is, the adsorption element is from above or below, or from the center inside direction. However, at the time of starting operation, there is a problem that the adsorbing element becomes wet with water due to the scattering of the drain of the jetted water vapor and the reverse flow of the condensate, which lowers the ability of the ACF to adsorb the organic solvent.

【0006】さらに、上記に示したガス吸着エレメント
を用いたガス処理装置において、長期にわたり吸脱着が
安定して連続運転することは困難とされていた。即ち、
有機溶剤の吸着したエレメントに水蒸気を噴出させ、吸
着した有機溶剤を脱着させることを交互に繰り返して使
用する場合、特に低沸点溶剤は、外気の温度などの影響
を著しく受け、溶剤回収部(以下セパレーターと記す)
へ繋がる配管から凝縮液が逆流することがしばしばあ
る。この逆流により、ガス処理エレメント内のACFに
凝縮液が接触し、吸着能力を大きく低下させる問題があ
り、連続運転にも支障をきたしていた。
Further, in the gas treatment device using the above-described gas adsorption element, it has been difficult to carry out stable continuous adsorption / desorption for a long period of time. That is,
When water vapor is jetted to the element to which the organic solvent is adsorbed and the adsorbed organic solvent is desorbed alternately and repeatedly, the low boiling point solvent is significantly affected by the temperature of the outside air, etc. (Separated)
Condensate often flows back from the pipe leading to. Due to this backflow, there is a problem that the condensate comes into contact with the ACF in the gas treatment element, greatly lowering the adsorption capacity, which has also hindered continuous operation.

【0007】[0007]

【発明が解決しようとする課題】本発明は、ACFを用
いて有機溶剤含有ガス、特に低沸点溶剤の吸脱着を、高
い効率でかつ連続的に行うことを可能としたガス処理装
置に関するものである。
DISCLOSURE OF THE INVENTION The present invention relates to a gas treatment apparatus capable of continuously adsorbing and desorbing an organic solvent-containing gas, particularly a low boiling point solvent, using ACF with high efficiency. is there.

【0008】吸着エレメントを用いたガス処理装置の連
続運転において、脱着処理状態の時、脱着ガスである水
蒸気と脱着された脱着ガスは、脱着ガス供給初期に吸着
槽内にて凝縮液となり吸着槽下部の槽ドレンラインを通
りセパレータへ排出される。一方、未凝縮の水蒸気と有
機溶剤は、脱着ガスラインを通り冷却部(以下コンデン
サーと記す)で凝縮後、槽ドレンラインに合流しセパレ
ータへ排出される。例えば、第1図の吸着槽4(連続運
転のため、他の槽が吸着槽として運転している時は、脱
着槽となる)の下部からの凝縮液が槽ドレンライン8を
通ってセパレータ12に送られるが、この時槽ドレンラ
イン8中に滞留していた凝縮液が上記吸着槽4の下部か
らの凝縮液で加熱され、沸騰ガス化し逆流する。外気温
が低く、凝縮液が多い時や被処理ガスが低沸点溶剤を含
有する場合は、この傾向が顕著となる。
In the continuous operation of the gas treatment apparatus using the adsorption element, in the desorption process, the desorption gas, steam, and the desorbed desorption gas become a condensate in the adsorption tank at the initial stage of supplying the desorption gas. It is discharged to the separator through the tank drain line at the bottom. On the other hand, the uncondensed water vapor and the organic solvent pass through the desorption gas line, condense in the cooling unit (hereinafter referred to as a condenser), merge with the tank drain line, and are discharged to the separator. For example, the condensate from the lower part of the adsorption tank 4 in FIG. 1 (because of continuous operation, it becomes a desorption tank when another tank is operating as an adsorption tank) passes through the tank drain line 8 and the separator 12 However, the condensate retained in the tank drain line 8 at this time is heated by the condensate from the lower part of the adsorption tank 4 to be boiled gas and flow backward. This tendency becomes remarkable when the outside air temperature is low, the condensate is large, and the gas to be treated contains a low boiling point solvent.

【0009】[0009]

【課題を解決するための手段】本発明は、この凝縮液の
逆流をなくすために、コンデンサーから排出された高濃
度の有機溶剤を含んだ凝縮液が回収液ラインを通り、槽
ドレンラインに流れ込まない工夫をすることにより、槽
内への凝縮液の逆流を防止するものである。従来回収液
ラインは、液封の目的で各槽の槽ドレンラインは最下端
にて接続された後、上方向へ立ち上がりセパレータへ繋
がっていた。また、回収液ラインも最下部で前記の槽ド
レンラインに接続し同様に液封されセパレーターへ繋が
っていた。さらに、高温の槽ドレンラインの凝縮液とコ
ンデンサーにて冷却された比較的低温の回収液ラインの
凝縮液を混合させることによりセパレータへ流入する凝
縮液の温度を全体的に下げ、セパレータ内の溶剤の揮発
を抑える目的で回収液ラインと槽ドレンラインを合流さ
せセパレーターに繋がっていた。しかし、上記方法で
は、回収する有機溶剤が水より沸点の低い場合には、回
収ラインから槽ドレンラインに流入した有機溶剤が吸着
槽内にて凝縮した高温の凝縮液により加熱され、沸騰、
ガス化し槽ドレンラインより吸着槽内に逆流させてい
た。よって、図2に示すように回収液ラインと槽ドレン
ラインをそれぞれ独立させ、液封を行い、セパレータへ
繋ぐことにより、凝縮液の逆流をなくした。
According to the present invention, in order to eliminate the reverse flow of the condensate, the condensate containing a high concentration of the organic solvent discharged from the condenser flows through the recovery liquid line and into the tank drain line. This is to prevent the condensate from flowing back into the tank by making some measures. In the conventional recovery liquid line, the tank drain line of each tank was connected at the lowermost end for the purpose of liquid sealing, and then it rose upward and was connected to the separator. Also, the recovery liquid line was connected to the above-mentioned tank drain line at the lowermost part and was similarly liquid-sealed and connected to the separator. Furthermore, by mixing the condensate of the high temperature tank drain line and the condensate of the relatively low temperature recovery liquid line cooled by the condenser, the temperature of the condensate flowing into the separator is lowered as a whole, and the solvent in the separator is reduced. The recovery liquid line and the tank drain line were joined to connect to the separator for the purpose of suppressing the volatilization of. However, in the above method, when the organic solvent to be recovered has a lower boiling point than water, the organic solvent flowing from the recovery line into the tank drain line is heated by the high-temperature condensate condensed in the adsorption tank and boils,
It was made to flow back into the adsorption tank from the gasification tank drain line. Therefore, as shown in FIG. 2, the recovery liquid line and the tank drain line were independent of each other, liquid sealing was performed, and the back flow of the condensate was eliminated by connecting to the separator.

【0010】また槽ドレンラインの凝縮液が高温とな
り、セパレータ内の回収液の温度を上昇させ、処理ガス
入口に戻すガスの濃度が上昇する場合には、図3に示す
ように槽ドレンラインの立ち上がり後に回収液ラインの
セパレーターとの接続位置よりも高い箇所にて槽ドレン
ラインを回収液ラインに繋ぐことで、戻りガス濃度を低
減させるとともに凝縮液の逆流をなくした。これらの配
管ルート変更により、吸着エレメントの濡れによるガス
処理装置の連続運転に支障がなくなった。
When the condensate in the tank drain line becomes hot and the temperature of the recovered liquid in the separator rises and the concentration of the gas returned to the process gas inlet increases, as shown in FIG. By connecting the tank drain line to the recovery liquid line at a position higher than the connection position of the recovery liquid line with the separator after rising, the concentration of the return gas was reduced and the reverse flow of the condensate was eliminated. By changing these piping routes, wetting of the adsorption element did not hinder continuous operation of the gas treatment device.

【0011】吸着エレメントを用いて水蒸気の脱着によ
り有機溶剤の処理を連続で行うガス処理装置の場合、特
に低沸点溶剤にこの効果が顕著である。通常これらのガ
スは水蒸気と一緒に吸着エレメントの外へ排出される
が、水に溶けにくい有機溶剤の場合、吸着エレメントの
外での冷却により、水層と溶剤層の2層に分離が起こ
る。一般に有機溶剤の方の比重が大きく、2層の下側に
分離するため槽ドレンライン最下部に貯まりやすくな
り、沸騰による逆流が顕著になる。従って、吸着槽の下
部から凝縮液の逆流が発生した場合はこの凝縮液にて吸
着エレメントが濡れることにより、吸着能力を低下させ
てしまう。
In the case of a gas treatment apparatus in which an organic solvent is continuously treated by desorption of water vapor using an adsorption element, this effect is remarkable especially in a low boiling point solvent. Usually, these gases are discharged together with water vapor to the outside of the adsorption element, but in the case of an organic solvent which is difficult to dissolve in water, cooling outside the adsorption element causes separation into a water layer and a solvent layer. Generally, the specific gravity of the organic solvent is large, and the organic solvent is separated into the lower layers of the two layers, so that the organic solvent easily accumulates at the bottom of the drain line of the tank, and the reverse flow due to boiling becomes remarkable. Therefore, when a backflow of the condensate is generated from the lower part of the adsorption tank, the condensate wets the adsorbing element, thereby lowering the adsorption capacity.

【0012】ここで言う有機溶剤とは、塩化メチレン、
トリクロロエタン、トリクロロエチレン、四塩化炭素、
クロロホルム等の有機溶剤を指し、特に本発明において
は塩化メチレンなどの沸点が水よりも低く、比重が水よ
りも重い溶剤が適する。
The organic solvent referred to here is methylene chloride,
Trichloroethane, trichlorethylene, carbon tetrachloride,
It refers to an organic solvent such as chloroform, and in particular, a solvent such as methylene chloride having a lower boiling point than water and a specific gravity heavier than water is suitable in the present invention.

【0013】この回収液ラインの変更により吸着エレメ
ントの凝縮液による濡れがなくなり、吸脱着槽内の温
度、相対湿度の制御も容易になり、吸着効率が一層向上
した。
By changing the recovery liquid line, wetting of the adsorption element by the condensate is eliminated, the temperature and relative humidity in the adsorption / desorption tank are easily controlled, and the adsorption efficiency is further improved.

【0014】さらに、吸着エレメントは常時水分と接触
することがなくなり、吸着能力は維持されることから,
吸着槽として、また脱着槽とし連続的に切り替えが可能
となった。この結果、本発明の装置は運転、停止時のス
ムースな操作とともに連続的に有機溶剤含有ガスの吸脱
着が可能となり操作性に優れるとともに、長期期間にわ
たっての運転も可能となった。
Furthermore, since the adsorption element does not always come into contact with moisture and the adsorption ability is maintained,
The adsorption tank and desorption tank can be continuously switched. As a result, the device of the present invention is capable of adsorbing and desorbing the organic solvent-containing gas continuously along with smooth operation at the time of operation and stoppage, and is excellent in operability, and can be operated for a long period of time.

【0015】本発明で使用するACFとはアクリロニト
リル(PAN)系繊維、レーヨン系、石炭ピッチ系、フ
ェノール樹脂系、石油ピッチ系など原料繊維を既存の方
法にて処理して得られた比表面積1000〜2000m
2/g、繊維直径が2〜30μm程度、繊維長さが0.
5〜10mm程度、細孔半径が5〜20Å程度であれ
ば、いずれを用いても良い。
The ACF used in the present invention means a specific surface area of 1000 obtained by treating raw fibers such as acrylonitrile (PAN) fiber, rayon fiber, coal pitch fiber, phenol resin fiber and petroleum pitch fiber by an existing method. ~ 2000m
2 / g, the fiber diameter is about 2 to 30 μm, and the fiber length is 0.
Any may be used as long as it has a pore radius of 5 to 10 mm and a pore radius of 5 to 20 Å.

【0016】[0016]

【発明の実施の形態】次に、本発明の一実施形態の一例
を図1にて説明する。有機溶剤含有ガス(被処理ガス)
Xはプレフィルター1(コンデンサー10、セパレータ
12内に滞留しているガス*3、*4は戻りガスライン
13を通って再度このプレフィルター1に戻される)を
通り、送風機2にて吸着槽3(この時吸着槽4には、有
機溶剤含有ガスを送ることはなく、自動ダンパー6で封
鎖されている。吸着槽4内では、水蒸気を噴出して、す
でに吸着エレメント5に吸着されたガスを脱着している
状態である)に送られ、吸着エレメント5でガス吸着が
行なわれ、清浄空気Yとして、吸着槽3の排気口14よ
り系外に排出される。凝縮液は、吸着槽4下部の槽ドレ
ンライン8を通ってセパレータ12に送られる。未凝縮
の水蒸気及び有機溶剤は脱着ガスライン9を通って、コ
ンデンサー10へ送られる。コンデンサー10からは高
濃度の有機溶剤を含んだ凝縮液が回収液ライン11を通
り槽ドレンライン8に合流してセパレータ12へ送られ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Next, an example of an embodiment of the present invention will be described with reference to FIG. Organic solvent-containing gas (process gas)
X passes through the pre-filter 1 (gas * 3, * 4 staying in the condenser 10 and the separator 12 is returned to the pre-filter 1 again through the return gas line 13), and the adsorption tank 3 is blown by the blower 2. (At this time, the organic solvent-containing gas is not sent to the adsorption tank 4 and is blocked by the automatic damper 6. In the adsorption tank 4, steam is jetted to remove the gas already adsorbed by the adsorption element 5. (In a desorbed state), the adsorption element 5 adsorbs the gas, and is discharged as clean air Y from the exhaust port 14 of the adsorption tank 3 to the outside of the system. The condensate is sent to the separator 12 through the tank drain line 8 below the adsorption tank 4. The uncondensed water vapor and the organic solvent are sent to the condenser 10 through the desorption gas line 9. A condensate containing a high-concentration organic solvent flows from the condenser 10 through the recovery liquid line 11 to the tank drain line 8 and is sent to the separator 12.

【0017】この時、低沸点溶剤が混合された混合ガス
の場合に、特に外部温度が低下すればするほどこの槽ド
レンライン8に流れ込む量が多くなることにより、凝縮
液の吸着槽への逆流が顕著になり、吸着槽4に噴出し、
吸着エレメントを濡らしてしまう。このため本発明は回
収液ライン11を槽ドレンライン8から切り離し独立し
てセパレータ12へ繋ぐことにより、吸着槽3,4下部
への凝縮液の逆流を防止したものである。
At this time, in the case of a mixed gas in which a low-boiling-point solvent is mixed, as the external temperature lowers, the amount flowing into the tank drain line 8 increases, so that the condensate flows back into the adsorption tank. Becomes noticeable and jets out into the adsorption tank 4,
Wet the adsorption element. Therefore, in the present invention, the recovery liquid line 11 is separated from the tank drain line 8 and independently connected to the separator 12 to prevent the condensate from flowing back to the lower portions of the adsorption tanks 3 and 4.

【0018】図2,3にコンデンサーとセパレータ部分
の配管図を拡大して示した。
2 and 3 show enlarged piping diagrams of the condenser and the separator portion.

【0019】この結果、吸着槽3、4を切り替え連続運
転しても、常時系外に排出される有機溶剤ガス濃度は低
濃度でかつ一定化することが可能となった。
As a result, even when the adsorption tanks 3 and 4 are switched and continuously operated, the concentration of the organic solvent gas discharged outside the system can be kept low and constant.

【0020】吸着エレメント5に吸着された有機溶剤
は、吸着槽4にて水蒸気W1より自動弁7を介して吸着
槽内の吸着エレメントに噴出させて、有機溶剤の脱着を
行う。水蒸気の量は蒸気調整自動弁7にて制御される。
また、この水蒸気は吸着槽4の上部または、下部(図1
中の点線)より槽内に噴出される。
The organic solvent adsorbed by the adsorption element 5 is ejected from the water vapor W1 in the adsorption tank 4 through the automatic valve 7 to the adsorption element in the adsorption tank to desorb the organic solvent. The amount of water vapor is controlled by the vapor adjustment automatic valve 7.
In addition, this water vapor is either above or below the adsorption tank 4 (see FIG.
It is ejected from the inside (dotted line).

【0021】この結果、有機溶剤含有ガスXは清浄空気
Yとして系外に放出されるとともに、脱着された未凝縮
の有機溶剤ガスと水蒸気は、コンデンサー10で冷却さ
れ、凝縮してセパレーター12に回収される。水に溶け
にくい液は、比重により重比重液Zと軽比重液W2とし
て回収される。
As a result, the organic solvent-containing gas X is discharged outside the system as clean air Y, and the desorbed uncondensed organic solvent gas and water vapor are cooled by the condenser 10 and condensed to be collected in the separator 12. To be done. The liquid that is difficult to dissolve in water is collected as the heavy specific gravity liquid Z and the light specific gravity liquid W2 due to the specific gravity.

【0022】[0022]

【比較例1】図1と同等なガス処理装置を用いて塩化メ
チレンを9000ppm含む温度40℃の有機溶剤含有
ガスを、風量70Nm3/分で送風機2より吸着槽3に
送風した。吸着槽4で8分間脱着を行い、その後自動ダ
ンパー6で吸着槽3への送風を封鎖し、次に吸着槽3の
吸着エレメント5内に水蒸気を噴出した。この処置と同
時に吸着槽4の自動ダンパー6を開放し、今度は、この
吸着槽4でガス吸着を行った。この吸着と脱着の操作を
繰り返し10回以上実施した。系外に排出されるガスの
濃度は、島津製作所製の全炭化水素計HCM−1Bの測
定器を用いて送風機2の出口と吸着槽3,4出口の合流
地点で測定した。連続運転した時のガス処理装置入・出
口のガス濃度を図4に示した。
COMPARATIVE EXAMPLE 1 An organic solvent-containing gas containing 9000 ppm of methylene chloride and having a temperature of 40 ° C. was blown from the blower 2 to the adsorption tank 3 at a flow rate of 70 Nm 3 / min using a gas treatment apparatus equivalent to that shown in FIG. Desorption was performed in the adsorption tank 4 for 8 minutes, and then the air blow to the adsorption tank 3 was blocked by the automatic damper 6, and then steam was jetted into the adsorption element 5 of the adsorption tank 3. At the same time as this treatment, the automatic damper 6 of the adsorption tank 4 was opened, and this time, gas adsorption was performed in this adsorption tank 4. This operation of adsorption and desorption was repeated 10 times or more. The concentration of the gas discharged to the outside of the system was measured at the confluence of the outlet of the blower 2 and the outlets of the adsorption tanks 3 and 4 using a measuring instrument of total hydrocarbon meter HCM-1B manufactured by Shimadzu Corporation. The gas concentrations at the inlet and outlet of the gas treatment device during continuous operation are shown in FIG.

【0023】[0023]

【実施例1】回収液ラインを槽ドレンラインの最下端に
繋げた図2の場合についても同様の条件で実施した。連
続運転した時のガス濃度を図5に示した。
Example 1 The same conditions were also applied to the case of FIG. 2 in which the recovery liquid line was connected to the bottom end of the tank drain line. The gas concentration during continuous operation is shown in FIG.

【0024】図4,5のグラフを比較するとわかるよう
に、実施例の発明の方法を用いることで系外に排出され
るガス濃度は吸着槽3,4交互の切り替え運転において
も、安定し、かつ低濃度であることが明らかである。連
続運転してもガス濃度の変動も殆どない。またドレンの
逆流も防止できることが判明した。
As can be seen by comparing the graphs of FIGS. 4 and 5, the gas concentration discharged to the outside of the system by using the method of the invention of the embodiment is stable even in the alternate switching operation of the adsorption tanks 3, 4. And it is clear that the concentration is low. There is almost no change in gas concentration even during continuous operation. It was also found that backflow of drain could be prevented.

【0025】[0025]

【発明の効果】以上に説明したごとく、回収液ラインの
凝縮液が槽ドレンラインに流入しないように回収液ライ
ンの配管ルートを変更することにより低沸点溶剤を含む
有機溶剤含有ガスの吸脱着が連続的に安定に高効率に行
えることが可能となり、産業界に寄与すること大であ
る。
As described above, by changing the piping route of the recovery liquid line so that the condensate of the recovery liquid line does not flow into the tank drain line, the adsorption / desorption of the organic solvent-containing gas containing the low boiling point solvent can be performed. It will be possible to continuously and stably perform with high efficiency, which will greatly contribute to the industrial world.

【図面の簡単な説明】[Brief description of drawings]

【図1】ガス吸着処理装置の基本処理フロー図例FIG. 1 Example of basic processing flow diagram of gas adsorption processing device

【図2】回収液ライン11の独立接続例FIG. 2 shows an example of independent connection of the recovery liquid line 11.

【図3】回収液ライン11の合流接続例FIG. 3 is an example of confluent connection of the recovery liquid line 11.

【図4】回収液ライン11の従来接続場合の排出ガス濃
度(比較例)
FIG. 4 is an exhaust gas concentration when the recovery liquid line 11 is conventionally connected (comparative example).

【図5】回収液ライン11の独立接続場合の排出ガス濃
度(実施例)
FIG. 5: Exhaust gas concentration when collecting liquid line 11 is independently connected (Example)

【符号の説明】[Explanation of symbols]

1 :プレフィルター 2 :送風機 3 :吸着槽(4が吸着槽として機能する時は、脱着
槽) 4 :脱着槽(3が脱着槽として機能する時は、吸着
槽) 5 :吸着エレメント 6 :自動ダンパー 7 :蒸気調整自動弁 8 :槽ドレンライン 9 :脱着ガスライン 10:コンデンサー 11:回収液ライン 12:セパレータ 13:戻りガスライン 14:排気口 15:水蒸気ライン X :有機溶剤含有ガス(被処理ガス) Y :清浄空気 Z :重比重液 W1:水蒸気 W2:軽比重液 W3:冷却水
1: Pre-filter 2: Blower 3: Adsorption tank (desorption tank when 4 functions as an adsorption tank) 4: Desorption tank (adsorption tank when 3 functions as a desorption tank) 5: Adsorption element 6: Automatic Damper 7: Automatic vapor control valve 8: Tank drain line 9: Desorption gas line 10: Condenser 11: Recovery liquid line 12: Separator 13: Return gas line 14: Exhaust port 15: Water vapor line X: Organic solvent-containing gas (processing target) Gas) Y: Clean air Z: Heavy specific gravity liquid W1: Water vapor W2: Light specific gravity liquid W3: Cooling water

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D002 AA00 AB03 BA04 BA13 CA07 DA44 EA08 FA01 GA01 GB12 HA10 4D012 CA11 CB16 CD02 CG04 CG05 CH06 CK10    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4D002 AA00 AB03 BA04 BA13 CA07                       DA44 EA08 FA01 GA01 GB12                       HA10                 4D012 CA11 CB16 CD02 CG04 CG05                       CH06 CK10

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】被処理ガスを吸着処理する活性炭素繊維素
材の吸着エレメントを吸着槽内に設け、前記吸着槽に対
する被処理ガス供給手段と脱着用ガス供給手段とを設け
るとともに脱着ガス供給手段により脱着された脱着ガス
を冷却回収する手段を設けたガス処理装置において、前
記吸着槽の下部から凝縮液を排出する配管(槽ドレンラ
イン)と冷却部から凝縮液を排出する配管(回収液ライ
ン)を溶剤回収部に独立または合流して繋げることを特
徴とするガス吸着処理装置。
1. An adsorption element made of an activated carbon fiber material for adsorbing a gas to be treated is provided in an adsorption tank, and means for supplying a gas to be treated and a desorption gas supply means for said adsorption tank are provided by a desorption gas supply means. In a gas treatment device provided with means for cooling and recovering the desorbed desorbed gas, a pipe (tank drain line) for discharging the condensate from the lower part of the adsorption tank and a pipe (recovered liquid line) for discharging the condensate from the cooling part. A gas adsorption treatment device, wherein the gas adsorption treatment device is connected to the solvent recovery unit independently or by joining.
【請求項2】吸着槽を2槽以上備え、被処理ガスを吸着
する吸着処理状態と、脱着用ガスで吸着された被処理ガ
スを脱着する脱着処理状態とを順次切り替える手段を設
けた請求項1記載のガス処理装置。
2. A means for switching between an adsorption treatment state for adsorbing a gas to be treated and a desorption treatment state for desorbing a gas to be treated adsorbed by a desorption gas, wherein two or more adsorption tanks are provided. 1. The gas processing device according to 1.
【請求項3】脱着用ガス供給手段が吸着槽内の吸着エレ
メントの芯材上部または下部または中央部に配置された
ことを特徴とした請求項1記載のガス処理装置。
3. The gas treatment apparatus according to claim 1, wherein the desorption gas supply means is arranged at the upper part, the lower part or the central part of the core of the adsorption element in the adsorption tank.
【請求項4】請求項1乃至3記載のいずれかのガス処理
装置を用いて、有機溶剤含有ガスを処理する方法。
4. A method for treating an organic solvent-containing gas using the gas treatment apparatus according to claim 1.
JP2001220281A 2001-07-19 2001-07-19 Gas processing apparatus and gas processing method Expired - Fee Related JP4596110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001220281A JP4596110B2 (en) 2001-07-19 2001-07-19 Gas processing apparatus and gas processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001220281A JP4596110B2 (en) 2001-07-19 2001-07-19 Gas processing apparatus and gas processing method

Publications (2)

Publication Number Publication Date
JP2003033619A true JP2003033619A (en) 2003-02-04
JP4596110B2 JP4596110B2 (en) 2010-12-08

Family

ID=19054128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001220281A Expired - Fee Related JP4596110B2 (en) 2001-07-19 2001-07-19 Gas processing apparatus and gas processing method

Country Status (1)

Country Link
JP (1) JP4596110B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009240858A (en) * 2008-03-28 2009-10-22 Ihi Corp Volatile organic compound treatment system
JP2014147863A (en) * 2013-01-31 2014-08-21 Toyobo Co Ltd Gas treatment system and gas treatment method
JP2014147864A (en) * 2013-01-31 2014-08-21 Toyobo Co Ltd Gas treatment system and gas treatment method
CN113457368A (en) * 2021-06-21 2021-10-01 江苏徐工工程机械研究院有限公司 Asphalt flue gas concentration device, system and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08150319A (en) * 1994-11-28 1996-06-11 Toho Kako Kensetsu Kk Method for recovering solvent and device therefor
JPH11123311A (en) * 1990-08-15 1999-05-11 Osaka Gas Co Ltd Solvent recovery device
JP2000140654A (en) * 1998-08-31 2000-05-23 Toyobo Co Ltd Treatment of gas or water to be treated, and treating device
JP2001347126A (en) * 2000-06-09 2001-12-18 Toyobo Co Ltd Gas treating device and gas treating method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11123311A (en) * 1990-08-15 1999-05-11 Osaka Gas Co Ltd Solvent recovery device
JPH08150319A (en) * 1994-11-28 1996-06-11 Toho Kako Kensetsu Kk Method for recovering solvent and device therefor
JP2000140654A (en) * 1998-08-31 2000-05-23 Toyobo Co Ltd Treatment of gas or water to be treated, and treating device
JP2001347126A (en) * 2000-06-09 2001-12-18 Toyobo Co Ltd Gas treating device and gas treating method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009240858A (en) * 2008-03-28 2009-10-22 Ihi Corp Volatile organic compound treatment system
JP2014147863A (en) * 2013-01-31 2014-08-21 Toyobo Co Ltd Gas treatment system and gas treatment method
JP2014147864A (en) * 2013-01-31 2014-08-21 Toyobo Co Ltd Gas treatment system and gas treatment method
CN113457368A (en) * 2021-06-21 2021-10-01 江苏徐工工程机械研究院有限公司 Asphalt flue gas concentration device, system and method

Also Published As

Publication number Publication date
JP4596110B2 (en) 2010-12-08

Similar Documents

Publication Publication Date Title
JP5029590B2 (en) Wastewater treatment system
WO2021132071A1 (en) Organic solvent recovery system
JP2003033619A (en) Gas treatment device and gas treatment method
JP2010142728A (en) System for treating exhaust
JP6229267B2 (en) Gas processing apparatus and gas processing method
JP2010142790A (en) System for treating exhaust
JP6565357B2 (en) Concentrator and organic solvent recovery system
JP4548891B2 (en) Organic solvent recovery method
JP2009247962A (en) Method of cleaning large quantity of exhaust gas containing thin volatile hydrocarbon
CN208786092U (en) A kind of hydrogen peroxide oxidation exhaust treatment system
KR100375079B1 (en) Method for recovery of volatile organic compounds by adsorption-condensation and apparatus therefor
JP2001347126A (en) Gas treating device and gas treating method
JP2003053131A (en) Apparatus and method for treating gas
HU216289B (en) Method for purifying flow of flue gas using a washing solution
JP4524519B2 (en) Gas processing equipment
KR100981073B1 (en) Method and apparatus for concentrating a substance having a higher boiling point than water in an exhaust gas
JP4530472B2 (en) Organic solvent recovery device and recovery method
JP2001347130A (en) Gas treating device and gas treating method
JP2011092871A (en) Organic solvent recovery system
JP5177272B2 (en) Non-drainage adsorption recovery equipment
JP2011092870A (en) Organic solvent recovery system
KR100468915B1 (en) A oxygen generator
JP6740818B2 (en) Organic solvent recovery system
JP4877260B2 (en) Non-drainage adsorption recovery equipment
JP7435367B2 (en) Organic solvent recovery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100907

R151 Written notification of patent or utility model registration

Ref document number: 4596110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees