JP2001347126A - Gas treating device and gas treating method - Google Patents

Gas treating device and gas treating method

Info

Publication number
JP2001347126A
JP2001347126A JP2000174026A JP2000174026A JP2001347126A JP 2001347126 A JP2001347126 A JP 2001347126A JP 2000174026 A JP2000174026 A JP 2000174026A JP 2000174026 A JP2000174026 A JP 2000174026A JP 2001347126 A JP2001347126 A JP 2001347126A
Authority
JP
Japan
Prior art keywords
gas
adsorption
tank
desorption
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000174026A
Other languages
Japanese (ja)
Inventor
Tomoaki Ikeno
友明 池野
Takeshi Hamamatsu
健 濱松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2000174026A priority Critical patent/JP2001347126A/en
Publication of JP2001347126A publication Critical patent/JP2001347126A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Treating Waste Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To make the adsorption ability of active carbon fiber materials more effectively utilizable than heretofore and to enhance the recovering efficiency of an organic solvent from the gas to be treated. SOLUTION: The gas treating device for alternately switching an adsorption treating state and a desorption state using the active carbon fiber materials as adsorption elements is constituted by connecting a discharge pipe (vessel drain line) at the bottom of an adsorption vessel and piping (recovering liquid line) for discharging the condensate from a cooling section independently or confluently from or with a solvent recovering section in such a manner that the aggregated drain does not flow backward in desorption, by which the wetting of the active carbon fiber materials by the back flow of the condensate is prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、繊維活性炭(以下
ACFと記す)を吸着剤として、有機物の吸着を行うと
同時に、吸着した有機物を脱着させることを可能とした
ガス吸脱着装置およびこの装置を用いた処理方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas adsorbing / desorbing apparatus and a gas adsorbing / desorbing apparatus capable of adsorbing an organic substance and desorbing the adsorbed organic substance using fiber activated carbon (hereinafter referred to as ACF) as an adsorbent. The present invention relates to a processing method using.

【0002】[0002]

【従来の技術】近年、有害大気汚染物質に対する排出濃
度規制が強化されてきており、ガス処理装置からの排ガ
スの濃度を低減することが望まれている。
2. Description of the Related Art In recent years, regulations on the emission concentration of harmful air pollutants have been strengthened, and it has been desired to reduce the concentration of exhaust gas from a gas treatment device.

【0003】従来、上記ガス処理装置は、活性炭繊維素
材で被処理ガス(つまり排ガス)の有機溶剤を吸着する
1対以上の吸着槽と、各吸着槽に対する被処理ガス供給
手段と脱着用ガス供給手段とを設け、前記吸着槽に被処
理ガスを供給する吸着処理状態と、脱着用ガスを供給す
る脱着処理状態とに切り替える切り替え手段を設けて構
成してあった。
Conventionally, the above-mentioned gas treatment apparatus comprises one or more pairs of adsorption tanks for adsorbing an organic solvent of a gas to be treated (that is, exhaust gas) with an activated carbon fiber material, a gas supply means for each adsorption tank, and a gas supply for desorption. And a switching means for switching between an adsorption processing state in which a gas to be treated is supplied to the adsorption tank and a desorption processing state in which a desorption gas is supplied to the adsorption tank.

【0004】上記のガス処理装置はACFが使用されて
いる。ACFは低濃度の有機ガスを吸着する機能に優
れ、古くから吸着剤として使われている。たとえば、A
CFを支持体に固定し、または自己支持にて円筒状に構
成し、芯材内にたて型に配設した装置が特開昭51−3
8278号公報、特公報64−11326号に提案され
ている。また、実公平7−2028,2029,203
0にも同様な吸脱着装置が提案されている。これらは、
いずれも、ACFを格納している芯材に蒸気を噴出し、
ACFに吸着された有機物を脱着させるものである。
[0004] The above gas processing apparatus uses an ACF. ACF has an excellent function of adsorbing a low concentration of organic gas, and has been used as an adsorbent for a long time. For example, A
An apparatus in which a CF is fixed to a support or formed in a cylindrical shape by self-support and arranged in a vertical form in a core material is disclosed in JP-A-51-3.
No. 8278, and Japanese Patent Publication No. 64-11326. In addition, actual fairness 7-2028, 2029, 203
A similar adsorption / desorption device is also proposed for No. 0. They are,
In each case, steam is blown out to the core material containing the ACF,
The organic substance adsorbed on the ACF is desorbed.

【0005】ACFの含水率はACFの吸着能力に大き
く影響し、含水率が高くなると、吸着能力は極端に低下
する。このため、前記提案においては、蒸気の噴出方向
を上または下から、あるいは芯材の中央内部方向からな
どいろいろ工夫が凝らされている。しかし、芯材下部の
ACFにどうしても運転開始時など、噴出する蒸気中の
ドレンが飛散しACFに水分が含まれて、ガス吸着能を
低下させるという問題があった。
[0005] The water content of ACF greatly affects the adsorption capacity of ACF. As the water content increases, the adsorption capacity decreases extremely. For this reason, various proposals have been made in the above-mentioned proposal, for example, from the upper or lower direction of the steam ejection, or from the center inside direction of the core material. However, there is a problem in that the drain in the jetted steam is scattered to the ACF below the core material at the start of operation and the ACF contains moisture, thereby lowering the gas adsorption ability.

【0006】さらにまた、上記に示したガス吸着エレメ
ントを用いたガス処理装置において、長期にわたり吸脱
着が安定して連続運転することは困難とされていた。即
ち、ガスの吸着したエレメントに蒸気を噴出させ、吸着
したガスを脱着させることを交互に繰り返して使用する
場合、特に低沸点溶剤などは外気の温度などに影響著し
く受け、溶剤回収部へ繋がる配管から凝縮液が逆流する
ことがしばしばある。この逆流により、ガス処理エレメ
ント内のACFに凝縮液が接触し、吸着能力を大きく低
下させる問題があり、連続運転にも支障をきたしてい
た。
Furthermore, in the gas treatment apparatus using the gas adsorption element described above, it has been difficult to stably operate the adsorption and desorption continuously for a long period of time. In other words, in the case where the gas is adsorbed on the element and the vapor is ejected and the adsorbed gas is desorbed alternately and repeatedly used, especially low-boiling solvents are significantly affected by the temperature of the outside air and the like, and piping connected to the solvent recovery section is used. Condensate often flows back from Due to this backflow, the condensed liquid comes into contact with the ACF in the gas treatment element, and there is a problem that the adsorbing capacity is greatly reduced, which also hinders the continuous operation.

【0007】[0007]

【発明が解決しようとする課題】本発明は、ACFを用
いて有機ガス、特に低沸点溶剤の吸脱着を、高い効率で
かつ連続的に行うことを可能としたガス吸脱着装置に関
するものである。
SUMMARY OF THE INVENTION The present invention relates to a gas adsorption / desorption apparatus capable of continuously and efficiently absorbing and desorbing an organic gas, particularly a solvent having a low boiling point, using ACF. .

【0008】[0008]

【課題を解決するための手段】脱着を行っている時吸着
槽内にて凝縮した液は吸着槽下部の槽ドレンラインを通
りセパレータへ排出され、未凝縮の蒸気と溶剤は脱着ガ
スラインを通りコンデンサーへ行き凝縮した後、槽ドレ
ンラインに合流し溶剤回収部(以下セパレータと記す)
へ排出される。例えば、第1図の吸着槽B(連続運転の
ため、A槽が吸着槽として運転している時は、B槽は脱
着槽となる)の下部から凝縮液が槽ドレンライン8を通
ってセパレータ12に送られるが、この時槽ドレンライ
ン8中に滞留していた溶剤を加熱するため溶剤が沸騰
し、その結果溶剤を含んだ凝縮液が逆流する。外気温が
低く、被処理ガスが低沸点溶剤の場合などは、この傾向
が顕著となる。
The liquid condensed in the adsorption tank during the desorption is discharged to the separator through the tank drain line at the bottom of the adsorption tank, and the uncondensed vapor and the solvent pass through the desorption gas line. After condensing after going to the condenser, it joins the tank drain line and the solvent recovery section (hereinafter referred to as separator)
Is discharged to For example, the condensed liquid passes through the tank drain line 8 from the lower part of the adsorption tank B in FIG. 1 (for continuous operation, when the tank A is operated as the adsorption tank, the tank B is a desorption tank), and the separator passes through the tank drain line 8. At this time, the solvent boiling in the tank drain line 8 is heated to heat the solvent remaining in the tank drain line 8, and condensate containing the solvent flows backward. This tendency becomes remarkable when the outside air temperature is low and the gas to be treated is a low-boiling solvent.

【0009】本発明は、この凝縮液の逆流を防止するた
めに、コンデンサーから排出された高濃度の溶剤を含ん
だ回収液が回収液ラインを通り、槽ドレンラインに流れ
込まない工夫をすることにより、槽内への凝縮液の逆流
を防止するものである。従来回収液ラインは槽ドレンラ
インの最下端にて接続された後、液封の目的で上方向へ
立ち上がり、セパレータへ繋がっていた。合流させるの
は、高温の槽ドレンラインの凝縮液とコンデンサーにて
冷却された比較的低温の回収液ラインの凝縮液が混合さ
せることによりセパレータへ流入する凝縮液の温度を全
体的に下げ、セパレータ内の溶剤の揮発を抑えるためで
あった。しかし、回収する溶剤が水より沸点の低い場合
には、回収ラインから槽ドレンラインに流入した高濃度
の溶剤が吸着槽内にて凝縮した高温の凝縮液が槽ドレン
ラインから流入し、この溶剤を加熱することにより沸騰
し、槽ドレンライン内の凝縮液を吸着槽内へ逆流させて
いたためであり、図2に示すように回収液ラインを単独
で液封機能を持たせる配管ルートにてセパレータへ繋ぐ
ことにより、凝縮液の逆流を防止出きることとなった。
According to the present invention, in order to prevent the backflow of the condensed liquid, the condensed liquid containing the high-concentration solvent discharged from the condenser is prevented from flowing into the tank drain line through the collected liquid line. To prevent the condensed liquid from flowing back into the tank. Conventionally, the recovery liquid line is connected at the lowermost end of the tank drain line, and then rises upward for the purpose of liquid sealing, and is connected to the separator. The merging is performed by mixing the condensate in the high-temperature tank drain line and the condensate in the relatively low-temperature recovery liquid line cooled by the condenser to lower the temperature of the condensate flowing into the separator as a whole. This was for suppressing the volatilization of the solvent inside. However, when the solvent to be recovered has a boiling point lower than that of water, a high-condensate in which the high-concentration solvent flowing from the recovery line into the tank drain line condenses in the adsorption tank flows from the tank drain line, and this solvent This causes boiling due to heating, and the condensed liquid in the tank drain line was caused to flow back into the adsorption tank. As shown in FIG. In this way, the backflow of the condensate was prevented.

【0010】また回収液ラインの凝縮液が高温であるた
め、セパレータ内の溶剤の温度を上昇させ、処理ガス入
口に戻すガスの濃度が上昇させてしまう可能がある場合
には、図3に示すように槽ドレンラインの立ち上がり後
に回収液ラインを繋ぐことにより、戻りガスの濃度を抑
えることが出来る。これらの配管ルート変更により、槽
ドレンライン中の溶剤濃度は吸着槽から凝縮した高温の
凝縮液中の極微量だけとなり、沸騰し逆流を引き起こす
ことが無くなり、ACFを被処理液で濡らすこともな
く、連続運転を可能とするものである。
FIG. 3 shows a case where the temperature of the solvent in the separator is increased due to the high temperature of the condensate in the recovery liquid line, and the concentration of the gas returned to the processing gas inlet may be increased. By connecting the recovery liquid line after the rise of the tank drain line, the concentration of the returned gas can be suppressed. Due to these pipe route changes, the solvent concentration in the tank drain line becomes only a trace amount in the high-temperature condensate condensed from the adsorption tank, it does not boil and does not cause backflow, and the ACF does not wet with the liquid to be treated. , Enabling continuous operation.

【0011】有機ガスとしては、特に低沸点溶剤にその
効果が顕著である。通常これらのガスは蒸気と一緒に芯
材外へ排出されるが、芯材の外において冷却とともに水
層と溶剤層の2層に分離が起こる。一般に有機溶剤の方
の比重が大きく、2層の下側に貯まる。従って、芯材の
下部のガス排出口から凝縮液の逆流が発生した場合はこ
の凝縮液にてACFが濡れることにより、吸着能力を低
下させてしまう。
As an organic gas, its effect is particularly remarkable for a solvent having a low boiling point. Usually, these gases are discharged to the outside of the core together with the vapor, but outside the core, upon cooling, separation occurs into two layers of a water layer and a solvent layer. In general, the specific gravity of the organic solvent is larger, and the organic solvent is stored below the two layers. Therefore, when a backflow of the condensed liquid occurs from the gas outlet at the lower part of the core material, the ACF is wetted by the condensed liquid, so that the adsorption capacity is reduced.

【0012】ここで言う有機ガスとは、塩化メチレン、
トリクロロエタン、トリクロロエチレン、四塩化炭素、
クロロホルム等の有機溶剤を指し、特に本発明において
は塩化メチレンなどの低沸点溶剤が適する。
The organic gas referred to here is methylene chloride,
Trichloroethane, trichloroethylene, carbon tetrachloride,
Refers to an organic solvent such as chloroform. In the present invention, a low-boiling solvent such as methylene chloride is particularly suitable.

【0013】この回収液ラインの変更によりACFの凝
縮液による濡れもなくなり、常にACFは乾燥状態を維
持することが可能となり、吸脱着槽内の温度、相対湿度
の制御も容易になり、吸着効率が一層向上した。
[0013] This change in the recovery liquid line also eliminates the wetting of the ACF by the condensate, makes it possible to keep the ACF dry at all times, facilitates the control of the temperature and relative humidity in the adsorption / desorption tank, and improves the adsorption efficiency. Was further improved.

【0014】さらに、芯材のACFは常時水分と接触す
ることがなくなり、吸着能力は維持されることから,吸
着槽として、また脱着槽とし連続的に切り替えが可能と
なった。この結果、本発明の装置は運転、停止時のスム
ースな操作とともに連続的に有機ガスの吸脱着が可能と
なり操作性に優れるとともに、長期期間にわたっての運
転も可能となった。
Further, since the ACF of the core material does not always come into contact with moisture and maintains the adsorption capacity, it is possible to continuously switch between the adsorption tank and the desorption tank. As a result, the device of the present invention is able to continuously absorb and desorb the organic gas, smoothly operate at the time of operation and stoppage, and is excellent in operability, and can be operated for a long period.

【0015】本発明においてACFとはアクリロニトリ
ル(PAN)系繊維、レーヨン系、石炭ピッチ系、フェ
ノール樹脂系、石油ピッチ系など原料繊維を既存の方法
にて処理して得られた比表面積300〜3000m2
g、繊維直径が2〜30μm程度、繊維長さが0.5〜
10mm程度、細孔半径が8〜20Å程度、の繊維状活
性炭を使用するのが好ましい。
In the present invention, ACF means acrylonitrile (PAN) -based fiber, rayon-based, coal pitch-based, phenolic resin-based, petroleum pitch-based raw material fiber, and the specific surface area of 300 to 3,000 m. 2 /
g, fiber diameter is about 2 to 30 μm, fiber length is 0.5 to
It is preferable to use fibrous activated carbon having a diameter of about 10 mm and a pore radius of about 8 to 20 °.

【0016】また、この対策により、蒸気の噴出口は芯
材の上下、または芯材中央部のいずれの位置でもよく、
上側の場合は、蒸気の自然落下の観点から優れ、下側の
場合はACF下部のACFの濡れが少なく、中央の場合
は均一に蒸気が行き渡りやすいという点で優れ、装置の
配置する条件によって自由に選択することが可能となっ
た。
According to this measure, the steam outlet may be located at any position above or below the core material or at the center of the core material.
The upper case is excellent from the viewpoint of the spontaneous fall of steam, the lower case is excellent in that the ACF under the ACF has little wetting, and the center is excellent in that the steam is easily distributed uniformly, and is free depending on the arrangement conditions of the apparatus. It became possible to choose.

【0017】[0017]

【発明の実施の形態】次に、本発明の一実施形態の一例
を図1にて説明する。有機溶剤を含んだ溶剤混合ガス
(被処理ガス)Xはプレフィルター1(コンデンサー1
0、セパレータ12内に滞留しているガスは*3,*4
を通って再度このプレフィルター1に戻される)を通
り、送風機2にて吸着槽3(この時吸着槽4には、溶剤
混合ガスに送ることはなく、自動ダンパー6で封鎖され
ている。吸着槽4内では、蒸気を噴出して、すでに吸着
エレメント5に吸着されたガスを脱着している状態であ
る)に送られ、吸着エレメント5でガス吸着が行なわ
れ、清浄空気Yとして、吸着槽3の排気口14より系外
に排出される。凝縮液は、吸着槽4下部の槽ドレンライ
ン8を通ってセパレータ12に送られる。未凝縮の蒸気
及び溶剤は脱着ガスライン9を通って、コンデンサー1
0へ送られる。コンデンサー10からは高濃度の有機溶
剤を含んだ凝縮液が回収液ライン11を通り槽ドレンラ
イン8に合流してセパレータ12へ送られる。
Next, an example of an embodiment of the present invention will be described with reference to FIG. A solvent mixed gas (a gas to be treated) X containing an organic solvent is supplied to a pre-filter 1 (a condenser 1).
0, the gas remaining in the separator 12 is * 3, * 4
After passing through the pre-filter 1 again, the air is passed through the adsorption tank 3 by the blower 2 (in this case, the adsorption tank 4 is not sent to the solvent mixed gas, but is closed by the automatic damper 6. In the tank 4, steam is blown out and sent to a state in which the gas already adsorbed by the adsorption element 5 is being desorbed. The gas is adsorbed by the adsorption element 5, and as the clean air Y, 3 is discharged out of the system through the exhaust port 14. The condensate is sent to the separator 12 through the tank drain line 8 below the adsorption tank 4. Uncondensed vapor and solvent pass through the desorption gas line 9 and pass through the condenser 1
Sent to 0. From the condenser 10, a condensate containing a high-concentration organic solvent passes through the recovery liquid line 11, joins the tank drain line 8, and is sent to the separator 12.

【0018】この時、低沸点溶剤が混合された混合ガス
の場合に、特に外部温度が低下すればするほどこの槽ド
レンライン8に流れ込む量が多くなることにより、凝縮
液の吸着槽への逆流が顕著になり、吸着槽4に噴出し、
ACFを濡らしてしまう。このため本発明は回収液ライ
ン11を槽ドレンライン8から切り離し単独でセパレー
タ12へ繋ぐことにより、吸着槽3,4下部への凝縮液
の逆流を防止したものである。
At this time, in the case of a mixed gas containing a low-boiling solvent, particularly, the lower the external temperature is, the larger the amount of the gas flowing into the tank drain line 8 is. Becomes noticeable and squirts into the adsorption tank 4,
Wet the ACF. For this reason, the present invention prevents the backflow of the condensed liquid to the lower part of the adsorption tanks 3 and 4 by disconnecting the recovery liquid line 11 from the tank drain line 8 and connecting it to the separator 12 alone.

【0019】図2,3にコンデンサーとセパレータ部分
の配管図を拡大して示した。
FIGS. 2 and 3 show enlarged piping diagrams of the condenser and the separator.

【0020】この結果、吸着槽3、4を切り替え連続運
転しても、常時系外に排出されるガス濃度は低濃度でか
つ一定化することが可能となった。
As a result, even when the adsorption tanks 3 and 4 are switched and operated continuously, the concentration of the gas constantly discharged outside the system can be kept low and constant.

【0021】吸着エレメント5に吸着された溶剤は、吸
着槽4にて蒸気W1をエレメントに噴出させて、溶剤の
脱着を行う。蒸気の量は蒸気調整自動弁7にて制御され
る。また、この蒸気は吸着槽4の上部または、下部(図
1中の点線)より槽内に噴出される。
The solvent adsorbed on the adsorption element 5 causes the vapor W1 to be ejected to the element in the adsorption tank 4 to desorb the solvent. The amount of steam is controlled by a steam control automatic valve 7. This vapor is blown into the adsorption tank 4 from above or below (dotted line in FIG. 1).

【0022】この結果、溶剤混合ガスXは清浄空気Yと
して系外に放出されるとともに、溶剤Zとして回収され
る。脱着用の蒸気W1は回収水W2として回収される。
As a result, the solvent mixed gas X is released out of the system as clean air Y and is recovered as the solvent Z. The steam W1 for desorption is recovered as recovered water W2.

【0023】以下に実施例を示す。塩化メチレンを90
00ppm含む40℃の溶剤混合ガスを、風量70Nm
3/分で送風機2より吸着槽3に送風した。吸着槽4で8
分間脱着を行い、その後自動ダンパー6で吸着槽3への
送風を封鎖し、次に吸着槽3の吸着エレメント5内に蒸
気を噴出した。この処置と同時に吸着槽4の自動ダンパ
ー6を開放し、今度は、この吸着槽4でガス吸着を行っ
た。この吸着と脱着の操作を繰り返し10回以上実施し
た。系外に排出されるガスの濃度は、島津製作所製の総
炭化水素計の測定器を用いて測定した。
Examples will be described below. 90 methylene chloride
A solvent mixed gas containing 40 ppm at 40 ° C. and an air volume of 70 Nm
Air was blown from the blower 2 to the adsorption tank 3 at a rate of 3 / min. 8 in adsorption tank 4
After desorption for a minute, the air flow to the adsorption tank 3 was blocked by the automatic damper 6, and then steam was blown into the adsorption element 5 of the adsorption tank 3. At the same time as this treatment, the automatic damper 6 of the adsorption tank 4 was opened, and gas adsorption was performed in the adsorption tank 4 this time. This operation of adsorption and desorption was repeated 10 times or more. The concentration of the gas discharged out of the system was measured using a measuring device of a total hydrocarbon meter manufactured by Shimadzu Corporation.

【0024】回収液ラインを槽ドレンラインの最下端に
繋げた場合についても同様の条件で実施した。連続運転
した時の排出ガス濃度を図3,4に示した。
The same conditions were used when the recovered liquid line was connected to the lowermost end of the tank drain line. The exhaust gas concentrations during continuous operation are shown in FIGS.

【0025】図4,5のグラフからわかるように、系外
に排出されるガス濃度は吸着槽3,4交互の切り替え運
転においても、安定し、かつ低濃度であることが明らか
である。連続運転してもガス濃度の変動も殆どない。
As can be seen from the graphs of FIGS. 4 and 5, it is clear that the concentration of gas discharged out of the system is stable and low even in the operation of alternately switching the adsorption tanks 3 and 4. There is almost no change in the gas concentration even if it is operated continuously.

【0026】[0026]

【発明の効果】以上に説明したごとく、回収液ラインの
凝縮液が槽ドレンラインに流入しないように回収液ライ
ンの配管ルートを変更することにより低沸点溶剤を含む
混合ガスの吸脱着が連続的に安定に高効率に行えること
が可能となり、産業界に寄与すること大である。
As described above, by changing the piping route of the recovery liquid line so that the condensate of the recovery liquid line does not flow into the tank drain line, the adsorption and desorption of the mixed gas containing the low boiling point solvent can be continuously performed. It is possible to stably and efficiently perform the above, which greatly contributes to the industry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ガス吸着処理装置の基本処理フロー図例FIG. 1 is an example of a basic processing flow diagram of a gas adsorption processing apparatus.

【図2】回収液ライン11の単独接続例FIG. 2 shows an example of a single connection of the recovery liquid line 11

【図3】回収液ライン11の合流接続例FIG. 3 shows an example of a junction connection of the recovery liquid line 11

【図4】回収液ライン11の従来接続場合の排出ガス濃
FIG. 4 shows the exhaust gas concentration when the recovery liquid line 11 is conventionally connected

【図5】回収液ライン11の単独接続場合の排出ガス濃
FIG. 5: Exhaust gas concentration when the recovery liquid line 11 is connected alone

【符号の説明】[Explanation of symbols]

1 :プレフィルター 2 :送風機 3 :吸着槽(4が吸着槽として機能する時) 4 :脱着槽(3が吸着槽として機能する時) 5 :吸着エレメント 6 :自動ダンパー 7 :蒸気調整自動弁 8 :槽ドレンライン 9 :脱着ガスライン 10:コンデンサー 11:回収液ライン 12:セパレータ 13:戻りガスライン 14:排気口 15:蒸気ライン X :溶剤混合ガス(被処理ガス) Y :清浄空気 Z :回収溶剤 W1:蒸気 W2:回収水 W3:冷却水 1: Pre-filter 2: Blower 3: Adsorption tank (when 4 functions as adsorption tank) 4: Desorption tank (when 3 functions as adsorption tank) 5: Adsorption element 6: Automatic damper 7: Automatic steam control valve 8 : Tank drain line 9: Desorption gas line 10: Condenser 11: Recovered liquid line 12: Separator 13: Return gas line 14: Exhaust port 15: Steam line X: Solvent mixed gas (gas to be treated) Y: Clean air Z: Recovery Solvent W1: Steam W2: Recovered water W3: Cooling water

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】活性炭素繊維素材で被処理ガスを吸着処理
する吸着槽を設け、前記吸着槽に対する被処理ガス供給
手段と脱着用ガス供給手段とを設けるとともに、前記吸
着槽に被処理ガスを供給する吸着処理状態と、脱着用ガ
スを供給する脱着用処理状態とに切り替え手段を設けた
ガス処理装置において、前記吸着槽の下部から凝縮液を
排出する配管(槽ドレンライン)と冷却部から凝縮液を
排出する配管(回収液ライン)を溶剤回収部に独立また
は合流して繋げることを特徴とするガス吸着処理装置。
An adsorption tank for adsorbing a gas to be treated with an activated carbon fiber material is provided. A gas supply means for the adsorption tank and a gas supply means for desorption are provided to the adsorption tank. In a gas treatment apparatus provided with a switching means between an adsorption treatment state for supplying and a desorption treatment state for supplying a desorption gas, a pipe (tank drain line) for discharging condensed liquid from a lower portion of the adsorption tank and a cooling unit A gas adsorption treatment apparatus characterized in that a pipe (recovery liquid line) for discharging condensate is connected to the solvent recovery section independently or in a combined manner.
【請求項2】筒状の芯材の上部または下部または中央部
にスチーム噴出口を設けたガス吸着エレメントを用いる
ことを特徴とした請求項1記載のガス処理装置。
2. A gas processing apparatus according to claim 1, wherein a gas adsorbing element having a steam outlet at an upper portion, a lower portion, or a central portion of the cylindrical core material is used.
【請求項3】請求項1乃至2記載のいずれかのガス処理
装置を用いて、有機剤含有ガスを処理する方法。
3. A method for treating an organic agent-containing gas using the gas treatment apparatus according to claim 1.
JP2000174026A 2000-06-09 2000-06-09 Gas treating device and gas treating method Withdrawn JP2001347126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000174026A JP2001347126A (en) 2000-06-09 2000-06-09 Gas treating device and gas treating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000174026A JP2001347126A (en) 2000-06-09 2000-06-09 Gas treating device and gas treating method

Publications (1)

Publication Number Publication Date
JP2001347126A true JP2001347126A (en) 2001-12-18

Family

ID=18676150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000174026A Withdrawn JP2001347126A (en) 2000-06-09 2000-06-09 Gas treating device and gas treating method

Country Status (1)

Country Link
JP (1) JP2001347126A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033619A (en) * 2001-07-19 2003-02-04 Toyobo Co Ltd Gas treatment device and gas treatment method
CN101850205A (en) * 2010-05-27 2010-10-06 阳足开 Waste gas purification apparatus
JP2014147863A (en) * 2013-01-31 2014-08-21 Toyobo Co Ltd Gas treatment system and gas treatment method
JP2017056370A (en) * 2015-09-14 2017-03-23 東洋紡株式会社 Organic solvent recovery device
JP2021013879A (en) * 2019-07-10 2021-02-12 東洋紡株式会社 Organic solvent recovery method and organic solvent recovery system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033619A (en) * 2001-07-19 2003-02-04 Toyobo Co Ltd Gas treatment device and gas treatment method
JP4596110B2 (en) * 2001-07-19 2010-12-08 東洋紡績株式会社 Gas processing apparatus and gas processing method
CN101850205A (en) * 2010-05-27 2010-10-06 阳足开 Waste gas purification apparatus
JP2014147863A (en) * 2013-01-31 2014-08-21 Toyobo Co Ltd Gas treatment system and gas treatment method
JP2017056370A (en) * 2015-09-14 2017-03-23 東洋紡株式会社 Organic solvent recovery device
JP2021013879A (en) * 2019-07-10 2021-02-12 東洋紡株式会社 Organic solvent recovery method and organic solvent recovery system
JP7400230B2 (en) 2019-07-10 2023-12-19 東洋紡エムシー株式会社 Organic solvent recovery method and organic solvent recovery system

Similar Documents

Publication Publication Date Title
US8460434B2 (en) Methane recovery from a landfill gas
JP2018023967A5 (en)
JP2018023967A (en) Desulfurization process based on ammonia via ammonia addition in different chambers and device
CN102143795A (en) A method and a device for removing nitrogen oxides and sulphur trioxide from a process gas
WO2017219623A1 (en) Online cyclic regeneration organic waste gas treatment method and device
JP5029590B2 (en) Wastewater treatment system
JP2001347126A (en) Gas treating device and gas treating method
JP4596110B2 (en) Gas processing apparatus and gas processing method
TW201124196A (en) Organic waste gas purification system and method capable of preventing from surface condensation and agglomeration of the absorption material.
JP2001347130A (en) Gas treating device and gas treating method
JP4548891B2 (en) Organic solvent recovery method
JP4736268B2 (en) Gas processing apparatus and gas processing method
JP4524519B2 (en) Gas processing equipment
KR100981073B1 (en) Method and apparatus for concentrating a substance having a higher boiling point than water in an exhaust gas
JP3069578B2 (en) Solvent recovery method and apparatus
JP4530472B2 (en) Organic solvent recovery device and recovery method
JP6917646B2 (en) Volatile organic compound recovery system
CN211302563U (en) Oil gas treatment system
JPH1171584A (en) Recovery of hydrocarbon in liquid state from waste gas containing gaseous hydrocarbon
JPH06205922A (en) Device for recovering hydrocarbon
CN107281868A (en) Bitumen flue gas processing method and equipment
JP2011092871A (en) Organic solvent recovery system
KR100501533B1 (en) Gas scrubber device for semiconductor process
JP5177272B2 (en) Non-drainage adsorption recovery equipment
CN208927893U (en) Oil pipe bar cleans waste gas treatment equipment and oil pipe bar cleaning equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070525

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080624