JP2003031820A - Capacitor microphone and pressure sensor - Google Patents

Capacitor microphone and pressure sensor

Info

Publication number
JP2003031820A
JP2003031820A JP2001219465A JP2001219465A JP2003031820A JP 2003031820 A JP2003031820 A JP 2003031820A JP 2001219465 A JP2001219465 A JP 2001219465A JP 2001219465 A JP2001219465 A JP 2001219465A JP 2003031820 A JP2003031820 A JP 2003031820A
Authority
JP
Japan
Prior art keywords
etch stop
stop layer
substrate
pressure sensor
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001219465A
Other languages
Japanese (ja)
Other versions
JP4532787B2 (en
Inventor
Toshifumi Tajima
利文 田島
Toshiyuki Nishiguchi
敏行 西口
Nobuo Saito
信雄 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP2001219465A priority Critical patent/JP4532787B2/en
Publication of JP2003031820A publication Critical patent/JP2003031820A/en
Application granted granted Critical
Publication of JP4532787B2 publication Critical patent/JP4532787B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00436Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
    • B81C1/00555Achieving a desired geometry, i.e. controlling etch rates, anisotropy or selectivity
    • B81C1/00595Control etch selectivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0257Microphones or microspeakers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0264Pressure sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0128Processes for removing material
    • B81C2201/013Etching
    • B81C2201/0135Controlling etch progression
    • B81C2201/014Controlling etch progression by depositing an etch stop layer, e.g. silicon nitride, silicon oxide, metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Measuring Fluid Pressure (AREA)
  • Micromachines (AREA)
  • Pressure Sensors (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a capacitor microphone and pressure sensor, which can incease the degree of freedom in the structure of a parallel plate electrode, designing of a mountable circuit by eliminating the restriction in a producing process. SOLUTION: The capacitor microphone and pressure sensor 100 is formed by etching a bonded substrate 400 having an etch stop layer 220 on one surface of a vibration film substrate 210, and obtained by inserting a bonding film 320 to be used for bonding the vibration film substrate 210 and a rear surface plate substrate 310 between the etch stop layer 220 and the rear surface plate substrate 310 to bond them. The bonding film 320 contains the same impurity as the boron doped for forming the etch stop layer 220, the density of the impurity contained in the bonding film 320 equal to or higher than that of the impurity doped in the etch stop layer 220, impurity diffusion for forming the etch stop layer 220 is performed at <=1200 deg.C, and heat processing after this is performed at >=900 deg.C and equal to or lower than the temperature of the impurity diffusion.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、マイクロマシン加
工技術を用いて作成する振動膜を有するコンデンサ型マ
イクロホンおよび圧力センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a condenser microphone and a pressure sensor having a vibrating membrane formed by using a micromachining technique.

【0002】[0002]

【従来の技術】従来、受けた音波の音圧に応じてコンデ
ンサ容量を変化させ、そのコンデンサ容量の変化を電気
信号に変換するコンデンサ型マイクロホンが知られてい
る。このようなコンデンサ型マイクロホンとして、図1
に示すような構造のマイクロホンが知られ、このマイク
ロホンの圧力センサはマイクロマシン加工技術を用いて
作成される。
2. Description of the Related Art Heretofore, there has been known a condenser type microphone that changes a condenser capacity according to a sound pressure of a received sound wave and converts the change in the condenser capacity into an electric signal. Such a condenser microphone is shown in FIG.
A microphone having a structure as shown in is known, and a pressure sensor of this microphone is manufactured by using a micromachining technique.

【0003】図1に示すコンデンサ型マイクロホン(圧
力センサ)100は、振動膜201、振動膜支持部20
2、背面板301、排気穴302、及び支持部303に
よって構成される。振動膜201はミクロンオーダーの
厚さの導電性平板であり、振動膜201と背面板301
とは平行板電極を構成する。振動膜201に入射した音
波は、振動膜201を振動させ、振動膜201と背面板
301とによって構成されるコンデンサの容量を変化さ
せる。
A condenser type microphone (pressure sensor) 100 shown in FIG. 1 has a diaphragm 201 and a diaphragm support 20.
2, a rear plate 301, an exhaust hole 302, and a support portion 303. The vibrating membrane 201 is a conductive flat plate having a thickness of the order of microns, and the vibrating membrane 201 and the back plate 301 are
And constitute a parallel plate electrode. The sound wave incident on the vibrating film 201 vibrates the vibrating film 201 and changes the capacitance of the capacitor configured by the vibrating film 201 and the back plate 301.

【0004】振動膜201は、マイクロマシン加工技術
を用いて製作され、シリコン基板をエッチングすること
によって削り出される。シリコン基板を用いることによ
って、機械強度の高い振動膜を形成することが可能であ
る。また、各構成部を同一材質のシリコン基板から形成
することによって、各構成部の熱膨張係数を同一にする
ことができ、異種材料を組み合わせてコンデンサ型マイ
クロホンを構成する場合とは異なり、温度変化による歪
みが生じにくい。さらに、シリコン基板を用いることに
よって基板上に様々なシリコンの電子回路を形成するこ
とが可能である。
The vibrating film 201 is manufactured by using a micromachining technique and is cut out by etching a silicon substrate. By using a silicon substrate, it is possible to form a vibrating film having high mechanical strength. In addition, by forming each component from a silicon substrate of the same material, the coefficient of thermal expansion of each component can be made the same, and unlike the case of configuring a condenser type microphone by combining different materials, temperature change Distortion is less likely to occur. Furthermore, by using a silicon substrate, it is possible to form various silicon electronic circuits on the substrate.

【0005】以下、図5を参照してコンデンサ型マイク
ロホン(圧力センサ)100の従来の製作方法について
説明する。工程201で、図5(b)に示すように、振
動膜基板210にエッチストップ層220を形成する。
このエッチストップ層220は、図5(d)に示すよう
にコンデンサ型マイクロホン(圧力センサ)100の振
動膜201になる部分であり、振動膜201を安定的に
形成するためにシリコン基板のエッチング量を制御する
目的で用いられるものである(参考文献:エリン.シュ
タインスランドら著、「TMAH溶液中の硼素エッチス
トップ」、Sensors and Actuator
s,A54巻(1996),728−732頁(Elin S
teinsland etal., “Boron etch-stop in TMAH”, Sens
ors and Actuators, A54(1996), 728-732)。
A conventional manufacturing method of the condenser type microphone (pressure sensor) 100 will be described below with reference to FIG. In step 201, an etch stop layer 220 is formed on the vibration film substrate 210 as shown in FIG.
The etch stop layer 220 is a portion that becomes the vibration film 201 of the condenser microphone (pressure sensor) 100, as shown in FIG. 5D, and the etching amount of the silicon substrate for stably forming the vibration film 201. (Reference: Erin Steinsland et al., "Boron Etch Stop in TMAH Solution", Sensors and Actuator).
s, A54 (1996), 728-732 (Elin S
teinsland et al., “Boron etch-stop in TMAH”, Sens
ors and Actuators, A54 (1996), 728-732).

【0006】工程202で、背面板基板310に背面板
基板酸化膜330、620を形成し、エッチストップ層
220が形成された面と対向する振動膜基板210の面
に振動膜基板酸化膜230を形成する。工程203で、
図5(c)に示すように、エッチストップ層220と背
面板基板酸化膜620とを陽極接続等の技術を用いて接
続し、接合基板700を形成する。接合基板700を形
成することによって、微細な平行板電極を高精度且つ、
容易に形成できる。
In step 202, the back plate substrate oxide films 330 and 620 are formed on the back plate substrate 310, and the vibrating film substrate oxide film 230 is formed on the surface of the vibrating film substrate 210 opposite to the surface on which the etch stop layer 220 is formed. Form. In step 203,
As shown in FIG. 5C, the etch stop layer 220 and the back plate substrate oxide film 620 are connected using a technique such as anodic connection to form a bonded substrate 700. By forming the bonding substrate 700, a fine parallel plate electrode can be formed with high accuracy and
It can be easily formed.

【0007】工程204で、振動膜基板酸化膜230と
背面板基板酸化膜330にマスク形成処理を施し、図5
(d)に示すように、振動膜基板酸化膜マスク231と
背面板基板酸化膜マスク331とを形成する。工程20
5で、振動膜基板酸化膜マスク231と背面板基板酸化
膜マスク331とを用いてアルカリエッチング液でエッ
チングし、図5(d)に示すように振動膜201と背面
板301を形成する。
In step 204, a mask forming process is performed on the vibrating film substrate oxide film 230 and the back plate substrate oxide film 330, and then, as shown in FIG.
As shown in (d), a vibrating film substrate oxide film mask 231 and a back plate substrate oxide film mask 331 are formed. Process 20
In step 5, the diaphragm film oxide film mask 231 and the back plate board oxide film mask 331 are used to etch with an alkaline etching solution to form the diaphragm 201 and the back plate 301 as shown in FIG. 5D.

【0008】工程206で、フッ酸を用いて、振動膜基
板酸化膜マスク231、背面板基板酸化膜マスク33
1、および背面板基板酸化膜620の図1に示す支持部
303を除く部分をエッチングし、平行板電極を形成
し、コンデンサ型マイクロホン(圧力センサ)100を
得る。
In step 206, the vibrating film substrate oxide film mask 231 and the back plate substrate oxide film mask 33 are formed using hydrofluoric acid.
1 and the portion of the back plate substrate oxide film 620 other than the supporting portion 303 shown in FIG. 1 are etched to form parallel plate electrodes, and a condenser type microphone (pressure sensor) 100 is obtained.

【0009】このように、従来のコンデンサ型マイクロ
ホンまたは圧力センサでは、振動膜201になるエッチ
ストップ層220を形成した振動膜基板210と、背面
板基板310とを接合して接合基板700を形成し、こ
の接合基板700の両面にエッチングマスク231、3
31を形成した後、アルカリエッチング液で接合基板7
00をエッチングしてマイクロホンの振動膜201と、
背面板301を形成している。
As described above, in the conventional condenser type microphone or pressure sensor, the vibrating film substrate 210 having the etch stop layer 220 serving as the vibrating film 201 and the back plate substrate 310 are bonded to each other to form the bonding substrate 700. , Etching masks 231 and 3 on both surfaces of the bonded substrate 700.
After forming 31, the bonding substrate 7 is treated with an alkali etching solution.
00 to etch the diaphragm 201 of the microphone,
The back plate 301 is formed.

【0010】ここで、アルカリエッチング液に耐性のあ
る良質なエッチングマスクを得るにはシリコン熱酸化膜
を用いることが必須である。シリコン熱酸化膜は、通
常、シリコン基板を酸素雰囲気中、900℃以上の温度
で熱酸化することによって形成される。
Here, it is essential to use a silicon thermal oxide film in order to obtain a good quality etching mask resistant to an alkaline etching solution. The silicon thermal oxide film is usually formed by thermally oxidizing a silicon substrate at a temperature of 900 ° C. or higher in an oxygen atmosphere.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、従来の
コンデンサ型マイクロホンおよび圧力センサの製作方法
では、エッチストップ層形成のためにドープする不純物
(特に硼素)の偏析係数はシリコン(エッチストップ
層)中より酸化膜中の方が小さいため、エッチストップ
層を形成した接合基板に上記の熱処理を行うと、不純物
はエッチストップ層から酸化膜へ拡散してしまうことが
知られている。
However, in the conventional method for manufacturing the condenser microphone and the pressure sensor, the segregation coefficient of impurities (particularly boron) doped for forming the etch stop layer is higher than that in silicon (etch stop layer). It is known that impurities are diffused from the etch stop layer into the oxide film when the above-mentioned heat treatment is performed on the junction substrate on which the etch stop layer is formed because the oxide film is smaller.

【0012】上記の事項は、 原徹ら編集、超LSIプロセスデータハンドブック、
昭和57年、サイエンスフォーラム、204−206
頁、 柳井久義、永田穣著、集積回路工学(1)、昭和55
年、コロナ社、76頁、 アール.ビー.フェアー、およびジェイ.シー.シ
ー.ツァイ著、「ドライ、ニアドライおよびウェットで
のO2酸化中のSi2における硼素の偏析の理論および
直接計測」、J.Electrochem.Soc.1
25巻、12号、2050−2058頁、1978,1
2月、(R.B.Fair and J.C.C.Tsai, ”Theory and Dire
ct Measurement of Boron Segregation in SiO2 during
Dry, Near Dry, and Wet O2 Oxidation”, J.Electro
chem.Soc., 125, No.12, 2050-2058,Dec 1978)、 ジェイ.ダブリュー.コルビー、およびエル.イー。
カッツ著、「温度および面方位を関数とするSi−Si
2界面での硼素の偏析」、J.Electroche
m.Soc.123巻、3号、409−412頁、19
76,3月(J.W.Colby and L.E.Katz, ”Boron Segreg
ation at Si- SiO2 Interface as a Function of Tempe
rature and Orientation”, J.Electrochem.Soc., 123,
No.3, 409-412, Mar 1976) 等の文献から公知である。
The above matters are edited by Toru Hara et al., VLSI process data handbook,
1982, Science Forum, 204-206
Page, Hisayoshi Yanai, Minoru Nagata, Integrated Circuit Engineering (1), Showa 55
Year, Corona, page 76, are. Bee. Fear, and Jay. C. C. Tsai al, "dry, S i theory and direct measurement of the segregation of boron in O 2 in O 2 in oxidation in Niadorai and wet", J. Electrochem. Soc. 1
Vol. 25, No. 12, pp. 2050-2058, 1978, 1
February, (RBFair and JCCTsai, “Theory and Dire
ct Measurement of Boron Segregation in SiO 2 during
Dry, Near Dry, and Wet O 2 Oxidation ”, J. Electro
chem.Soc., 125, No. 12, 2050-2058, Dec 1978), Jay. W. Colby, and Elle. E.
Katz Author, as a function of "temperature and surface orientation Si-S i
Segregation of Boron at O 2 Interface ”, J. Electroche
m. Soc. Volume 123, Issue 3, 409-412, 19
76, March (JWColby and LEKatz, “Boron Segreg
ation at Si- SiO 2 Interface as a Function of Tempe
rature and Orientation ”, J. Electrochem. Soc., 123,
No. 3, 409-412, Mar 1976) and the like.

【0013】その結果、エッチストップ層の不純物濃度
が低下してエッチストップ層の内部応力が圧縮方向に転
じ、振動膜は、その内部の圧縮応力によって座屈すると
いう問題がある(参考文献:クレオパトラ カブズら
著、「p+シリコン中で実現されている力学的構造に関
するマイクロフィジックス的な研究」、J.Micro
electromechanical System
s,VOL.4,NO.3,1995 9月(Cleopatr
a Cabuz et al., ”Microphysical Investigationson M
echanical Structures Realized in p+ Silicon”, J.M
ircroelectromechanical Systems, VOL.4, NO.3, Sep 1
995))。
As a result, the impurity concentration of the etch stop layer decreases, the internal stress of the etch stop layer shifts in the compression direction, and the diaphragm vibrates due to the internal compression stress (reference: Cleopatra Cubs). Et al., "Microphysics Study on Mechanical Structures Realized in p + Silicon," J. Micro.
electromechanical System
s, VOL. 4, NO. 3, 1995 September (Cleopatr
a Cabuz et al., “Microphysical Investigationson M
echanical Structures Realized in p + Silicon ”, JM
ircroelectromechanical Systems, VOL.4, NO.3, Sep 1
995)).

【0014】かかる問題に対する対策の1つとして、エ
ッチングマスク用の酸化膜を形成するための熱酸化処理
を、エッチストップ層形成前に行うという方法が考えら
れる。しかし、初期に酸化膜を形成すると、基板接合を
行うために基板の裏面に接合用の電極端子が必要となる
という問題や、酸化膜形成後の工程において生じるエッ
チングマスクのキズの防止が製作工程上の大きな制約と
なるという問題がある。
As one of the countermeasures against such a problem, a method of performing a thermal oxidation process for forming an oxide film for an etching mask before forming an etch stop layer can be considered. However, when the oxide film is formed in the initial stage, the problem that the electrode terminals for bonding are required on the back surface of the substrate for bonding the substrate and the scratches of the etching mask that occur in the process after the oxide film is formed are prevented in the manufacturing process. There is a problem that it becomes a big constraint above.

【0015】また、平行板電極間の浮遊容量を低減し、
性能向上を図る目的で、膜厚の異なる複雑なエッチング
マスク構造を採用することが考えられるが、製作工程の
初期にエッチストップ層を形成することは、設計、製作
上、困難である等の問題がある。このように従来の製作
方法では、平行板電極の構造や搭載できる回路等に関し
て、設計自由度が狭められている。
Further, the stray capacitance between the parallel plate electrodes is reduced,
It is possible to adopt a complicated etching mask structure with different film thickness for the purpose of improving the performance, but it is difficult to form the etch stop layer in the early stage of the manufacturing process in terms of design and manufacturing. There is. As described above, in the conventional manufacturing method, the degree of freedom in design is narrowed with respect to the structure of the parallel plate electrodes, the circuit that can be mounted, and the like.

【0016】本発明は、かかる問題を解決するためにな
されたものであり、その目的は、製作工程の制約を解消
し、平行板電極の構造や搭載できる回路等の設計自由度
を広げることができるコンデンサ型マイクロホンおよび
圧力センサを提供することである。
The present invention has been made in order to solve such a problem, and its purpose is to eliminate the restrictions of the manufacturing process and to expand the degree of freedom in designing the structure of parallel plate electrodes and the circuits that can be mounted. It is to provide a condenser type microphone and a pressure sensor that can be used.

【0017】[0017]

【課題を解決するための手段】以上の点を考慮して、請
求項1に係る発明は、振動膜基板の1つの面にエッチス
トップ層を有し、前記振動膜基板と背面板基板との接合
に用いる接合膜を前記エッチストップ層と前記背面板基
板とで挟んで接合した接合基板をエッチングして形成す
るコンデンサ型マイクロホンおよび圧力センサにおい
て、前記接合膜は、前記エッチストップ層形成のために
ドープした不純物と同じ不純物を含む構成を有してい
る。
In view of the above points, the invention according to claim 1 has an etch stop layer on one surface of the vibrating membrane substrate, and comprises the vibrating membrane substrate and the back plate substrate. In a capacitor-type microphone and a pressure sensor, which are formed by etching a bonding substrate in which a bonding film used for bonding is sandwiched between the etch stop layer and the back plate substrate, the bonding film is for forming the etch stop layer. It has a structure including the same impurities as the doped impurities.

【0018】この構成により、エッチストップ層との接
合膜としてエッチストップ層中の不純物濃度と同一の不
純物を含む層を用いて製作されるため、エッチストップ
層を形成し、基板を接合した後でも不純物の再分布を問
題とすることなく約1200℃以内で基板の高温酸化・
アニール処理を行うことができる。
With this structure, since a layer containing impurities having the same impurity concentration as that of the etch stop layer is used as a bonding film with the etch stop layer, even after the etch stop layer is formed and the substrates are bonded together. High temperature oxidation of the substrate within about 1200 ° C without redistribution of impurities
An annealing process can be performed.

【0019】また、請求項2に係る発明は、請求項1に
おいて、前記エッチストップ層中にドープされた不純物
と同じ前記接合膜中に含まれる不純物は、硼素である構
成を有している。この構成により、エッチストップ層と
接合膜とに硼素を不純物としてドープしたものを用いる
ため、エッチストップ層と背面板基板とを接合した接合
基板に対して、所定のアリカリエッチング液を用いてエ
ッチングを行うことができる。
Further, the invention according to claim 2 is such that, in claim 1, the impurity contained in the bonding film, which is the same as the impurity doped in the etch stop layer, is boron. With this configuration, since the etch stop layer and the bonding film are doped with boron as an impurity, the bonding substrate in which the etch stop layer and the back plate substrate are bonded is etched using a predetermined alkaline etching solution. It can be carried out.

【0020】また、請求項3に係る発明は、請求項1ま
たは2において、前記接合膜中に含まれる不純物の濃度
は、前記エッチストップ層中にドープされた不純物の濃
度以上である構成を有している。この構成により、接合
膜中に含まれる不純物の濃度が、エッチストップ層中に
ドープされた不純物の濃度以上であるため、接合膜への
偏析によるエッチストップ層中の不純物の再分布を抑制
することができる。
The invention according to claim 3 is the structure according to claim 1 or 2, wherein the concentration of impurities contained in the bonding film is equal to or higher than the concentration of impurities doped in the etch stop layer. is doing. With this configuration, since the concentration of impurities contained in the bonding film is equal to or higher than the concentration of impurities doped in the etching stop layer, redistribution of impurities in the etching stop layer due to segregation to the bonding film is suppressed. You can

【0021】また、請求項4に係る発明は、請求項1な
いし3のいずれかにおいて、前記エッチストップ層形成
のための不純物拡散は1200℃以下で行われ、その後
の熱処理は900℃以上、前記不純物拡散の温度以下で
行われる構成を有している。この構成により、エッチス
トップ層形成のための不純物拡散は1200℃以下で行
われ、その後の熱処理は900℃以上1200℃以下で
行われるため、その後の熱処理の適切な温度範囲を確保
し、エッチストップ層中の不純物の再分布を抑制するこ
とができる。
Further, in the invention according to claim 4, in any one of claims 1 to 3, the impurity diffusion for forming the etch stop layer is performed at 1200 ° C. or lower, and the subsequent heat treatment is 900 ° C. or higher, It has a configuration in which it is performed at a temperature below the temperature of impurity diffusion. With this configuration, the impurity diffusion for forming the etch stop layer is performed at 1200 ° C. or lower, and the subsequent heat treatment is performed at 900 ° C. or higher and 1200 ° C. or lower, so that an appropriate temperature range for the subsequent heat treatment is ensured and the etch stop is performed. Redistribution of impurities in the layer can be suppressed.

【0022】[0022]

【発明の実施の形態】以下、添付図面を参照し、本発明
の第1の実施の形態に係るコンデンサ型マイクロホンお
よび圧力センサについて説明する。図2は、第1の実施
の形態に係るコンデンサ型マイクロホンおよび圧力セン
サの製作工程の概略を示す図である。
BEST MODE FOR CARRYING OUT THE INVENTION A condenser microphone and a pressure sensor according to a first embodiment of the present invention will be described below with reference to the accompanying drawings. FIG. 2 is a diagram schematically showing a manufacturing process of the condenser microphone and the pressure sensor according to the first embodiment.

【0023】コンデンサ型マイクロホン(圧力センサ)
100は、シリコン基板等の半導体基板を用いて形成さ
れ、音波検出には検出感度を向上させるために薄い振動
膜が要求される。以下では、説明の便宜上、半導体基板
をシリコン基板に限定する。通常、この薄い振動膜20
1を形成するのにエッチング技術を用い、エッチング量
を制御するために振動膜基板210に厚さ数ミクロンの
エッチストップ層220を形成する。
Condenser type microphone (pressure sensor)
100 is formed by using a semiconductor substrate such as a silicon substrate, and a thin vibrating film is required for detection of sound waves in order to improve detection sensitivity. Hereinafter, for convenience of description, the semiconductor substrate is limited to the silicon substrate. Usually, this thin vibrating membrane 20
1 is formed by using an etching technique, and an etch stop layer 220 having a thickness of several microns is formed on the vibration film substrate 210 to control the etching amount.

【0024】工程101で、図2(b)に示すように、
振動膜基板210にエッチストップ層220を形成す
る。エッチストップ層220の形成は固体拡散法によっ
て行われ、シリコン基板上に不純物を高濃度に熱拡散す
る方法によって行われる。不純物の熱拡散は、高濃度不
純物層を得るために高温で熱処理するが、シリコンウェ
ハに熱変形が生じないようにするために1200℃以下
の温度で熱処理する。なお、第1の実施の形態では固体
拡散法を用いてエッチストップ層を形成する場合につい
て説明するが、イオン注入法、塗布法等の他の形成法に
よって行うのでも良い。
In step 101, as shown in FIG.
An etch stop layer 220 is formed on the vibrating film substrate 210. The etch stop layer 220 is formed by a solid diffusion method, and is performed by a method of thermally diffusing impurities in a high concentration on a silicon substrate. In thermal diffusion of impurities, heat treatment is performed at a high temperature to obtain a high-concentration impurity layer, but heat treatment is performed at a temperature of 1200 ° C. or lower in order to prevent thermal deformation of a silicon wafer. In the first embodiment, the case where the etch stop layer is formed by using the solid diffusion method will be described, but it may be performed by another forming method such as an ion implantation method or a coating method.

【0025】工程102で、図2(a)に示すように、
背面板基板310に接合膜320を形成し、その接合膜
320は、粉体酸化シリコンを塗布する方法またはCV
D法等によって堆積する方法等によって形成される。こ
こで用いる粉体酸化シリコンやCVD法等によって形成
される酸化膜は、エッチストップ層220の形成のため
にドープしたのと同じ不純物を高濃度に含むものであ
る。そして、接合膜320中の不純物濃度は、エッチス
トップ層220中の不純物濃度より高いものとする。
In step 102, as shown in FIG.
A bonding film 320 is formed on the back plate substrate 310, and the bonding film 320 is formed by coating powder silicon oxide or CV.
It is formed by a method of depositing by the D method or the like. The powder silicon oxide used here or the oxide film formed by the CVD method or the like contains the same impurities as those doped for forming the etch stop layer 220 in a high concentration. The impurity concentration in the bonding film 320 is higher than the impurity concentration in the etch stop layer 220.

【0026】工程103で、図2(c)に示すように、
エッチストップ層220と接合膜320とを介して振動
膜基板210と背面板基板310とを接合し、接合基板
400を作成する。その接合は、加熱溶着、陽極接合、
直接接合等の接合技術を用いて行うことができる。工程
104で、接合基板400の背面板基板310側を研磨
して所望の背面板の厚さにする。
In step 103, as shown in FIG.
The vibrating film substrate 210 and the back plate substrate 310 are bonded via the etch stop layer 220 and the bonding film 320 to form a bonded substrate 400. The joining is performed by heat welding, anodic joining,
It can be performed using a joining technique such as direct joining. In step 104, the back plate 310 side of the bonded substrate 400 is polished to a desired back plate thickness.

【0027】工程105で、接合基板400を酸素雰囲
気中で熱処理することによって、接合基板400の両面
にエッチングマスク用の酸化膜230、330を形成す
る。エッチングマスク用の酸化膜230、330は、振
動膜基板210のシリコンエッチング深さから4000
Å前後の厚さとなるように形成する。
In step 105, the bonded substrate 400 is heat-treated in an oxygen atmosphere to form oxide films 230 and 330 for etching masks on both surfaces of the bonded substrate 400. The oxide films 230 and 330 for the etching mask are formed at a depth of 4000 from the silicon etching depth of the vibration film substrate 210.
Å It is formed so that it has a thickness of about before and after.

【0028】酸化膜230、330を形成するための熱
処理は、エッチストップ層220中の不純物の再拡散を
防ぐために、エッチストップ層形成温度以下で行う。第
1の実施の形態では、酸化膜230、330を形成する
ための熱処理温度を900℃以上とする。このような熱
処理温度としたのは、酸化膜230、330の成長に適
切な速度を確保することと、低温処理では振動板基板2
10と接合酸化膜320との間の界面電荷が増加するこ
と(参考文献:原徹ら編集、超LSIプロセスデータハ
ンドブック、昭和57年、サイエンスフォーラム、14
2−143頁、)、を回避するためである。
The heat treatment for forming the oxide films 230 and 330 is performed below the etch stop layer formation temperature in order to prevent the re-diffusion of impurities in the etch stop layer 220. In the first embodiment, the heat treatment temperature for forming the oxide films 230 and 330 is 900 ° C. or higher. The heat treatment temperature is set to ensure an appropriate rate for growth of the oxide films 230 and 330, and for the low temperature treatment, the vibration plate substrate 2 is used.
Increasing interface charge between 10 and junction oxide film 320 (reference: edited by Toru Hara et al., VLSI Process Data Handbook, 1982, Science Forum, 14
This is for avoiding 2-Page 143,).

【0029】工程106で、ホトリソ技術を用いて酸化
膜230、330を加工し、図2(d)に示すように振
動膜エッチングマスク231と背面板エッチングマスク
331を形成する。工程107で、振動膜エッチングマ
スク231と背面板エッチングマスク331とを用いて
接合基板400をエッチングし、図2(d)に示すよう
に振動膜201と背面板301を形成する。その際、T
MAH(Tetramethyl ammonium hydroxide)等の所定の
アルカリエッチング液を用いてエッチングを行うことが
できる。
In step 106, the oxide films 230 and 330 are processed by the photolithography technique to form a vibration film etching mask 231 and a back plate etching mask 331 as shown in FIG. 2D. In step 107, the bonding substrate 400 is etched using the vibrating film etching mask 231 and the back plate etching mask 331 to form the vibrating film 201 and the back plate 301 as shown in FIG. 2D. At that time, T
Etching can be performed using a predetermined alkali etching solution such as MAH (Tetramethyl ammonium hydroxide).

【0030】工程108で、振動膜エッチングマスク2
31、背面板エッチングマスク331、および接合膜3
20の図1に示す支持部203を除く部分をエッチング
し、平行板電極を形成する。以上の処理工程をもって、
一体構造のコンデンサ型マイクロホンまたは圧力センサ
が得られる。
In step 108, the vibrating film etching mask 2
31, back plate etching mask 331, and bonding film 3
A portion of 20 except the supporting portion 203 shown in FIG. 1 is etched to form a parallel plate electrode. With the above processing steps,
A monolithic condenser microphone or pressure sensor is obtained.

【0031】図3は、上記のように接合基板に酸化膜6
000Åを形成したときの、接合酸化膜とエッチストッ
プ層との界面からシリコン基板方向への不純物プロファ
イルを示す図である。図3に示すグラフにおいて、縦軸
は対数表示の不純物濃度であり、横紬は界面からシリコ
ン基板方向への距離である。図3から、界面(0μm位
置)付近で不純物濃度の顕著な低下は見られず、また不
純物プロファイルは熱酸化処理前とほぼ同じであった。
In FIG. 3, the oxide film 6 is formed on the bonding substrate as described above.
It is a figure which shows the impurity profile toward the silicon substrate from the interface of a junction oxide film and an etch stop layer when 000Å is formed. In the graph shown in FIG. 3, the vertical axis represents the logarithmic impurity concentration, and the horizontal pongee represents the distance from the interface toward the silicon substrate. From FIG. 3, no significant decrease in the impurity concentration was observed near the interface (0 μm position), and the impurity profile was almost the same as that before the thermal oxidation treatment.

【0032】図4は、上記のように接合基板に酸化膜6
000Åを形成した後に製作した振動膜の表面変位を、
レーザ変位計を用いて計測して得られたプロファイルで
ある。図4に示すグラフにおいて、縦軸は振動膜の表面
変位であり、横軸は振動膜の面内の距離である。図4か
ら、振動膜内のプロファイルはほぼ平坦であり、座屈は
生じていないことがわかる。
In FIG. 4, the oxide film 6 is formed on the bonding substrate as described above.
The surface displacement of the vibrating membrane produced after forming 000Å
It is a profile obtained by measurement using a laser displacement meter. In the graph shown in FIG. 4, the vertical axis represents the surface displacement of the vibrating membrane, and the horizontal axis represents the in-plane distance of the vibrating membrane. From FIG. 4, it can be seen that the profile in the vibrating film is almost flat and buckling does not occur.

【0033】以上説明したように、第1の実施の形態に
係るコンデンサ型マイクロホンおよび圧力センサは、エ
ッチストップ層との接合膜としてエッチストップ層中の
不純物濃度よりも高濃度の不純物を有する層を塗布また
は堆積して得られた接合基板を用いて製作されるため、
薄い振動膜を製作するために欠くことのできないエッチ
ストップ層を形成し、基板を接合した後でも約1200
℃以内で基板の高温酸化・アニール処理が行うことがで
きる。
As described above, the capacitor-type microphone and the pressure sensor according to the first embodiment have the layer having the impurity concentration higher than the impurity concentration in the etch stop layer as the bonding film with the etch stop layer. Since it is manufactured using a bonded substrate obtained by coating or depositing,
An etch stop layer, which is indispensable for manufacturing a thin vibrating film, is formed and about 1200 even after bonding the substrates.
It is possible to perform high temperature oxidation / annealing treatment of the substrate within a temperature of ℃.

【0034】また、アニール処理が可能であるため、接
合した基板の研削・研磨、クリーニングなどの加工が可
能となる。また、基板接合後に基板の加工ができること
で、所望する厚さで基板やその上に形成される各層を形
成すること、および膜厚の異なる複雑なエッチングマス
ク形成が可能となる。
Further, since the annealing treatment is possible, the joined substrates can be processed such as grinding / polishing and cleaning. In addition, since the substrates can be processed after the substrates are bonded, it becomes possible to form the substrate and each layer formed thereon with a desired thickness and to form a complicated etching mask having different film thicknesses.

【0035】[0035]

【発明の効果】以上説明したように、本発明は、エッチ
ストップ層との接合膜としてエッチストップ層中の不純
物濃度よりも高濃度の不純物を有する層を塗布または堆
積して形成することによって、コンデンサ型マイクロホ
ンまたは圧力センサの製作工程上の制約を解消して、浮
遊容量低減等を可能とし性能を向上させる平行板電極構
造と搭載回路の設計自由度を広げることが可能なコンデ
ンサ型マイクロホンおよび圧力センサを実現することが
できる。
As described above, according to the present invention, by applying or depositing a layer having an impurity concentration higher than that of the etch stop layer as a bonding film with the etch stop layer, Capacitor-type microphone and pressure that can expand the design freedom of the parallel plate electrode structure and the on-board circuit that can reduce the stray capacitance and improve the performance by eliminating the restrictions on the manufacturing process of the condenser-type microphone or pressure sensor. A sensor can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】コンデンサ型マイクロホンおよび圧力センサの
断面図である。
FIG. 1 is a cross-sectional view of a condenser microphone and a pressure sensor.

【図2】本発明の第1の実施の形態に係るコンデンサ型
マイクロホンおよび圧力センサの製作工程の概略を示す
図である。
FIG. 2 is a diagram schematically showing a manufacturing process of the condenser microphone and the pressure sensor according to the first embodiment of the invention.

【図3】本発明の第1の実施の形態に係る接合基板に酸
化膜6000Åを形成したときの、接合酸化膜とエッチ
ストップ層との界面からシリコン基板方向への不純物プ
ロファイルを示す図である。
FIG. 3 is a diagram showing an impurity profile from the interface between the junction oxide film and the etch stop layer toward the silicon substrate when the oxide film 6000Å is formed on the junction substrate according to the first embodiment of the present invention. .

【図4】本発明の第1の実施の形態に係る接合基板に酸
化膜6000Åを形成した後に製作した振動膜の表面変
位を、レーザ変位計を用いて計測して得られたプロファ
イルを示す図である。
FIG. 4 is a diagram showing a profile obtained by measuring the surface displacement of a vibrating film manufactured after forming an oxide film 6000Å on the bonded substrate according to the first embodiment of the present invention using a laser displacement meter. Is.

【図5】従来のコンデンサ型マイクロホンおよび圧力セ
ンサの製作工程の概略を示す図である。
FIG. 5 is a diagram schematically showing a manufacturing process of a conventional condenser type microphone and a pressure sensor.

【符号の説明】[Explanation of symbols]

100 コンデンサ型マイクロホン(圧力センサ) 201 振動膜 202 振動膜支持部(基板) 210 振動膜基板 220 エッチストップ層 230 振動膜基板酸化膜 231 振動膜エッチングマスク 301 背面板 302 排気穴 303 支持部 310 背面板基板 320 エッチストップ層と同じ不純物を含む酸化膜 330、620 背面板基板酸化膜 331 背面板エッチングマスク 400、700 接合基板 500 エッチストップ層と酸化膜が形成された基板 600 酸化膜が形成された基板 100 condenser microphone (pressure sensor) 201 vibrating membrane 202 Vibration film support (substrate) 210 Vibration film substrate 220 Etch stop layer 230 Vibration film Substrate oxide film 231 Vibration film etching mask 301 back plate 302 Exhaust hole 303 Support 310 Back plate substrate 320 Oxide film containing the same impurities as the etch stop layer 330, 620 Back plate Substrate oxide film 331 Back plate etching mask 400, 700 bonded substrate 500 Substrate with etch stop layer and oxide film 600 Substrate with oxide film formed

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斎藤 信雄 東京都世田谷区砧一丁目10番11号 日本放 送協会 放送技術研究所内 Fターム(参考) 2F055 AA40 BB20 CC02 DD05 EE25 FF43 GG01 GG12 4M112 AA01 BA07 CA01 CA03 DA04 DA05 DA06 DA12 EA03 EA06 EA10 FA20 5D021 CC20    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Nobuo Saito             1-10-11 Kinuta, Setagaya-ku, Tokyo, Japan             Broadcasting Association Broadcast Technology Institute F term (reference) 2F055 AA40 BB20 CC02 DD05 EE25                       FF43 GG01 GG12                 4M112 AA01 BA07 CA01 CA03 DA04                       DA05 DA06 DA12 EA03 EA06                       EA10 FA20                 5D021 CC20

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】振動膜基板の1つの面にエッチストップ層
を有し、前記振動膜基板と背面板基板との接合に用いる
接合膜を前記エッチストップ層と前記背面板基板とで挟
んで接合した接合基板をエッチングして形成するコンデ
ンサ型マイクロホンおよび圧力センサにおいて、 前記接合膜は、前記エッチストップ層形成のためにドー
プした不純物と同じ不純物を含むことを特徴とするコン
デンサ型マイクロホンおよび圧力センサ。
1. A vibrating membrane substrate has an etch stop layer on one surface thereof, and a bonding film used for joining the vibrating membrane substrate and the back plate substrate is sandwiched between the etch stop layer and the back plate substrate and joined. In the capacitor-type microphone and the pressure sensor formed by etching the bonded substrate, the bonding film contains the same impurities as the impurities doped for forming the etch stop layer.
【請求項2】前記エッチストップ層中にドープされた不
純物と同じ前記接合膜中に含まれる不純物は、硼素であ
ることを特徴とする請求項1記載のコンデンサ型マイク
ロホンおよび圧力センサ。
2. The capacitor type microphone and pressure sensor according to claim 1, wherein the impurity contained in the bonding film, which is the same as the impurity doped in the etch stop layer, is boron.
【請求項3】前記接合膜中に含まれる不純物の濃度は、
前記エッチストップ層中にドープされた不純物の濃度以
上であることを特徴とする請求項1または2記載のコン
デンサ型マイクロホンおよび圧力センサ。
3. The concentration of impurities contained in the bonding film is
The condenser microphone and the pressure sensor according to claim 1 or 2, wherein the concentration of impurities doped in the etch stop layer is equal to or higher than the concentration of impurities.
【請求項4】前記エッチストップ層形成のための不純物
拡散は1200℃以下で行われ、その後の熱処理は90
0℃以上、前記不純物拡散の温度以下で行われることを
特徴とする請求項1ないし3のいずれかに記載のコンデ
ンサ型マイクロホンおよび圧力センサ。
4. The impurity diffusion for forming the etch stop layer is performed at 1200 ° C. or lower, and the subsequent heat treatment is performed at 90 ° C.
The condenser microphone and the pressure sensor according to any one of claims 1 to 3, wherein the temperature is not lower than 0 ° C and not higher than the temperature of the impurity diffusion.
JP2001219465A 2001-07-19 2001-07-19 Condenser microphone and pressure sensor Expired - Fee Related JP4532787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001219465A JP4532787B2 (en) 2001-07-19 2001-07-19 Condenser microphone and pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001219465A JP4532787B2 (en) 2001-07-19 2001-07-19 Condenser microphone and pressure sensor

Publications (2)

Publication Number Publication Date
JP2003031820A true JP2003031820A (en) 2003-01-31
JP4532787B2 JP4532787B2 (en) 2010-08-25

Family

ID=19053462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001219465A Expired - Fee Related JP4532787B2 (en) 2001-07-19 2001-07-19 Condenser microphone and pressure sensor

Country Status (1)

Country Link
JP (1) JP4532787B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005086534A1 (en) * 2004-03-03 2005-09-15 Matsushita Electric Industrial Co., Ltd. Electret capacitor microphone unit
JP2006196588A (en) * 2005-01-12 2006-07-27 Nippon Hoso Kyokai <Nhk> Method of manufacturing micro-machine and electrostatic capacity type sensor
JP2006349478A (en) * 2005-06-15 2006-12-28 Denso Corp Capacitance type dynamic quantity sensor, and its manufacturing method
JP2008051511A (en) * 2006-08-22 2008-03-06 Yamaha Corp Capacitance sensor and its manufacturing method
US7620192B2 (en) 2003-11-20 2009-11-17 Panasonic Corporation Electret covered with an insulated film and an electret condenser having the electret
US7853027B2 (en) 2004-03-05 2010-12-14 Panasonic Corporation Electret condenser
US9787280B2 (en) 2014-09-15 2017-10-10 Samsung Electro-Mechanics Co., Ltd. Acoustic resonator and method of manufacturing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08247877A (en) * 1995-03-10 1996-09-27 Yazaki Corp Static capacity type pressure sensor and its manufacture
JP2000124471A (en) * 1998-10-15 2000-04-28 Tokin Corp Manufacture of electrostatic capacity type pressure sensor
JP2000150917A (en) * 1998-11-13 2000-05-30 Denso Corp Manufacture of semiconductor dynamical quantity sensor and semiconductor wafer for manufacture the same
JP2000508860A (en) * 1996-04-18 2000-07-11 カリフォルニア インスティチュート オブ テクノロジー Thin film electret microphone
JP2000323450A (en) * 1999-05-14 2000-11-24 Seiko Epson Corp Method of forming silicon film and manufacture of ink jet head
JP2002027595A (en) * 2000-07-04 2002-01-25 Nippon Hoso Kyokai <Nhk> Pressure sensor and method for manufacturing the same
JP2002214058A (en) * 2001-01-16 2002-07-31 Fujikura Ltd Pressure sensor and manufacturing method thereof
JP2002345089A (en) * 2001-05-21 2002-11-29 Nippon Hoso Kyokai <Nhk> Ic microphone and method for forming diaphragm for the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08247877A (en) * 1995-03-10 1996-09-27 Yazaki Corp Static capacity type pressure sensor and its manufacture
JP2000508860A (en) * 1996-04-18 2000-07-11 カリフォルニア インスティチュート オブ テクノロジー Thin film electret microphone
JP2000124471A (en) * 1998-10-15 2000-04-28 Tokin Corp Manufacture of electrostatic capacity type pressure sensor
JP2000150917A (en) * 1998-11-13 2000-05-30 Denso Corp Manufacture of semiconductor dynamical quantity sensor and semiconductor wafer for manufacture the same
JP2000323450A (en) * 1999-05-14 2000-11-24 Seiko Epson Corp Method of forming silicon film and manufacture of ink jet head
JP2002027595A (en) * 2000-07-04 2002-01-25 Nippon Hoso Kyokai <Nhk> Pressure sensor and method for manufacturing the same
JP2002214058A (en) * 2001-01-16 2002-07-31 Fujikura Ltd Pressure sensor and manufacturing method thereof
JP2002345089A (en) * 2001-05-21 2002-11-29 Nippon Hoso Kyokai <Nhk> Ic microphone and method for forming diaphragm for the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7620192B2 (en) 2003-11-20 2009-11-17 Panasonic Corporation Electret covered with an insulated film and an electret condenser having the electret
WO2005086534A1 (en) * 2004-03-03 2005-09-15 Matsushita Electric Industrial Co., Ltd. Electret capacitor microphone unit
US7706554B2 (en) 2004-03-03 2010-04-27 Panasonic Corporation Electret condenser
US7853027B2 (en) 2004-03-05 2010-12-14 Panasonic Corporation Electret condenser
US8320589B2 (en) 2004-03-05 2012-11-27 Panasonic Corporation Electret condenser
JP2006196588A (en) * 2005-01-12 2006-07-27 Nippon Hoso Kyokai <Nhk> Method of manufacturing micro-machine and electrostatic capacity type sensor
JP2006349478A (en) * 2005-06-15 2006-12-28 Denso Corp Capacitance type dynamic quantity sensor, and its manufacturing method
JP4639979B2 (en) * 2005-06-15 2011-02-23 株式会社デンソー Capacitance type mechanical quantity sensor and manufacturing method thereof
JP2008051511A (en) * 2006-08-22 2008-03-06 Yamaha Corp Capacitance sensor and its manufacturing method
JP4535046B2 (en) * 2006-08-22 2010-09-01 ヤマハ株式会社 Capacitance sensor and manufacturing method thereof
US7805821B2 (en) 2006-08-22 2010-10-05 Yamaha Corporation Method of making capacitance sensor
US9787280B2 (en) 2014-09-15 2017-10-10 Samsung Electro-Mechanics Co., Ltd. Acoustic resonator and method of manufacturing the same

Also Published As

Publication number Publication date
JP4532787B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
KR100849570B1 (en) Thin film structure body and formation method thereof, vibrating sensor, pressure sensor and degree of acceleration sensor
WO2004107809A1 (en) Sound detection mechanism
GB2443756A (en) Acoustic MEMS devices
GB2452650A (en) MEMS microphone
JPH077160A (en) Method and apparatus for manufacturing integral-type pressure transducer
JP3945613B2 (en) Pressure sensor manufacturing method and pressure sensor
JP2007067893A (en) Acoustical sensor
EP1433199B1 (en) Method for forming a cavity structure in an soi substrate and cavity structure formed in an soi substrate
JP2002522248A (en) Micromechanical sensor and method of manufacturing the same
JP4355273B2 (en) Capacitance type sensor and manufacturing method thereof
JP2003031820A (en) Capacitor microphone and pressure sensor
JP2007037006A (en) Ultrasonic sensor and manufacturing method thereof
JP2008205888A (en) Manufacturing method of piezoelectric vibation chip and piezoelectric vibration element
JP2000155030A (en) Manufacture of angular velocity sensor
US20200171544A1 (en) High Frequency Ultrasonic Transducer and Method of Fabrication
KR20020016117A (en) The Fabrication Process For Microphone Using The MEMS
JPS6276913A (en) Thin film elastic wave device
WO2022048382A1 (en) Mems structure
JPH09211020A (en) Acceleration sensor
JPH10160606A (en) Semiconductor pressure sensor and fabrication thereof
JP2001066208A (en) Semiconductor pressure measuring device and manufacturing method thereof
CN117641215B (en) Microphone sensor and preparation method thereof
WO2022110358A1 (en) Piezoelectric mems microphone and array thereof
JPH06163940A (en) Semiconductor pressure sensor
WO2021134692A1 (en) Transducer and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20100311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100325

RD15 Notification of revocation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7435

Effective date: 20100325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100611

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4532787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees