JP2003031281A - Conductively connecting film with disposed particles, its manufacturing method and conductively connecting structure - Google Patents

Conductively connecting film with disposed particles, its manufacturing method and conductively connecting structure

Info

Publication number
JP2003031281A
JP2003031281A JP2001218326A JP2001218326A JP2003031281A JP 2003031281 A JP2003031281 A JP 2003031281A JP 2001218326 A JP2001218326 A JP 2001218326A JP 2001218326 A JP2001218326 A JP 2001218326A JP 2003031281 A JP2003031281 A JP 2003031281A
Authority
JP
Japan
Prior art keywords
conductive
fine particles
film
fine particle
conductive connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001218326A
Other languages
Japanese (ja)
Inventor
Masateru Fukuoka
正輝 福岡
Kenji Iuchi
謙治 居内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2001218326A priority Critical patent/JP2003031281A/en
Publication of JP2003031281A publication Critical patent/JP2003031281A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Combinations Of Printed Boards (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an conductively connecting film with disposed particles, capable of easily carrying out electrical connection having no leakage of adjacent electrodes and high connection reliability in a short time when conductively connecting fine electrodes facing each other in plural electronic components, in a conductively connecting structure, a method for manufacturing it, and the conductively connecting structure. SOLUTION: In this conductively connecting film with disposed particles, the conductive particles are disposed in through holes opened in an adhesive film. The conductive particles are at least partially exposed from the adhesive film, and are disposed only at positions corresponding to the electrode parts facing each other in an electronic component.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、導電接続構造体に
おいて複数の電子部品の対向する微細な電極を導電接続
するに際し、隣接電極のリークがなく接続信頼性の高い
電気的接続を短時間で容易に行える微粒子配置導電接続
フィルム、微粒子配置導電接続フィルムの製造方法及び
導電接続構造体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive connection structure in which a plurality of electronic components facing each other are conductively connected to each other. The present invention relates to a fine particle-arranged conductive connection film, a method for manufacturing a fine particle-arranged conductive connection film, and a conductive connection structure that can be easily performed.

【0002】[0002]

【従来の技術】液晶ディスプレー、パーソナルコンピュ
ータ、携帯通信機器等のエレクトロニクス製品におい
て、半導体素子、チップ等の小型部品を基板に電気的に
接続したり、基板同士を電気的に接続する方法のうち、
微細な電極を対向させて接続する方法としては、金属バ
ンプ等を用いハンダや導電ペーストで接続したり、金属
バンプ等を直接圧着したりする方法が用いられている。
2. Description of the Related Art In electronic products such as liquid crystal displays, personal computers, and portable communication devices, among the methods for electrically connecting small components such as semiconductor elements and chips to a board or electrically connecting the boards to each other,
As a method of connecting the fine electrodes facing each other, a method of using metal bumps or the like for connection with solder or a conductive paste, or a method of directly pressure bonding the metal bumps or the like is used.

【0003】このような対向する微細な電極を接続する
場合には、個々の接続部の強度が弱い等の問題から通常
接続部の周辺を樹脂で封止する必要がある。通常、この
封止は電極の接続後に接続部に封止樹脂を注入すること
により行われる。しかしながら、微細な対向電極は接続
部の距離が短いこともあり、封止樹脂を短時間で均一に
注入することが困難であるという問題がある。
In the case of connecting such fine electrodes facing each other, it is usually necessary to seal the periphery of the connecting portion with resin due to the problem that the strength of each connecting portion is weak. Usually, this sealing is performed by injecting a sealing resin into the connecting portion after connecting the electrodes. However, there is a problem that it is difficult to uniformly inject the sealing resin in a short time because the minute counter electrode may have a short distance between the connecting portions.

【0004】この問題を解決する方法として、導電性微
粒子を絶縁性のバインダー樹脂と混ぜ合わせてフィルム
状又はペースト状にした異方性導電接着剤が考案され、
例えば、特開昭63−231889号公報、特開平4−
259766号公報、特開平3−291807号公報、
特開平5−75250号公報等に開示されている。
As a method for solving this problem, an anisotropic conductive adhesive is devised in which conductive fine particles are mixed with an insulating binder resin to form a film or paste,
For example, JP-A-63-231889 and JP-A-4-
259766, JP-A-3-291807,
It is disclosed in JP-A-5-75250.

【0005】しかしながら、異方性導電接着剤は、導電
性微粒子がバインダー樹脂にランダムに分散されたもの
であるため、バインダー中で導電性微粒子が連なってい
たり、加熱圧着時に対向電極上にない導電性微粒子が流
動して連なったりするため、隣接電極でリークを発生さ
せる可能性がある。また、加熱圧着により電極又はバン
プ上に導電性微粒子を押しつけた場合でも、電極と導電
性微粒子との間に絶縁材の薄層が残り易いため、接続信
頼性を低下させるという問題がある。
However, in the anisotropic conductive adhesive, since the conductive fine particles are randomly dispersed in the binder resin, the conductive fine particles are connected in the binder, or the conductive conductive particles not present on the counter electrode at the time of thermocompression bonding. Since the conductive fine particles flow and connect with each other, there is a possibility that a leak may occur at the adjacent electrode. Further, even when the conductive fine particles are pressed onto the electrodes or the bumps by thermocompression bonding, a thin layer of the insulating material is likely to remain between the electrodes and the conductive fine particles, so that there is a problem that the connection reliability is lowered.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記現状に
鑑み、導電接続構造体において複数の電子部品の対向す
る微細な電極を導電接続するに際し、隣接電極のリーク
がなく接続信頼性の高い電気的接続を短時間で容易に行
える微粒子配置導電接続フィルム、微粒子配置導電接続
フィルムの製造方法及び導電接続構造体を提供すること
を目的とするものである。
SUMMARY OF THE INVENTION In view of the above situation, the present invention has a high connection reliability without leak of adjacent electrodes when conductively connecting minute electrodes facing each other in a plurality of electronic components in a conductive connection structure. It is an object of the present invention to provide a fine particle-arranged conductive connection film, a method for producing a fine particle-arranged conductive connection film, and a conductive connection structure that can easily make an electrical connection in a short time.

【0007】[0007]

【課題を解決するための手段】本発明は、接着性フィル
ムに開けられた貫通穴に導電性微粒子が配置されている
微粒子配置導電接続フィルムであって、前記導電性微粒
子は、少なくとも一部が前記接着性フィルムより露出し
ており、かつ、対向する電子部品の電極部に対応する位
置にのみ配置されているものである微粒子配置導電接続
フィルムである。以下に本発明を詳述する。
The present invention is a fine particle-arranged conductive connection film in which conductive fine particles are arranged in through holes formed in an adhesive film, wherein the conductive fine particles are at least partially formed. It is a fine particle-arranged conductive connection film which is exposed from the adhesive film and is arranged only at a position corresponding to an electrode portion of an electronic component facing the adhesive film. The present invention is described in detail below.

【0008】本発明の微粒子配置導電接続フィルムは、
接着性フィルムに開けられた貫通穴に導電性微粒子が配
置されたものである。上記接着性フィルムとしては接着
性を有すれば特に限定はされないが、適度な弾性や柔軟
性、回復性を持つものが得やすいという点から高分子量
体又はその複合物からなるものが好適である。上記複合
物の高分子量体以外の材料としては、例えば、セラミッ
ク等の無機物や低分子量化合物等が挙げられる。
The fine particle-arranged conductive connecting film of the present invention comprises:
The conductive fine particles are arranged in through holes formed in the adhesive film. The adhesive film is not particularly limited as long as it has adhesiveness, but it is preferable to use a high molecular weight compound or a composite thereof from the viewpoint of easily obtaining a film having appropriate elasticity, flexibility, and recoverability. . Examples of materials other than the high molecular weight compound of the above composite include inorganic materials such as ceramics and low molecular weight compounds.

【0009】上記高分子量体としては、例えば、フェノ
ール樹脂、アミノ樹脂、アクリル樹脂、エチレン−酢酸
ビニル樹脂、スチレン−ブタジエンブロック共重合体、
ポリエステル樹脂、尿素樹脂、メラミン樹脂、アルキド
樹脂、ポリイミド樹脂、ウレタン樹脂、エポキシ樹脂等
の熱可塑性樹脂;硬化性樹脂、架橋樹脂、有機無機ハイ
ブリッド重合体等が挙げられる。これらのうち、不純物
が少なく広い物性の範囲のものが得やすいという点から
エポキシ樹脂が好ましい。ここで、エポキシ樹脂には未
硬化のエポキシ樹脂と上記の他の樹脂との混合物や半硬
化状態のエポキシ樹脂が含まれるものとする。また、上
記高分子量体は、必要に応じてガラス繊維やアルミナ粒
子等の無機充填物を含んでいてもよい。
Examples of the above-mentioned high molecular weight polymer include phenol resin, amino resin, acrylic resin, ethylene-vinyl acetate resin, styrene-butadiene block copolymer,
Thermoplastic resins such as polyester resins, urea resins, melamine resins, alkyd resins, polyimide resins, urethane resins and epoxy resins; curable resins, crosslinked resins, organic-inorganic hybrid polymers and the like can be mentioned. Of these, the epoxy resin is preferable because it has few impurities and is easily obtained in a wide range of physical properties. Here, it is assumed that the epoxy resin includes a mixture of an uncured epoxy resin and the other resin described above, and a semi-cured epoxy resin. In addition, the high molecular weight body may include an inorganic filler such as glass fiber or alumina particles, if necessary.

【0010】上記接着性フィルムは、押圧及び加熱によ
り、被着体に硬化接着できるものであることが好まし
い。これにより素子及び基板の電極とフィルムの導電性
微粒子との位置を合わせれば、押圧及び加熱のみで接続
することが可能となり、接続の信頼性を飛躍的に高める
ことができる。これら、硬化、接着の機能は、別途硬化
型接着剤を塗布することによっても得られるが、フィル
ム自体がこの機能を持つことにより本発明の微粒子配置
導電接続フィルムを用いた導電接続を非常に簡便化する
ことができる。
The above-mentioned adhesive film is preferably one that can be cured and adhered to an adherend by pressing and heating. Thus, if the electrodes of the element and the substrate are aligned with the conductive fine particles of the film, the connection can be made only by pressing and heating, and the reliability of the connection can be dramatically improved. These functions of curing and adhesion can be obtained by applying a curable adhesive separately, but since the film itself has this function, conductive connection using the fine particle-arranged conductive connection film of the present invention is very simple. Can be converted.

【0011】上記接着性フィルムは、熱伝導率が高いも
のであることが好ましい。これにより、押圧及び加熱の
みで接続を行う場合でも、確実に接続することができ
る。上記接着性フィルムの熱伝導率を上げる方法は特に
限定されないが、熱伝導率の高い絶縁性のフィラーを接
着性フィルム中に分散させる方法が好適である。上記フ
ィラーとしては、例えば、窒化ホウ素、窒化珪素、窒化
アルミ、炭化珪素等が挙げられる。これらのフィラー
は、単独で用いられてもよいし、2種以上が併用されて
もよい。上記フィラーの添加量は、接着性フィルム全体
の10〜80体積%であることが好ましい。10体積%
未満であると、熱伝導率向上の効果が低く、80体積%
を超えると、接着性フィルムの接着性や形状を保つこと
が困難になる。より好ましくは20〜60体積%であ
る。
It is preferable that the adhesive film has a high thermal conductivity. Thereby, even if the connection is made only by pressing and heating, the connection can be surely made. The method of increasing the thermal conductivity of the adhesive film is not particularly limited, but a method of dispersing an insulating filler having a high thermal conductivity in the adhesive film is preferable. Examples of the filler include boron nitride, silicon nitride, aluminum nitride, silicon carbide and the like. These fillers may be used alone or in combination of two or more. The amount of the filler added is preferably 10 to 80% by volume of the entire adhesive film. 10% by volume
When it is less than 80%, the effect of improving the thermal conductivity is low, and it is 80% by volume.
When it exceeds, it becomes difficult to maintain the adhesiveness and shape of the adhesive film. It is more preferably 20 to 60% by volume.

【0012】上記接着性フィルムの厚さは、導電性微粒
子の平均粒径の1/2〜2倍であることが好ましい。1
/2倍未満であると、接着性フィルム部分で基板を支持
しにくくなり、2倍を超えると、導電性微粒子が電極に
届かず接続不良の原因となることがある。より好ましく
は2/3〜1.5倍であり、更に好ましくは3/4〜
1.3倍、特に好ましくは0.8〜1.2倍であり、
0.9〜1.1倍であると著しく効果が高まる。特に、
素子及び基板の電極上にバンプがあるような場合にはフ
ィルムの厚みは導電性微粒子の平均粒径の1倍以上であ
ることが好ましく、逆にバンプがない場合には1倍以下
であることが好ましい。
The thickness of the adhesive film is preferably 1/2 to 2 times the average particle size of the conductive fine particles. 1
When it is less than / 2 times, it is difficult to support the substrate with the adhesive film portion, and when it exceeds 2 times, the conductive fine particles may not reach the electrode, which may cause connection failure. It is more preferably 2/3 to 1.5 times, still more preferably 3/4 to
1.3 times, particularly preferably 0.8 to 1.2 times,
If it is 0.9 to 1.1 times, the effect is remarkably enhanced. In particular,
When there are bumps on the electrodes of the element and the substrate, the thickness of the film is preferably 1 time or more of the average particle size of the conductive fine particles, and conversely, when there is no bump, it is 1 time or less. Is preferred.

【0013】上記接着性フィルムは、硬化後の常温での
線膨張係数が10〜200ppmであることが好まし
い。10ppm未満であると、導電性微粒子との線膨張
の差が大きいために、本発明の微粒子配置導電接続フィ
ルムを用いて導電接続した導電接続構造体に熱サイクル
等をかけた場合、導電性微粒子の伸びに接着性フィルム
が追従することができず、電気的接続が不安定になるこ
とがあり、200ppmを超えると、導電接続構造体に
熱サイクル等をかけた場合、電極間が広がりすぎ、導電
性微粒子が電極から離れ接続不良の原因になることがあ
る。より好ましくは20〜150ppmであり、更に好
ましくは30〜100ppmである。
The above-mentioned adhesive film preferably has a coefficient of linear expansion of 10 to 200 ppm at room temperature after curing. When the content is less than 10 ppm, the difference in linear expansion from the conductive fine particles is large, and therefore, when the conductive connection structure conductively connected using the fine particle-arranged conductive connection film of the present invention is subjected to heat cycle or the like, the conductive fine particles are obtained. The adhesive film can not follow the elongation of the, electrical connection may become unstable, and when the conductive connection structure is subjected to a thermal cycle or the like, if it exceeds 200 ppm, the distance between the electrodes becomes too wide, The conductive fine particles may separate from the electrodes and cause a connection failure. It is more preferably 20 to 150 ppm, and further preferably 30 to 100 ppm.

【0014】上記導電性微粒子としては、例えば、金
属、カーボン等の無機物、導電性高分子からなるもの、
又は、高分子量体、シリカ、アルミナ、金属、カーボン
等の無機物、低分子量化合物等からなるコアの表面にメ
ッキ等の方法により導電層を設けたもの等が挙げられる
が、適度な弾性や柔軟性、回復性を有し球状のものが得
やすいという点から、高分子量体からなるコアの表面に
導電層が形成されたものが好ましい。
The conductive fine particles include, for example, metals, inorganic substances such as carbon, and conductive polymers.
Alternatively, a high molecular weight material, an inorganic material such as silica, alumina, a metal, carbon, etc., a core having a low molecular weight compound, etc. and a conductive layer provided by a method such as plating on the surface of the core can be used. From the viewpoint of recoverability and spherical shape, it is preferable that the conductive layer is formed on the surface of the core made of a high molecular weight material.

【0015】上記高分子量体としては、例えば、フェノ
ール樹脂、アミノ樹脂、アクリル樹脂、エチレン−酢酸
ビニル樹脂、スチレン−ブタジエンブロック共重合体、
ポリエスチル樹脂、尿素樹脂、メラミン樹脂、アルキド
樹脂、ポリイミド樹脂、ウレタン樹脂、エポキシ樹脂等
の熱可塑性樹脂;硬化性樹脂、架橋樹脂、有機無機ハイ
ブリッド重合体等が挙げられる。これらのうち、耐熱性
の点から架橋樹脂が好ましい。また、上記高分子量体は
必要に応じて充填物を含んでいてもよい。
Examples of the above-mentioned high molecular weight polymer include phenol resin, amino resin, acrylic resin, ethylene-vinyl acetate resin, styrene-butadiene block copolymer,
Thermoplastic resins such as polyester resin, urea resin, melamine resin, alkyd resin, polyimide resin, urethane resin, and epoxy resin; curable resins, crosslinked resins, organic-inorganic hybrid polymers, and the like. Of these, crosslinked resins are preferable from the viewpoint of heat resistance. In addition, the high molecular weight material may include a filler, if necessary.

【0016】上記導電層としては、金属からなる被覆層
が好適に用いられる。上記金属としては特に限定されな
いが、ニッケル又は金を含むものが好ましい。上記金属
の被覆層としては単層又は複層のいずれでもよいが、電
極との接触抵抗や導電性及び酸化劣化を起こさないとい
う点から表面層が金であることが好ましく、また、複層
化のためのバリア層やコアと金属との密着性向上のため
ニッケル層を設けることが好ましい。
A coating layer made of metal is preferably used as the conductive layer. The metal is not particularly limited, but one containing nickel or gold is preferable. The metal coating layer may be either a single layer or a multilayer, but it is preferable that the surface layer is gold from the viewpoint that contact resistance with electrodes, conductivity and oxidative deterioration do not occur. It is preferable to provide a barrier layer for improving the adhesion and a nickel layer for improving the adhesion between the core and the metal.

【0017】上記導電層の厚さは、充分な導通を得るた
め、及び、剥がれないような皮膜強度を得るために0.
3μm以上であることが好ましい。0.3μm未満であ
ると、導電性微粒子を取り扱う際に導電層が剥離するこ
とがあり、また、本発明の微粒子配置導電接続フィルム
を用いて導電接続するために加圧した際に、導電層が破
壊され、接続不良の原因となることがある。より好まし
くは1μm以上であり、更に好ましくは2μm以上であ
る。また、上記導電層の厚さは、コアの特性が失われな
いよう導電性微粒子の直径の1/5以下であることが好
ましい。
The thickness of the above-mentioned conductive layer is set to 0 in order to obtain sufficient conduction and to obtain a film strength that does not peel off.
It is preferably 3 μm or more. When it is less than 0.3 μm, the conductive layer may be peeled off when handling the conductive fine particles, and when the fine particle-arranged conductive connection film of the present invention is pressed for conductive connection, the conductive layer is removed. May be damaged and cause a connection failure. The thickness is more preferably 1 μm or more, further preferably 2 μm or more. The thickness of the conductive layer is preferably ⅕ or less of the diameter of the conductive fine particles so that the characteristics of the core are not lost.

【0018】上記導電性微粒子の平均粒径は、10〜8
00μmであることが好ましい。10μm未満である
と、電極や基板の平滑性の精度の問題から導電性微粒子
が電極と接触せず導通不良を発生する可能性があり、8
00μmを超えると、微細ピッチの電極に対応できず隣
接電極でショートを発生することがある。より好ましく
は15〜300μm、更に好ましくは20〜150μm
であり、特に好ましくは40〜80μmである。なお、
上記平均粒径は、任意の導電性微粒子100個の粒径を
顕微鏡を用いて測定し、その値を平均して得られる値で
ある。
The conductive fine particles have an average particle size of 10-8.
It is preferably 00 μm. If the thickness is less than 10 μm, the conductive fine particles may not come into contact with the electrodes due to the problem of the accuracy of the smoothness of the electrodes or the substrate, which may result in poor conduction.
If it exceeds 00 μm, it may not be possible to cope with electrodes having a fine pitch, and a short circuit may occur at the adjacent electrode. More preferably 15 to 300 μm, still more preferably 20 to 150 μm.
And particularly preferably 40 to 80 μm. In addition,
The average particle size is a value obtained by measuring the particle size of 100 arbitrary conductive fine particles with a microscope and averaging the values.

【0019】上記導電性微粒子の、粒子の平均長径を平
均短径で割った値であるアスペクト比は1.3未満であ
ることが好ましい。1.3以上であると、粒子が不揃い
となるため、短径部分が電極に届かず接続不良の原因と
なることがある。より好ましくは1.1未満であり、特
に好ましくは1.05未満である。微粒子は製造法にも
よるが、通常アスペクト比が高いものが多いため、本発
明で用いる導電性微粒子は変形可能な状態で表面脹力を
利用する等の方法で球形化処理をして球状にすることが
好ましい。
The aspect ratio, which is a value obtained by dividing the average major axis of the particles by the average minor axis, of the conductive fine particles is preferably less than 1.3. If it is 1.3 or more, the particles become uneven, and the short diameter portion may not reach the electrode, which may cause connection failure. It is more preferably less than 1.1, and particularly preferably less than 1.05. Although the fine particles usually have a high aspect ratio depending on the manufacturing method, the conductive fine particles used in the present invention are spheroidized by a method such as utilizing the surface expansion force in a deformable state. Preferably.

【0020】上記導電性微粒子は、CV値が5%以下で
あることが好ましい。5%を超えると、粒径が不揃いと
なるため、小さい導電性微粒子が電極に届かず接続不良
の原因となることがある。より好ましくは2%以下であ
り、更に好ましくは1%以下である。なお、 上記CV
値は、下記式により求められる。 CV値(%)=(σ/Dn)×100 式中、σは粒径の標準偏差を表し、Dnは数平均粒径を
表す。通常の微粒子はCV値が大きいため、本発明で用
いる導電性微粒子は分級等により粒径を揃える必要があ
る。特に平均粒径が200μm以下の微粒子は精度良く
分級するのが困難であるため、篩や気流分級、湿式分級
等を組み合わせることが好ましい。
The conductive fine particles preferably have a CV value of 5% or less. If it exceeds 5%, the particle diameters are not uniform, so that small conductive fine particles may not reach the electrodes, which may cause connection failure. It is more preferably 2% or less, still more preferably 1% or less. The above CV
The value is calculated by the following formula. CV value (%) = (σ / Dn) × 100 In the formula, σ represents the standard deviation of the particle size, and Dn represents the number average particle size. Since ordinary fine particles have a large CV value, it is necessary to make the conductive fine particles used in the present invention uniform in particle size by classification or the like. In particular, it is difficult to accurately classify fine particles having an average particle size of 200 μm or less, so it is preferable to combine sieves, airflow classification, wet classification, and the like.

【0021】上記導電性微粒子の導電抵抗は、平均粒径
の10%を圧縮した場合、単粒子の導電抵抗、即ち、抵
抗値が1Ω以下であることが好ましい。1Ωを超える
と、充分な電流値を確保できなかったり、大きな電圧に
耐えられず素子が正常に作動しなくなることがある。よ
り好ましくは0.3Ω以下であり、更に好ましくは0.
05Ω以下であり、0.01Ω以下では電流駆動型の素
子でも高い信頼性を保ったまま対応が可能になる等著し
く効果が高まる。
Regarding the conductive resistance of the above-mentioned conductive fine particles, when 10% of the average particle diameter is compressed, the conductive resistance of the single particles, that is, the resistance value is preferably 1Ω or less. If it exceeds 1Ω, a sufficient current value may not be secured, or the device may not withstand a large voltage and the device may not operate normally. It is more preferably 0.3Ω or less, still more preferably 0.
If it is less than 0.01 Ω, even if it is a current-driven element, it is possible to cope with it while maintaining high reliability.

【0022】上記導電性微粒子のK値は、400〜15
000N/mm2であることが好ましい。400N/m
2未満であると、対向する電極に導電性微粒子が充分
食い込むことができないため、電極表面が酸化されてい
る場合等に導通がとれなかったり、接触抵抗が大きく導
通信頼性が落ちる場合があり、15000N/mm2
超えると、対向電極で挟み込んだ際に電極に局部的に過
度の圧力がかかり素子が破壊されたり、粒径の大きな導
電性微粒子のみにより電極間のギャップが決まってしま
い粒径の小さい導電性微粒子が電極に届かず接続不良の
原因となったりする。より好ましくは1000〜1万N
/mm2であり、更に好ましくは2000〜8000N
/mm2であり、特に好ましくは3000〜6000N
/mm2である。なお、上記K値は、下記式により求め
られる。 K値(N/mm2)=(3/√2)・F・S-3/2・R
-1/2 式中、Fは20℃、10%圧縮変形における荷重値
(N)を表し、Sは圧縮変位(mm)を表し、Rは半径
(mm)を表す。
The K value of the conductive fine particles is 400 to 15
It is preferably 000 N / mm 2 . 400 N / m
If it is less than m 2 , conductive fine particles cannot sufficiently dig into the opposing electrodes, so that conduction may not be achieved when the electrode surface is oxidized, or contact resistance may be large and conduction reliability may deteriorate. When it exceeds 15,000 N / mm 2 , excessive pressure is locally applied to the electrodes when sandwiched by the opposing electrodes, the element is destroyed, or the gap between the electrodes is determined only by the conductive fine particles having a large particle size. Conductive fine particles with a small diameter do not reach the electrodes, which may cause connection failure. More preferably 1000 to 10,000 N
/ Mm 2 , more preferably 2000 to 8000N
/ Mm 2 , and particularly preferably 3000 to 6000 N
/ Mm 2 . The K value is calculated by the following formula. K value (N / mm 2 ) = (3 / √2) ・ F ・ S -3/2・ R
In the -1/2 formula, F represents a load value (N) at 20 ° C and 10% compression deformation, S represents a compression displacement (mm), and R represents a radius (mm).

【0023】上記導電性微粒子は、20℃、10%圧縮
変形における回復率が5%以上であることが好ましい。
5%未満では、衝撃等により対向する電極間が瞬間的に
広がった際それに追従することができず、瞬間的に電気
的接続が不安定になることがある。より好ましくは20
%以上であり、更に好ましくは50%以上であり、特に
好ましくは80%以上である。
The conductive fine particles preferably have a recovery rate of 5% or more at 20 ° C. and 10% compression deformation.
If it is less than 5%, it may not be possible to follow the momentary expansion between the opposing electrodes due to impact or the like, and the electrical connection may be momentarily unstable. More preferably 20
% Or more, more preferably 50% or more, and particularly preferably 80% or more.

【0024】上記導電性微粒子は、常温での線膨張係数
が10〜200ppmであることが好ましい。10pp
m未満であると、接着性フィルムとの線膨張の差が大き
いために、導電接続構造体に熱サイクル等がかかったと
きに接着性フィルムの伸びに追従することができず、電
気的接続が不安定になることがあり、200ppmを超
えると、熱サイクル等がかかったときに電極間が広がり
すぎ接着性フィルムが基板と接着されている場合には、
その接着部分が破壊され電極の接続部に応力が集中し、
接続不良の原因になることがある。より好ましくは20
〜150ppmであり、更に好ましくは30〜100p
pmである。
The conductive fine particles preferably have a linear expansion coefficient at room temperature of 10 to 200 ppm. 10 pp
When it is less than m, the difference in linear expansion from the adhesive film is large, and therefore the elongation of the adhesive film cannot be followed when the conductive connection structure is subjected to a thermal cycle, etc. If it exceeds 200 ppm, it may become unstable, and when the adhesive film is adhered to the substrate due to the excessive spread of the electrodes when a thermal cycle is applied,
The bonded part is destroyed and stress concentrates on the connection part of the electrode,
It may cause connection failure. More preferably 20
To 150 ppm, more preferably 30 to 100 p
pm.

【0025】本発明の微粒子配置導電接続フィルムは、
接着性フィルムの任意の位置に貫通穴を開け、貫通穴に
導電性微粒子を配置、止着することにより得ることがで
きる。かかる微粒子配置導電接続フィルムの製造方法も
また、本発明の1つである。
The fine particle-arranged conductive connecting film of the present invention comprises
It can be obtained by forming a through hole at an arbitrary position of the adhesive film, disposing the conductive fine particles in the through hole, and fixing the conductive fine particles. A method for producing such a fine particle-arranged conductive connection film is also one aspect of the present invention.

【0026】上記貫通穴の平均穴径は、上記導電性微粒
子の平均粒径の1/2〜2倍であることが好ましい。こ
の範囲外であると、止着された導電性微粒子が貫通穴か
らズレやすくなる。より好ましくは2/3〜1.3倍で
あり、更に好ましくは4/5〜1.2倍であり、特に好
ましくは0.9〜1.1倍であり、0.95〜1.05
倍であるとき著しく効果が高まる。
The average hole diameter of the through holes is preferably 1/2 to 2 times the average particle diameter of the conductive fine particles. If it is out of this range, the adhered conductive fine particles are easily displaced from the through holes. It is more preferably 2/3 to 1.3 times, still more preferably 4/5 to 1.2 times, particularly preferably 0.9 to 1.1 times, and 0.95 to 1.05.
When doubled, the effect is significantly increased.

【0027】上記貫通穴の、穴径の平均長径を平均短径
で割った値であるアスペクト比は、2未満であることが
好ましい。2以上であると、止着された導電性微粒子が
貫通穴からズレやすくなる。より好ましくは1.5以下
であり、更に好ましくは1.3以下であり、特に好まし
くは1.1以下である。
The aspect ratio, which is the value obtained by dividing the average major axis of the hole diameters by the average minor axis of the through holes, is preferably less than 2. When it is 2 or more, the adhered conductive fine particles are easily displaced from the through hole. It is more preferably 1.5 or less, still more preferably 1.3 or less, and particularly preferably 1.1 or less.

【0028】上記の貫通穴のCV値は10%以下である
ことが好ましい。10%を超えると、穴径が不揃いとな
り止着した導電性微粒子が貫通穴からズレやすくなる。
より好ましくは5%以下であり、更に好ましくは2%以
下であり、特に1%以下では著しく効果が高まる。な
お、上記貫通穴のCV値は、下記式により求められる。 CV値(%)=(σ2/Dn2)×100 式中、σ2は穴径の標準偏差を表し、Dn2は平均穴径
を表す。
The CV value of the through hole is preferably 10% or less. If it exceeds 10%, the hole diameters become irregular and the adhered conductive fine particles are easily displaced from the through holes.
It is more preferably 5% or less, further preferably 2% or less, and particularly 1% or less, the effect is remarkably enhanced. The CV value of the through hole is calculated by the following formula. CV value (%) = (σ2 / Dn2) × 100 In the formula, σ2 represents the standard deviation of the hole diameter, and Dn2 represents the average hole diameter.

【0029】上記貫通穴は、表面から裏面に向けて厚さ
方向にテーパー状又は階段状になっていることが好まし
い。これにより止着された導電性微粒子はより安定に配
置され、ズレ等を発生しにくくなる。
The through holes are preferably tapered or stepwise in the thickness direction from the front surface to the back surface. As a result, the fixed conductive fine particles are more stably arranged and are less likely to be displaced.

【0030】上記貫通穴を接着性フィルムに設ける方法
は特に限定されないが、レーザーを用いた穴開け加工が
好ましい。ドリル等を用いて機械的に行う穴開け加工で
は、所望の寸法精度が得られにくく、また加工に長い時
間を要することがある。穴開け加工用レーザーとして
は、例えば、炭酸ガスレーザー、YAGレーザー、エキ
シマレーザー等が挙げられる。必要となる寸法精度とコ
ストを考慮して、レーザー種類を決定すれば良い。
The method of providing the above through holes in the adhesive film is not particularly limited, but drilling using a laser is preferable. In the mechanical boring process using a drill or the like, it may be difficult to obtain desired dimensional accuracy, and the process may take a long time. Examples of the drilling laser include carbon dioxide gas laser, YAG laser, excimer laser, and the like. The type of laser may be determined in consideration of the required dimensional accuracy and cost.

【0031】上記接着性フィルムの貫通穴に、導電性微
粒子を配置、止着する方法としては特に限定されない
が、導電性微粒子を接着性フィルムの貫通穴を通して吸
引する方法、又は、導電性微粒子を貫通穴上で押圧する
方法が好ましい。これにより、より安定した状態に止着
することができる。なお、吸引により導電性微粒子を配
置する場合には、上述の接着性フィルムの貫通穴の平均
穴径、アスペクト比、CV値は、それぞれ吸引した状態
での値を示すものとする。
The method of disposing and fixing the conductive fine particles in the through holes of the adhesive film is not particularly limited, but a method of sucking the conductive fine particles through the through holes of the adhesive film, or a method of depositing the conductive fine particles A method of pressing on the through hole is preferable. Thereby, it can be fixed in a more stable state. When the conductive fine particles are arranged by suction, the average hole diameter of the through holes, the aspect ratio, and the CV value of the above-mentioned adhesive film are the values in the sucked state.

【0032】配置された導電性微粒子は、少なくとも一
部が接着性フィルムより露出している。これにより、本
発明の微粒子配置導電接続フィルムを用いて導電接続を
行う場合に、より確実な接続を行うことができる。
At least a part of the arranged conductive fine particles is exposed from the adhesive film. Thereby, more reliable connection can be achieved when conducting conductive connection using the fine particle-arranged conductive connection film of the present invention.

【0033】配置された導電性微粒子の重心は、接着性
フィルム中にあることが好ましい。接着性フィルム中に
あると、接着性フィルム面外に重心がある場合に比べ著
しく安定で、ズレ等による欠落を起こすことがない。
The center of gravity of the arranged conductive fine particles is preferably in the adhesive film. When it is in the adhesive film, it is remarkably stable as compared with the case where the center of gravity is outside the surface of the adhesive film, and there is no loss due to misalignment or the like.

【0034】本発明の微粒子配置導電接続フィルムにお
いては、導電性微粒子は対向する電子部品の電極部に対
応する位置にのみ配置されている。これにより、確実な
接続が行えるとともに、隣接電極でのリークの発生がな
い。
In the fine particle-arranged conductive connection film of the present invention, the conductive fine particles are arranged only at the positions corresponding to the electrode portions of the electronic parts facing each other. As a result, a reliable connection can be made and no leak occurs at the adjacent electrode.

【0035】本発明の微粒子配置導電接続フィルムにお
いては、導電性微粒子は接着性フィルムの周辺部に配置
されていることが好ましい。また、導電性微粒子は接着
性フィルムに格子状に配置されることが好ましい。これ
により外部端子がパッケージ面の周辺部に配列されたペ
リフェテル型パッケージ、及び、外部端子がパッケージ
面に格子状に配列されたエリアアレイ型パッケージの接
続に用いられ、高密度実装を可能とする。
In the fine particle-arranged conductive connection film of the present invention, the conductive fine particles are preferably arranged in the peripheral portion of the adhesive film. Further, it is preferable that the conductive fine particles are arranged in a lattice pattern on the adhesive film. Thus, the external terminals are used for connection of the peripheral type package in which peripheral terminals are arranged on the package surface and the area array type package in which external terminals are arranged in a lattice pattern on the package surface, which enables high-density mounting.

【0036】本発明の微粒子配置導電接続フィルムは、
導電接続構造体において複数の電子部品を導電接続する
ために好適に用いられ、例えば、液晶ディスプレー、パ
ーソナルコンピュータ、携帯通信機器等のエレクトロニ
クス製品において、半導体素子、チップ等の小型部品を
基板に電気的に接続したり、基板同士を電気的に接続す
る方法のうち、微細な電極を対向させて接続したりする
際に好適に用いられる。
The fine particle-arranged conductive connecting film of the present invention comprises
It is preferably used for conductively connecting a plurality of electronic components in a conductive connection structure. For example, in electronic products such as liquid crystal displays, personal computers, and mobile communication devices, small components such as semiconductor elements and chips are electrically connected to a substrate. It is preferably used when connecting fine electrodes to each other among the methods of electrically connecting substrates to each other or electrically connecting the substrates to each other.

【0037】上記チップとしては特に限定されず、例え
ば、IC、LSI等の半導体等の能動部品;コンデン
サ、水晶振動子等の受動部品;ベアチップ等が挙げられ
る。上記基板としては、フレキシブル基板とリジッド基
板とに大別される。上記フレキシブル基板としては、例
えば、50〜500μm厚さを有するポリイミド、ポリ
アミド、ポリエステル、ポリスルホン等からなる樹脂シ
ート等が挙げられる。上記リジッド基板としては、樹脂
製のものとセラミック製のものとに分けられ、上記樹脂
製のものとしては、例えば、ガラス繊維強化エポキシ樹
脂、フェノール樹脂、セルロース繊維強化フェノール樹
脂等からなるものが挙げられ、上記セラミック製のもの
としては、例えば、二酸化ケイ素、アルミナ等からなる
ものが挙げられる。上記基板としては、単層基板であっ
てもよいし、また、単位面積当たりの電極数を増やすた
めに、例えば、スルーホール形成等の手段により、複数
の層を形成し、相互に電気的接続を行わせる多層基板で
あってもよい。
The above-mentioned chip is not particularly limited, and examples thereof include active components such as semiconductors such as IC and LSI; passive components such as capacitors and crystal oscillators; bare chips. The substrate is roughly classified into a flexible substrate and a rigid substrate. Examples of the flexible substrate include a resin sheet made of polyimide, polyamide, polyester, polysulfone, or the like having a thickness of 50 to 500 μm. The rigid substrate is divided into resin and ceramic ones, and examples of the resin substrate include those made of glass fiber reinforced epoxy resin, phenol resin, cellulose fiber reinforced phenol resin and the like. Examples of the ceramic material include those made of silicon dioxide, alumina, and the like. The substrate may be a single-layer substrate, or in order to increase the number of electrodes per unit area, a plurality of layers are formed by means of, for example, through hole formation, and electrically connected to each other. It may be a multi-layer substrate.

【0038】上記チップ、基板等の表面には、電極が形
成されている。上記電極の材質としては、例えば、金、
銀、銅、ニッケル、パラジウム、カーボン、アルミニウ
ム、ITO等が挙げられる。接触抵抗を低減させるため
に、銅、ニッケル等の上に更に金を被覆したものを用い
てもよい。上記電極の形状としては特に限定されず、例
えば、縞状、ドット状、任意形状等が挙げられる。上記
電極の厚さは、0.1〜100μmが好ましい。上記電
極の幅は、1〜500μmが好ましい。
Electrodes are formed on the surfaces of the chip, the substrate and the like. Examples of the material of the electrode include gold,
Examples thereof include silver, copper, nickel, palladium, carbon, aluminum and ITO. In order to reduce the contact resistance, copper, nickel or the like coated with gold may be used. The shape of the electrode is not particularly limited, and examples thereof include a stripe shape, a dot shape, and an arbitrary shape. The thickness of the electrode is preferably 0.1 to 100 μm. The width of the electrode is preferably 1 to 500 μm.

【0039】本発明の微粒子配置導電接続フィルムは、
特にベアチップの接合用として好適である。通常ベアチ
ップをフリップチップで接合する場合にはバンプが必要
となるが、本発明の微粒子配置導電接続フィルムを用い
た場合、導電性微粒子がバンプの役目を果たすためバン
プレスでの接続が可能であり、バンプ作製における煩雑
な工程を省くことができるという大きなメリットがあ
る。バンプレスで接続を行う場合には配置すべき電極以
外の場所に導電性微粒子が存在すると、チップの保護膜
を破壊してしまう等の不具合が発生するが、本発明の微
粒子配置導電接続フィルムではそのような不具合が起こ
らない。また、導電性微粒子が上述したような好ましい
K値やCV値等である場合は、アルミ電極のような酸化
されやすい電極も、その酸化膜を破って接続することが
できる。
The fine particle-arranged conductive connecting film of the present invention comprises:
In particular, it is suitable for joining bare chips. Normally, bumps are required when bonding bare chips with flip chips, but when the fine particle-arranged conductive connection film of the present invention is used, conductive fine particles serve as bumps, so bumpless connection is possible. However, there is a great merit that a complicated process for manufacturing bumps can be omitted. When conductive fine particles are present in a place other than the electrode to be arranged when bumpless connection is made, problems such as destruction of the protective film of the chip occur, but in the fine particle arranged conductive connecting film of the present invention Such a problem does not occur. Further, when the conductive fine particles have the preferable K value or CV value as described above, an electrode which is easily oxidized, such as an aluminum electrode, can be broken and connected.

【0040】本発明の微粒子配置導電接続フィルムを用
いて基板、部品等の導電接続を行う方法としては、例え
ば、以下ような方法が挙げられる。表面に電極が形成さ
れた基板又は部品を電極が上になるように置き、その上
に本発明の微粒子配置導電接続フィルムを、導電性微粒
子が電極の位置にくるように載せた後、もう一方の電極
面を有する基板又は部品を電極が下になるようにかつ電
極の位置が合うように置き、加熱、加圧等することによ
り接続する。上記加熱、加圧には、ヒーターが付いた圧
着機やボンディングマシーン等が用いられる。本発明の
微粒子配置導電接続フィルムを用いて接続してなる基
板、部品等の導電接続構造体もまた、本発明の1つであ
る。
Examples of the method for conductively connecting a substrate, a component and the like using the fine particle-arranged conductive connecting film of the present invention include the following methods. A substrate or part having an electrode formed on the surface is placed so that the electrode faces upward, and the fine particle-arranged conductive connecting film of the present invention is placed thereon so that the conductive fine particles come to the position of the electrode, and then the other The substrate or part having the electrode surface is placed so that the electrodes are on the lower side and the positions of the electrodes are aligned, and they are connected by heating, pressurizing or the like. For the heating and pressing, a crimping machine equipped with a heater, a bonding machine, or the like is used. A conductive connection structure such as a substrate or a component connected by using the fine particle-arranged conductive connection film of the present invention is also one aspect of the present invention.

【0041】本発明の微粒子配置導電接続フィルムを用
いて接続した導電接続構造体は、微粒子配置導電接続フ
ィルムの接続端面から水分等の浸入による不具合が発生
しないよう、微粒子配置導電接続フィルムの周辺が封止
されていることが好ましい。上記封止の方法としては特
に限定されず、一般に用いられる封止樹脂を用いた方法
等が挙げられる。
The conductive connecting structure connected by using the fine particle-arranged conductive connecting film of the present invention has a peripheral portion around the fine particle-arranged conductive connecting film so as to prevent a defect due to infiltration of moisture or the like from the connection end face of the fine particle-arranged conductive connecting film. It is preferably sealed. The above-mentioned sealing method is not particularly limited, and examples thereof include a method using a generally used sealing resin.

【0042】[0042]

【実施例】以下に実施例を掲げて本発明を更に詳しく説
明するが、本発明はこれら実施例のみに限定されるもの
ではない。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.

【0043】(実施例1)シード重合により得られたジ
ビニルベンゼン系共重合体を篩と湿式分級により分級し
微粒子を得た。この微粒子に無電解メッキにより厚さ
0.2μmのニッケル層を付け、更に電気メッキにより
厚さ2.3μmの金層を付けた。メッキを施した微粒子
を分級し、平均粒径150μm、アスペクト比1.0
3、CV値1%、K値4000N/mm2、回復率60
%、常温での線膨張係数50ppm、抵抗値0.01Ω
の導電性微粒子を得た。
(Example 1) The divinylbenzene copolymer obtained by seed polymerization was classified by a sieve and wet classification to obtain fine particles. A 0.2 μm thick nickel layer was applied to the fine particles by electroless plating, and a 2.3 μm thick gold layer was further applied by electroplating. The plated fine particles are classified to have an average particle diameter of 150 μm and an aspect ratio of 1.0.
3, CV value 1%, K value 4000N / mm 2 , recovery rate 60
%, Linear expansion coefficient at room temperature 50ppm, resistance value 0.01Ω
The conductive fine particles of

【0044】一方、厚さ140μm、1cm角の、アク
リルゴム50重量%を含む半硬化状態のエポキシ系フィ
ルムに、パワー型ICチップの電極と位置が合うように
チップ1辺につき、約400μmのピッチで6個の穴
を、チップ4辺に、即ち、正方形状に、CO2レーザー
で表面150μm裏面125μmのテーパー状で穴のC
V値2%、アスペクト比1.04になるように開けた。
On the other hand, a thickness of 140 μm, a 1 cm square, a semi-cured epoxy film containing 50% by weight of acrylic rubber, and a pitch of about 400 μm per side of the power type IC chip so as to be aligned with the electrodes of the power type IC chip. 6 holes on the four sides of the chip, that is, in the shape of a square, and with a CO 2 laser, the front surface 150 μm and the back surface 125 μm are tapered and the holes C
It was opened so that the V value was 2% and the aspect ratio was 1.04.

【0045】このフィルムの裏側に直径8mmの吸い口
を、穴全てを覆い、なおかつ漏れがないように当て、−
50kPaの真空度で吸引を行いながら、導電性微粒子
に近づけ導電性微粒子の吸着を行った。この際、吸い口
にはフィルム支持用に目開き50μmのSUS製のメッ
シュを備え付けた。数秒程度でフィルムの各穴には導電
性微粒子が一つづつ過不足なく配置されていた。この間
導電性微粒子の付着がないよう除電を行っていた。ま
た、余分な付着粒子はほとんどみられなかったが、念の
ため異物の除去を兼ねて柔軟なブラシにより表面を掃い
た。導電性微粒子を吸着配置させた後、真空を解放し導
電性微粒子を安定化させるためフィルムをガラス板に挟
み軽くプレスした。導電性微粒子の重心は接着性フィル
ムの中にあり、接着性フィルムに振動を与えても導電性
微粒子が穴から離れることはなかった。
On the back side of this film, apply a mouthpiece having a diameter of 8 mm so as to cover all the holes and prevent leakage.
While conducting suction at a vacuum degree of 50 kPa, the conductive fine particles were brought close to and the conductive fine particles were adsorbed. At this time, a SUS mesh having an opening of 50 μm was attached to the mouthpiece for supporting the film. In about a few seconds, one conductive fine particle was placed in each hole of the film without excess or deficiency. During this period, static electricity was removed so that the conductive fine particles did not adhere. Also, although almost no extra adhered particles were seen, the surface was swept with a soft brush to remove foreign matter, just in case. After the conductive fine particles were adsorbed and arranged, the film was sandwiched between glass plates and lightly pressed to release the vacuum and stabilize the conductive fine particles. The center of gravity of the conductive fine particles was inside the adhesive film, and the conductive fine particles were not separated from the holes even when the adhesive film was vibrated.

【0046】このようにして得られた、微粒子配置導電
接続フィルムを電極パターンが描かれた厚さ50μmの
フィルム基板の上に電極の位置と導電性微粒子の位置が
合うように載せ、軽く押圧し仮圧着した後、チップのア
ルミ電極の位置と導電性微粒子の位置とを合わせ加熱圧
着し、エポキシ樹脂を硬化させフリップチップ接合を行
った。硬化後のエポキシ樹脂の常温での線膨張係数は4
0ppmであった。
The fine particle-arranged conductive connecting film thus obtained was placed on a film substrate having a thickness of 50 μm on which an electrode pattern was drawn so that the positions of the electrodes and the conductive fine particles were aligned and lightly pressed. After temporary pressure bonding, the position of the aluminum electrode of the chip and the position of the conductive fine particles were aligned and heat-bonded, and the epoxy resin was cured to perform flip chip bonding. The linear expansion coefficient of the cured epoxy resin at room temperature is 4
It was 0 ppm.

【0047】得られた導電接続構造体は、全ての電極で
安定した導通がとれ隣接電極でのリークもなく通常通り
作動し、−40〜+125℃の熱サイクルテストを10
00回行ったが、低温時でも高温時でも接続部の抵抗値
アップや作動に異常は見られなかった。
The conductive connection structure obtained had stable conduction in all the electrodes and operated normally without leaks in the adjacent electrodes, and was subjected to a thermal cycle test at -40 to + 125 ° C. for 10 times.
The test was performed 00 times, but no increase in the resistance value of the connection part or abnormal operation was observed at both low and high temperatures.

【0048】(実施例2)エポキシ系フィルムにICチ
ップの電極と位置が合うように、約400μmのピッチ
で6個の穴を、1.5mm間隔で、6列、即ち、格子状
に、CO2レーザーで表面150μm裏面125μmの
テーパー状で穴のCV値2%、アスペクト比1.04に
なるように開けたものを用いた以外は、実施例1と同様
にして、微粒子配置導電接続フィルム及び導電接続構造
体を得た。得られた接続構造体は、全ての電極で安定し
た導通がとれ隣接電極でのリークもなく通常通り作動
し、−40〜+125℃の熱サイクルテストを1000
回行ったが、低温時でも高温時でも接続部の抵抗値アッ
プや作動に異常は見られなかった。
(Embodiment 2) In order to align the epoxy film with the electrodes of the IC chip, 6 holes with a pitch of about 400 μm are formed in 6 rows at a distance of 1.5 mm, that is, in a grid pattern. 2 The same procedure as in Example 1 was repeated except that a taper having a surface of 150 μm and a back surface of 125 μm and having a hole CV value of 2% and an aspect ratio of 1.04 was used. A conductive connection structure was obtained. The resulting connection structure operates normally without any leakage in adjacent electrodes with stable conduction in all electrodes, and subjected to a thermal cycle test of −40 to + 125 ° C. for 1000 times.
The test was repeated, but no increase in the resistance value of the connection part or abnormal operation was observed at both low and high temperatures.

【0049】(比較例1)エポキシ系フィルム中にラン
ダムに導電性微粒子を分散させた異方性導電接着剤を作
製し、これを用いたことを除いては実施例1と同様にフ
リップチップ接合を行おうとしたが、フィラーが導電接
続の邪魔をしてうまく導通をとることができなかった。
(Comparative Example 1) Flip chip bonding was carried out in the same manner as in Example 1 except that an anisotropic conductive adhesive in which conductive fine particles were randomly dispersed in an epoxy film was prepared and used. However, the filler interfered with the conductive connection and could not achieve good conduction.

【0050】(比較例2)エポキシ系フィルム中にラン
ダムに導電性微粒子を分散させた異方性導電接着剤を作
製し、これを用いたことを除いては実施例2と同様にフ
リップチップ接合を行おうとしたが、隣接電極間でのリ
ークが発生し、正常に作動しなかった。
(Comparative Example 2) Flip-chip bonding was carried out in the same manner as in Example 2 except that an anisotropic conductive adhesive in which conductive fine particles were randomly dispersed in an epoxy film was prepared and used. However, there was a leak between the adjacent electrodes and the operation was not normal.

【0051】[0051]

【発明の効果】本発明によると、対向する微細な電極を
接続するに際し、隣接電極のリークがなく接続信頼性の
高い電気的接続を短時間で容易に行える微粒子配置導電
接続フィルム、微粒子配置導電接続フィルムの製造方法
及び導電接続構造体を提供することができる。
EFFECTS OF THE INVENTION According to the present invention, when connecting fine electrodes facing each other, a fine particle-arranged conductive connection film and a fine particle-arranged conductive film can be easily formed in a short time without causing leakage of adjacent electrodes and having high connection reliability. A manufacturing method of a connection film and a conductive connection structure can be provided.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01B 5/00 H01B 5/00 H 5E344 5/16 5/16 5G307 13/00 501 13/00 501P H01R 43/00 H01R 43/00 H H05K 3/32 H05K 3/32 B 3/36 3/36 A Fターム(参考) 4F100 AK53 AL05 AN02 BA02 DC11A DE01B GB41 JB13A JG01B JL11A YY00B 4J004 AA02 AA05 AA09 AA12 AA13 AA14 AA15 AA17 AA18 AB05 BA06 FA05 FA08 GA01 4J040 AA01 DA051 DE031 DF001 DM011 EB031 EB091 EB111 EB131 EC001 ED001 ED151 EF001 EH001 HA026 HA066 HA341 KA03 KA32 LA09 NA19 5E051 CA03 5E319 AA03 AB05 AC01 BB11 CC61 GG01 5E344 AA01 BB02 DD06 EE06 EE13 5G307 HA02 HB00 HC01 Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) H01B 5/00 H01B 5/00 H 5E344 5/16 5/16 5G307 13/00 501 13/00 501P H01R 43/00 H01R 43/00 H H05K 3/32 H05K 3/32 B 3/36 3/36 A F term (reference) 4F100 AK53 AL05 AN02 BA02 DC11A DE01B GB41 JB13A JG01B JL11A YY00B 4J004 AA02 AA05 AA09 AA12 AA13 AA14 A18 A05 AA17 AA15 AA17 AA17 AA17 FA08 GA01 4J040 AA01 DA051 DE031 DF001 DM011 EB031 EB091 EB111 EB131 EC001 ED001 ED151 EF001 EH001 HA026 HA066 HA341 KA03 KA32 LA09 NA19 5E051 CA03 5E319 AA03 AB05 AC01 BB11 CC61 GG01 HA01 DD01A02 AB06 AC02 BB11 CC61 GG01 5E03 A05

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 接着性フィルムに開けられた貫通穴に導
電性微粒子が配置されている微粒子配置導電接続フィル
ムであって、前記導電性微粒子は、少なくとも一部が前
記接着性フィルムより露出しており、かつ、対向する電
子部品の電極部に対応する位置にのみ配置されているも
のであることを特徴とする微粒子配置導電接続フィル
ム。
1. A fine particle-arranged conductive connection film in which conductive fine particles are arranged in through holes formed in an adhesive film, wherein the conductive fine particles are at least partially exposed from the adhesive film. And a fine particle-arranged conductive connecting film, which is arranged only at a position corresponding to an electrode portion of an electronic component facing each other.
【請求項2】 導電性微粒子は、接着性フィルムの周辺
部に配置されていることを特徴とする請求項1記載の微
粒子配置導電接続フィルム。
2. The fine particle-arranged conductive connection film according to claim 1, wherein the conductive fine particles are arranged in the peripheral portion of the adhesive film.
【請求項3】 導電性微粒子は、接着性フィルムに格子
状に配置されていることを特徴とする請求項1又は2の
微粒子配置導電接続フィルム。
3. The fine particle-arranged conductive connection film according to claim 1 or 2, wherein the conductive fine particles are arranged in a grid on the adhesive film.
【請求項4】 導電性微粒子は、平均粒径が10〜80
0μm、アスペクト比が1.3未満、CV値が5%以下
であることを特徴とする請求項1、2又は3記載の微粒
子配置導電接続フィルム。
4. The conductive fine particles have an average particle size of 10 to 80.
The fine particle-arranged conductive connection film according to claim 1, 2 or 3, wherein the conductive connection film has a thickness of 0 μm, an aspect ratio of less than 1.3, and a CV value of 5% or less.
【請求項5】 導電性微粒子は、高分子量体からなるコ
アの表面に導電層が形成されたものであって、前記導電
層の厚さは0.3μm以上であることを特徴とする請求
項1、2、3又は4記載の微粒子配置導電接続フィル
ム。
5. The conductive fine particles have a conductive layer formed on the surface of a core made of a high molecular weight material, and the conductive layer has a thickness of 0.3 μm or more. The fine particle-arranged conductive connecting film according to 1, 2, 3 or 4.
【請求項6】 接着性フィルムは、押圧加熱により被着
体と硬化接着するものであることを特徴とする請求項
1、2、3、4又は5記載の微粒子配置導電接続フィル
ム。
6. The fine particle-arranged conductive connection film according to claim 1, wherein the adhesive film is cured and adhered to an adherend by pressing and heating.
【請求項7】 請求項1、2、3、4、5又は6記載の
微粒子配置導電接続フィルムの製造方法であって、接着
性フィルムの任意の位置に貫通穴を開け、前記貫通穴に
導電性微粒子を配置、止着することを特徴とする微粒子
配置導電接続フィルムの製造方法。
7. The method for producing a fine particle-arranged conductive connection film according to claim 1, 2, 3, 4, 5, or 6, wherein a through hole is formed at an arbitrary position of the adhesive film, and the through hole is electrically conductive. A method for producing a fine particle-arranged conductive connecting film, which comprises disposing and fixing conductive fine particles.
【請求項8】 導電性微粒子の配置、止着は、吸引又は
押圧により行うことを特徴とする請求項7記載の微粒子
配置導電接続フィルムの製造方法。
8. The method for producing a fine particle-arranged conductive connection film according to claim 7, wherein the conductive fine particles are arranged and fixed by suction or pressing.
【請求項9】 請求項1、2、3、4、5又は6記載の
微粒子配置導電接続フィルムを用いて導電接続されてな
ることを特徴とする導電接続構造体。
9. A conductive connection structure, which is conductively connected by using the fine particle-arranged conductive connection film according to claim 1. Description:
【請求項10】 微粒子配置導電接続フィルムの周辺が
封止されていることを特徴とする請求項9記載の導電接
続構造体。
10. The conductive connection structure according to claim 9, wherein the periphery of the fine particle-arranged conductive connection film is sealed.
JP2001218326A 2001-07-18 2001-07-18 Conductively connecting film with disposed particles, its manufacturing method and conductively connecting structure Pending JP2003031281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001218326A JP2003031281A (en) 2001-07-18 2001-07-18 Conductively connecting film with disposed particles, its manufacturing method and conductively connecting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001218326A JP2003031281A (en) 2001-07-18 2001-07-18 Conductively connecting film with disposed particles, its manufacturing method and conductively connecting structure

Publications (1)

Publication Number Publication Date
JP2003031281A true JP2003031281A (en) 2003-01-31

Family

ID=19052518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001218326A Pending JP2003031281A (en) 2001-07-18 2001-07-18 Conductively connecting film with disposed particles, its manufacturing method and conductively connecting structure

Country Status (1)

Country Link
JP (1) JP2003031281A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342764A (en) * 2003-05-14 2004-12-02 Sekisui Chem Co Ltd Conductive connection film and conductive connection structure
JP2009124076A (en) * 2007-11-19 2009-06-04 Asahi Kasei Electronics Co Ltd Connection structure and manufacturing method of connection structure
JP2016046347A (en) * 2014-08-21 2016-04-04 大日本印刷株式会社 Method of manufacturing through-electrode substrate, pressure sensitive adhesive sheet and electrolytic plating method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342764A (en) * 2003-05-14 2004-12-02 Sekisui Chem Co Ltd Conductive connection film and conductive connection structure
JP2009124076A (en) * 2007-11-19 2009-06-04 Asahi Kasei Electronics Co Ltd Connection structure and manufacturing method of connection structure
JP2016046347A (en) * 2014-08-21 2016-04-04 大日本印刷株式会社 Method of manufacturing through-electrode substrate, pressure sensitive adhesive sheet and electrolytic plating method

Similar Documents

Publication Publication Date Title
US20040106334A1 (en) Microparticle arrangement film, electrical connection film, electrical connection structure, and microparticle arrangement method
US7134198B2 (en) Method for manufacturing electric element built-in module with sealed electric element
US20020007964A1 (en) Printed circuit board and electronic package using same
US6720644B2 (en) Semiconductor device using interposer substrate and manufacturing method therefor
US20050017373A1 (en) Electronic circuit device and its manufacturing method
JPH09298255A (en) Ceramic circuit board and semiconductor device using the board
US6528889B1 (en) Electronic circuit device having adhesion-reinforcing pattern on a circuit board for flip-chip mounting an IC chip
TW201001661A (en) Interconnect structure including hybrid frame panel
JP4663158B2 (en) Fine particle arrangement film, conductive connection film, conductive connection structure, and fine particle arrangement method
JP2000277649A (en) Semiconductor and manufacture of the same
US6208022B1 (en) Electronic-circuit assembly
JP2003031281A (en) Conductively connecting film with disposed particles, its manufacturing method and conductively connecting structure
JP3925752B2 (en) Bumped wiring board and manufacturing method of semiconductor package
JP2003060333A (en) Method for connecting electronic component
JP2003051661A (en) Method for manufacturing conductively connecting structure
JP4669635B2 (en) Method for producing fine particle arrangement conductive connection film
JP2003036904A (en) Fine-particle-arranged electrically conductive connecting film, manufacturing method of fine-particle- arranged electricslly conductive connecting film, and electrically conductive connecting structure body
JP2002076607A (en) Method for transferring and disposing fine particles, fine particle disposing film, conductively connecting film and conductively connecting structure
JP2002373751A (en) Method for arranging particulates in micro-hole, thin layer element with conductive particulates arranged, and conductive laminate structure
JP2000156386A (en) Connection structure and connection method of semiconductor device and semiconductor device package using the same
JPH11163054A (en) Structure of semiconductor device and its manufacture
JP2002313143A (en) Fine particle aligned conductive connection film, manufacturing method of fine particle aligned conductive connection film and conductive connection structural body
JP2003188504A (en) Electronic component mounting method
JP2002298945A (en) Fine particles arranged conductive connection film, manufacturing method of fine particles arranged conductive connection film and conductive connection structure body
JP3070544B2 (en) Ball grid array type semiconductor device