JP2003027336A - Method for producing polyester conjugate fiber - Google Patents

Method for producing polyester conjugate fiber

Info

Publication number
JP2003027336A
JP2003027336A JP2001213605A JP2001213605A JP2003027336A JP 2003027336 A JP2003027336 A JP 2003027336A JP 2001213605 A JP2001213605 A JP 2001213605A JP 2001213605 A JP2001213605 A JP 2001213605A JP 2003027336 A JP2003027336 A JP 2003027336A
Authority
JP
Japan
Prior art keywords
component
polyester
max
intrinsic viscosity
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001213605A
Other languages
Japanese (ja)
Other versions
JP3703743B2 (en
Inventor
Keita Katsuma
啓太 勝間
Matsumi Tanaka
松美 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Original Assignee
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Synthetic Fibers Ltd, Kanebo Ltd filed Critical Kanebo Synthetic Fibers Ltd
Priority to JP2001213605A priority Critical patent/JP3703743B2/en
Publication of JP2003027336A publication Critical patent/JP2003027336A/en
Application granted granted Critical
Publication of JP3703743B2 publication Critical patent/JP3703743B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a two-component conjugate fiber excellent in spinnability and scarcely causing problems such as occurrence of white powder in false twist step and yarn breakage. SOLUTION: In this method for producing the polyester conjugate fiber, the conjugate fiber uses two components A and B in which alkali-reducing speeds are different, and a polyester containing >=90% ethylene terephthalate and obtained by a direct continuous polymerization method so that a ratio of maximum value [η]max of intrinsic viscosity to minimum value [η]min thereof satisfies the formula 1.0<=[η]max/[η]min<=1.02 is used as the component A, and a readily alkali water-soluble polyester obtained by a direct continuous polymerization method so that a ratio of maximum value [η]max of intrinsic viscosity to minimum value [η]min thereof satisfies the formula 1.0<=[η]max/[η]min<=1.02 is used as the component B.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ減量工程
において一成分を完全に溶解除去する事により分割され
て極細繊維、或いは中空繊維となる2成分複合繊維の製
造方法に関する。更に詳しくは、紡糸工程、延伸工程、
仮撚工程、製織工程において耐熱性が良く、糸切れ、毛
羽の問題が起こらない2成分複合繊維の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a bicomponent composite fiber which is divided into ultrafine fibers or hollow fibers by completely dissolving and removing one component in an alkali weight reduction step. More specifically, spinning process, drawing process,
The present invention relates to a method for producing a bicomponent composite fiber which has good heat resistance in the false twisting process and the weaving process and does not cause problems such as yarn breakage and fluff.

【0002】[0002]

【従来の技術】従来からアルカリ水易溶ポリエステルを
一成分とする分割型複合繊維は、極めて細繊度の極細糸
を得る目的で製造され、特公昭63−20939号公報
や特公平8−14042号公報に開示される様に、アル
カリ処理により分割成分の少なくとも一部を溶出して分
割糸とし、スウェード調高密度織編物或いは優雅な光沢
と柔軟な風合いを持つ絹様織編物に用いられる。
2. Description of the Related Art Conventionally, splittable conjugate fibers containing an easily soluble alkaline water polyester as a component have been manufactured for the purpose of obtaining ultrafine yarns having extremely fineness, and are disclosed in JP-B-63-20939 and JP-B-8-14042. As disclosed in the publication, at least a part of the split components is eluted by alkali treatment to form split yarns, which are used for a suede-like high density woven or knitted fabric or a silk-like woven or knitted fabric having an elegant luster and a soft texture.

【0003】また、アルカリ水易溶ポリエステルを芯成
分に使用し、アルカリ減量処理後に中空化或いは、溝を
形成させて疎水性であるポリエステル繊維に吸水、速乾
性を持たせる織、編物に用いられている。
Further, it is used for woven or knitted fabrics in which a readily soluble alkaline water-soluble polyester is used as a core component, and after the alkali reduction treatment, hollowed out or grooves are formed to make hydrophobic polyester fibers absorb water and dry quickly. ing.

【0004】該アルカリ水易溶ポリエステルとしては、
酸成分として金属スルホネート含有イソフタル酸成分
を、グリコール成分としては平均分子量が高いポリアル
キレングリコールを用いたものが主流となっており、例
えば該ポリエステルを使用した複合繊維は特許第254
6802号や特公昭63−20939号公報に記載され
ている。
As the alkali water easily soluble polyester,
A metal sulfonate-containing isophthalic acid component as an acid component and a polyalkylene glycol having a high average molecular weight as a glycol component are mainly used. For example, a composite fiber using the polyester is disclosed in Japanese Patent No. 254
6802 and Japanese Patent Publication No. 63-20939.

【0005】従来、かかるアルカリ水易溶ポリエステル
を製造する方法は、特開昭62−89725号公報記載
の様にテレフタル酸ジメチルを用いたエステル交換法
(以下DMT法と称する)が主流であり、DMT法では
バッチ式製造方法が一般的である。また、テレフタル酸
を用いた直接重合法(以下直重法と称する)に関する製
造方法として、特公昭58−45971号公報記載の方
法があるが、これもバッチ式製造方法である。
Conventionally, as a method for producing such an easily water-soluble polyester, a transesterification method using dimethyl terephthalate (hereinafter referred to as a DMT method) is mainly used as described in JP-A-62-89725, A batch type manufacturing method is generally used in the DMT method. Further, as a manufacturing method relating to a direct polymerization method using terephthalic acid (hereinafter referred to as a direct weight method), there is a method described in JP-B-58-45971, which is also a batch type manufacturing method.

【0006】バッチ式製造法を用いると、ポリマー押し
出しの経時変化により押し出し開始時のポリマー粘度と
押し出し終了時のポリマー粘度に相違が生じ、また、バ
ッチ数が増えると釜内残存ポリマーが劣化した異物が混
入したり、バッチ間のポリマー物性差が大きくなるとい
う問題があった。これを改善する為に、バッチ数を減ら
したり、ポリマーペレットをブレンドするという対策が
為されるが、本ポリマーを用いて複合繊維を紡糸すると
ポリマー物性斑に起因する毛羽や糸切れが多発するとい
う問題があった。
When the batch production method is used, the polymer viscosity at the start of extrusion differs from the polymer viscosity at the end of extrusion due to the time-dependent change of polymer extrusion, and when the number of batches increases, the residual polymer in the kettle deteriorates. However, there is a problem in that the polymer is mixed in and the difference in polymer physical properties between batches becomes large. In order to improve this, measures such as reducing the number of batches and blending polymer pellets are taken, but when composite fibers are spun using this polymer, fluff and yarn breakage due to polymer physical property irregularities occur frequently. There was a problem.

【0007】一方、特開平6−306734号公報に
は、アルカリ溶液処理後の極細繊維として、カチオン可
染ポリエステルが用いられている。該極細繊維の場合、
カチオン染料にて染色可能であるので極細化されても十
分濃色化が可能であることが記載されている。
On the other hand, in Japanese Unexamined Patent Publication No. 6-306734, a cationic dyeable polyester is used as an ultrafine fiber after treated with an alkaline solution. In the case of the ultrafine fibers,
It is described that since it can be dyed with a cationic dye, it can be sufficiently darkened even if it is made extremely fine.

【0008】しかしながら、該複合繊維においても、ア
ルカリ水易溶成分及びカチオン可染成分に使用されてい
るポリエステルはバッチ式重合方法でしか得ることは出
来なかったので、紡糸操業性が不安定であり、且つ仮撚
工程等での白粉発生などの工程的問題点があり、更にポ
リマー物性が不安定な為に染色斑や経筋、緯筋など品位
の悪い複合繊維しか得ることが出来なかった。
However, even in the composite fiber, the polyester used as the easily soluble component in alkaline water and the component capable of being dyed with cation can be obtained only by the batch type polymerization method, so that the spinning operability is unstable. In addition, there are process problems such as the generation of white powder in the false twisting process and the like, and because the polymer properties are unstable, only composite fibers of poor quality such as dyeing spots, warps and wefts can be obtained.

【0009】[0009]

【発明が解決しようとする課題】本発明はかかる従来技
術の欠点を解消し、紡糸操業性が優れ、仮撚工程での白
粉発生や糸切れ等の問題点が少ない2成分複合繊維を安
価に提供することを課題とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned drawbacks of the prior art, has excellent spinning operability, and is low in cost of a bicomponent composite fiber having few problems such as white powder generation and yarn breakage in the false twisting process. The challenge is to provide.

【0010】[0010]

【課題を解決するための手段】本発明らは、上記の課題
を解決する為に鋭意検討を行った結果、アルカリ減量速
度が異なる2成分複合繊維に於いて、アルカリ減量処理
後に残存する成分A、及びアルカリ水易溶成分であるポ
リエステルを直接連続重合方法で製造して、且つ得られ
たポリエステルの極限粘度バラツキを少なくすれば紡糸
操業性に優れ、仮撚工程等の後工程にて糸切れ、白粉な
どの問題が解消されることを見出した。
Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that in a two-component composite fiber having different alkali weight loss rates, the component A remaining after the alkali weight reduction treatment is carried out. , And a polyester that is an easily soluble component in alkaline water are directly produced by a continuous polymerization method, and if the variation in the intrinsic viscosity of the obtained polyester is reduced, the spinning operability is excellent, and the yarn breaks in the post-process such as the false twist process. , And found that problems such as white powder are eliminated.

【0011】すなわち本発明の構成は、アルカリ減量速
度が異なる2成分を用いた複合繊維であって、成分Aに
は90%以上がエチレンテレフタレートであり、極限粘
度の最大値[η]maxと最小値[η]minの比が 1.0
≦[η]max/[η]min≦1.02を満足する直接連続
重合方法で得られたポリエステルを用い、成分Bとし
て、極限粘度の最大値[η]maxと最小値[η]minの比
が 1.0≦[η]max/[η]min≦1.02を満足す
る直接連続重合方法で得られたアルカリ水易溶ポリエス
テルを用いることを特徴とするポリエステル複合繊維の
製造方法にかかるものである。
That is, the constitution of the present invention is a composite fiber using two components having different alkali weight loss rates, and 90% or more of the component A is ethylene terephthalate, and the maximum value [η] max and the minimum value of the intrinsic viscosity are the same. The ratio of the value [η] min is 1.0
Using a polyester obtained by a direct continuous polymerization method satisfying ≦ [η] max / [η] min ≦ 1.02, as the component B, the maximum value [η] max and the minimum value [η] min of the intrinsic viscosity are A method for producing a polyester composite fiber, characterized in that an alkali water readily soluble polyester obtained by a direct continuous polymerization method having a ratio of 1.0 ≦ [η] max / [η] min ≦ 1.02 is used It is a thing.

【0012】また、成分Aとして、金属スルホネート基
含有イソフタル酸成分を1.0〜3.0モル%含有する
直接連続重合方法で得られ、且つ極限粘度の最大値
[η]maxと最小値[η]minの比が 1.0≦[η]ma
x/[η]min≦1.02を満足するカチオン可染ポリエ
ステルであることを特徴とするポリエステル複合繊維の
製造方法に関するものである。
The component A is obtained by a direct continuous polymerization method containing a metal sulfonate group-containing isophthalic acid component in an amount of 1.0 to 3.0 mol%, and has a maximum intrinsic viscosity [η] max and a minimum intrinsic viscosity [η]. The ratio of η] min is 1.0 ≦ [η] ma
The present invention relates to a method for producing a polyester conjugate fiber, which is a cationic dyeable polyester satisfying x / [η] min ≦ 1.02.

【0013】[0013]

【発明の実施の形態】以下に本発明を詳細に説明する。
本発明に於いて、アルカリ水易溶成分Bのポリエステル
重合体は、5−金属スルホイソフタル酸ジメチル(以下
SIPMと称する)又はSIPMのジメチル基をエチ
レングリコールでエステル化させた化合物(以下 SI
PEと称する)及びポリエステルアルキレングリコール
から構成される。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is described in detail below.
In the present invention, the polyester polymer of the component B which is easily soluble in alkaline water is dimethyl 5-metal sulfoisophthalate (hereinafter referred to as SIPM) or a compound obtained by esterifying the dimethyl group of SIPM with ethylene glycol (hereinafter referred to as SI
Referred to as PE) and a polyester alkylene glycol.

【0014】SIPM又はSIPE中金属はナトリウ
ム、カリウム、リチウムなどが用いられるが、最も好ま
しいのはナトリウムである。また、直接連続重合方法に
於いて、スラリー安定性の為にはSIPEを使用するこ
とが好ましい。
The metal in SIPM or SIPE may be sodium, potassium, lithium, etc., with sodium being most preferred. Further, in the direct continuous polymerization method, it is preferable to use SIPE for slurry stability.

【0015】SIPEの共重合率はポリマーの酸成分中
2.0〜3.0モル%とするのが好ましい。この範囲で
あれば、アルカリ水に対する溶解性に優れ、且つ溶融紡
糸工程での操業性にも優れている。
The copolymerization rate of SIPE is preferably 2.0 to 3.0 mol% in the acid component of the polymer. Within this range, the solubility in alkaline water is excellent and the operability in the melt spinning process is also excellent.

【0016】アルカリ水易溶成分B重合体の一方の構成
成分である、ポリアルキレングリコールとしては、一般
式 HO(Cn2nO)mH(但し、n、mは正の整数)で
表されるもので、n=2のポリエチレングリコール(以
下PEGと称す)が汎用的で最も好ましい。
The polyalkylene glycol, which is one of the constituents of the readily soluble component B polymer in alkaline water, is represented by the general formula HO (C n H 2n O) m H (where n and m are positive integers). Among them, polyethylene glycol of n = 2 (hereinafter referred to as PEG) is versatile and most preferable.

【0017】本発明に用いるPEGの分子量は、100
0〜10000が好ましい。この範囲であれば、溶融紡
糸時の加水分解が起こらず操業性が良い。また、重合反
応性も優れている。
The molecular weight of PEG used in the present invention is 100.
0 to 10000 is preferable. Within this range, hydrolysis does not occur during melt spinning and the workability is good. Also, the polymerization reactivity is excellent.

【0018】PEGの共重合量は、ポリマーに対して
9.0〜13.0重量%とするのが好ましい。この範囲
であれば、アルカリ水に対する溶解性に優れており、且
つポリマーの耐熱性も良い。
The amount of PEG copolymerized is preferably 9.0 to 13.0% by weight based on the polymer. Within this range, the solubility in alkaline water is excellent, and the heat resistance of the polymer is good.

【0019】本発明に於いて最も重要である事はアルカ
リ水易溶成分Bの極限粘度は、極限粘度の最大値[η]
maxと最小値[η]minの比が 1.0≦[η]max/
[η]min≦1.02 である。[η]max/[η]min
が上記範囲から外れると、溶融紡糸時の糸切れが多発
し、紡糸濾過性が悪い為紡糸口金寿命が短くなる等、操
業性に劣る。
What is most important in the present invention is that the intrinsic viscosity of the component B easily soluble in alkaline water is the maximum value [η] of the intrinsic viscosity.
The ratio of max to the minimum value [η] min is 1.0 ≦ [η] max /
[Η] min ≦ 1.02. [Η] max / [η] min
When the value is out of the above range, yarn breakage frequently occurs during melt spinning, and the spinnability of the spinneret is shortened due to poor spin filterability, resulting in poor operability.

【0020】該アルカリ水易溶成分Bの重合体は直接連
続重合方法によって製造されるものであり、図面を用い
てその概要を以下説明する。(図1)はアルカリ水易溶
成分Bの重合体を製造する直接連続重合装置を示した概
略図である。スラリー化槽1でテレフタル酸とグリコー
ルをスラリー化させた後、金属スルホネート基含有イソ
フタル酸化合物を投入口aから1に投入しスラリー化さ
せる。その後、第1エステル化槽2へ該スラリーを連続
的に供給してエステル化反応させオリゴマーを形成させ
る。更に生成したオリゴマーを第2エステル化槽3へ逐
次供給し、ポリアルキレングリコールを投入口bにて添
加する。しかる後、重合槽4へ該オリゴマーを逐次連続
的に供給して真空下で所定の重合度まで連続的に重合反
応を行う。所定の重合度になったポリマーは重合槽4の
ポリマー排出口(図示せず)から細孔を通して水浴中に
押し出され、押し出された索をカッターによりチップ化
する。
The polymer of the component B which is easily soluble in alkaline water is produced by a direct continuous polymerization method, and its outline will be described below with reference to the drawings. (FIG. 1) is a schematic diagram showing a direct continuous polymerization apparatus for producing a polymer of a component B easily soluble in alkaline water. After slurrying terephthalic acid and glycol in the slurry tank 1, a metal sulfonate group-containing isophthalic acid compound is charged into 1 through the charging port a to slurry. Then, the slurry is continuously supplied to the first esterification tank 2 to cause an esterification reaction to form an oligomer. Further, the produced oligomer is sequentially supplied to the second esterification tank 3, and polyalkylene glycol is added at the charging port b. After that, the oligomer is successively and continuously supplied to the polymerization tank 4 and the polymerization reaction is continuously performed under a vacuum up to a predetermined polymerization degree. A polymer having a predetermined degree of polymerization is extruded from a polymer discharge port (not shown) of the polymerization tank 4 through pores into a water bath, and the extruded rope is made into chips by a cutter.

【0021】本発明の複合繊維に於いてアルカリ減量速
度が遅く減量処理後に残存する成分Aとしては、イソフ
タル酸などの芳香族ジカルボン酸、アジピン酸、セバシ
ン酸等の脂肪族ジカルボン酸もしくはこれらのエステル
類と、エチレングリコール、ジエチレングリコール、
1、4−ブタンジオール、などのジオール化合物から構
成される構成単位の90モル%以上がポリエチレンテレ
フタレートであるポリエステルが用いられる。
In the composite fiber of the present invention, the component A having a slow alkali weight loss rate and remaining after the weight loss treatment is an aromatic dicarboxylic acid such as isophthalic acid, an aliphatic dicarboxylic acid such as adipic acid or sebacic acid, or an ester thereof. And ethylene glycol, diethylene glycol,
A polyester in which 90 mol% or more of the constitutional unit composed of a diol compound such as 1,4-butanediol is polyethylene terephthalate is used.

【0022】特に、酸成分として金属スルホネート基含
有イソフタル酸成分を1.0〜3.0モル%含有する所
謂カチオン可染ポリエステルの場合、成分Bと同様、直
接連続重合方法で得られたポリエステルを用いることが
好ましい。
Particularly, in the case of a so-called cationic dyeable polyester containing 1.0 to 3.0 mol% of a metal sulfonate group-containing isophthalic acid component as an acid component, the polyester obtained by the direct continuous polymerization method as in the component B is used. It is preferable to use.

【0023】ここで、該カチオン可染ポリエステル重合
体は、(図1)に於いて、スラリー化槽1でテレフタル
酸とグリコールをスラリー化させた後、金属スルホネー
ト基含有イソフタル酸化合物を投入口aから1に投入し
スラリー化させ、その後、第1エステル化槽2へ該スラ
リーを連続的に供給してエステル化反応させオリゴマー
を形成させ、更に生成したオリゴマーを第2エステル化
槽3へ逐次供給し、しかる後、重合槽4へ該オリゴマー
を逐次連続的に供給して真空下で所定の重合度まで連続
的に重合反応を行い、所定の重合度になったポリマーを
排出してチップ化することによって得ることが出来る。
Here, in the cationic dyeable polyester polymer, as shown in FIG. 1, terephthalic acid and glycol are slurried in the slurry tank 1 and then the metal sulfonate group-containing isophthalic acid compound is introduced into the charging port a. 1 to 1 to make a slurry, and then the slurry is continuously supplied to the first esterification tank 2 to cause an esterification reaction to form an oligomer, and further the generated oligomer is sequentially supplied to the second esterification tank 3. Then, thereafter, the oligomer is sequentially and continuously supplied to the polymerization tank 4 to continuously carry out a polymerization reaction under vacuum to a predetermined degree of polymerization, and the polymer having a predetermined degree of polymerization is discharged to form chips. Can be obtained by

【0024】ここで、SIPMの酸成分に対する含有量
は1.0〜3.0モル%の範囲である事が好ましい。濾
過この範囲であれば、カチオン染料による染色性にも優
れ、濾過圧上昇や糸切れという紡糸操業性も良好である
ので好ましい。
Here, the content of SIPM with respect to the acid component is preferably in the range of 1.0 to 3.0 mol%. Filtration Within this range, the dyeability with a cationic dye is excellent, and the spinning operability such as increase in filtration pressure and yarn breakage is also favorable, which is preferable.

【0025】上記した成分Aの極限粘度は、極限粘度の
最大値[η]maxと最小値[η]minの比が 1.0≦
[η]max/[η]min≦1.02 であることが重要で
ある。[η]max/[η]minが上記範囲から外れると、
溶融紡糸時の糸切れが多発し、紡糸濾過性が悪い為紡糸
口金寿命が短くなる等、操業性に劣る。
The intrinsic viscosity of the above component A is such that the ratio of the maximum value [η] max and the minimum value [η] min of the intrinsic viscosity is 1.0 ≦.
It is important that [η] max / [η] min ≦ 1.02. When [η] max / [η] min deviates from the above range,
Poor operability, such as frequent yarn breakage during melt spinning and poor spin filterability resulting in shortened spinneret life.

【0026】以上の様に得られた成分A及び成分Bのポ
リエステルチップは通常の方法で乾燥後、複合紡糸装置
を用いて通常の溶融紡糸を行うことが出来る。
The polyester chips of the component A and the component B obtained as described above can be dried by an ordinary method and then subjected to ordinary melt spinning using a composite spinning apparatus.

【0027】紡糸方法は特に限定するものでは無く、例
えば未延伸糸を低速で巻き取った後、延撚工程にて延伸
する所謂コンベンショナル法、直接紡糸延伸法(スピン
ドロー法)、高速で巻き取り部分未延伸糸を得るPOY
法が採用される。
The spinning method is not particularly limited. For example, a so-called conventional method in which an undrawn yarn is wound at a low speed and then drawn in a twisting process, a direct spinning drawing method (spin draw method), and a high-speed winding method. POY for obtaining partially undrawn yarn
The law is adopted.

【0028】特に、省力化、及び安価生産可能なスピン
ドロー法、POY法を採用することが好ましい。
Particularly, it is preferable to adopt the spin draw method and the POY method which are labor-saving and can be manufactured at low cost.

【0029】本発明における複合繊維に於いて、成分A
及び成分Bの複合比率、配置及び断面形状も特に限定す
るものではないが、極細繊維を目的とする場合、アルカ
リ減量処理後の成分Aの単糸が0.33デシテックス以
下となる事が好ましい。また、アルカリ減量処理後に成
分Aが中空繊維を構成する場合は、アルカリ水易溶成分
Bの一端が繊維外周に現れていることが必要である。
In the composite fiber of the present invention, the component A
The composite ratio, arrangement, and cross-sectional shape of the component B are not particularly limited, but for ultrafine fibers, the single yarn of the component A after alkali reduction treatment is preferably 0.33 decitex or less. Further, when the component A constitutes a hollow fiber after the alkali weight reduction treatment, it is necessary that one end of the easily soluble component in alkaline water B appears on the outer circumference of the fiber.

【0030】[0030]

【発明の効果】本発明の複合繊維は、紡糸方法に依存せ
ず安定した操業性で生産され、仮撚などの後工程で白粉
発生、糸切れの問題が無く製織、製編され、その後のア
ルカリ減量処理にて効率良く極細繊維或いは中空繊維を
得ることが出来るので、スウェード調織編物や吸水速乾
織編物に効率良く安定的に用いる事が出来る。
EFFECT OF THE INVENTION The conjugate fiber of the present invention is produced with stable operability irrespective of the spinning method, and is woven and knitted without problems such as white powder generation and yarn breakage in the post-process such as false twisting. Since ultrafine fibers or hollow fibers can be efficiently obtained by alkali reduction treatment, they can be efficiently and stably used in suede-like woven or knitted fabrics with water absorption.

【0031】[0031]

【実施例】以下、実施例によって本発明を更に詳しく説
明する。尚、以下の実施例における特性値は、次に示す
方法によって測定したものである。
The present invention will be described in more detail with reference to the following examples. The characteristic values in the following examples are measured by the following methods.

【0032】(1)極限粘度[η] 重合チップの極限粘度[η]測定用のサンプル採取は次の
ように行った。、連続重合法で生産されるポリマーチッ
プに関しては、適当な時間間隔でチップを採取してそれ
をサンプルとし、バッチ重合法で生産されるポリマーは
1バッチ毎にポリマー押し出し始めと押し出し終了直前
のチップ、それと押出し途中に適宜チップを採取してそ
れをサンプルとした。サンプルは、フェノール/テトラ
クロロエタン=6/4(重量比)の混合溶剤中20℃で
ウベローデ法により測定した。尚、サンプル数はいずれ
も5個であり、5試料中で最大の極限粘度を[η]max
とし、最小の極限粘度を[η]minとして、それぞれの
測定結果から[η]max/[η]minを算出し、ポリマー
の極限粘度斑の指標とした。
(1) Intrinsic Viscosity [η] A sample for measuring the intrinsic viscosity [η] of the polymerized chips was taken as follows. For polymer chips produced by the continuous polymerization method, the chips are sampled at appropriate time intervals and used as samples. The polymers produced by the batch polymerization method are chips that start and end immediately after each batch of polymer extrusion. , And chips were taken during the extrusion and used as a sample. The sample was measured by a Ubbelohde method at 20 ° C. in a mixed solvent of phenol / tetrachloroethane = 6/4 (weight ratio). The number of samples was 5, and the maximum intrinsic viscosity among the 5 samples was [η] max.
Then, the minimum intrinsic viscosity was taken as [η] min, and [η] max / [η] min was calculated from the respective measurement results and used as an index of the intrinsic viscosity unevenness of the polymer.

【0033】(2)紡糸操業性 該改質ポリエステルとレギュラーポリエステルを用い、
極細分割型複合繊維の紡糸を所謂POY方式或いは、直
接紡糸延伸方式(以下SPD法と呼称)で行い、紡糸濾
過圧上昇度合い、糸切れ回数から○、△、×にて評価し
た。
(2) Spinnability: Using the modified polyester and regular polyester,
The ultrafine splitting type conjugate fiber was spun by the so-called POY method or direct spinning drawing method (hereinafter referred to as SPD method), and evaluated from the degree of increase in spinning filtration pressure and the number of yarn breaks by ◯, Δ, and x.

【0034】(3)耐熱性 上記極細分割型複合繊維を用いてスピンドル型仮撚機に
て仮撚加工を行い、毛羽、白粉等が発生する仮撚り時の
ヒーター温度を示した。ここで、毛羽、白粉が発生し始
める仮撚り時のヒーター温度が高い程、仮撚り耐熱性が
良好である。
(3) Heat resistance The above ultrafine splitting type composite fiber was subjected to false twisting with a spindle type false twisting machine, and the heater temperature during false twisting in which fluff, white powder, etc. were generated was shown. Here, the higher the heater temperature at the time of false twisting when fluff and white powder start to be generated, the better the false twisting heat resistance.

【0035】実施例1 テレフタル酸とエチレングリコール、及びSIPE(酸
成分中2.3モル%)をスラリー槽へ投入し、ここへト
リメチルホスフェート45ppmと酢酸ナトリウム・3
水和物をポリマーに対して600ppm添加してスラリ
ーpHを5.2とし、その後スラリーを第1エステル化
槽へ連続的に供給し270℃、68.6kPaの加圧反
応を行い、第2エステル化槽へ連続的に供給して、該オ
リゴマーへ平均分子量8000のポリエチレングリコー
ルを10重量%、ヒンダードフェノール系抗酸化剤であ
るイルガノックス245(チバガイギー社製)を0.3
重量%、エチレングリコールに溶解した三酸化アンチモ
ンを400ppm添加し、第2エステル化槽内モル比を
1.14としてエステル化反応を常圧下で行い、その
後、連続的に初期重合槽、後期重合槽へ送液して反応温
度280℃にて連続的に重合反応を行い、アルカリ水易
溶成分Bのポリエステルを得た。該アルカリ水易溶成分
Bのポリエステルの極限粘度の最大値と最小値の比は
1.005であった。
Example 1 Terephthalic acid, ethylene glycol, and SIPE (2.3 mol% in the acid component) were charged into a slurry tank, and trimethyl phosphate (45 ppm) and sodium acetate.3 were added thereto.
The hydrate was added to the polymer in an amount of 600 ppm to adjust the slurry pH to 5.2, and then the slurry was continuously supplied to the first esterification tank to carry out a pressure reaction at 270 ° C. and 68.6 kPa to give the second ester. 10 wt% of polyethylene glycol having an average molecular weight of 8000 and Irganox 245 (manufactured by Ciba-Geigy Co., Ltd.) which is a hindered phenol antioxidant are continuously supplied to the oligomerization tank.
% By weight, 400 ppm of antimony trioxide dissolved in ethylene glycol was added, the esterification reaction was carried out under normal pressure with the molar ratio in the second esterification tank being 1.14, and then continuously the initial polymerization tank and the latter polymerization tank. The solution was sent to and the polymerization reaction was continuously carried out at a reaction temperature of 280 ° C. to obtain a polyester of the component B easily soluble in alkaline water. The ratio of the maximum value to the minimum value of the intrinsic viscosity of the polyester of the component B easily soluble in alkaline water was 1.005.

【0036】更に、極限粘度[η]=0.630で二酸化
チタンの含有量が0.4重量%のポリエチレンテレフタ
レートを成分Aとして、それぞれを乾燥後に複合紡糸機
に導入した。成分Aと成分Bの容積比率を3:1として
溶融し、紡糸口金から押し出し通常の方法で油剤付与
後、周速3200m/分のゴデッドローラーにて巻取り
128デシテックス/25フィラメントの断面形状が
(図2)である所謂POY糸を得た。紡糸操業性は良好
であり、糸切れ、パック圧上昇等の問題はなく、該複合
繊維を用いて仮撚りを実施してもレギュラーポリエステ
ルと相違なく仮撚り操業性は良好であった。更に、該仮
撚り加工糸を用いたサテン織物の品位は良好であった。
Furthermore, polyethylene terephthalate having an intrinsic viscosity [η] = 0.630 and a titanium dioxide content of 0.4% by weight was used as a component A, and each was dried and then introduced into a composite spinning machine. After melted at a volume ratio of component A and component B of 3: 1 and extruded from the spinneret and after applying an oil agent by the usual method, the cross-sectional shape of 128 decitex / 25 filaments was wound by a goded roller with a peripheral speed of 3200 m / min. So-called POY yarns (Fig. 2) were obtained. The spinning operability was good, there were no problems such as yarn breakage and increase in pack pressure, and even when false twisting was carried out using this composite fiber, the false twisting operability was good, unlike the regular polyester. Furthermore, the quality of the satin woven fabric using the false twisted yarn was good.

【0037】実施例2 成分Aとして、極限粘度[η]=0.637で二酸化チタ
ン含有量が1.4重量%のポリエチレンテレフタレート
を用いる以外は実施例1と同様にして128デシテック
ス/25フィラメントのPOY糸を得た。紡糸操業性、
仮撚り操業性は(表1)の通りであった。
Example 2 As Component A, 128 decitex / 25 filaments were prepared in the same manner as in Example 1 except that polyethylene terephthalate having an intrinsic viscosity [η] = 0.637 and a titanium dioxide content of 1.4% by weight was used. I got a POY yarn. Spinnability,
The false twist operability was as shown in Table 1.

【0038】実施例3 実施例1に用いた成分A、成分Bのポリエステルを用
い、成分Aと成分Bの容積比率を7:3として溶融し、
紡糸口金から押し出し通常の方法で油剤付与後、周速3
200m/分のゴデッドローラーにて巻取り128デシ
テックス/48フィラメントの断面形状が(図3)であ
るPOY糸を得た。紡糸操業性、仮撚り操業性は(表
1)記載の通りである。
Example 3 The polyesters of component A and component B used in Example 1 were melted at a volume ratio of component A and component B of 7: 3,
Extrusion from the spinneret After applying the oil agent by the usual method, the peripheral speed is 3
A POY yarn having a cross-sectional shape of 128 decitex / 48 filaments (FIG. 3) was obtained by winding with a goded roller at 200 m / min. The spinning operability and false twisting operability are as described in (Table 1).

【0039】実施例4 実施例1に用いた成分A、成分Bのポリエステルを用
い、成分Aと成分Bの容積比率を3:1として溶融し、
紡糸口金から押し出し通常の方法で油剤付与後、周速1
300m/分で85℃の加熱ゴデッドローラー1と周速
3800m/分で130℃の加熱ゴデッドローラー2の
間で延伸して断面形状が(図2)で56デシテックス/
25フィラメントの直接紡糸延伸糸(SPD糸)を得
た。紡糸操業性及び仮撚り操業性は(表1)記載の通り
である。
Example 4 Polyesters of component A and component B used in Example 1 were melted at a volume ratio of component A and component B of 3: 1 and melted.
Extrusion from the spinneret After applying the oil agent by the usual method, the peripheral speed is 1
56 decitex with a cross-sectional shape (Fig. 2) stretched between a heated goded roller 1 at 300 m / min at 85 ° C and a heated goded roller 2 at 130 ° C at a peripheral speed of 3800 m / min.
A directly spun drawn yarn (SPD yarn) of 25 filaments was obtained. The spinning operability and false twisting operability are as described in (Table 1).

【0040】実施例5 実施例1に用いた成分A、成分Bのポリエステルを用
い、成分Aと成分Bの容積比率を2:1として溶融し、
紡糸口金から押し出し通常の方法で油剤付与後、周速3
200m/分のゴデッドローラーにて巻取り84デシテ
ックス/24フィラメントの断面形状が(図4)であ
り、アルカリ減量処理後に中空糸となるPOY糸を得
た。紡糸操業性、仮撚り操業性は(表1)記載の通りで
ある。
Example 5 The polyesters of component A and component B used in Example 1 were used and melted at a volume ratio of component A and component B of 2: 1.
Extrusion from the spinneret After applying the oil agent by the usual method, the peripheral speed is 3
A POY yarn having a cross-sectional shape of 84 decitex / 24 filament wound by a goded roller at 200 m / min (FIG. 4) and becoming a hollow fiber after alkali reduction treatment was obtained. The spinning operability and false twisting operability are as described in (Table 1).

【0041】実施例6 テレフタル酸とエチレングリコール、及びSIPM(酸
成分中1.5モル%)をスラリー槽へ投入し、ここへト
リメチルホスフェート45ppmと酢酸ナトリウム・3
水和物をポリマーに対して700ppm添加してスラリ
ーpHを5.2とし、その後スラリーを第1エステル化
槽へ連続的に供給し270℃、68.6kPaの加圧反
応を行い、第2エステル化槽へ連続的に供給して、エチ
レングリコールに溶解した三酸化アンチモンを400p
pm添加し、第2エステル化槽内モル比を1.14とし
てエステル化反応を常圧下で行い、その後、連続的に初
期重合槽、後期重合槽へ送液して反応温度280℃にて
連続的に重合反応を行い、成分Aのポリエステルを得
た。成分Aのポリエステルの極限粘度の最大値と最小値
の比は1.004であった。
Example 6 Terephthalic acid, ethylene glycol, and SIPM (1.5 mol% in the acid component) were charged into a slurry tank, and trimethyl phosphate (45 ppm) and sodium acetate.3 were added thereto.
The hydrate was added to the polymer in an amount of 700 ppm to adjust the slurry pH to 5.2, and then the slurry was continuously supplied to the first esterification tank to carry out a pressure reaction at 270 ° C. and 68.6 kPa to give the second ester. 400 p of antimony trioxide dissolved in ethylene glycol is continuously supplied to the chemical tank.
pm was added, the esterification reaction was carried out under normal pressure with the molar ratio in the second esterification tank being 1.14, and then continuously fed to the initial polymerization tank and the latter polymerization tank at a reaction temperature of 280 ° C. Then, a polymerization reaction was carried out to obtain a component A polyester. The ratio of the maximum value and the minimum value of the intrinsic viscosity of the component A polyester was 1.004.

【0042】該成分Aのポリエステルと実施例1と同様
のアルカリ水易溶成分Bのポリエステルを用い、成分A
と成分Bの容積比率を3:1として溶融し、紡糸口金か
ら押し出し通常の方法で油剤付与後、周速3200m/
分のゴデッドローラーにて巻取り128デシテックス/
25フィラメントの断面形状が(図2)であるPOY糸
を得た。紡糸操業性、仮撚り操業性は(表1)記載の通
りである。該複合繊維はカチオン染料で染色可能であ
り、カチオン染色性は良好であり品位も良かった。
Using the polyester of the component A and the polyester of the component B easily soluble in alkaline water as in Example 1, the component A is used.
After melted at a volume ratio of 3: 1 and the component B, extruded from the spinneret and applied with an oil agent by a usual method, the peripheral speed is 3200 m /
Winding with a minute goded roller 128 decitex /
A POY yarn having a cross-sectional shape of 25 filaments (Fig. 2) was obtained. The spinning operability and false twisting operability are as described in (Table 1). The composite fiber was dyeable with a cationic dye, and the cationic dyeability was good and the quality was good.

【0043】比較例1 成分Bに極限粘度の最大値と最小値の比が1.03であ
るバッチ重合方式で得られたアルカリ水易溶ポリエステ
ルを用いる以外は、実施例1と同様の方法で複合繊維を
紡糸した。紡糸時の濾過圧上昇が、実施例1に比較して
早く、紡糸糸切れ発生が多く操業性は悪かった。更に、
該POY糸を用いて仮撚加工を実施すると、白粉が発生
し問題となった。
Comparative Example 1 The same method as in Example 1 was used except that the component B used was a readily soluble alkaline water-soluble polyester obtained by a batch polymerization method in which the ratio of the maximum value to the minimum value of the intrinsic viscosity was 1.03. The composite fiber was spun. The increase in filtration pressure during spinning was faster than in Example 1, and many yarn breakages occurred in spinning, resulting in poor operability. Furthermore,
When false twisting was performed using the POY yarn, white powder was generated, which was a problem.

【0044】比較例2 成分Aに極限粘度の最大値と最小値の比が1.025で
あるポリエステルを用いる以外は実施例1と同様に複合
繊維を紡糸した。得られたPOY糸にて仮撚加工を実施
すると白粉発生などの問題はなかったが、紡糸操業性は
非常に悪かった。
Comparative Example 2 A composite fiber was spun in the same manner as in Example 1 except that the component A used was a polyester having a ratio of the maximum value and the minimum value of the intrinsic viscosity of 1.025. When the obtained POY yarn was subjected to false twisting, there was no problem such as white powder generation, but the spinning operability was very poor.

【0045】比較例3 成分Aに極限粘度の最大値と最小値の比が1.04のバ
ッチ重合方式で得られたSIPMの対酸成分含有率が
1.5モル%のカチオン可染ポリエステルを用いる以外
は実施例6と同様に複合繊維を紡糸した。紡糸時の濾過
圧は2日で上限まで上昇し、また糸切れ発生が多く紡糸
操業性は非常に悪かった。
Comparative Example 3 Component A was a cationic dyeable polyester having a ratio of the maximum and minimum values of the intrinsic viscosity of 1.04, which was obtained by a batch polymerization method, and the content of the acid component of SIPM was 1.5 mol%. The conjugate fiber was spun in the same manner as in Example 6 except that it was used. The filtration pressure during spinning increased to the upper limit in 2 days, and many yarn breakages occurred, resulting in very poor spinning operability.

【0046】比較例4 成分AにSIPMの対酸成分含有率が3.5モル%であ
り、且つ極限粘度の最大値と最小値の比が1.015で
ある直接連続重合方法で得られたカチオン可染ポリエス
テルを用いる以外は実施例6と同様に複合繊維を紡糸し
た。紡糸時の濾過圧は急上昇し、また紡糸操業性も悪か
った。
Comparative Example 4 Component A was obtained by a direct continuous polymerization method in which the content of the acid component of SIPM was 3.5 mol% and the ratio of the maximum value to the minimum value of the intrinsic viscosity was 1.015. The conjugate fiber was spun in the same manner as in Example 6 except that the cationic dyeable polyester was used. The filtration pressure during spinning rose sharply and the spinning operability was poor.

【0047】[0047]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に使用されるポリエステルを製造する工
程の概略を示した図である。
FIG. 1 is a diagram showing an outline of a process for producing a polyester used in the present invention.

【図2】本発明の極細分割型複合繊維の断面図である。FIG. 2 is a cross-sectional view of an ultrafine splittable conjugate fiber of the present invention.

【図3】本発明の極細分割型複合繊維の断面図である。FIG. 3 is a cross-sectional view of an ultrafine splittable conjugate fiber of the present invention.

【図4】本発明の中空型複合繊維の断面図である。FIG. 4 is a cross-sectional view of the hollow composite fiber of the present invention.

【符号の説明】 1 スラリー化槽 2 第1エステル化槽 3 第2エステル化槽 4 重合槽 a,b,c 改質剤等投入口 5 アルカリ水易溶成分B 6 アルカリ減量処理後に残留する成分A[Explanation of symbols] 1 Slurry tank 2 First esterification tank 3 Second esterification tank 4 polymerization tank a, b, c modifier injection port 5 Alkaline water easily soluble component B 6 Component A remaining after alkali weight loss treatment

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4L041 AA07 BA05 BA11 BA16 BA21 BC01 CA06 DD11 DD14    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4L041 AA07 BA05 BA11 BA16 BA21                       BC01 CA06 DD11 DD14

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アルカリ減量速度が異なる2成分を用い
た複合繊維であって、成分Aには90%以上がエチレン
テレフタレートであり、極限粘度の最大値[η]maxと
最小値[η]minの比が 1.0≦[η]max/[η]mi
n≦1.02を満足する直接連続重合方法で得られたポ
リエステルを用い、成分Bとして、極限粘度の最大値
[η]maxと最小値[η]minの比が 1.0≦[η]ma
x/[η]min≦1.02を満足する直接連続重合方法で
得られたアルカリ水易溶ポリエステルを用いることを特
徴とするポリエステル複合繊維の製造方法。
1. A composite fiber using two components having different alkali weight loss rates, wherein component A is 90% or more of ethylene terephthalate, and has a maximum intrinsic viscosity [η] max and a minimum intrinsic viscosity [η] min. Ratio of 1.0 ≦ [η] max / [η] mi
Using the polyester obtained by the direct continuous polymerization method satisfying n ≦ 1.02, the ratio of the maximum value [η] max and the minimum value [η] min of the intrinsic viscosity is 1.0 ≦ [η] as the component B. ma
A method for producing a polyester conjugate fiber, which comprises using an alkali water readily soluble polyester obtained by a direct continuous polymerization method satisfying x / [η] min ≦ 1.02.
【請求項2】 成分Aが金属スルホネート基含有イソフ
タル酸成分を1.0〜3.0モル%含有する直接連続重
合方法で得られ、且つ極限粘度の最大値[η]maxと最
小値[η]minの比が 1.0≦[η]max/[η]min
≦1.02を満足するカチオン可染ポリエステルである
ことを特徴とする請求項1記載のポリエステル複合繊維
の製造方法。
2. Component A is obtained by a direct continuous polymerization method containing a metal sulfonate group-containing isophthalic acid component in an amount of 1.0 to 3.0 mol%, and has a maximum intrinsic viscosity [η] max and a minimum intrinsic viscosity [η]. ] Min ratio is 1.0 ≦ [η] max / [η] min
The method for producing a polyester conjugate fiber according to claim 1, which is a cationic dyeable polyester satisfying ≦ 1.02.
JP2001213605A 2001-07-13 2001-07-13 Method for producing polyester composite fiber Expired - Lifetime JP3703743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001213605A JP3703743B2 (en) 2001-07-13 2001-07-13 Method for producing polyester composite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001213605A JP3703743B2 (en) 2001-07-13 2001-07-13 Method for producing polyester composite fiber

Publications (2)

Publication Number Publication Date
JP2003027336A true JP2003027336A (en) 2003-01-29
JP3703743B2 JP3703743B2 (en) 2005-10-05

Family

ID=19048550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001213605A Expired - Lifetime JP3703743B2 (en) 2001-07-13 2001-07-13 Method for producing polyester composite fiber

Country Status (1)

Country Link
JP (1) JP3703743B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016196714A (en) * 2015-04-03 2016-11-24 Kbセーレン株式会社 Synthetic fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016196714A (en) * 2015-04-03 2016-11-24 Kbセーレン株式会社 Synthetic fiber

Also Published As

Publication number Publication date
JP3703743B2 (en) 2005-10-05

Similar Documents

Publication Publication Date Title
JP5813747B2 (en) Cationic dyeable polyester fiber and composite fiber
JP2001512509A (en) Low pill polyester
JP3483871B2 (en) Modified polyester and continuous production method thereof
JP2002038333A (en) Polyester fiber having high dye-affinity
JP4726315B2 (en) Atmospheric pressure cationic dyeable polyester and its continuous production method
JP2001123335A (en) Split-type polyester conjugated fiber
KR100988976B1 (en) Polyester/Polyamide Splittable Conjugate Fiber and Manufacturing Method thereof
JP3703743B2 (en) Method for producing polyester composite fiber
US3988387A (en) Polyester fibers having excellent dyeability
JP3295359B2 (en) Method for producing modified polyester fiber
JPH09310230A (en) Production of split type polyester conjugate fiber
JPS6261686B2 (en)
JPH08325867A (en) Hollow fibril polyester processed yarn and its production
JP4084260B2 (en) Polyester composite false twisted yarn
JP6709639B2 (en) Latent dyeing polyester fiber, dark dyeing polyester fiber, and method for producing dark dyeing polyester fiber
KR0160069B1 (en) Method of manufacturing multifilament
JPH03241024A (en) Production of cation-dyeable superfine false twist yarn
JP2010168707A (en) Ordinary pressure cation-dyeable polyester multifilament
KR100603695B1 (en) A Splittable Polyester Composite fiber and its Manufacturing Method
JP2023184004A (en) polyester fiber
JP3069426B2 (en) Method for producing cationic dyeable polyester false twisted yarn
JPH07238419A (en) Readily dyeable polyester hollow fiber excellent in color development and gloss
JP3960510B2 (en) Polyester multifilament yarn, production method thereof and woven / knitted fabric thereof
JPH07173741A (en) Production of woven fabric
KR0150172B1 (en) Method of manufacturing polyeterester elastic fiber

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050720

R150 Certificate of patent or registration of utility model

Ref document number: 3703743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 9

EXPY Cancellation because of completion of term