JP2023184004A - polyester fiber - Google Patents

polyester fiber Download PDF

Info

Publication number
JP2023184004A
JP2023184004A JP2022097879A JP2022097879A JP2023184004A JP 2023184004 A JP2023184004 A JP 2023184004A JP 2022097879 A JP2022097879 A JP 2022097879A JP 2022097879 A JP2022097879 A JP 2022097879A JP 2023184004 A JP2023184004 A JP 2023184004A
Authority
JP
Japan
Prior art keywords
polyester
propanediol
ester
spinning
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022097879A
Other languages
Japanese (ja)
Inventor
貴志 池田
Takashi Ikeda
均 中塚
Hitoshi Nakatsuka
慎也 河角
Shinya Kawasumi
和之 日笠
Kazuyuki Hikasa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Trading Co Ltd
Original Assignee
Kuraray Trading Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Trading Co Ltd filed Critical Kuraray Trading Co Ltd
Priority to JP2022097879A priority Critical patent/JP2023184004A/en
Publication of JP2023184004A publication Critical patent/JP2023184004A/en
Pending legal-status Critical Current

Links

Abstract

To provide a polyester fiber excellent in dyeability and fastness to light.SOLUTION: A polyester fiber is configured of polyester resin, where the polyester resin is a copolymer composed of a dicarboxylic acid component and a glycol component. Of the glycol component, 95-99.87 mol% is ethylene glycol and/or an ester-forming derivative thereof and 0.13-5 mol% is 1,2-propanediol and/or an ester-forming derivative thereof.SELECTED DRAWING: None

Description

本発明は染色性及び耐光堅牢性に優れたポリエステル繊維に関する。 The present invention relates to polyester fibers having excellent dyeability and light fastness.

ポリエステル繊維は、力学的特性や染色性及び取扱い性などの特性から、衣料用途を中心に様々な分野で使用されている。しかし、一般にポリエステル繊維はその緻密な繊維構造から染色性に劣っており、より良好な染色性を有するポリエステル繊維が求められている。そこで、ポリエステル樹脂のジカルボン酸成分やグリコール成分を変性することで、染色性を改良させる方法がこれまで数多く検討されている。
例えば、特許文献1(国際公開WO2011/068195号)には、ジカルボン酸成分を変性することで得られる常温可染ポリエステル繊維が開示されている。また、特許文献2(特開2009-209145号公報)及び特許文献3(国際公開WO2013/035559号)には、グリコール成分である1,2-プロパンジオール由来の成分を変性又は含有させることで改質されたポリエステル樹脂から得られるポリエステル繊維が開示されている。
Polyester fibers are used in various fields, mainly for clothing, due to their mechanical properties, dyeability, and handling properties. However, polyester fibers generally have poor dyeability due to their dense fiber structure, and there is a demand for polyester fibers with better dyeability. Therefore, many methods have been studied to improve dyeability by modifying the dicarboxylic acid component or glycol component of polyester resin.
For example, Patent Document 1 (International Publication No. WO 2011/068195) discloses a room-temperature dyeable polyester fiber obtained by modifying a dicarboxylic acid component. Furthermore, Patent Document 2 (Japanese Unexamined Patent Publication No. 2009-209145) and Patent Document 3 (International Publication WO 2013/035559) disclose that modification is achieved by modifying or containing a component derived from 1,2-propanediol, which is a glycol component. Polyester fibers obtained from recycled polyester resins are disclosed.

国際公開WO2011/068195号International publication WO2011/068195 特開2009-209145号公報JP2009-209145A 国際公開WO2013/035559号International publication WO2013/035559

しかしながら、特許文献1に記載のポリエステル繊維は、常温染色できるものの、ポリエチレンテレフタレート繊維よりも融点が低く、耐熱性が低いことに起因して、紡糸性が不十分な場合があった。また、特許文献2に記載の、1,2-プロパンジオールとテレフタル酸から得られるポリトリメチレンテレフタレート繊維は、ポリエチレンテレフタレート繊維に比べて、染色性と流動性に優れているものの、耐光堅牢性に問題があった。さらに、融点が低く、耐熱性が低いことに起因して、紡糸性が不十分な場合があった。特許文献3に記載のポリエステル繊維は、ポリエステル中に含まれる1,2-プロパンジオール由来の成分を15~500ppmに限定することで耐熱性が改善し、口金の汚れが低減し生産効率が増すものの、耐光堅牢性に問題があった。 However, although the polyester fiber described in Patent Document 1 can be dyed at room temperature, it has a lower melting point and lower heat resistance than polyethylene terephthalate fiber, and therefore has insufficient spinnability in some cases. In addition, the polytrimethylene terephthalate fiber obtained from 1,2-propanediol and terephthalic acid described in Patent Document 2 has excellent dyeability and fluidity compared to polyethylene terephthalate fiber, but has poor light fastness. There was a problem. Further, due to the low melting point and low heat resistance, spinnability was sometimes insufficient. The polyester fiber described in Patent Document 3 has improved heat resistance by limiting the amount of 1,2-propanediol-derived components contained in the polyester to 15 to 500 ppm, reduces staining of the die, and increases production efficiency. However, there was a problem with light fastness.

従って、本発明の目的は、上記課題を解決するものであり、染色性及び耐光堅牢性に優れたポリエステル繊維を提供することにある。 Therefore, an object of the present invention is to solve the above-mentioned problems and to provide a polyester fiber having excellent dyeability and light fastness.

本発明者等は上記目的を達成すべく鋭意検討を行った結果、本発明に到達した。すなわち、本発明は、以下の好適な態様を提供するものである。
[1]ポリエステル樹脂から構成されるポリエステル繊維であって、該ポリエステル樹脂がジカルボン酸成分とグリコール成分からなる共重合体であり、該グリコール成分のうち95~99.87モル%がエチレングリコール及び/又はそのエステル形成性誘導体であり、0.13~5モル%が1,2-プロパンジオール及び/又はそのエステル形成性誘導体であることを特徴とする、ポリエステル繊維。
[2]前記[1]に記載のポリエステル繊維を少なくとも一部に含む、繊維構造体。
The present inventors conducted extensive studies to achieve the above object, and as a result, they arrived at the present invention. That is, the present invention provides the following preferred embodiments.
[1] A polyester fiber composed of a polyester resin, wherein the polyester resin is a copolymer composed of a dicarboxylic acid component and a glycol component, and 95 to 99.87 mol% of the glycol component is ethylene glycol and/or or an ester-forming derivative thereof, and 0.13 to 5 mol% is 1,2-propanediol and/or an ester-forming derivative thereof.
[2] A fiber structure containing at least a portion of the polyester fiber according to [1] above.

本発明によれば、染色性及び耐光堅牢性に優れたポリエステル繊維を提供することができる。 According to the present invention, polyester fibers having excellent dyeability and light fastness can be provided.

本発明のポリエステル繊維に用いるポリエステル樹脂は、ジカルボン酸成分とグリコール成分からなる共重合体であり、該グリコール成分のうち95~99.87モル%がエチレングリコール及び/又はそのエステル形成性誘導体であって、0.13~5モル%が1,2-プロパンジオール及び/又はそのエステル形成性誘導体である。 The polyester resin used in the polyester fiber of the present invention is a copolymer consisting of a dicarboxylic acid component and a glycol component, and 95 to 99.87 mol% of the glycol component is ethylene glycol and/or its ester-forming derivative. Of these, 0.13 to 5 mol% is 1,2-propanediol and/or its ester-forming derivative.

本発明に用いるポリエステル樹脂のグリコール成分のうち95~99.87モル%は、エチレングリコール及び/又はそのエステル形成性誘導体である。エチレングリコール及び/又はそのエステル形成性誘導体が上記下限値よりも少ないと、耐熱性が低下し、紡糸性が悪くなるだけでなく、耐光堅牢性も低下し、ポリエステル繊維が本来有する優れた繊維物性を大きく損なう。また、エチレングリコール及び/又はそのエステル形成性誘導体が上記上限値を超えると、染色性が低下する。エチレングリコール及び/又はそのエステル形成性誘導体は97.5~99.85モル%であることが好ましく、98~99.83モル%であることがより好ましい。 95 to 99.87 mol% of the glycol component of the polyester resin used in the present invention is ethylene glycol and/or its ester-forming derivative. If the amount of ethylene glycol and/or its ester-forming derivative is less than the above lower limit, not only will the heat resistance and spinnability deteriorate, but also the light fastness will decrease, and the excellent fiber physical properties originally possessed by polyester fibers will be diminished. will be greatly damaged. Furthermore, when the amount of ethylene glycol and/or its ester-forming derivative exceeds the above upper limit, the dyeability decreases. The content of ethylene glycol and/or its ester-forming derivative is preferably 97.5 to 99.85 mol%, more preferably 98 to 99.83 mol%.

本発明に用いるポリエステル樹脂のグリコール成分のうち、0.13~5モル%が1,2-プロパンジオール及び/又はそのエステル形成性誘導体である。1,2-プロパンジオール及び/又はそのエステル形成性誘導体が上記上限値より多いと、ポリエステルの耐熱性が悪化して紡糸性が悪くなり、繊維製品の品位が悪くなるだけでなく、得られた繊維の融点が低くなるため、耐アイロン性などの消費性能が問題となる。また、得られた繊維を染色した場合には、耐光堅牢性が悪くなる。1,2-プロパンジオール及び/又はそのエステル形成性誘導体が上記下限値より少ないと、やはりポリエステルの耐熱性が悪化して紡糸性が悪くなり、繊維製品の品位が悪くなるばかりでなく、十分な染色性が得られない。1,2-プロパンジオール及び/又はそのエステル形成性誘導体は0.14~4モル%であることが好ましく、0.15~3モル%であることがより好ましい。 Of the glycol component of the polyester resin used in the present invention, 0.13 to 5 mol% is 1,2-propanediol and/or its ester-forming derivative. If the amount of 1,2-propanediol and/or its ester-forming derivative exceeds the above upper limit, the heat resistance of the polyester will deteriorate, the spinnability will deteriorate, and the quality of the textile product will deteriorate, as well as the resulting Since the melting point of the fiber is lower, consumption performance such as ironing resistance becomes a problem. Moreover, when the obtained fibers are dyed, light fastness becomes poor. If the amount of 1,2-propanediol and/or its ester-forming derivative is less than the above lower limit, the heat resistance of the polyester will deteriorate, the spinnability will deteriorate, and the quality of the textile product will deteriorate, as well as insufficient No staining properties are obtained. The content of 1,2-propanediol and/or its ester-forming derivative is preferably 0.14 to 4 mol%, more preferably 0.15 to 3 mol%.

耐光堅牢性が低下せずに染色性が向上する理由として、現時点では明確に解明されていないが、ポリマーガラス転移点が著しく低下しない範囲で、ポリマー分子骨格に組みこまれた1,2-プロパンジオールのメチル基が分子間に適度な空隙を形成し、非晶領域での染料の染着座席が増えるためと推定される。また、耐光堅牢性が高い理由は、エーテル結合の様に光エネルギーを吸収して分子骨格の解裂が生じ、染色堅牢性に悪影響を及ぼす様な酸素ラジカルの発生などが発生しないためと推定される。 The reason why dyeability improves without decreasing light fastness is not clearly elucidated at present, but 1,2-propane is incorporated into the polymer molecular skeleton within a range where the polymer glass transition temperature does not decrease significantly. It is presumed that this is because the methyl group of the diol forms an appropriate amount of space between molecules, increasing the number of dyeing sites in the amorphous region. In addition, the reason for the high light fastness is presumed to be that unlike ether bonds, which absorb light energy and cause the molecular skeleton to cleave, there is no generation of oxygen radicals that would have a negative effect on dye fastness. Ru.

なお、共重合成分の1,2-プロパンジオール及び/又はそのエステル形成性誘導体の含有率は、ポリエステル樹脂を分解して分析した際に検出される1,2-プロパンジオール及び/又はそのエステル形成性誘導体の総量から求められるものであって、これはポリマー鎖中に共重合されている1,2-プロパンジオール由来構造からなる1,2-プロパンジオール及び/又はそのエステル形成性誘導体だけでなく、ポリマー間に混在している1,2-プロパンジオール及び/又はそのエステル形成性誘導体も含めた総量を表す。 The content of 1,2-propanediol and/or its ester-forming derivative as a copolymer component is the content of 1,2-propanediol and/or its ester-forming derivative detected when the polyester resin is decomposed and analyzed. This is determined from the total amount of 1,2-propanediol derived from 1,2-propanediol copolymerized in the polymer chain and/or its ester-forming derivatives. , represents the total amount including 1,2-propanediol and/or its ester-forming derivative mixed among the polymers.

本発明に用いるポリエステル樹脂のモノマーであるジカルボン酸成分は、ジカルボン酸及び/又はそのエステル形成性誘導体であることが好ましく、例えば、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸、ジフェニル-4,4’-ジカルボン酸、及びそれらのエステル形成性誘導体などが挙げられる。本発明で言うエステル形成性誘導体とは、これらジカルボン酸の低級アルキルエステル、酸無水物、アシル塩化物などであり、メチルエステル、エチルエステル、ヒドロキシエチルエステルなどが好ましく用いられる。本発明で用いるジカルボン酸及び/又はそのエステル形成性誘導体としてより好ましい態様は、テレフタル酸及び/又はそのジメチルエステルである。 The dicarboxylic acid component which is a monomer of the polyester resin used in the present invention is preferably a dicarboxylic acid and/or an ester-forming derivative thereof, such as terephthalic acid, isophthalic acid, 2,6-naphthalene dicarboxylic acid, diphenyl-4 , 4'-dicarboxylic acid, and ester-forming derivatives thereof. The ester-forming derivatives referred to in the present invention include lower alkyl esters, acid anhydrides, and acyl chlorides of these dicarboxylic acids, and methyl esters, ethyl esters, hydroxyethyl esters, and the like are preferably used. A more preferred embodiment of the dicarboxylic acid and/or its ester-forming derivative used in the present invention is terephthalic acid and/or its dimethyl ester.

本発明に用いるポリエステル樹脂の共重合成分としては、例えばイソフタル酸、5-スルホイソフタル酸塩(5-スルホイソフタル酸リチウム塩、5-スルホイソフタル酸カリウム塩、5-スルホイソフタル酸ナトリウム塩など)、フタル酸、ナフタレン-2,6-ジカルボン酸などの芳香族ジカルボン酸及びそのエステル形成性誘導体や、琥珀酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、1,9-ノナンジカルボン酸、1,12-ドデカンジカルボン酸などの脂肪族ジカルボン酸及びそのエステル形成性誘導体などのジカルボン酸成分が挙げられる。 Copolymerization components of the polyester resin used in the present invention include, for example, isophthalic acid, 5-sulfoisophthalate (lithium 5-sulfoisophthalate, potassium 5-sulfoisophthalate, sodium 5-sulfoisophthalate, etc.), Aromatic dicarboxylic acids and their ester-forming derivatives such as phthalic acid and naphthalene-2,6-dicarboxylic acid, succinic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, and 1,9-nonanedicarboxylic acid. , aliphatic dicarboxylic acids such as 1,12-dodecanedicarboxylic acid, and dicarboxylic acid components such as ester-forming derivatives thereof.

また、エチレングリコールをジオール成分にするポリエステルの共重合成分として、1,2-プロパンジオールだけでなく、例えば1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、分子量が500~20000のポリオキシアルキレングリコール(ポリエチレングリコールなど)、ジエチレングリコール、2-メチル-1,3-プロパンジオール、ビスフェノールA-エチレンオキサイド付加物、シクロヘキサンジメタノールなどのジオール成分を本発明のポリエステル繊維の物性を損なわない範囲で共重合してもよいが、共重合成分は1,2-プロパンジオール及び/又はそのエステル形成性誘導体のみであってもよい。 In addition, as a copolymerization component of polyester containing ethylene glycol as a diol component, not only 1,2-propanediol but also 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1, Diol components such as 6-hexanediol, polyoxyalkylene glycol (polyethylene glycol, etc.) with a molecular weight of 500 to 20,000, diethylene glycol, 2-methyl-1,3-propanediol, bisphenol A-ethylene oxide adduct, cyclohexanedimethanol, etc. Copolymerization may be carried out within a range that does not impair the physical properties of the polyester fiber of the present invention, but the copolymerization component may be only 1,2-propanediol and/or its ester-forming derivative.

本発明に用いるジカルボン酸成分とグリコール成分は、石油由来であってもよく、バイオマス由来であってもよい。バイオマス由来のエチレングリコールには1,2-プロパンジオールが含まれていることが多いため、精製により含有量を調整したバイオマス資源由来のエチレングリコールを用いることもできる。
また、上述した本発明に用いるポリエステル繊維の原料は、ケミカルリサイクルされたモノマーやオリゴマーであってもよい。
The dicarboxylic acid component and glycol component used in the present invention may be derived from petroleum or biomass. Since ethylene glycol derived from biomass often contains 1,2-propanediol, it is also possible to use ethylene glycol derived from biomass resources whose content has been adjusted through purification.
Further, the raw material for the polyester fiber used in the present invention described above may be a chemically recycled monomer or oligomer.

本発明に用いるポリエステル樹脂は、通常の方法で製造される。例えば、直接エステル化反応の際、反応温度を250℃以下、圧力を1.2×100,000Pa以上とするのが好ましい。さらに続く重縮合反応では、反応温度を280℃以下、圧力は減圧にすればするほど重合時間が短くなり好ましいが、110Pa以上を保つことが好ましい。各反応段階で、これより高い温度、低い圧力のもとでは、エチレングリコールより沸点の低い1,2-プロパンジオールが優先的に揮発し、ポリエステル中に必要量含有されない場合がある。 The polyester resin used in the present invention is manufactured by a conventional method. For example, during the direct esterification reaction, the reaction temperature is preferably 250° C. or lower and the pressure is preferably 1.2×100,000 Pa or higher. In the further polycondensation reaction, it is preferable to keep the reaction temperature at 280° C. or lower and the pressure at a pressure of 110 Pa or higher, as the polymerization time becomes shorter as the pressure decreases. At higher temperatures and lower pressures in each reaction step, 1,2-propanediol, which has a boiling point lower than that of ethylene glycol, volatilizes preferentially and may not be contained in the required amount in the polyester.

重縮合反応に使用する触媒には、公知のアンチモン化合物、アルミニウム化合物、ゲルマニウム化合物やチタン化合物が挙げられる。経済的にはアンチモン化合物が最も好ましく、アンチモンフリーの観点からはアルミニウム化合物、ゲルマニウム化合物及びチタン化合物が好ましい。 Catalysts used in the polycondensation reaction include known antimony compounds, aluminum compounds, germanium compounds, and titanium compounds. Economically, antimony compounds are most preferred, and from the viewpoint of antimony-free properties, aluminum compounds, germanium compounds, and titanium compounds are preferred.

本発明に用いるポリエステル樹脂には、安定剤としてリン化合物、酸化防止剤、紫外線吸収剤、難燃剤、蛍光増白剤、艶消剤、可塑剤もしくは消泡剤又はその他の添加剤等を必要に応じて配合してもよい。 The polyester resin used in the present invention requires stabilizers such as phosphorus compounds, antioxidants, ultraviolet absorbers, flame retardants, optical brighteners, matting agents, plasticizers or antifoaming agents, or other additives. They may be blended accordingly.

また、本発明においてさらに高分子量のポリエステルを得るため、上記の方法で得られたポリエスエルについて、さらに固相重合を行ってもよい。固相重合は、装置・方法は特に限定されないが、不活性ガス雰囲気下又は減圧下で加熱処理されることで実施される。不活性ガスはポリエステルに対して不活性なものであれば良く、例えば窒素、ヘリウム、炭酸ガスなどを挙げることができるが、経済性から窒素が好ましく用いられる。また、減圧下としては、より減圧条件にすることが固相重縮合反応に要する時間を短くできるため有利であるが、110Pa以上を保つことがポリエステル中に1,2-プロパンジオール由来の成分を残存させるために好ましい。 Further, in the present invention, in order to obtain a polyester with a higher molecular weight, the polyester obtained by the above method may be further subjected to solid phase polymerization. Solid phase polymerization is carried out by heat treatment in an inert gas atmosphere or under reduced pressure, although the apparatus and method are not particularly limited. Any inert gas may be used as long as it is inert to the polyester, and examples thereof include nitrogen, helium, carbon dioxide, etc., but nitrogen is preferably used from the viewpoint of economy. In addition, as for the reduced pressure, it is advantageous to use a more reduced pressure condition because it can shorten the time required for the solid phase polycondensation reaction. It is preferable for it to remain.

本発明に用いるポリエステル樹脂はバッチ重合、半連続重合、連続重合で生産することができる。 The polyester resin used in the present invention can be produced by batch polymerization, semi-continuous polymerization, or continuous polymerization.

本発明に用いるポリエステル樹脂は、固有粘度0.6~0.7であるが、好ましくは0.62~0.68、より好ましくは0.63~0.66である。固有粘度が上記上限値を上回ると、繊維化時の高速紡糸性が乏しくなる場合がある。また、紡糸が可能であり、目標の染着率が得られた場合においても、筒編染色生地で染色斑や筋の発生、織編物の風合いが劣るなど、得られた織編繊維の表面品位が低下し衣料用として好ましくない場合がある。また、固有粘度が上記下限値を下回ると紡糸中に断糸しやすく生産性が乏しくなる場合があり、得られた繊維の強度も低くなる場合がある。更に、紡糸が可能であり、目標の染着率が得られた場合においても、筒編染色生地で染色斑や筋の発生、織編物の風合いが劣るなど、得られた織編繊維の表面品位が低下し衣料用として好ましくない場合がある。 The polyester resin used in the present invention has an intrinsic viscosity of 0.6 to 0.7, preferably 0.62 to 0.68, more preferably 0.63 to 0.66. If the intrinsic viscosity exceeds the above upper limit, high-speed spinnability during fiberization may become poor. In addition, even if spinning is possible and the target dyeing rate is obtained, the surface quality of the resulting woven or knitted fibers may be affected, such as the occurrence of dyeing spots or streaks in tube-knitted dyed fabrics or poor texture of woven or knitted fabrics. may be undesirable for use in clothing. Moreover, if the intrinsic viscosity is below the above-mentioned lower limit, yarn breakage may occur easily during spinning, resulting in poor productivity, and the strength of the obtained fibers may also be reduced. Furthermore, even if spinning is possible and the target dyeing rate is obtained, the surface quality of the resulting woven or knitted fibers may be affected, such as the occurrence of dyeing spots or streaks in tube-knitted dyed fabrics or poor texture of the woven or knitted fabrics. may be undesirable for use in clothing.

本発明のポリエステル繊維は一般的な紡糸設備で製造することが可能であり、低速、中速で溶融紡糸した後に延伸する方法、高速による直接紡糸延伸方法、紡糸後に延伸、仮撚りを同時に又は続いて行う方法などの任意の製糸方法で製造することが出来る。 The polyester fiber of the present invention can be produced using general spinning equipment, and can be produced by melt spinning at low or medium speeds and then drawing, by direct spinning and drawing at high speed, by simultaneously or sequentially drawing and false twisting after spinning. It can be manufactured by any method of spinning yarn, such as a method of spinning yarn.

例えば、本発明のポリエステル繊維の製造方法における紡糸工程においては、ポリエステル樹脂を通常の溶融紡糸装置を用いて口金より紡出する。また、口金の形状や大きさによって、得られる繊維の断面形状や径を任意に設定することが可能である。 For example, in the spinning step in the method for producing polyester fibers of the present invention, polyester resin is spun from a spinneret using an ordinary melt spinning device. Furthermore, the cross-sectional shape and diameter of the resulting fibers can be arbitrarily set depending on the shape and size of the cap.

例えば、単軸押出機や二軸押出機を用いてポリエステル樹脂を溶融混練する。溶融混練する際の温度は、1,2-プロパンジオール及び/又はそのエステル形成性誘導体の共重合量によって異なるが、斑なく安定に溶融混練し且つ安定な製糸性や品位を得るためには、ポリマーの融点から20~60℃高い温度範囲で溶融混練し、溶融ポリマーを紡糸頭に導き、吐出する。 For example, polyester resin is melt-kneaded using a single-screw extruder or a twin-screw extruder. The temperature during melt-kneading varies depending on the amount of copolymerization of 1,2-propanediol and/or its ester-forming derivative, but in order to stably melt-knead without unevenness and obtain stable thread-spinning properties and quality, Melt kneading is carried out at a temperature range of 20 to 60° C. higher than the melting point of the polymer, and the molten polymer is introduced into a spinning head and discharged.

そして、上記によって溶融紡出したポリエステル繊維を、一旦そのガラス転移温度以下の温度、好ましくはガラス転移温度よりも10℃以上低い温度に冷却する。この場合の冷却方法や冷却装置としては、紡出したポリエステル繊維をそのガラス転移温度以下に冷却できる方法や装置であればいずれでもよく特に制限されないが、紡糸口金の下に冷却風吹き付け筒などの冷却風吹き付け装置を設けておいて、紡出されてきたポリエステル繊維に冷却風を吹き付けてガラス転移温度以下に冷却するのが好ましい。 Then, the polyester fibers melt-spun as described above are once cooled to a temperature below its glass transition temperature, preferably at least 10° C. lower than its glass transition temperature. In this case, the cooling method and cooling device are not particularly limited, as long as they can cool the spun polyester fiber to below its glass transition temperature, but there are no particular restrictions on the cooling method or device. It is preferable to provide a cooling air blowing device to blow cooling air onto the spun polyester fibers to cool them to below the glass transition temperature.

次に、より効率的な生産性で且つ安定した品位の延伸糸を得る方法として、紡出後に一旦ガラス転移温度以下に糸条を冷却した後、引き続いてそのまま直接加熱帯域、具体的にはチューブ型加熱筒などの装置内を走行させて延伸熱処理し給油後に3500~5500m/分の速度で捲取ることで延伸糸を得ることができる。加熱工程における加熱温度は延伸しやすい温度、すなわちガラス転移温度以上で融点以下の温度が必要である。 Next, as a method to obtain drawn yarn with more efficient productivity and stable quality, after spinning, the yarn is once cooled to below the glass transition temperature, and then directly heated in a heating zone, specifically, in a tube. A drawn yarn can be obtained by running the yarn through a device such as a mold heating tube to heat it for stretching, and after oiling, winding it up at a speed of 3,500 to 5,500 m/min. The heating temperature in the heating step needs to be a temperature that facilitates stretching, that is, a temperature that is higher than the glass transition temperature and lower than the melting point.

油剤は加熱装置による延伸処理工程通過後に付与する。これにより油剤による延伸断糸が少なくなる。油剤としては通常ポリエステルの紡糸に用いられるものであれば制限はない。給油方法としてはギヤポンプ方式によるオイリングノズル給油又はオイリングローラー給油のいずれでもよい。ただし、紡糸速度が高速化するにつれて前者の方式の方が糸条に斑無く、安定した油剤付着が可能である。油剤の付着量については特に制限はなく、断糸や原糸毛羽の抑制効果と織編物の工程に適した範囲であれば適宜調節しても良い。
そのうちでも、油剤の付着量を0.3~2.0質量%とすることが高品質のポリエステル繊維を円滑に得ることができるので好ましく、0.3~1.0質量%とすることがより好ましい。
The oil agent is applied after passing through the stretching process using a heating device. This reduces the number of yarn breaks caused by the oil agent. There are no restrictions on the oil as long as it is normally used for spinning polyester. The oiling method may be either oiling nozzle oiling using a gear pump method or oiling roller oiling. However, as the spinning speed increases, the former method allows for stable oil adhesion without unevenness on the yarn. There is no particular restriction on the amount of oil applied, and it may be adjusted as appropriate as long as it is within a range suitable for the effect of suppressing yarn breakage and yarn fluff and for the process of weaving and knitting.
Among these, it is preferable that the amount of oil applied is 0.3 to 2.0% by mass, since high quality polyester fibers can be obtained smoothly, and it is more preferable that the amount of oil applied is 0.3 to 1.0% by mass. preferable.

本発明のポリエステル繊維には、それぞれ、酸化チタン、硫酸バリウム、硫化亜鉛などの艶消剤、リン酸、亜リン酸などの熱安定剤、あるいは光安定剤、酸化防止剤、酸化ケイ素などの表面処理剤などが添加剤として含まれていてもよい。 The polyester fibers of the present invention each contain a matting agent such as titanium oxide, barium sulfate, or zinc sulfide, a heat stabilizer such as phosphoric acid or phosphorous acid, or a light stabilizer, an antioxidant, or a surface agent such as silicon oxide. A processing agent or the like may be included as an additive.

本発明のポリエステル繊維は、色度b値が4.0~17.0であることが好ましく、より好ましくは4.5~16.0、最も好ましくは5.0~15.0である。b値が上記上限値を上回ると、染色後の耐光堅牢性が低下するとともに製糸時の高速紡糸性が著しく乏しくなる場合がある。また、繊維が得られた場合も品位が低いために筒編染色生地で染色斑や筋の発生、織編物の風合いが劣るなど、衣料用として好ましくない場合もある。また、b値が上記下限値を下回ると染色性は十分であるが高速紡糸性が乏しくなる場合がある。 The polyester fiber of the present invention preferably has a chromaticity b * value of 4.0 to 17.0, more preferably 4.5 to 16.0, and most preferably 5.0 to 15.0. If the b * value exceeds the above upper limit, the light fastness after dyeing may decrease and the high-speed spinnability during spinning may become extremely poor. Furthermore, even when fibers are obtained, they are of low quality and may be undesirable for use in clothing, such as the occurrence of dyeing spots and streaks in tube-knit dyed fabrics and poor texture of woven or knitted fabrics. Furthermore, if the b * value is below the above lower limit, the dyeability is sufficient but the high-speed spinnability may be poor.

本発明のポリエステル繊維は、染色後の染色性の指標K/Sが19.0以上であることが好ましい。K/Sが上記下限値を下回ると十分な染色性が得られたと言えず、衣料用として好ましくない場合がある。K/Sの上限値については特に制限はないが、40以下であってもよい。 The polyester fiber of the present invention preferably has a dyeability index K/S of 19.0 or more after dyeing. If K/S is less than the above lower limit, it cannot be said that sufficient dyeability has been obtained, and it may not be preferable for use in clothing. There is no particular restriction on the upper limit of K/S, but it may be 40 or less.

本発明のポリエステル繊維は、耐光堅牢度が4級以上であることが好ましい。そのいずれかが3級以下であった場合、取扱い性の点から一般衣料用途としては好ましくない場合がある。 The polyester fiber of the present invention preferably has a light fastness of grade 4 or higher. If any of them is grade 3 or lower, it may not be suitable for use in general clothing from the viewpoint of handleability.

本発明によれば、染色性及び耐光堅牢性に優れ、直接紡糸延伸手法又はその他の一般的な溶融紡糸手法においても安定した品質及び工程性が得られるポリエステル繊維を提供することができる。 According to the present invention, it is possible to provide a polyester fiber that has excellent dyeing properties and light fastness, and can provide stable quality and processability even in direct spinning and drawing techniques or other general melt spinning techniques.

以下、実施例によって本発明を詳しく説明するが、これらは本発明を限定するものでない。なお、本発明で得られた繊維の1,2-プロパンジオール成分の共重合量、繊度、引張強度及び伸度の各物性、紡糸性、耐光堅牢性、色度b値、染着濃度K/Sの評価は以下の方法に従った。 EXAMPLES Hereinafter, the present invention will be explained in detail with reference to Examples, but these are not intended to limit the present invention. In addition, the amount of copolymerization of the 1,2-propanediol component of the fiber obtained in the present invention, physical properties such as fineness, tensile strength and elongation, spinnability, light fastness, chromaticity b * value, dyeing concentration K /S was evaluated according to the following method.

<繊維の1,2-プロパンジオールの共重合量>
繊維の1,2-プロパンジオールの共重合量は、繊維を重水素化トリフルオロ酢酸溶媒中に3.0%(wt/vol)の濃度で溶解し、40℃で400MHz H-NMR(日本電子製核磁気共鳴装置JNM-ECZ 400S)装置を用いて測定した。
<Copolymerization amount of 1,2-propanediol in fiber>
The copolymerized amount of 1,2-propanediol in the fibers was determined by dissolving the fibers in a deuterated trifluoroacetic acid solvent at a concentration of 3.0% (wt/vol) and performing 400MHz 1 H-NMR (Japan) at 40°C. The measurement was performed using a nuclear magnetic resonance device manufactured by Denshi (JNM-ECZ 400S).

<紡糸性>
以下の基準に従って、紡糸性の評価を行った。
◎:24時間の連続紡糸を行い、紡糸時の断糸が何ら発生せず、しかも得られたポリエステル繊維には毛羽・ループが全く発生していないなど、紡糸性が極めて良好である。
○:24時間の連続紡糸を行い、紡糸時の断糸が1回以下の頻度で発生し、得られたポリエステル繊維に毛羽・ループが全く発生していないか、あるいは僅かに発生したものの、紡糸性がほぼ良好である。
△:24時間の連続紡糸を行い、紡糸時の断糸が3回まで発生し、紡糸性が不良である。
×:24時間の連続紡糸を行い、紡糸時の断糸が3回よりも多く発生し、紡糸性が極めて不良である。
<Spinning properties>
Spinnability was evaluated according to the following criteria.
◎: Continuous spinning was carried out for 24 hours, and no yarn breakage occurred during spinning, and the resulting polyester fibers had extremely good spinnability, with no fuzz or loops occurring at all.
○: Continuous spinning was carried out for 24 hours, and yarn breakage occurred less than once during spinning, and the resulting polyester fiber did not have any fluff or loops, or although a few fluffs and loops occurred. The properties are almost good.
Δ: Continuous spinning was performed for 24 hours, and yarn breakage occurred up to three times during spinning, resulting in poor spinnability.
×: Continuous spinning was performed for 24 hours, and yarn breakage occurred more than three times during spinning, and the spinnability was extremely poor.

<繊度>
JIS L 1013「化学繊維フィラメント糸試験方法」に準拠して、得られた繊維の総繊度及び単糸繊度を測定した。総繊度はマルチフィラメント全体の繊度として測定し、単糸繊度は測定した総繊度の値をフィラメント数で除した値として算出した。
<Fineness>
The total fineness and single yarn fineness of the obtained fibers were measured in accordance with JIS L 1013 "Chemical fiber filament yarn testing method". The total fineness was measured as the fineness of the entire multifilament, and the single yarn fineness was calculated as the value obtained by dividing the measured total fineness by the number of filaments.

<引張強度及び伸度>
JIS L 1013に準拠し、インストロン型の引張試験機(インストロン社製5500R)を用いて、試長20cm、初荷重0.1g/dtex、引張速度10cm/minの条件で測定し、強度及び伸度を求め、5点以上の平均値を採用した。
<Tensile strength and elongation>
In accordance with JIS L 1013, the strength and The elongation was determined and the average value of 5 or more points was adopted.

<色度(b値)>
色度b値は、コニカミノルタ社製分光光度計「CM-3700A」を用いて、正反射処理:SCE、測定径:LAV(25.4mm)、UV条件:100%Full、視野:2度、主光源:C光源の条件で測定した。
測定用サンプルには、得られた繊維を丸編機(28ゲージ)を用いて筒編地を作製し、精練した後、180℃でプレセットしたものを用いた。
<Chromaticity (b * value)>
Chromaticity b * Values are measured using a spectrophotometer "CM-3700A" manufactured by Konica Minolta, specular reflection treatment: SCE, measurement diameter: LAV (25.4 mm), UV conditions: 100% Full, field of view: 2 degrees , Main light source: Measured under the conditions of C light source.
The sample for measurement used was one in which a tubular knitted fabric was made from the obtained fibers using a circular knitting machine (28 gauge), refined, and preset at 180°C.

<染色性>
染着濃度(K/S)は、染色後のサンプル編地の最大吸収波長における反射率Rを測定し、以下に示すKubelka-Munkの式から求めた。
分光反射率測定器:分光光度計 HITACHI
C-2000S Color Analyzer
K/S=(1-R) /2R
測定用サンプルには、得られた繊維の筒編地を精練した後、180℃でプレセットし、以下の染料で染色したものを用いた。
(染色)
・染料:Dianix Red UN-SE 1.0%owf
助剤:Disper TL:1.0cc/l
:ULTRA MT-N2:1.0cc/l
浴比:1/50
染色温度×時間:110℃×40分
(還元洗浄)
水酸化ナトリウム:1.0g/L
ハイドロサルファイトナトリウム:1.0g/L
アミラジンD:1.0g/L
浴比:1/50
還元洗浄温度×時間:80℃×20分
<Dyeability>
The dyeing density (K/S) was determined by measuring the reflectance R at the maximum absorption wavelength of the sample knitted fabric after dyeing, and using the Kubelka-Munk equation shown below.
Spectral reflectance measuring instrument: Spectrophotometer HITACHI
C-2000S Color Analyzer
K/S=(1-R) 2 /2R
As samples for measurement, the obtained tubular knitted fabrics of fibers were scoured, preset at 180° C., and dyed with the following dyes.
(staining)
・Dye: Dianix Red UN-SE 1.0%owf
Auxiliary agent: Disper TL: 1.0cc/l
:ULTRA MT-N2: 1.0cc/l
Bath ratio: 1/50
Dyeing temperature x time: 110℃ x 40 minutes (reduction cleaning)
Sodium hydroxide: 1.0g/L
Sodium hydrosulfite: 1.0g/L
Amyrazine D: 1.0g/L
Bath ratio: 1/50
Reduction cleaning temperature x time: 80℃ x 20 minutes

<耐光堅牢度>
JIS L 0842の測定方法に準拠し、ブラックパネル63℃、第3露光法の測定方法にて測定した。
なお、測定用サンプルには、染着濃度の測定サンプルと全く同様に、染色後のサンプル編地を用いた。
<Lightfastness>
Measurement was carried out in accordance with the measurement method of JIS L 0842, using a black panel at 63° C. and using the third exposure method.
In addition, the sample knitted fabric after dyeing was used as the sample for measurement, just like the sample for measurement of dyeing concentration.

(実施例1)
エチレングリコール45重量部からなるグリコール原料とテレフタル酸100重量部からなるジカルボン酸原料とを混合してグリコール原料対ジカルボン酸原料のモル比が1.2対1のスラリーを調製した。このスラリーに1,2-プロパンジオールを得られるポリマーに対して、520ppmとなるよう添加し、加圧下(絶対圧0.25MPa)、250℃でエステル化率が95%になるまでエステル化反応を行い、低重合体を得た。次に、触媒として三酸化アンチモン350ppm、安定剤として亜リン酸を10ppm加え、120Paの減圧下、280℃で低重合体を重縮合し、極限粘度0.65dl/gの重合体を得た。
得られた重合体を押し出し機で溶融混練し、孔数24個の口金を用いて紡糸温度290℃の条件で、巻取り速度3000m/分で溶融紡糸し、ポリエステルフィラメント142dtex/24フィラメントで紡出した後、この未延伸糸を80℃の熱ローラー及び120℃の熱プレートに接触させ、延伸倍率1.7倍で延伸することにより、84dtex/24フィラメントのポリエステル繊維を得た。
紡糸性及び得られた繊維における1,2-プロパンジオール含有量、繊度、強度、伸度、色度、染色性、耐光堅牢性を表1に示した。いずれも良好に紡糸でき、良好な染色性及び耐光堅牢性を有していた。
(Example 1)
A glycol raw material consisting of 45 parts by weight of ethylene glycol and a dicarboxylic acid raw material consisting of 100 parts by weight of terephthalic acid were mixed to prepare a slurry in which the molar ratio of glycol raw material to dicarboxylic acid raw material was 1.2:1. To this slurry, 1,2-propanediol was added to the polymer at a concentration of 520 ppm, and the esterification reaction was carried out at 250°C under pressure (absolute pressure 0.25 MPa) until the esterification rate reached 95%. A low polymer was obtained. Next, 350 ppm of antimony trioxide as a catalyst and 10 ppm of phosphorous acid as a stabilizer were added, and the low polymer was polycondensed at 280° C. under a reduced pressure of 120 Pa to obtain a polymer with an intrinsic viscosity of 0.65 dl/g.
The obtained polymer was melt-kneaded in an extruder, melt-spun using a spinneret with 24 holes at a spinning temperature of 290°C and a winding speed of 3000 m/min, and spun with polyester filaments of 142 dtex/24 filaments. Thereafter, this undrawn yarn was brought into contact with a heated roller at 80° C. and a heated plate at 120° C., and drawn at a draw ratio of 1.7 times to obtain a polyester fiber of 84 dtex/24 filaments.
Table 1 shows the spinnability, 1,2-propanediol content, fineness, strength, elongation, chromaticity, dyeability, and light fastness of the obtained fibers. All of them could be spun well and had good dyeability and light fastness.

(実施例2~4)
重合時に添加する1,2-プロパンジオール量を変更し、得られた繊維の共重合量を調整した以外は、実施例1と同様にして表1に示すポリエステル繊維を得た。いずれも良好に紡糸でき、良好な染色性及び耐光堅牢性の物性を有していた。
(Examples 2 to 4)
Polyester fibers shown in Table 1 were obtained in the same manner as in Example 1, except that the amount of 1,2-propanediol added during polymerization was changed and the amount of copolymerization of the resulting fibers was adjusted. All of them could be spun well and had good physical properties such as dyeability and light fastness.

(実施例5)
紡糸方法を変更した以外は実施例1と同様にして、表1に示す繊維を得た。変更した紡糸方法は、孔数24個の口金を用いて紡糸温度290℃、温度25℃、湿度60%の冷却風を0.5m/秒の速度で紡出糸条に吹付け糸条を60℃以下にした後、紡糸口金下方1.2mの位置に設置したチューブヒーター(内温185℃)に導入してチューブヒーター内で延伸した後、4500m/分の速度で捲取り、56dtex/24フィラメントのポリエステル繊維を得た。得られた繊維は、良好な繊維物性を有していた。
(Example 5)
The fibers shown in Table 1 were obtained in the same manner as in Example 1 except that the spinning method was changed. The modified spinning method uses a spinneret with 24 holes to blow cooling air at a spinning temperature of 290°C, a temperature of 25°C, and a humidity of 60% onto the spun yarn at a speed of 0.5 m/sec to form 60 yarns. ℃ or less, the filament was introduced into a tube heater (inner temperature 185℃) installed 1.2m below the spinneret, drawn within the tube heater, and wound at a speed of 4500m/min to form a 56dtex/24 filament. of polyester fibers were obtained. The obtained fiber had good fiber properties.

(比較例1~4)
重合時に添加する1,2-プロパンジオール量を変更し、得られた繊維の共重合量を調整した以外は、実施例1と同様にして表1に示す84dtex/24フィラメントのポリエステル繊維を得た。
(Comparative Examples 1 to 4)
Polyester fibers of 84 dtex/24 filaments shown in Table 1 were obtained in the same manner as in Example 1, except that the amount of 1,2-propanediol added during polymerization was changed and the amount of copolymerization of the obtained fiber was adjusted. .

比較例1では、1,2-プロパンジオールの共重量が少ないため、紡糸性が劣るだけでなく、染色性及び耐光堅牢性がやや劣っていた。比較例2および3では、1,2-プロパンジオールの共重量が多すぎるため、紡糸性が劣るだけでなく、耐光堅牢性も不十分であった。比較例4では、1,2-プロパンジオールを共重合していないため、耐光堅牢性は良好であるが、染色性及び紡糸性が不十分であった。 In Comparative Example 1, since the co-weight of 1,2-propanediol was low, not only the spinnability was poor, but also the dyeability and light fastness were slightly poor. In Comparative Examples 2 and 3, since the co-weight of 1,2-propanediol was too large, not only the spinnability was poor, but also the light fastness was insufficient. In Comparative Example 4, since 1,2-propanediol was not copolymerized, the light fastness was good, but the dyeability and spinnability were insufficient.

本発明のポリエステル繊維はフィラメントの形態でも使用できるが、ステープル、紡績糸、織編物の布帛、乾式不織布、湿式不織布の形態でも使用できる。具体的には、例えば紳士婦人向けフォーマル或いはカジュアルファッション衣料用途、スポーツ用途、ユニフォーム用途、自動車や航空機などの内装素材用途、カーテンやカーペットなど、多岐に渡って有効に利用することができる。さらには、プラスチック用補強材(FRP)、ゴム用補強材(FRR)、タイヤコード、スクリーン紗、エアーバッグ、ジオグリッド、セパレータ等の電池構造品、液体フィルター、エアフィルター、紙基材、ワイパー、人工皮革、合成皮革等にも好適に使用される。
The polyester fibers of the present invention can be used in the form of filaments, but also in the form of staples, spun yarns, woven and knitted fabrics, dry nonwoven fabrics, and wet nonwoven fabrics. Specifically, it can be effectively used in a wide variety of applications, such as formal or casual fashion clothing for men and women, sports, uniforms, interior materials for automobiles and aircraft, curtains and carpets, etc. In addition, we offer plastic reinforcing materials (FRP), rubber reinforcing materials (FRR), tire cords, screen gauze, air bags, geogrids, battery structural products such as separators, liquid filters, air filters, paper base materials, wipers, It is also suitably used for artificial leather, synthetic leather, etc.

Claims (2)

ポリエステル樹脂から構成されるポリエステル繊維であって、該ポリエステル樹脂がジカルボン酸成分とグリコール成分からなる共重合体であり、該グリコール成分のうち95~99.87モル%がエチレングリコール及び/又はそのエステル形成性誘導体であり、0.13~5モル%が1,2-プロパンジオール及び/又はそのエステル形成性誘導体であることを特徴とする、ポリエステル繊維。 A polyester fiber composed of a polyester resin, wherein the polyester resin is a copolymer composed of a dicarboxylic acid component and a glycol component, and 95 to 99.87 mol% of the glycol component is ethylene glycol and/or its ester. A polyester fiber, which is a forming derivative, and is characterized in that 0.13 to 5 mol% is 1,2-propanediol and/or its ester forming derivative. 請求項1に記載のポリエステル繊維を少なくとも一部に含む、繊維構造体。
A fiber structure comprising at least a portion of the polyester fiber according to claim 1.
JP2022097879A 2022-06-17 2022-06-17 polyester fiber Pending JP2023184004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022097879A JP2023184004A (en) 2022-06-17 2022-06-17 polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022097879A JP2023184004A (en) 2022-06-17 2022-06-17 polyester fiber

Publications (1)

Publication Number Publication Date
JP2023184004A true JP2023184004A (en) 2023-12-28

Family

ID=89333294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022097879A Pending JP2023184004A (en) 2022-06-17 2022-06-17 polyester fiber

Country Status (1)

Country Link
JP (1) JP2023184004A (en)

Similar Documents

Publication Publication Date Title
JP5730782B2 (en) Normal pressure dyeable polyester fiber and method for producing the same
JP5813747B2 (en) Cationic dyeable polyester fiber and composite fiber
JP2002038333A (en) Polyester fiber having high dye-affinity
KR20010022988A (en) Polyester fiber and fabric prepared therefrom
JP5718045B2 (en) Polyester fibers and fiber aggregates with excellent dyeability
JP5718100B2 (en) Normal pressure dyeable polyester fiber
JP2023184004A (en) polyester fiber
JP3295359B2 (en) Method for producing modified polyester fiber
US20070055043A1 (en) Modified polyethylene, terephthalate for low temperature dyeability, controlled shrinkage characteristics and improved tensile properties
JP2005273115A (en) Easily dyeable polyester fiber and method for producing the same
JP2010168707A (en) Ordinary pressure cation-dyeable polyester multifilament
JPH08269820A (en) Easily dyeable modified polyester fiber and its production
JP3259840B2 (en) Flame retardant polyester fiber
JP3703743B2 (en) Method for producing polyester composite fiber
JPH09324346A (en) Blended dyed fabric product comprising polyester fiber and stretch fiber
JPH0598512A (en) Polyester fiber
JP2009174063A (en) Normal atmosphere cation-dyeable polyester yarn and false twisted yarn comprising the same
JP2018048421A (en) Deep-dyeable polyester woven or knitted fabric and method for producing the same
JP2017128830A (en) Core sheath composite fiber for shrinkage split fiber
JP3670974B2 (en) High multi-polyester filament, method for producing the same, and swimsuit comprising high multi-polyester filament
JPH04361610A (en) Production of polyester fiber
JP2006225768A (en) Easily dyeable polyester fiber and method for producing the same
JPH10168654A (en) Polyester fiber for seat belt and seat belt webbing
JP2011137274A (en) Normal pressure cation-dyeable polyester multifilament
JPH05230729A (en) Production of cation-dyeable polyester false-twisted yarn