JPH09310230A - Production of split type polyester conjugate fiber - Google Patents

Production of split type polyester conjugate fiber

Info

Publication number
JPH09310230A
JPH09310230A JP14815596A JP14815596A JPH09310230A JP H09310230 A JPH09310230 A JP H09310230A JP 14815596 A JP14815596 A JP 14815596A JP 14815596 A JP14815596 A JP 14815596A JP H09310230 A JPH09310230 A JP H09310230A
Authority
JP
Japan
Prior art keywords
polyester
component
fiber
melt
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14815596A
Other languages
Japanese (ja)
Other versions
JP3715375B2 (en
Inventor
Masahito Tokutake
政仁 徳竹
Atsuko Ueda
敦子 植田
Takashi Katagiri
孝 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Original Assignee
Nippon Ester Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd filed Critical Nippon Ester Co Ltd
Priority to JP14815596A priority Critical patent/JP3715375B2/en
Publication of JPH09310230A publication Critical patent/JPH09310230A/en
Application granted granted Critical
Publication of JP3715375B2 publication Critical patent/JP3715375B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a split type polyester conjugate fiber, capable of stably melt-spinning the conjugate fiber at a high speed and having a small variation in dyeability. SOLUTION: This split type polyester conjugate fiber in which a slightly soluble component is divided into plural portions with an easily soluble component in the cross section of the fiber is melt-spun at a spinning speed of >=2500m/min. Therein, the easily soluble component is a polyester A containing a sulfonate salt group-having aromatic discarboxylic acid component in an amount of 1.3mol% based on the whole dicarboxylic acid component of the polyester A and further containing a polyalkylene glycol having an average mol.wt. of 1000-10000 in an amount of 5-15wt.%, and the slightly soluble component is a polyester B containing ethylene terephthalate units in an amount of >=80mol.% based on the whole constituting units. The components A and B satisfy the conditions of the following inequalities: [B]>[A], 2200>=[A]>=1000, and 2500>=[B]>=1200, wherein the [A] and [B] express the melt viscosities (dPa.s) of the polyesters A and B, respectively, at a temperature of 290 deg.C and at a shear speed of 1000s<-1> .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、繊維の横断面にお
いて、易溶出性成分によって難溶出性成分が複数個に分
割された分割型ポリエステル複合繊維を2500m/分以上
の高速で溶融紡糸する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of melt-spinning a splittable polyester conjugate fiber in which a difficult-to-eluting component is divided into a plurality of components in a cross section of the fiber at a high speed of 2500 m / min or more. It is about.

【0002】[0002]

【従来の技術】従来、特定の溶剤あるいは薬品に対して
易溶出性を示す易溶出性成分と難溶出性を示す難溶出性
成分とを用い、繊維の横断面において、易溶出性成分に
よって難溶出性成分が複数個に分割された形態の分割型
複合繊維を紡糸し、易溶出性成分を溶剤あるいは薬品に
よって除去することにより極めて細繊度の難溶出性成分
からなる繊維を得る方法が広く行われている。
2. Description of the Related Art Conventionally, an easily eluting component having an easily eluting property with respect to a specific solvent or a chemical substance and a hardly eluting component having a difficult eluting property have been used. A method widely available is one in which a split-type composite fiber in which the eluting component is divided into a plurality of parts is spun, and the easily eluting component is removed by a solvent or a chemical agent to obtain a fiber made of a difficult-eluting component with extremely fineness. It is being appreciated.

【0003】特に、易溶出性成分と難溶出性成分が互い
に相溶性のあるポリエステル系成分からなり、易溶出性
成分のアルカリによる加水分解速度を難溶出性成分より
も速めることにより分割可能とした繊維は、次のような
利点を有し、これまでにも多くの提案がなされている。 (1) 溶出装置、操作、薬品等が特殊なものでなく、溶出
装置への腐食性が無く、安全、かつ安価である。 (2) 紡糸、延伸、製編織等の溶出処理以前の最終製品に
至るまでの工程において、糸切れや易溶出性成分と難溶
出性成分との間の剥離等のトラブルが無く、安定した加
工ができる。 (3) 製編織工程及び織編物において、充分に実用性のあ
る強度を有している。
In particular, the easily-eluting component and the hardly-eluting component are composed of polyester-based components which are compatible with each other, and the hydrolysis of the easily-eluting component with alkali is made faster than that of the hardly-eluting component, thereby enabling division. Fiber has the following advantages and many proposals have been made so far. (1) The elution device, operation, chemicals, etc. are not special, there is no corrosiveness to the elution device, and it is safe and inexpensive. (2) Stable processing without problems such as yarn breakage or peeling between the easily-eluting component and the difficult-to-eluting component in the processes leading to the final product before elution treatment such as spinning, drawing, and knitting and weaving. You can (3) It has sufficient practical strength in the knitting and weaving process and the woven and knitted products.

【0004】例えば、特開昭62-78213号公報、特開平1-
162825号公報には、難溶出性成分としてポリエチレンテ
レフタレート、易溶出性成分としてスルホン酸塩基を有
する芳香族ジカルボン酸成分を特定量共重合し、かつ、
ポリアルキレングリコール類を特定量含有するポリエス
テルを用いた複合繊維が開示されている。
For example, Japanese Patent Laid-Open Nos. 62-78213 and 1-
In 162825, polyethylene terephthalate as a difficult-to-dissolve component, a specific amount of an aromatic dicarboxylic acid component having a sulfonate group as a readily-dissolvable component, and,
A composite fiber using a polyester containing a specific amount of polyalkylene glycol is disclosed.

【0005】このような複合繊維を繊維する場合、1500
m/分以下の比較的低速度で溶融紡糸すれば、製糸性及
び得られる繊維の性能等に特に問題はないが、生産性を
向上するために紡糸速度を2500m/分以上にすると曳糸
性が悪化して紡糸工程で糸切れが発生したり、溶出後の
難溶出性成分からなる繊維の性能にばらつきを生じ、特
に、染色性のばらつきのために編織物の品位が低下する
という問題があった。
When such a composite fiber is formed into a fiber, 1500
If melt spinning is performed at a relatively low speed of m / min or less, there is no particular problem with the spinnability and the performance of the obtained fiber, but if the spinning speed is 2500 m / min or more to improve productivity, spinnability is improved. Is deteriorated and yarn breakage occurs in the spinning process, or the performance of the fiber composed of the difficult-to-dissolve component after elution varies, and in particular, the quality of the knitted fabric is deteriorated due to the variation in dyeability. there were.

【0006】[0006]

【発明が解決しようとする課題】本発明は、繊維の横断
面において、易溶出性成分により難溶出性成分が複数個
に分割された分割型ポリエステル複合繊維を2500m/分
以上の紡糸速度で安定して溶融紡糸することができ、得
られた繊維を溶出処理することにより、染色性のばらつ
きが少ない難溶出性成分からなる繊維を得ることのでき
る分割型ポリエステル複合繊維の製造法を提供しようと
するものである。
DISCLOSURE OF THE INVENTION According to the present invention, in a transverse cross section of a fiber, a split-type polyester composite fiber in which a difficult-to-dissolve component is divided into a plurality of easily-dissolvable components is stabilized at a spinning speed of 2500 m / min or more. It is intended to provide a method for producing a splittable polyester conjugate fiber, which can be melt-spun and can be obtained by subjecting the obtained fiber to an elution treatment to obtain a fiber composed of a component that is difficult to elute with little variation in dyeability. To do.

【0007】[0007]

【課題を解決するための手段】本発明は、上記の課題を
解決するもので、その要旨は次の通りである。繊維の横
断面において、易溶出性成分によって難溶出性成分が複
数個に分割された分割型ポリエステル複合繊維を2500m
/分以上の紡糸速度で溶融紡糸するに際し、易溶出性成
分として、ジカルボン酸成分のうち1〜3モル%がスル
ホン酸塩基を有する芳香族ジカルボン酸成分であり、か
つ、平均分子量1000〜10000 のポリアルキレングリコー
ルを5〜15重量%含有するポリエステルAを用い、難溶
出性成分として、全構成単位の80モル%上がエチレンテ
レフタレートであるポリエステルBを用い、ポリエステ
ルAとBの溶融粘度が下記式〜の条件を満足するよ
うにすることを特徴とする分割型ポリエステル複合繊維
の製造法。 〔B〕>〔A〕 2200≧〔A〕≧1000 2500≧〔B〕≧1200 ここで、〔A〕及び〔B〕は、それぞれポリエステルA
及びポリエステルBの温度 290℃、剪断速度1000s-1
おける溶融粘度(dPa ・ s)を表す。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and its gist is as follows. In the cross section of the fiber, 2500m of split-type polyester composite fiber in which the difficult-to-dissolve component is divided into a plurality of easily-dissolvable components
In melt-spinning at a spinning speed of 1 / min or more, 1 to 3 mol% of the dicarboxylic acid component is an aromatic dicarboxylic acid component having a sulfonate group as an easily-eluting component, and has an average molecular weight of 1,000 to 10,000. Polyester A containing 5 to 15% by weight of polyalkylene glycol is used, and as a hardly-eluting component, polyester B having 80 mol% of all constituent units is ethylene terephthalate is used. A method for producing a splittable polyester conjugate fiber, characterized in that the following conditions are satisfied. [B]> [A] 2200 ≧ [A] ≧ 1000 2500 ≧ [B] ≧ 1200 where [A] and [B] are polyester A, respectively.
And the melt viscosity (dPa · s) of polyester B at a temperature of 290 ° C. and a shear rate of 1000 s −1 .

【0008】[0008]

【発明の実施の形態】以下、本発明について詳細に説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.

【0009】本発明における複合繊維は、繊維の横断面
において、易溶出性成分のポリエステルAによって難溶
出性成分のポリエステルBが複数個に分割された形態を
有するものである。図1は、このような複合繊維の具体
例の横断面模式図である。
The composite fiber in the present invention has a form in which, in the cross-section of the fiber, the easily eluting component polyester A is divided into a plurality of hardly eluting component polyester B. FIG. 1 is a schematic cross-sectional view of a specific example of such a composite fiber.

【0010】本発明において、易溶出性成分のポリエス
テルAは、難溶出性成分のポリエステルBよりもアルカ
リに対する溶解速度が5倍以上速いものであることが好
ましい。そのために、ポリエステルAは、ジカルボン酸
成分のうち1〜3モル%がスルホン酸塩基を有する芳香
族ジカルボン酸成分であり、かつ、平均分子量が1000〜
10000 のポリアルキレングリコールを5〜15重量%含有
するものであることが必要である。
In the present invention, it is preferable that the easily-eluting component polyester A has a dissolution rate in alkali more than 5 times faster than the hardly-eluting component polyester B. Therefore, in the polyester A, 1 to 3 mol% of the dicarboxylic acid component is an aromatic dicarboxylic acid component having a sulfonate group, and the average molecular weight is 1000 to
It is necessary to contain 5 to 15% by weight of 10000 polyalkylene glycol.

【0011】スルホン酸塩基を有する芳香族ジガルボン
酸成分としては、5−ナトリウムスルホイソフタル酸、
5−ナトリウムスルホテレフタル酸、5−カリウムスル
ホイソフタル酸、5−カリウムスルホテレフタル酸、5
−リチウムスルホイソフタル酸、5−ホスホニウムスル
ホイソフタル酸等が挙げられる。
As the aromatic digalvonic acid component having a sulfonate group, 5-sodium sulfoisophthalic acid,
5-sodium sulfoterephthalic acid, 5-potassium sulfoisophthalic acid, 5-potassium sulfoterephthalic acid, 5
-Lithium sulfoisophthalic acid, 5-phosphonium sulfoisophthalic acid and the like can be mentioned.

【0012】ポリエステルAにおけるスルホン酸塩基を
有する芳香族ジカルボン酸成分の共重合量が1モル%未
満では、アルカリに対する溶解速度が遅くなり、難溶出
性成分との溶解速度の差を大きくすることが難しくな
る。一方、この共重合量が3モル%を超えると高速での
製糸性が悪くなり、紡糸工程での糸切れが発生しやすく
なる。
When the copolymerization amount of the aromatic dicarboxylic acid component having a sulfonate group in the polyester A is less than 1 mol%, the dissolution rate in alkali becomes slow and the difference in the dissolution rate with the hardly soluble component can be increased. It gets harder. On the other hand, when the copolymerization amount exceeds 3 mol%, the spinnability at high speed is deteriorated and yarn breakage easily occurs in the spinning process.

【0013】また、ポリエステルAに含有させるポリア
ルキレングリコールは、ポリエステルA中においてアル
カリでいち早く溶解することにより、ポリエステルAの
分子鎖を切断し、また、表面にボイドを発生させて表面
積を増すこと等により溶解速度を速める作用をする。
The polyalkylene glycol contained in the polyester A dissolves in the polyester A with an alkali quickly to break the molecular chain of the polyester A and to generate voids on the surface to increase the surface area. Acts to accelerate the dissolution rate.

【0014】ポリアルキレングリコールとしては、ポリ
エチレングリコール、ポリプロピレングリコール、ポリ
エチレングリコールとポリプロピレングリコールとの共
重合体等が挙げられる。
Examples of the polyalkylene glycol include polyethylene glycol, polypropylene glycol, copolymers of polyethylene glycol and polypropylene glycol, and the like.

【0015】ポリアルキレングリコールは、分子量が10
00〜10000 のものであることが必要である。分子量がこ
れよりも小さいものでは、ポリエステルAのガラス転移
温度が低下するため、紡糸工程で融着が発生しやすくな
り、製糸性が悪くなる。で好ましくない。一方、分子量
が大きすぎるものでは、ポリエステルとの相溶性が悪く
なり、ポリエステルA中に均一に含有させることが難し
い。
Polyalkylene glycol has a molecular weight of 10
It must be between 0 and 10000. When the molecular weight is smaller than this, the glass transition temperature of the polyester A is lowered, so that fusion is likely to occur in the spinning step and the spinnability is deteriorated. Is not preferred. On the other hand, if the molecular weight is too large, the compatibility with the polyester becomes poor and it is difficult to make the polyester A uniformly contained.

【0016】また、ポリアルキレングリコールの含有量
が5重量%未満であると、ポリエステルAのアルカリに
対する溶解速度が遅くなり、一方、15重量%を超える
と、製糸性が悪くなり、紡糸工程での糸切れが発生しや
すくなる。
When the content of the polyalkylene glycol is less than 5% by weight, the dissolution rate of the polyester A in the alkali becomes slow, while when it exceeds 15% by weight, the spinnability is deteriorated and the spinning process becomes difficult. Thread breakage easily occurs.

【0017】なお、ポリエステルAには、必要に応じ
て、ヒンダードフェノール系化合物等の酸化防止剤や耐
熱剤等を配合することができる。
If necessary, the polyester A may be blended with an antioxidant such as a hindered phenol compound or a heat-resistant agent.

【0018】本発明におけるもう一方の成分である難溶
出性成分のポリエステルBとしては、全構成単位の80モ
ル%以上がエチレンテレフタレートからなるポリエステ
ルを用いることが必要である。特に、テレフタル酸成分
とエチレングリコール成分からなるポリエチレンテレフ
タレートが好適であるが、アルカリに対する溶解速度を
あまり高めない範囲であれば、第三成分が共重合された
ものでもよい。共重合成分の具体例としては、イソフタ
ル酸、ナフタレンジカルボン酸等の芳香族ジカルボン
酸、アジピン酸、セバシン酸、アゼライン酸等の脂肪族
ジカルボン酸、ジエチレングリコール、 1,4−ブタジオ
ール等のジオール、p−ヒドロキシ安息香酸、β−ヒド
ロキシエトキシ安息香酸等のヒドロキシカルボン酸等を
挙げることができる。
As the polyester B, which is the other component of the present invention, which is a poorly soluble component, it is necessary to use a polyester in which 80 mol% or more of all constituent units are ethylene terephthalate. In particular, polyethylene terephthalate composed of a terephthalic acid component and an ethylene glycol component is preferable, but a copolymerized third component may be used as long as the dissolution rate in alkali is not so increased. Specific examples of the copolymerization component include aromatic dicarboxylic acids such as isophthalic acid and naphthalenedicarboxylic acid, aliphatic dicarboxylic acids such as adipic acid, sebacic acid and azelaic acid, diols such as diethylene glycol and 1,4-butadiol, p- Examples thereof include hydroxycarboxylic acids such as hydroxybenzoic acid and β-hydroxyethoxybenzoic acid.

【0019】なお、ポリエステルBには、必要に応じ
て、二酸化チタン等の艶消剤、ヒンダードフェノール系
化合物等の酸化防止剤、耐熱剤、難燃剤、制電剤、着色
剤等の添加剤を配合することができる。
The polyester B may contain, if necessary, a matting agent such as titanium dioxide, an antioxidant such as a hindered phenol compound, a heat-resistant agent, a flame retardant, an antistatic agent, a coloring agent, and the like. Can be blended.

【0020】本発明において、安定した溶融紡糸を可能
にすると共に溶出処理後の難溶出性成分からなる繊維の
性能を均一なものとするためには、ポリエステルAとB
の溶融粘度が前記式〜の条件を満足するようにする
ことが必要である。
In the present invention, polyesters A and B are used in order to enable stable melt spinning and to make uniform the performance of the fiber comprising the hardly-eluting component after the elution treatment.
It is necessary that the melt viscosity of the above satisfies the conditions of the above formulas (1) to (3).

【0021】式の要件を満足せず、ポリエステルAの
溶融粘度がポリエステルBの溶融粘度よりも大きいと、
複合繊維の伸度を適正な範囲に納めようとすると、延伸
工程でのポリエステルB側の延伸倍率が適正範囲を外れ
てしまうために、溶出処理後の難溶出性成分からなる繊
維の染色性にばらつきが生じやすくなる。
If the melt viscosity of polyester A is higher than the melt viscosity of polyester B when the requirements of the formula are not satisfied,
If the elongation of the composite fiber is set within an appropriate range, the draw ratio on the polyester B side in the drawing step will be outside the appropriate range. Variation easily occurs.

【0022】また、ポリエステルAの溶融粘度が式の
範囲よりも小さいと、溶融粘度が低すぎるために製糸性
が悪く、紡糸工程で糸切れが発生しやすい。一方、ポリ
エステルAの溶融粘度が式の範囲よりも大きいと、式
の条件を満足させても、延伸工程でのポリエステルB
側の延伸倍率が適正範囲を外れてしまうために、溶出処
理後の難溶出性成分からなる繊維の染色性にばらつきが
生じやすくなる。
If the melt viscosity of the polyester A is smaller than the range defined by the formula, the melt viscosity is too low, resulting in poor spinnability and easy yarn breakage during the spinning process. On the other hand, when the melt viscosity of the polyester A is larger than the range of the formula, even if the condition of the formula is satisfied, the polyester B in the stretching step is
Since the draw ratio on the side is out of the appropriate range, the dyeability of the fiber made of the hardly-eluting component after the elution treatment tends to vary.

【0023】さらに、ポリエステルBの溶融粘度が式
の範囲よりも小さいと、溶出処理後の難溶出性成分から
なる繊維の物性が低下する。一方、ポリエステルBの溶
融粘度が式の範囲よりも大きいと、溶融粘度が高す
ぎ、通常の方法では溶融紡糸を行うことが困難となる。
Further, if the melt viscosity of the polyester B is smaller than the range of the formula, the physical properties of the fiber composed of the hardly-eluting component after the elution treatment are deteriorated. On the other hand, when the melt viscosity of the polyester B is larger than the range of the formula, the melt viscosity is too high, and it becomes difficult to perform melt spinning by a usual method.

【0024】なお、上記のような溶融粘度の範囲となる
ポリエステルA及びポリエステルBの極限粘度は、共重
合物質及びその共重合量により多少の違いはあるが、ポ
リエステルAが約0.70〜0.75、ポリエステルBが約0.67
〜0.73の範囲である。
The intrinsic viscosities of the polyester A and the polyester B having the above melt viscosities are slightly different depending on the copolymerization substance and the amount of the copolymerization. However, the intrinsic viscosity of the polyester A is about 0.70 to 0.75. B is about 0.67
It is in the range of ~ 0.73.

【0025】複合繊維の製造は、常法によって行うこと
ができる。例えば、ポリエステルA、Bのチップ化され
たものを十分に乾燥し、これを汎用の複合溶融紡糸機台
を用いて、図1に示すような断面形状となるように設計
された複合紡糸口金より吐出し、紡出された糸条を冷却
して油剤等を付与し、2500m/分以上の速度で引き取
り、一旦巻取った後に延伸、熱処理等を行って原糸とす
る二工程法、あるいは紡出された糸条を加熱ローラによ
り引き取り、巻取ることなく引き続き次の加熱ローラと
の間で延伸を行い原糸とする一工程法が挙げられる。な
お、これらの工程においては、必要に応じて交絡等を付
与することもできる。
The composite fiber can be manufactured by a conventional method. For example, a polyester spinneret designed to have a cross-sectional shape as shown in FIG. 1 can be obtained by sufficiently drying polyester A and B chips, and then using a general-purpose composite melt spinning machine table. A two-step method in which the yarn that is discharged and spun is cooled to apply an oil agent or the like, taken up at a speed of 2500 m / min or more, once wound, and then stretched and heat-treated to obtain a raw yarn, or a spinning process. There is a one-step method in which the discharged yarn is taken up by a heating roller, and is continuously drawn with a next heating roller without being wound into a raw yarn. In addition, in these steps, entanglement or the like can be added if necessary.

【0026】次いで、得られた原糸を製編織した後、水
酸化ナトリウム水溶液等のアルカリで減量処理を行い、
易溶出性成分のポリエステルAを溶出させて、細繊度の
難溶出性成分のポリエステルBからなる繊維を得る。
Next, after weaving and weaving the obtained raw yarn, weight reduction treatment is performed with an alkali such as an aqueous solution of sodium hydroxide,
Polyester A, which is an easily-eluting component, is eluted to obtain a fiber made of polyester B, which is a component having a fineness and is difficult to elute.

【0027】減量処理は、例えば、濃度 0.5重量%の水
酸化ナトリウム水溶液に、温度95℃で織編物を浸漬し、
所定の減量率となるまで処理することによって行うこと
ができる。
The weight reduction treatment is carried out, for example, by immersing the woven or knitted fabric in a sodium hydroxide aqueous solution having a concentration of 0.5% by weight at a temperature of 95 ° C.
This can be done by processing until a predetermined weight reduction rate is reached.

【0028】[0028]

【作用】本発明における易溶出性成分のポリエステルA
は、スルホン酸塩基を有する芳香族ジカルボン酸成分の
共重合量が比較的少ないので高速での製糸性に優れてい
る。また、特定量含有されているポリアルキレングリコ
ールはポリエステルA中においてアルカリでいち早く溶
解することにより、ポリエステルAの分子鎖を切断し、
表面にボイドを発生させて表面積を増す等の作用があ
り、難溶出性成分のポリエステルBに比較して十分に速
いアルカリ溶解速度を示す。
[Function] Polyester A which is an easily-eluting component in the present invention
Has a relatively small amount of copolymerization of the aromatic dicarboxylic acid component having a sulfonate group, and therefore has excellent spinnability at high speed. Further, the polyalkylene glycol contained in a specific amount dissolves in the polyester A with an alkali quickly to break the molecular chain of the polyester A,
It has an action of generating voids on the surface to increase the surface area, etc., and exhibits a sufficiently high alkali dissolution rate as compared with polyester B which is a poorly-eluting component.

【0029】また、溶融粘度の異なるポリマーを複合し
て紡糸口金より吐出、細化して繊維を形成する場合、引
き取り速度に対して発生する応力は繊維断面に均等にか
かるのではなく、溶融粘度の高いポリマー側により多く
の応力がかかると考えられる。このために、延伸前の高
配向未延伸状態の複合繊維の物性は、溶融粘度の高いポ
リマー側の分子配向を反映したものとなり、延伸工程で
この複合繊維の伸度を適正な範囲に納めようとすると、
溶融粘度の低いポリマー側は延伸倍率が適正範囲を外れ
てしまうことになる。本発明においては、易溶出性成分
のポリエステルAに比べて難溶出性成分のポリエステル
Bの溶融粘度を高くするので、難溶出性成分側が適正な
延伸倍率で延伸されるようになり、溶出処理後の難溶出
性成分からなる繊維の物性や染色性のばらつきが少なく
なる。
When a polymer having a different melt viscosity is compounded and discharged from the spinneret and thinned to form a fiber, the stress generated with respect to the take-up speed is not applied evenly to the fiber cross section, but rather the melt viscosity It is believed that more stress is placed on the higher polymer side. For this reason, the physical properties of the highly oriented unstretched conjugate fiber before stretching will reflect the molecular orientation of the polymer side with high melt viscosity, and the elongation of this conjugate fiber should be kept in an appropriate range during the stretching process. Then,
On the polymer side having a low melt viscosity, the draw ratio will be out of the proper range. In the present invention, since the melt viscosity of polyester B, which is a difficult-to-dissolve component, is made higher than that of polyester A, which is a readily-eluting component, the hard-to-dissolve component side is stretched at an appropriate stretch ratio, and after the elution treatment The dispersion of the physical properties and dyeing properties of the fiber composed of the poorly-eluting component is reduced.

【0030】[0030]

【実施例】次に、実施例により本発明を具体的に説明す
る。なお、例中の測定及び評価法は次の通りである。 (a) 極限粘度〔η〕 フェノールと四塩化エタンの等重量混合溶媒を用い、20
℃で測定した。 (b) 溶融粘度 チップ状の試料を 130℃で24時間減圧乾燥して水分を除
き、フローテスター(島津製作所製、型式CFT-500)を用
いて測定した。 (c) アルカリ溶解速度比 ポリエステルA及びポリエステルBをそれぞれ単独で溶
融紡糸、延伸して得た延伸糸を濃度 0.5重量%の水酸化
ナトリウム水溶液を用い、温度95℃で、15分間減量処理
を行ってそれぞれのアルカリ減量率を求め、アルカリ減
量率の比をアルカリ溶解速度比とした。 (d) 染色性のばらつき 筒編地とした試料を10個準備し、濃度 0.5重量%の水酸
化ナトリウム水溶液を用い、温度95℃で、30分間減量処
理を行い、易溶出性成分を完全に除去する。続いて、減
量処理した筒編地を、Terasil Navy Blue SGL (チバガ
イギー社製分散性染料) 1.0%owf、浴比1:50の染
液を用い、温度 130℃で、60分間常法により染色し、洗
浄して風乾後、通常のポリエチレンテレフタレートから
なる70d/48fの延伸糸を使用した筒編地を同一条件で
染色したものを標準試料として染色性の判定を行い、染
色性が同級となる率を求めた。(この率が高いほど染色
性のばらつきが少ない。)
EXAMPLES Next, the present invention will be described in detail with reference to examples. The measurement and evaluation methods in the examples are as follows. (a) Intrinsic viscosity [η] Using an equal weight mixed solvent of phenol and ethane tetrachloride,
Measured in ° C. (b) Melt Viscosity A chip-shaped sample was dried under reduced pressure at 130 ° C. for 24 hours to remove water, and then measured using a flow tester (manufactured by Shimadzu Corporation, model CFT-500). (c) Alkaline dissolution rate ratio Polyester A and polyester B were individually melt-spun and drawn, and the drawn yarn obtained was subjected to weight reduction treatment at a temperature of 95 ° C for 15 minutes using an aqueous sodium hydroxide solution having a concentration of 0.5% by weight. Then, the respective alkali weight loss rates were obtained, and the ratio of the alkali weight loss rates was defined as the alkali dissolution rate ratio. (d) Dispersion of dyeability Ten samples of tubular knitted fabric were prepared and subjected to weight reduction treatment at a temperature of 95 ° C for 30 minutes using an aqueous solution of sodium hydroxide with a concentration of 0.5% by weight to completely remove easily-eluting components. Remove. Then, the weight-reduced tubular knitted fabric was dyed by a conventional method at a temperature of 130 ° C. for 60 minutes at a temperature of 130 ° C. using a dyeing solution of Terasil Navy Blue SGL (Ciba Geigy disperse dye) 1.0% owf and a bath ratio of 1:50. After washing and air-drying, the dyeability was judged as a standard sample by dyeing the tubular knitted fabric using ordinary polyethylene terephthalate drawn yarn of 70d / 48f under the same conditions, and the dyeability was similar. I asked. (The higher this ratio, the less variation in dyeability.)

【0031】実施例1 ポリエステルAとして、5−ナトリウムスルホイソフタ
ル酸(SIP-Na)を 2.5モル%、平均分子量8000のポリエ
チレングリコール(PEG)を13.3重量%共重合した極限粘
度0.73、溶融粘度 1550dPa・sの共重合ポリエチレンテレ
フタレート、ポリエステルBとして、極限粘度0.69、溶
融粘度 1650dPa・sのポリエチレンテレフタレート(PET)
を用い、横断面形状が図1(d)に示すようにポリエステ
ルAがポリエステルBを8個に分割するように設計され
た細孔48個を有する紡糸口金を備えた通常の複合紡糸機
台により、紡糸温度 290℃、複合重量比A/B=82/1
8、総吐出量40g/分で紡糸し、冷却、オイリングしな
がら3500m/分の速度で巻取り、 105d/48fの未延伸
糸を得た。なお、ポリエステルBに対するポリエステル
Aのアルカリ溶解速度比は8であった。次に、この未延
伸糸を80℃の加熱ローラを介して1.56倍に延伸し、さら
に 140℃のヒートプレート上で熱処理を行って巻取り、
70d/48fの延伸糸を得た。
Example 1 As polyester A, 5-sodium sulfoisophthalic acid (SIP-Na) was 2.5 mol% and polyethylene glycol (PEG) having an average molecular weight of 8000 was 13.3% by weight, and the intrinsic viscosity was 0.73 and the melt viscosity was 1550 dPa. s copolymerized polyethylene terephthalate, polyester B, polyethylene terephthalate (PET) with an intrinsic viscosity of 0.69 and a melt viscosity of 1650 dPa · s
Using a conventional composite spinning machine stand having a spinneret with 48 pores whose cross-sectional shape is designed so that polyester A divides polyester B into 8 as shown in FIG. 1 (d). , Spinning temperature 290 ℃, composite weight ratio A / B = 82/1
8, spun at a total discharge rate of 40 g / min, and wound at a speed of 3500 m / min while cooling and oiling to obtain 105d / 48f undrawn yarn. The alkali dissolution rate ratio of polyester A to polyester B was 8. Next, this unstretched yarn was drawn 1.56 times through a heating roller at 80 ° C, and then heat treated on a heat plate at 140 ° C and wound up,
70d / 48f drawn yarn was obtained.

【0032】実施例2〜4、比較例1〜9 使用するポリエステルA及びポリエステルBを表1に示
したものに変更した以外は、実施例1と同様に行った。
Examples 2 to 4 and Comparative Examples 1 to 9 The procedure of Example 1 was repeated except that the polyester A and polyester B used were changed to those shown in Table 1.

【0033】上記の実施例1〜4及び比較例1〜2で得
られた繊維について、染色性のばらつきを測定した結果
を表1にまとめて示す。(比較例3〜9では、糸切れが
多発し、紡糸が困難であった。)
With respect to the fibers obtained in the above Examples 1 to 4 and Comparative Examples 1 and 2, the results of measuring the variation in dyeability are summarized in Table 1. (In Comparative Examples 3 to 9, yarn breakage occurred frequently, and spinning was difficult.)

【0034】[0034]

【表1】 [Table 1]

【0035】表1から明らかなように、実施例1〜4で
は、3500m/分の高速で安定した紡糸が可能で、溶出後
の難溶出性成分のポリエステルBからなる繊維は染色性
のばらつきが少ないものであった。
As is clear from Table 1, in Examples 1 to 4, stable spinning was possible at a high speed of 3500 m / min, and the fibers made of the polyester B, which was a poorly-eluting component after elution, had a variation in dyeability. It was few.

【0036】一方、比較例1では、ポリエステルAの溶
融粘度がポリエステルBの溶融粘度よりも高いために、
比較例2では、ポリエステルAの溶融粘度が高すぎるた
めに、それぞれ高速紡糸は可能であったが、溶出後の難
溶出性成分のポリエステルBからなる繊維は染色性のば
らつきが大きいものであった。また、比較例3では、ポ
リエステルBの溶融粘度が高すぎるために、比較例4で
は、ポリエステルAの溶融粘度が低すぎるために、比較
例5では、ポリエステルBの溶融粘度が低すぎるため
に、比較例6では、ポリエステルA中のSIP-Naの共重合
量が多すぎるために、比較例7では、ポリエステルA中
のPEG の含有量が多すぎるために、比較例8では、ポリ
エステルA中のPEG の分子量が高すぎるため、比較例9
では、ポリエステルA中のPEG の分子量が低すぎるため
に、それぞれ高速で紡糸すると糸切れが多発して糸条を
得ることができなかった。
On the other hand, in Comparative Example 1, since the melt viscosity of polyester A is higher than that of polyester B,
In Comparative Example 2, since the melt viscosity of the polyester A was too high, high-speed spinning was possible for each, but the fibers made of the polyester B, which is a difficult to elute component after elution, had large variations in dyeability. . In Comparative Example 3, the melt viscosity of the polyester B is too high. In Comparative Example 4, the melt viscosity of the polyester A is too low. In Comparative Example 5, the melt viscosity of the polyester B is too low. In Comparative Example 6, the copolymerization amount of SIP-Na in Polyester A is too large, and in Comparative Example 7, the content of PEG in Polyester A is too large. Comparative Example 9 because the molecular weight of PEG is too high
However, since the molecular weight of PEG in polyester A was too low, yarn breakage occurred frequently when spinning at high speed, and a yarn could not be obtained.

【0037】[0037]

【発明の効果】本発明によれば、2500m/分以上の高速
で、糸切れや各成分間の剥離がなく、安定して溶融紡糸
することができ、得られた繊維を溶出処理することによ
り、染色性のばらつきが少ないポリエステル繊維を得る
ことのできる分割型ポリエステル複合繊維の製造法が提
供され、生産性向上、コスト低減等が可能となる。
EFFECTS OF THE INVENTION According to the present invention, it is possible to stably melt-spin at a high speed of 2500 m / min or more, without yarn breakage or peeling between components, and by subjecting the obtained fiber to an elution treatment. A method for producing a splittable polyester conjugate fiber capable of obtaining a polyester fiber with less variation in dyeability is provided, and productivity can be improved and cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における分割型ポリエステル複合繊維の
具体例の横断面模式図である。
FIG. 1 is a schematic cross-sectional view of a specific example of a splittable polyester conjugate fiber according to the present invention.

【符号の説明】[Explanation of symbols]

A 易溶出性成分のポリエステルA B 難溶出性成分のポリエステルB A Polyester B which is an easily eluting component B B Polyester which is a hardly eluting component

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 繊維の横断面において、易溶出性成分に
よって難溶出性成分が複数個に分割された分割型ポリエ
ステル複合繊維を2500m/分以上の紡糸速度で溶融紡糸
するに際し、易溶出性成分として、ジカルボン酸成分の
うち1〜3モル%がスルホン酸塩基を有する芳香族ジカ
ルボン酸成分であり、かつ、平均分子量1000〜10000 の
ポリアルキレングリコールを5〜15重量%含有するポリ
エステルAを用い、難溶出性成分として、全構成単位の
80モル%上がエチレンテレフタレートであるポリエステ
ルBを用い、ポリエステルAとBの溶融粘度が下記式
〜の条件を満足するようにすることを特徴とする分割
型ポリエステル複合繊維の製造法。 〔B〕>〔A〕 2200≧〔A〕≧1000 2500≧〔B〕≧1200 ここで、〔A〕及び〔B〕は、それぞれポリエステルA
及びポリエステルBの温度 290℃、剪断速度1000s-1
おける溶融粘度(dPa ・ s)を表す。
1. A melt-spinnable component when melt-spinning a splittable polyester composite fiber in which a sparingly-elutable component is divided into a plurality of parts in a cross section of the fiber at a spinning speed of 2500 m / min or more. As the polyester A, 1 to 3 mol% of the dicarboxylic acid component is an aromatic dicarboxylic acid component having a sulfonate group, and 5 to 15% by weight of a polyalkylene glycol having an average molecular weight of 1,000 to 10,000 is used. As a poorly soluble component,
A method for producing a splittable polyester conjugate fiber, wherein polyester B having 80 mol% of ethylene terephthalate is used, and the melt viscosities of polyesters A and B satisfy the following conditions. [B]> [A] 2200 ≧ [A] ≧ 1000 2500 ≧ [B] ≧ 1200 where [A] and [B] are polyester A, respectively.
And the melt viscosity (dPa · s) of polyester B at a temperature of 290 ° C. and a shear rate of 1000 s −1 .
JP14815596A 1996-05-16 1996-05-16 Production method of split polyester composite fiber Expired - Lifetime JP3715375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14815596A JP3715375B2 (en) 1996-05-16 1996-05-16 Production method of split polyester composite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14815596A JP3715375B2 (en) 1996-05-16 1996-05-16 Production method of split polyester composite fiber

Publications (2)

Publication Number Publication Date
JPH09310230A true JPH09310230A (en) 1997-12-02
JP3715375B2 JP3715375B2 (en) 2005-11-09

Family

ID=15446496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14815596A Expired - Lifetime JP3715375B2 (en) 1996-05-16 1996-05-16 Production method of split polyester composite fiber

Country Status (1)

Country Link
JP (1) JP3715375B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007089423A2 (en) * 2006-01-31 2007-08-09 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
WO2013099618A1 (en) 2011-12-27 2013-07-04 東レ株式会社 Conjugated fiber, base body for artificial leather, and artificial leather
US8840757B2 (en) 2012-01-31 2014-09-23 Eastman Chemical Company Processes to produce short cut microfibers
US9273417B2 (en) 2010-10-21 2016-03-01 Eastman Chemical Company Wet-Laid process to produce a bound nonwoven article
US9598802B2 (en) 2013-12-17 2017-03-21 Eastman Chemical Company Ultrafiltration process for producing a sulfopolyester concentrate
US9605126B2 (en) 2013-12-17 2017-03-28 Eastman Chemical Company Ultrafiltration process for the recovery of concentrated sulfopolyester dispersion
US9617685B2 (en) 2013-04-19 2017-04-11 Eastman Chemical Company Process for making paper and nonwoven articles comprising synthetic microfiber binders

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8691130B2 (en) 2003-06-19 2014-04-08 Eastman Chemical Company Process of making water-dispersible multicomponent fibers from sulfopolyesters
WO2007089423A3 (en) * 2006-01-31 2008-03-13 Eastman Chem Co Water-dispersible and multicomponent fibers from sulfopolyesters
EP2319965A1 (en) * 2006-01-31 2011-05-11 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
EP2322700A1 (en) * 2006-01-31 2011-05-18 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
KR101109868B1 (en) * 2006-01-31 2012-02-15 이스트만 케미칼 캄파니 Water-dispersible and multicomponent fibers from sulfopolyesters
CN102888671B (en) * 2006-01-31 2016-08-17 伊士曼化工公司 Available from the dispersible multicomponent fibre of the water of sulfonic polyester
WO2007089423A2 (en) * 2006-01-31 2007-08-09 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US9273417B2 (en) 2010-10-21 2016-03-01 Eastman Chemical Company Wet-Laid process to produce a bound nonwoven article
WO2013099618A1 (en) 2011-12-27 2013-07-04 東レ株式会社 Conjugated fiber, base body for artificial leather, and artificial leather
US8840758B2 (en) 2012-01-31 2014-09-23 Eastman Chemical Company Processes to produce short cut microfibers
US8882963B2 (en) 2012-01-31 2014-11-11 Eastman Chemical Company Processes to produce short cut microfibers
US8906200B2 (en) 2012-01-31 2014-12-09 Eastman Chemical Company Processes to produce short cut microfibers
US9175440B2 (en) 2012-01-31 2015-11-03 Eastman Chemical Company Processes to produce short-cut microfibers
US8871052B2 (en) 2012-01-31 2014-10-28 Eastman Chemical Company Processes to produce short cut microfibers
US8840757B2 (en) 2012-01-31 2014-09-23 Eastman Chemical Company Processes to produce short cut microfibers
US9617685B2 (en) 2013-04-19 2017-04-11 Eastman Chemical Company Process for making paper and nonwoven articles comprising synthetic microfiber binders
US9598802B2 (en) 2013-12-17 2017-03-21 Eastman Chemical Company Ultrafiltration process for producing a sulfopolyester concentrate
US9605126B2 (en) 2013-12-17 2017-03-28 Eastman Chemical Company Ultrafiltration process for the recovery of concentrated sulfopolyester dispersion

Also Published As

Publication number Publication date
JP3715375B2 (en) 2005-11-09

Similar Documents

Publication Publication Date Title
JP5730782B2 (en) Normal pressure dyeable polyester fiber and method for producing the same
US4233355A (en) Separable composite fiber and process for producing same
JP5813747B2 (en) Cationic dyeable polyester fiber and composite fiber
KR100531617B1 (en) Conjugated fiber and manufacturing thereof
JP3715375B2 (en) Production method of split polyester composite fiber
JP2002038333A (en) Polyester fiber having high dye-affinity
JP2001123335A (en) Split-type polyester conjugated fiber
JP5718100B2 (en) Normal pressure dyeable polyester fiber
EP0359692A2 (en) Solution spinning process
JP4221015B2 (en) Split type composite fiber and manufacturing method thereof
JP4639889B2 (en) Polytrimethylene terephthalate extra fine yarn
JP3890633B2 (en) Textile manufacturing method using recovered polyester
JP3295359B2 (en) Method for producing modified polyester fiber
KR100429364B1 (en) Method for manufacturing metachromatic polyester conjugated yarn having improved size stability
KR100372264B1 (en) Sea-island type conjugate yarn and preparation process thereof
JP3845339B2 (en) Split type composite fiber and method for producing the same
JP3703743B2 (en) Method for producing polyester composite fiber
US5061425A (en) Solution spinning process for producing a polyethylene terephthalate filament
JPH03124876A (en) Polyester sewing machine thread
KR100422479B1 (en) Production of split type conjugate fiber improved in spinnability and drawability
KR0150172B1 (en) Method of manufacturing polyeterester elastic fiber
JPS5854022A (en) Preparation of split polyester yarn
JP2012207313A (en) Conjugate fiber dyeable under normal pressure
JPH0737682B2 (en) Polyester fiber having excellent anti-frictional property and method for producing the same
JPH04240214A (en) Production of splittable type fiber

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050825

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

EXPY Cancellation because of completion of term