JP4221015B2 - Split type composite fiber and manufacturing method thereof - Google Patents

Split type composite fiber and manufacturing method thereof Download PDF

Info

Publication number
JP4221015B2
JP4221015B2 JP2006196287A JP2006196287A JP4221015B2 JP 4221015 B2 JP4221015 B2 JP 4221015B2 JP 2006196287 A JP2006196287 A JP 2006196287A JP 2006196287 A JP2006196287 A JP 2006196287A JP 4221015 B2 JP4221015 B2 JP 4221015B2
Authority
JP
Japan
Prior art keywords
component
split
composite fiber
fiber
polyamide component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006196287A
Other languages
Japanese (ja)
Other versions
JP2006322131A (en
Inventor
啓太 勝間
郁夫 冨坂
松美 田中
正信 宮田
寿一 勝井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KB Seiren Ltd
Original Assignee
KB Seiren Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KB Seiren Ltd filed Critical KB Seiren Ltd
Priority to JP2006196287A priority Critical patent/JP4221015B2/en
Publication of JP2006322131A publication Critical patent/JP2006322131A/en
Application granted granted Critical
Publication of JP4221015B2 publication Critical patent/JP4221015B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

本発明はポリエステル成分とポリアミド成分からなり、製織製編後、膨潤剤にて化学的に割繊処理する高密度織編物に適した分割型複合繊維とその製造方法に関する。   The present invention relates to a split type composite fiber suitable for a high-density woven or knitted fabric, which comprises a polyester component and a polyamide component, and is chemically split with a swelling agent after weaving and knitting, and a method for producing the same.

従来から、ポリエステル/ポリアミドを成分とする複合繊維及び該複合繊維からなる高密度織編物に関しては数多くの提案がある。例えば、特許文献1や特許文献2では、製織した後にベンジルアルコール乳化水溶液で処理し、ポリアミド成分を膨潤収縮させてポリエステル成分とポリアミド成分を割繊処理する方法が提案されている。また、高密度平織物に関しては、特許文献3に同様の方法が提案されている。
特公昭53−35633号公報 特開昭60−215869号公報 特公昭62−8535号公報
Conventionally, there have been many proposals regarding a composite fiber containing polyester / polyamide as a component and a high-density woven or knitted fabric made of the composite fiber. For example, Patent Literature 1 and Patent Literature 2 propose a method of weaving and then treating with a benzyl alcohol emulsified aqueous solution to swell and shrink the polyamide component to split the polyester component and the polyamide component. For high-density plain woven fabric, a similar method is proposed in Patent Document 3.
Japanese Examined Patent Publication No. 53-35633 JP-A-60-215869 Japanese Examined Patent Publication No. 62-8535

いずれの場合も該分割型複合繊維は、一般的な極限粘度0.61〜0.63のポリエチレンテレフタレートを1成分として用い、紡糸工程にて一旦未延伸糸を巻き取り、延伸工程で延伸する所謂コンベショナル法(以後、コンベ法と称する)で製造されている。   In any case, the split type composite fiber is a so-called one in which polyethylene terephthalate having a general intrinsic viscosity of 0.61 to 0.63 is used as one component, the undrawn yarn is wound once in the spinning step, and drawn in the drawing step. It is manufactured by the conventional method (hereinafter referred to as the convex method).

該方法で製造する場合、膨潤剤での化学的割繊性が織編物全体に渉って均一化する為に、未延伸糸状態で一定の温湿度下一定期間エージング処理を施す必要があった。該方法では、未延伸糸の放置期間により膨潤割繊性が変化するという点で問題があり、また生産効率も悪かった。   In the case of producing by this method, in order to make the chemical splitting property with the swelling agent uniform throughout the entire woven or knitted fabric, it was necessary to perform an aging treatment for a certain period of time under a certain temperature and humidity in an undrawn yarn state. . This method has a problem in that the swelling splitting property changes depending on the leaving period of the undrawn yarn, and the production efficiency is also poor.

一方、生産効率を上げる方法として、例えば紡糸後一旦巻取ることなく延伸する直接紡糸延伸法(以後、SPD法と称する)や、高速紡糸法が公知技術として知られている。   On the other hand, as a method for increasing production efficiency, for example, a direct spinning drawing method (hereinafter referred to as an SPD method) in which drawing is performed without winding once after spinning, and a high-speed spinning method are known as known techniques.

しかしながら、該複合繊維の如く、ポリエステル/ポリアミドの互いに性質の異なる成分同士の場合、膨潤剤にて化学的割繊処理を行うと割繊性能が極めて悪く均一に割繊しない、或いは全く割繊しないので、高品質の高密度織編物を得るのは困難である。   However, in the case of components having different properties such as polyester / polyamide, such as the composite fiber, the splitting performance is extremely poor and does not split evenly or not at all if chemical splitting with a swelling agent is performed. Therefore, it is difficult to obtain a high-quality high-density woven or knitted fabric.

本発明の目的は、かかる従来技術の欠点を解消し、高品質の高密度織編物に適した均一な割繊性をもった分割型複合繊維を得ることであり、さらには、製織或いは製編後に膨潤剤で化学的割繊処理を施すと、ポリエステル成分とポリアミド成分が均一に分割され、且つ安価に、効率良く生産される分割型複合繊維を提供することにある。   An object of the present invention is to obtain a split-type composite fiber having a uniform splitting property suitable for high-quality high-density woven or knitted fabrics, which eliminates the disadvantages of the prior art, and further, weaving or knitting. When chemical splitting treatment is performed later with a swelling agent, a polyester component and a polyamide component are uniformly divided, and an object is to provide a split type composite fiber that is efficiently produced at low cost.

本発明者らは、鋭意検討を行った結果本発明に到達したものである。即ち、ポリエステル成分とポリアミド成分からなり、ポリエステル成分の繊維中における極限粘度が0.500以上0.600未満である分割型複合繊維であれば、製織製編後に膨潤剤で化学的処理を施すとポリエステル成分とポリアミド成分が均一に割繊分割されるものである。   The inventors of the present invention have arrived at the present invention as a result of intensive studies. That is, if it is a split type composite fiber consisting of a polyester component and a polyamide component, and the intrinsic viscosity in the fiber of the polyester component is 0.500 or more and less than 0.600, chemical treatment with a swelling agent is performed after weaving and knitting. A polyester component and a polyamide component are uniformly split.

本発明によると、直接紡糸延伸法(SPD法)で製造された物もコンベ法で製造された物も、膨潤剤で化学割繊処理を施すとポリエステル成分とポリアミド成分が均一に分割された分割型複合繊維を得ることができる。
このように均一に分割できる分割型複合繊維は、スェード調織編などの織編物にした際に、均一な割繊によって経筋や緯段などがなくなるため、高品質の織編物に好適なものとなる。
According to the present invention, the polyester component and the polyamide component are uniformly divided when subjected to chemical splitting treatment with a swelling agent, both of those manufactured by the direct spinning drawing method (SPD method) and those manufactured by the convex method. A mold composite fiber can be obtained.
Split-type composite fibers that can be divided uniformly in this way are suitable for high-quality woven and knitted fabrics, because when they are woven or knitted fabrics such as suede knitted fabrics, warp and wefts are eliminated by uniform splitting. It becomes.

以下に、本発明を詳細に説明する。本発明のポリエステル成分としては、例えばポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリエチレンオキシベンゾエート、ポリブチレンテレフタレート及びこれらを成分とする共重合ポリエステル等が知られているが、ポリエチレンテレフタレートが汎用的で好ましい。   The present invention is described in detail below. Examples of the polyester component of the present invention include polyethylene terephthalate, polytrimethylene terephthalate, polyethyleneoxybenzoate, polybutylene terephthalate, and copolyesters containing these as components. Polyethylene terephthalate is generally used and preferable.

一方、ポリアミド成分としては、例えばナイロン6、ナイロン66、ナイロン4、ナイロン7、ナイロン11、ナイロン12、ポリメタキシレンアジパミド等が知られているが、汎用性からナイロン6であることが好ましい。   On the other hand, as the polyamide component, for example, nylon 6, nylon 66, nylon 4, nylon 7, nylon 11, nylon 12, polymetaxylene adipamide and the like are known, but nylon 6 is preferable from the viewpoint of versatility. .

本発明の最も重要な点であるポリエステル成分の繊維中における極限粘度は、0.500以上0.600未満であることが必要である。この範囲であれば、コンベ法では未延伸糸のエージング処理を施さなくても膨潤剤にて均一に割繊し、また割繊し難いSPD法で製造された場合も均一に割繊する。また、紡糸操業性も良好である。   The intrinsic viscosity of the polyester component, which is the most important point of the present invention, in the fiber needs to be 0.500 or more and less than 0.600. If it is this range, even if it does not perform an aging process of an undrawn thread | yarn by a convex method, it splits uniformly with a swelling agent, and even when manufactured by the SPD method which is hard to split, it splits uniformly. Also, the spinning operability is good.

0.500未満であれば、紡糸段階での糸切れが多くなり、また繊維の物性が低下して製織製編時の糸切れが発生しやすく、製品自体の膨らみ感に欠ける。0.600以上では、コンベ法の場合は紡糸後未延伸糸を一定期間エージング処理施さないと膨潤剤での化学割繊処理にて割繊性が不均一になる。また、SPD法の場合は全く割繊しない。   If it is less than 0.500, the yarn breakage at the spinning stage increases, the physical properties of the fiber are lowered, and the yarn breakage is liable to occur during weaving and knitting, and the product itself lacks the feeling of swelling. If it is 0.600 or more, in the case of the convex method, if the undrawn yarn after spinning is not subjected to an aging treatment for a certain period, the splitting property becomes non-uniform in the chemical splitting treatment with the swelling agent. In the case of the SPD method, no splitting is performed.

ポリエステル成分の繊維中の極限粘度を制御する方法は、たとえば、以下の3つの方法がある。即ち、(1)極限粘度が0.500〜0.600のポリエチレンテレフタレートチップを製造し、乾燥後水分を通常の15〜30ppmとする(2)極限粘度が0.600以上0.700以下の衣料用途に適した汎用ポリエチレンテレフタレートチップの乾燥後の水分を50〜100ppmとし、紡糸時の溶融押出しにて粘度低下させる(3)(2)と同様の極限粘度が0.600以上0.700以下の衣料用途に適した汎用ポリエチレンテレフタレートチップの乾燥後水分を15〜30ppm程度とし、溶融押出し時の温度を高くして粘度低下させる。例えば、通常290〜295℃にて溶融押出しするところを、300〜320℃まで温度を高くすることである。
いずれの場合も、複合繊維中のポリエステル成分極限粘度が本発明の範囲であれば良い。
There are, for example, the following three methods for controlling the intrinsic viscosity in the fiber of the polyester component. (1) Manufactures polyethylene terephthalate chips having an intrinsic viscosity of 0.500 to 0.600 and a moisture content of 15 to 30 ppm after drying (2) Clothing having an intrinsic viscosity of 0.600 or more and 0.700 or less The general-purpose polyethylene terephthalate chip suitable for the application is dried at a water content of 50 to 100 ppm, and the viscosity is lowered by melt extrusion during spinning (3) The intrinsic viscosity similar to (2) is 0.600 or more and 0.700 or less After drying a general-purpose polyethylene terephthalate chip suitable for clothing use, the water content is set to about 15 to 30 ppm, and the temperature at the time of melt extrusion is increased to lower the viscosity. For example, it is to raise the temperature up to 300 to 320 ° C., where the melt extrusion is usually performed at 290 to 295 ° C.
In any case, the polyester component intrinsic viscosity in the composite fiber may be within the range of the present invention.

ポリアミド成分の繊維中の相対粘度は特に限定するものではないが、2.0から3.5の範囲であることが紡糸操業性、糸物性の面から好ましい。   The relative viscosity of the polyamide component in the fiber is not particularly limited, but it is preferably in the range of 2.0 to 3.5 from the viewpoint of spinning operation and yarn physical properties.

ポリエステル成分とポリアミド成分の比率は通常5/1〜1/5(体積比)であり、好ましくは3/1〜1/3(体積比)である。この範囲であれば、膨潤剤で割繊処理を施すとポリアミド成分が十分に膨潤し、その後の水洗処理にて収縮しポリエステル成分とポリアミド成分が均一に分割されやすくなる。   The ratio of the polyester component to the polyamide component is usually 5/1 to 1/5 (volume ratio), preferably 3/1 to 1/3 (volume ratio). If it is this range, if a splitting process will be performed with a swelling agent, a polyamide component will fully swell, and it will shrink | contract by the subsequent water washing process, and it will become easy to divide | segment a polyester component and a polyamide component uniformly.

複合繊維の断面形状は、特公昭62−8535号公報、特開昭52−27822号公報、特開昭61−282445号公報、特開平7−97742号公報に提案されている様な互いに親和性の乏しいポリマーの組み合わせからなる物が利用可能であるが、その一例を図1に示す。中でもポリエステル成分とポリアミド成分が交互に配列した放射状の物は、ポリアミド成分が極端に膨潤収縮して割繊しやすい点で好ましい。   The cross-sectional shape of the composite fiber is compatible with each other as proposed in JP-B-62-2535, JP-A-52-27822, JP-A-61-282445, and JP-A-7-97742. A product composed of a combination of poor polymers can be used, an example of which is shown in FIG. Among these, a radial product in which a polyester component and a polyamide component are alternately arranged is preferable because the polyamide component is extremely swelled and contracted and easily split.

本発明の分割型複合繊維の製造方法は通常の溶融紡糸であれば、特に限定するものではなく、紡糸後一旦未延伸糸を巻き取り、延伸工程で延伸するコンベ法や、一旦未延伸糸を巻き取ることなく延伸後に巻き取るSPD法が一般的であるが、生産効率や、コスト効率を考慮すればSPD法で製造する事が最も好ましい。   The production method of the split-type conjugate fiber of the present invention is not particularly limited as long as it is ordinary melt spinning, and is a winding method in which unstretched yarn is wound up after spinning and stretched in a stretching process, or once unstretched yarn is stretched. The SPD method of winding after stretching without winding is common, but it is most preferable to manufacture by the SPD method in consideration of production efficiency and cost efficiency.

該複合繊維の単糸繊度としては、0.5〜10dtex程度が好ましく、更に1〜5dtexが好ましい。この範囲であれば、紡糸操業性が良好であり、マイクロファイバーの持つ膨らみ感、起毛感などの風合いが良好である。また、複合繊維を構成する各成分の割繊・フィブリル化後の各フィブリルの繊度は0.02〜0.5dtexが好ましい。割繊・フィブリル化後の各成分の繊度は同じ大きさでも良いし、又異なっていても良い。   The single fiber fineness of the composite fiber is preferably about 0.5 to 10 dtex, more preferably 1 to 5 dtex. Within this range, the spinning operability is good, and the texture of the microfiber, such as the feeling of swelling and raising, is good. Moreover, the fineness of each fibril after splitting and fibrillation of each component constituting the composite fiber is preferably 0.02 to 0.5 dtex. The fineness of each component after splitting and fibrillation may be the same or different.

該分割型複合繊維を製織製編した後は、膨潤剤にて化学割繊処理を施し、ポリアミド成分を膨潤剤にて膨潤させてポリエステル成分とポリアミド成分を割繊する。その後、水洗することにより膨潤剤がポリアミド成分から抜け出して収縮することによって、マイクロファイバー独特の膨らみ感と高密度性能が付与される。膨潤剤は、例えば特公昭62−8535号公報に記載される様に、ベンジルアルコール、β―フェニルエチルアルコール、フェノール、m−クレゾール、蟻酸、酢酸等が挙げられる。又、その水溶液又は水性エマルジョンを用いるのが適している。中でも、ベンジルアルコールの水性エマルジョンを用いる方法が織編物の収縮性やフィブリル化効果の点と、取り扱い性が容易な点で優れている。   After weaving and knitting the split type composite fiber, chemical splitting treatment is performed with a swelling agent, and the polyamide component is swollen with the swelling agent to split the polyester component and the polyamide component. Thereafter, the swelling agent escapes from the polyamide component and shrinks by washing with water, thereby imparting a swelling feeling and high-density performance peculiar to microfibers. Examples of the swelling agent include benzyl alcohol, β-phenylethyl alcohol, phenol, m-cresol, formic acid, acetic acid and the like as described in JP-B-62-2535. Moreover, it is suitable to use the aqueous solution or aqueous emulsion. Among them, the method using an aqueous emulsion of benzyl alcohol is excellent in terms of the shrinkability and fibrillation effect of the woven or knitted fabric and the ease of handling.

以下、実施例によって本発明を更に詳しく説明する。尚、以下の実施例における特性値は、次に示す方法によって測定したものである。   Hereinafter, the present invention will be described in more detail by way of examples. The characteristic values in the following examples are measured by the following methods.

(1)ポリエステル成分の極限粘度[η]
分割型複合繊維を紡出する際、ポリアミド成分の吐出を一旦停止し、紡糸口金から押出されたポリエステル成分の放流糸を採取し試料とした。或いは、採取複合繊維を下記の溶媒で溶解処理後、未溶解のポリアミド成分をろ過除去することによっても測定可能である。測定に於いては、フェノール/テトラクロロエタン=6/4(重量比)の混合溶剤中20℃でウベローデ法により実施した。
(1) Intrinsic viscosity of polyester component [η]
When spinning the split-type composite fiber, the discharge of the polyamide component was temporarily stopped, and the polyester component discharged yarn extruded from the spinneret was collected as a sample. Alternatively, it can be measured by dissolving the collected composite fiber with the following solvent and then filtering off the undissolved polyamide component. The measurement was carried out by the Ubbelohde method at 20 ° C. in a mixed solvent of phenol / tetrachloroethane = 6/4 (weight ratio).

(2)ポリアミド成分の相対粘度 ηrel
分割型複合繊維を紡出する際、ポリエステル成分の吐出を一旦停止し、紡糸口金から押出されたポリアミド成分の放流糸を採取し試料とした。測定は、濃硫酸溶剤を用いてポリマー濃度1g/dlに溶解後、25℃で常法にて実施した。
(2) Relative viscosity of polyamide component ηrel
When spinning the split-type composite fiber, the discharge of the polyester component was temporarily stopped, and the released yarn of the polyamide component extruded from the spinneret was collected and used as a sample. The measurement was carried out at 25 ° C. in a conventional manner after dissolving in a polymer concentration of 1 g / dl using a concentrated sulfuric acid solvent.

(3)紡糸操業性
分割型複合繊維を、コンベ法或いはSPD法にて紡糸し、1週間の紡糸にて糸切れ回数が少なく完全ボビン率が85%以上で操業性良好なものを○、糸切れが多く完全ボビン率が85%未満であり操業性不良なものを×とした。
(3) Spinning operability Split type composite fibers are spun by the Convex method or SPD method, and those with good operability with few bobbin ratios with a complete bobbin rate of 85% or more after one week of spinning. The case where there were many cuts and the complete bobbin rate was less than 85% and the operability was poor was evaluated as x.

(4)割繊性
針数が280本である小池機械製作所製一口筒編機(CR−B)を用いて、分割型複合繊維の筒編試料を作成し、ベンジルアルコール6%の水性エマルジョン(乳化剤:日華化学サンモールBK20 濃度0.6%)に浸漬して割繊処理を施した。風乾後の筒編み地の観察により、割繊性が良好な物を○、一部割繊しているが不良な物を△、全く割繊していない物を×として評価した。なお、該手法で割繊性が良好であれば、高密度織編物においても割繊性が均一であり高品位のスウェード調織編物が得られる。一方、該手法の評価で不良或いは割繊しない場合、高密度織編物に経筋や緯段が発生し、品位の劣悪な製品となる。
(4) Splitting properties Using a single-piece cylindrical knitting machine (CR-B) manufactured by Koike Machinery Co., Ltd. with 280 needles, a split-type composite fiber cylindrical knitting sample was prepared, and an aqueous emulsion of 6% benzyl alcohol ( (Emulsifier: Nikka Chemical Sanmor BK20 concentration 0.6%) was subjected to split fiber treatment. By observing the tube knitted fabric after air drying, a product with good splitting property was evaluated as “◯”, a partly split but a defective product was evaluated as “Δ”, and a product that was not split at all was evaluated as “x”. If the splitting property is good by this method, the splitting property is uniform even in a high-density woven or knitted fabric, and a high-quality suede knitted fabric can be obtained. On the other hand, if the method is not defective or not split, warps and wefts are generated in the high-density woven or knitted fabric, resulting in a product with poor quality.

実施例1
ポリエステル成分として極限粘度が0.629乾燥後水分50ppmのポリエチレンテレフタレート(PET)チップを320℃で溶融し、ポリアミド成分として相対粘度が2.65乾燥後水分50ppmのナイロン6チップを290℃で溶融し、PET/ナイロン6の体積比=2/1で複合紡糸口金より押し出し冷却後油剤を付与し、第1ゴデッドローラー(GR1)の周速800m/分(84℃)で引取り、次いで第2ゴデッドローラー(GR2)の周速度3200m/分(120℃)に導きGR1とGR2の間で延伸する通常のSPD法にて56dtex/25フィラメントの図1c記載の放射状分割型複合繊維(PET/ナイロン6の体積比=2/1)を得た。該繊維中のPET極限粘度は、紡糸口金より押出し時に採取した放流糸より測定すると表1記載の結果が得られた。また、ナイロン6相対粘度は同様の方法で採取した試料より表1記載の結果が得られた。該分割型複合繊維を用い、筒編み試料を作成後、ベンジルアルコール6%水性エマルジョンにて膨潤割繊処理したところ、割繊性は表1記載の様に良好であった。
Example 1
Polyethylene terephthalate (PET) chips with an intrinsic viscosity of 0.629 after drying as a polyester component are melted at 320 ° C., and nylon 6 chips with a relative viscosity of 2.65 after drying as a polyamide component are melted at 290 ° C. , PET / nylon 6 volume ratio = 2/1, extrude from the composite spinneret, apply oil after cooling, take-up at a peripheral speed of 800 m / min (84 ° C.) of the first goded roller (GR1), then second Radial splitting type composite fiber (PET / Nylon) described in FIG. 1c of 56 dtex / 25 filament by a normal SPD method that leads to a circumferential speed of 3200 m / min (120 ° C.) of the Goded roller (GR2) and stretches between GR1 and GR2. 6 volume ratio = 2/1). When the intrinsic viscosity of PET in the fiber was measured from the discharged yarn collected at the time of extrusion from the spinneret, the results shown in Table 1 were obtained. Moreover, as for the relative viscosity of nylon 6, the results shown in Table 1 were obtained from samples collected by the same method. When a split knitted sample was prepared using this split-type composite fiber and then subjected to a swelling split treatment with a 6% aqueous solution of benzyl alcohol, the splitting property was good as shown in Table 1.

実施例2
ポリエステル成分として極限粘度が0.578の乾燥後水分20ppmのポリエチレンテレフタレート(PET)チップを290℃で溶融し、ポリアミド成分として相対粘度が2.65乾燥後水分50ppmのナイロン6チップを280℃で溶融する以外は、実施例1と同様にSPD法にて分割型複合繊維を得た。繊維中の各成分の粘度は実施例1と同様に測定し、表1記載の結果が得られた。PETの極限粘度が本発明範囲内であり、紡糸操業性及び割繊性は表1記載の様に良好であった。
Example 2
Polyester terephthalate (PET) chips with an intrinsic viscosity of 0.578 after drying as a polyester component are melted at 290 ° C, and nylon 6 chips with a relative viscosity of 2.65 after drying as a polyamide component are melted at 280 ° C. Except that, split-type conjugate fibers were obtained by the SPD method in the same manner as in Example 1. The viscosity of each component in the fiber was measured in the same manner as in Example 1, and the results shown in Table 1 were obtained. The intrinsic viscosity of PET was within the range of the present invention, and the spinning operability and splitting property were good as shown in Table 1.

実施例3
ポリエステル成分として極限粘度が0.629乾燥後水分20ppmのポリエチレンテレフタレート(PET)チップを320℃で溶融し、ポリアミド成分として相対粘度が2.95乾燥後水分50ppmのナイロン6チップを280℃で溶融する以外は、実施例1と同様にSPD法にて分割型複合繊維を得た。繊維中の各成分の粘度は実施例1と同様に測定し、表1記載の結果が得られた。PETの極限粘度が本発明範囲内であり、紡糸操業性及び割繊性は表1記載の様に良好であった。
Example 3
Polyethylene terephthalate (PET) chips with an intrinsic viscosity of 0.629 after drying as a polyester component are melted at 320 ° C., and nylon 6 chips with a relative viscosity of 2.95 after drying as a polyamide component are melted at 280 ° C. Except for the above, split-type conjugate fibers were obtained by the SPD method in the same manner as in Example 1. The viscosity of each component in the fiber was measured in the same manner as in Example 1, and the results shown in Table 1 were obtained. The intrinsic viscosity of PET was within the range of the present invention, and the spinning operability and splitting property were good as shown in Table 1.

実施例4
ポリエステル成分として極限粘度が0.530乾燥後水分20ppmのポリエチレンテレフタレート(PET)チップを290℃で溶融し、ポリアミド成分として相対粘度が2.60乾燥後水分50ppmのナイロン6チップを280℃で溶融する以外は、実施例1と同様にSPD法にて分割型複合繊維を得た。繊維中の各成分の粘度は実施例1と同様に測定し、表1記載の結果が得られた。PETの極限粘度が本発明範囲内であり、紡糸操業性及び割繊性は表1記載の様に良好であった。
Example 4
Polyethylene terephthalate (PET) chips with an intrinsic viscosity of 0.530 after drying as a polyester component are melted at 290 ° C., and nylon 6 chips with a relative viscosity of 2.60 after drying as a polyamide component are melted at 280 ° C. Except for the above, split-type conjugate fibers were obtained by the SPD method in the same manner as in Example 1. The viscosity of each component in the fiber was measured in the same manner as in Example 1, and the results shown in Table 1 were obtained. The intrinsic viscosity of PET was within the range of the present invention, and the spinning operability and splitting property were good as shown in Table 1.

実施例5
ポリエステル成分として極限粘度が0.629乾燥後水分20ppmのポリエチレンテレフタレート(PET)チップを310℃で溶融し、ポリアミド成分として相対粘度が2.95乾燥後水分50ppmのナイロン6チップを280℃で溶融する以外は、実施例1と同様にSPD法にて分割型複合繊維を得た。繊維中の各成分の粘度は実施例1と同様に測定し、表1記載の結果が得られた。PETの極限粘度が本発明範囲内であり、紡糸操業性及び割繊性は表1記載の様に良好であった。
Example 5
Polyethylene terephthalate (PET) chips having an intrinsic viscosity of 0.629 after drying as a polyester component are melted at 310 ° C., and nylon 6 chips having a relative viscosity of 2.95 after drying as a polyamide component are melted at 280 ° C. Except for the above, split-type conjugate fibers were obtained by the SPD method in the same manner as in Example 1. The viscosity of each component in the fiber was measured in the same manner as in Example 1, and the results shown in Table 1 were obtained. The intrinsic viscosity of PET was within the range of the present invention, and the spinning operability and splitting property were good as shown in Table 1.

実施例6
実施例2と同様のチップを用い、コンベ法にて未延伸糸を紡糸速度1000m/分で巻き取った。繊維中の各成分の粘度は表1記載の通りである。その後、エージング処理することなく延伸工程で延伸したところ、割繊性は良好であった。
Example 6
Using the same tip as in Example 2, the undrawn yarn was wound at a spinning speed of 1000 m / min by the convex method. The viscosity of each component in the fiber is as shown in Table 1. Then, when it extended | stretched by the extending | stretching process, without carrying out an aging process, the splitting property was favorable.

比較例1
ポリエステル成分として極限粘度が0.629乾燥後水分20ppmのポリエチレンテレフタレート(PET)チップを290℃で溶融し、ポリアミド成分として相対粘度が2.95乾燥後水分50ppmのナイロン6チップを280℃で溶融する以外は、実施例1と同様にSPD法にて分割型複合繊維を得た。繊維中のPET極限粘度は0.610であり、本発明範囲を外れる物であった。紡糸操業性は表1記載の様に良好であったが、ベンジルアルコール水性エマルジョンで割繊処理したところ、全く割繊しなかった。
Comparative Example 1
Polyethylene terephthalate (PET) chips with an intrinsic viscosity of 0.629 after drying as a polyester component are melted at 290 ° C., and nylon 6 chips with a relative viscosity of 2.95 after drying as a polyamide component are melted at 280 ° C. Except for the above, split-type conjugate fibers were obtained by the SPD method in the same manner as in Example 1. The intrinsic viscosity of PET in the fiber was 0.610, which was outside the scope of the present invention. The spinning operability was good as shown in Table 1, but when splitting with an aqueous benzyl alcohol emulsion, splitting was not performed at all.

比較例2
ポリエステル成分として極限粘度が0.530乾燥後水分20ppmのポリエチレンテレフタレート(PET)チップを310℃で溶融し、ポリアミド成分として相対粘度が2.95乾燥後水分50ppmのナイロン6チップを280℃で溶融する以外は、実施例1と同様にSPD法にて分割型複合繊維を得た。繊維中のPET極限粘度は0.491であり本発明の範囲外であった。該複合繊維のベンジルアルコール割繊性は良好であったが、紡糸工程での糸切れが多く操業性は不良であった。
Comparative Example 2
Polyethylene terephthalate (PET) chips with an intrinsic viscosity of 0.530 after drying as a polyester component are melted at 310 ° C., and nylon 6 chips with a relative viscosity of 2.95 after drying as a polyamide component are melted at 280 ° C. Except for the above, split-type conjugate fibers were obtained by the SPD method in the same manner as in Example 1. The intrinsic viscosity of PET in the fiber was 0.491, which was outside the scope of the present invention. Although the benzyl alcohol splitting property of the composite fiber was good, there were many yarn breaks in the spinning process, and the operability was poor.

比較例3
比較例1と同様のチップを用い、同条件で溶融押出した後、コンベ法にて紡糸速度1000m/分にて未延伸糸を一旦巻取り、エージング処理することなく延伸工程にて延伸した。筒編み試料を割繊処理したところ、割繊する部分と割繊しない部分が混在し、割繊性は不良であった。
Comparative Example 3
The same tip as in Comparative Example 1 was used and melt-extruded under the same conditions, and then the undrawn yarn was once wound at a spinning speed of 1000 m / min by the convex method and drawn in the drawing step without aging treatment. When the split knitting sample was split, the splitting portion and the non-split portion were mixed, and the splitting property was poor.

Figure 0004221015
Figure 0004221015

本発明に使用できる複合繊維の断面形状の例を示す。The example of the cross-sectional shape of the composite fiber which can be used for this invention is shown.

符号の説明Explanation of symbols

A ポリエステル成分
B ポリアミド成分
A Polyester component B Polyamide component

Claims (3)

ポリエステル成分とポリアミド成分からなり、ポリエステル成分極限粘度が0.500以上0.600未満のポリエチレンテレフタレートからなる分割型複合繊維を膨潤剤により処理を施すことにより割繊処理せしめた織編物 A woven or knitted fabric comprising a polyester component and a polyamide component, wherein the polyester component is split split composite fiber made of polyethylene terephthalate having an intrinsic viscosity of 0.500 or more and less than 0.600 by treating with a swelling agent . ポリエステル成分とポリアミド成分が繊維横断面に交互に配列した請求項1記載の分割型複合繊維。 The split type composite fiber according to claim 1, wherein the polyester component and the polyamide component are alternately arranged in the cross section of the fiber. 限粘度が0.500以上0.600未満であるポリエチレンテレフタレートとポリアミド成分とからなる分割型複合繊維を製編織した後、ポリアミド成分を膨潤剤にて膨潤させてポリエチレンテレフタレートとポリアミド成分を割繊させることを特徴とする織編物の製造方法。 After weaving knitting a splittable conjugate fiber poles limit viscosity of the polyethylene terephthalate and the polyamide component is less than 0.500 or 0.600, Wari繊polyethylene terephthalate and a polyamide component swell the polyamide component at a swelling agent A method for producing a knitted or knitted fabric characterized by comprising :
JP2006196287A 2006-07-18 2006-07-18 Split type composite fiber and manufacturing method thereof Expired - Fee Related JP4221015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006196287A JP4221015B2 (en) 2006-07-18 2006-07-18 Split type composite fiber and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006196287A JP4221015B2 (en) 2006-07-18 2006-07-18 Split type composite fiber and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002143028A Division JP3845339B2 (en) 2002-05-17 2002-05-17 Split type composite fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006322131A JP2006322131A (en) 2006-11-30
JP4221015B2 true JP4221015B2 (en) 2009-02-12

Family

ID=37542012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006196287A Expired - Fee Related JP4221015B2 (en) 2006-07-18 2006-07-18 Split type composite fiber and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4221015B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8398786B2 (en) 2005-10-06 2013-03-19 Posco Precipitation hardening cold rolled steel sheet having excellent yield ratios, and the method for manufacturing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6015447B2 (en) 2011-09-30 2016-10-26 東レ株式会社 Core-sheath composite fiber and method for producing the same
CN106661337A (en) 2014-07-04 2017-05-10 富士胶片株式会社 Novel compound, coloring composition for dyeing or printing, inkjet ink, method for printing fabric, and dyed or printed fabric

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8398786B2 (en) 2005-10-06 2013-03-19 Posco Precipitation hardening cold rolled steel sheet having excellent yield ratios, and the method for manufacturing the same

Also Published As

Publication number Publication date
JP2006322131A (en) 2006-11-30

Similar Documents

Publication Publication Date Title
US6852413B2 (en) Lyocell multi-filament for tire cord and method of producing the same
JP4944561B2 (en) Screen filament monofilament
KR20050012446A (en) Lyocell multi-filament
JP2019500515A (en) Lyocell fiber and method for producing the same
TWI458771B (en) Thermoplastic cellulose ester composition and fiber made thereof
JP4221015B2 (en) Split type composite fiber and manufacturing method thereof
TWI831101B (en) Moulded body that comprises elastane incorporated in cellulose and manufacturing method
JPH10331027A (en) Regenerated cellulose fiber and production thereof
JP3845339B2 (en) Split type composite fiber and method for producing the same
JP3715375B2 (en) Production method of split polyester composite fiber
JP5336615B2 (en) Screen filament monofilament
JP4957141B2 (en) Cellulose fatty acid mixed ester hollow fiber
JP2008101290A (en) Monofilament for screen gauze
RU2766477C1 (en) Method of removing liquid from yarn or fibers with cellulose threads
JP4639889B2 (en) Polytrimethylene terephthalate extra fine yarn
JP4354079B2 (en) Weave woven fabric for rubber reinforcement, weft and manufacturing method thereof
JP2682127B2 (en) High strength, high modulus polyester hollow fiber
JP5616022B2 (en) string
JP2004052173A (en) High-strength polyester monofilament and method for producing the same
JP6752757B2 (en) Side-by-side split type composite fiber and method of manufacturing fabric using it
JP4591281B2 (en) Umijima fiber, method for producing the same, and method for producing ultrafine acrylic fiber
JP4687473B2 (en) Cellulose fatty acid ester fiber and method for producing the same
JP4866110B2 (en) Blended yarn
CA2511030C (en) Lyocell multi-filament for tire cord and method of producing the same
JP5141870B2 (en) Fluorine resin monofilament, process for producing the same, and industrial fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4221015

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees