JP2003027175A - Sintered alloy excellent in high temperature property and die for hot-formation using the alloy - Google Patents

Sintered alloy excellent in high temperature property and die for hot-formation using the alloy

Info

Publication number
JP2003027175A
JP2003027175A JP2001253685A JP2001253685A JP2003027175A JP 2003027175 A JP2003027175 A JP 2003027175A JP 2001253685 A JP2001253685 A JP 2001253685A JP 2001253685 A JP2001253685 A JP 2001253685A JP 2003027175 A JP2003027175 A JP 2003027175A
Authority
JP
Japan
Prior art keywords
alloy
sintered alloy
hot
die
alloy according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001253685A
Other languages
Japanese (ja)
Other versions
JP4971564B2 (en
Inventor
Hiromichi Naito
寛道 内藤
Takahiro Fukushima
崇洋 福島
Osamu Terada
修 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Die Co Ltd
Original Assignee
Fuji Die Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Die Co Ltd filed Critical Fuji Die Co Ltd
Priority to JP2001253685A priority Critical patent/JP4971564B2/en
Publication of JP2003027175A publication Critical patent/JP2003027175A/en
Application granted granted Critical
Publication of JP4971564B2 publication Critical patent/JP4971564B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/05Press-mould die materials
    • C03B2215/07Ceramic or cermets

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sintered alloy excellent in hardness at high temperature, oxidizing resistance, specular glossiness and degree of the sintering, suitable to particularly a die for hot-forming. SOLUTION: The sintering alloy is the alloy, in which M6-9 C or M6-9 (C, N) type multiple carbide (nitride) (M is metallic element) phase containing W, Si, Ni and/or Co exists besides WC (hard phase) and a combined phase.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、焼結性に優れ、か
つ高温硬さ、耐酸化性に優れた焼結合金およびそれを用
いた熱間成形用金型およびその周辺部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sintered alloy having excellent sinterability, high-temperature hardness, and oxidation resistance, a hot-molding die using the same, and peripheral members thereof.

【0002】[0002]

【従来の技術】レンズやハードデスク用基板などのガラ
スまたはプラスチック製品の多くは、近年、複雑な機械
加工を省くために、それらの素材を熱間で成形すること
によって製造されるようになってきている。このような
熱間成形に使用される金型の素材には、セラミックスや
超硬合金などが使用されている。例えば、特開昭52−
45613には、シリコンカーバイドや窒化シリコン
が、また特公昭62−51211には3〜10重量%の
コバルトを含む炭化タングステン基超硬合金が開示され
ている。また、金型を固定するホルダーなどの金型周辺
部材には、W基合金等が使用される例が見受けられる。
2. Description of the Related Art In recent years, many glass or plastic products such as lenses and substrates for hard desks have come to be manufactured by hot forming these materials in order to omit complicated machining. ing. Ceramics, cemented carbide, etc. are used as the material of the mold used for such hot forming. For example, Japanese Patent Laid-Open No. 52-
45613 discloses silicon carbide and silicon nitride, and JP-B-62-51211 discloses a tungsten carbide based cemented carbide containing 3 to 10% by weight of cobalt. Further, there are some examples in which a W-based alloy or the like is used for a die peripheral member such as a holder for fixing the die.

【0003】[0003]

【発明が解決しようとする課題】しかし、セラミックス
は耐酸化性には優れるものの靭性に乏しく、かつ被研削
性に劣るため、その鏡面加工に長時間を要する問題点が
ある。超硬合金は、主にWCを硬質相とし、Coおよび
/またはNiを結合相とした合金であるが、高温での硬
さ低下が著しい、および耐酸化性に劣るなどの問題点が
ある。W基合金は耐酸化性には優れるものの硬さが低
く、かつ被研削性に劣るため、精密加工に長時間を要す
るなどの問題点があった。
However, although ceramics are excellent in oxidation resistance, they are poor in toughness and inferior in grindability, so that there is a problem that it takes a long time for mirror-finishing. The cemented carbide is an alloy mainly containing WC as a hard phase and Co and / or Ni as a binder phase, but has problems such as a remarkable decrease in hardness at high temperatures and poor oxidation resistance. Although the W-based alloy has excellent oxidation resistance, it has low hardness and is poor in grindability, so that there is a problem that it takes a long time for precision processing.

【0004】[0004]

【課題を解決するための手段】本発明は、上記の問題点
を解決するべくなされたものである。すなわち、超硬合
金にSiを添加し、かつ合金中炭素(C)量を化学量論
組成より低く調整して、組織中にWC(硬質相)と結合
相の外にW、Si、Niおよび/またはCoを含んだM
6〜9C型の複炭化物(Mは金属元素)相が存在するよ
うにすることによって、高温における硬さや耐酸化性に
優れる合金とするものである。
The present invention has been made to solve the above problems. That is, by adding Si to the cemented carbide and adjusting the amount of carbon (C) in the alloy to be lower than the stoichiometric composition, W, Si, Ni and / Or M containing Co
The presence of a 6 to 9 C-type double carbide (M is a metal element) phase makes the alloy excellent in hardness and oxidation resistance at high temperatures.

【0005】WCを主たる硬質相とするのは、WCが機
械的性質に優れるためであるが、その平均粒度が10μ
mを超えると抗折力が著しく低下し、0.4μm未満で
は高温硬さが低下しやすくなる。
The reason why WC is the main hard phase is that WC has excellent mechanical properties, but its average particle size is 10 μm.
If it exceeds m, the transverse rupture strength is remarkably reduced, and if it is less than 0.4 μm, the high temperature hardness tends to be lowered.

【0006】Siを添加するのはそれを含むM6〜9
型の複炭化物相が合金の高温硬さおよび耐酸化性を向上
させるためであり、添加量が0.1%未満ではその効果
が少なく、10%を超えて添加すると焼結時の緻密化が
困難となる。
[0006] Adding Si is M 6-9 C containing Si
This is because the double carbide phase of the mold improves the high temperature hardness and oxidation resistance of the alloy, and if the addition amount is less than 0.1%, its effect is small, and if it is added in excess of 10%, densification during sintering will occur. It will be difficult.

【0007】Niおよび/またはCoを添加するのは焼
結性を向上させるためであり、添加量が0.5%未満で
はその効果が少なく、15%を超えるとWCおよびM
6〜9C型複炭化物相が粗大化して強度の低下が著しく
なる。
The reason for adding Ni and / or Co is to improve the sinterability. If the addition amount is less than 0.5%, the effect is small, and if it exceeds 15%, WC and M are added.
The 6-9 C-type double carbide phase becomes coarse and the strength is significantly reduced.

【0008】Wの一部をW以外の周期律表IVa、Va
およびVIa族に属する遷移金属の1種または2種以上
で置換すると、これら遷移金属を含むMC型の複炭化物
相が組織中に生成し、合金の耐酸化性がより向上した
り、硬さが上昇するなどの効果があるが、10%を超え
て置換すると焼結性が低下する。
Part of W is a periodic table IVa, Va other than W.
And when substituted with one or more transition metals belonging to Group VIa, MC-type double carbide phases containing these transition metals are formed in the structure, whereby the oxidation resistance of the alloy is further improved and the hardness is increased. Although it has an effect of increasing, the sinterability decreases when the content exceeds 10%.

【0009】Cの一部をNで置換すると、上記M6〜9
CおよびMC型複炭化物相がそれぞれM6〜9(C,
N)およびM(C,N)型の複炭窒化物相となり、合金
の耐酸化性がより向上するので好ましいが、20%を超
えて置換すると焼結性が低下する。
When a part of C is replaced with N, the above M 6-9
C and MC type double carbide phases are M 6-9 (C,
N) and M (C, N) type double carbonitride phases, which are preferable because they further improve the oxidation resistance of the alloy, but if they are replaced by more than 20%, the sinterability will decrease.

【0010】Niおよび/またはCoの一部をFeで置
換しても焼結性向上に効果があるが、置換量が多くなる
と耐酸化性が劣化するため、その置換量はNiおよび/
またはCoの合計量の50%以下とすることが好まし
い。
Even if a part of Ni and / or Co is replaced with Fe, it is effective in improving the sinterability. However, if the amount of substitution is large, the oxidation resistance deteriorates.
Alternatively, it is preferably 50% or less of the total amount of Co.

【0011】[0011]

【実施例】本発明品を製造するには、基本成分としてW
C、SiC、WとNiおよび/またはCo粉末を用い、
C量をWCとSiCの配合比率によって定まる化学量論
組成より低めに配合する外は常法にしたがって混合粉を
得て、所望の形状に約1〜5t/cmで加圧成形す
る。次に、成形体を1350〜1500℃−60分真空
焼結した後、1350℃−60分、1000気圧のAr
中でHIP処理を施し、その後最終的な形状に加工す
る。ここでW粉末を添加するのは、C量を低めに調整し
てW、Si、Niおよび/またはCoを含んだM6〜9
C型の複炭化物が形成されるようにするためである。C
量を調整するためにSiCの代わりにSi、WSi
を添加しても良い。
EXAMPLES In order to produce the products of the present invention, W was used as a basic component.
Using C, SiC, W and Ni and / or Co powder,
A mixed powder is obtained by a conventional method except that the C content is lower than the stoichiometric composition determined by the mixing ratio of WC and SiC, and the mixture is pressed into a desired shape at about 1 to 5 t / cm 2 . Next, the molded body is vacuum-sintered at 1350 to 1500 ° C. for 60 minutes, and then at 1350 ° C. for 60 minutes at 1000 atmospheric pressure Ar.
HIP processing is performed in the inside, and then the final shape is processed. Here, the W powder is added because M 6 to 9 containing W, Si, Ni and / or Co by adjusting the C content to a low level.
This is for forming C-type double carbide. C
In order to adjust the amount, Si, WSi 2 or the like may be added instead of SiC.

【0012】表1に本発明合金および比較合金の配合組
成を示した。本発明合金No.1〜4は、結合相金属を
NiとしてSi量を変化させた合金であり、No.5〜
8は、結合相金属をNiとしてWの一部をW以外の周期
律表IVa、VaおよびVIa族に属する遷移金属の1
種または2種以上で置換した合金、No.9〜13は、
結合相金属をNiとして炭化物の一部を窒化物で置換し
た合金、No.14は結合相金属をCoとした合金、N
o.15は結合相金属をNiおよびCoとした合金、N
o.16,17はそれぞれNiと、NiおよびCoの一
部をFeで置換した合金、比較合金No.1,2は、結
合相金属を含まないいわゆるバインダーレス超硬合金、
No.3,4は合金中C量を高めに調整してM6〜9
型複炭化物相が形成されないようにした超硬合金、N
o.5,6はSiを含まない一般的な耐摩耗工具用超硬
合金である。同表には、焼結後の合金中C量およびWC
平均粒度も併示した。
Table 1 shows the composition of the alloy of the present invention and the comparative alloy. Inventive alloy No. Nos. 1 to 4 are alloys in which the binder phase metal is Ni and the amount of Si is changed. 5-
8 is a transition metal belonging to groups IVa, Va and VIa of the periodic table other than W, with Ni as the binder phase metal and part of W as 1
Type or alloys substituted with two or more types, No. 9 to 13 are
An alloy in which Ni was used as the binder phase metal and a part of the carbide was replaced with nitride, No. 14 is an alloy with Co as the binder phase metal, N
o. 15 is an alloy in which the binder phase metal is Ni and Co, N
o. Comparative alloy Nos. 16 and 17 are Ni and alloys in which Ni and Co are partially replaced with Fe. Reference numerals 1 and 2 are so-called binderless cemented carbides containing no binder phase metal,
No. 3 and 4 are M6-9C by adjusting the amount of C in the alloy to be higher.
-Type cemented carbide that prevents formation of double carbide phase, N
o. Reference numerals 5 and 6 are general cemented carbides for wear resistant tools that do not contain Si. In the table, the C content and WC in the alloy after sintering
The average particle size is also shown.

【0013】[0013]

【表1】 [Table 1]

【0014】表1の組成の本発明合金および比較合金の
組織、抗折力、硬さ、耐酸化性(酸化増量)、およびこ
れらの合金で作製した金型用押しピン(外径30mm)
を用いてガラスレンズのプレス成形を行い、押しピン押
圧面の表面粗さの変化を調べた結果を表2に示す。硬さ
はマイクロビッカース硬さ(荷重9.8N)を測定し、
酸化増量試験は、10×10×5mmの試験片を鏡面仕
上げ後、大気中で800℃、30分間加熱し、その重量
変化から算出した。
Structures of the alloys of the present invention and comparative alloys having the compositions shown in Table 1, the transverse rupture strength, the hardness, the oxidation resistance (increased amount of oxidation), and the mold push pin (outer diameter 30 mm) made of these alloys.
Table 2 shows the results of examining the change in the surface roughness of the push pin pressing surface by press molding a glass lens using. The hardness is measured by Micro Vickers hardness (load 9.8N),
In the oxidation weight increase test, a test piece of 10 × 10 × 5 mm was mirror-finished, heated at 800 ° C. for 30 minutes in the atmosphere, and calculated from the weight change.

【0015】また、ガラスレンズ成形試験については以
下のように行った。まずフリント系光学ガラスを球状に
して、超硬合金製金型のキャビテイ内に入れる。次に、
真空または窒素雰囲気中で加熱成形する。その条件は、
昇温速度10K/minで600℃まで加熱し、成形圧
力1MPaで5分間保持後、400℃まで5K/min
で冷却し、その後20K/min以上の速度で冷却し
て、300℃で大気中に開放する。以上のような成形を
100回迄繰り返し行い、10回および100回成形後
の押しピン押圧面の表面粗さを測定した。
The glass lens molding test was conducted as follows. First, the flint type optical glass is made into a spherical shape and placed in the cavity of a cemented carbide mold. next,
Heat molding in a vacuum or nitrogen atmosphere. The condition is
After heating to 600 ° C at a heating rate of 10K / min and holding at a molding pressure of 1MPa for 5 minutes, up to 400 ° C 5K / min
And then cooled at a rate of 20 K / min or more and opened to the atmosphere at 300 ° C. The molding as described above was repeated up to 100 times, and the surface roughness of the push pin pressing surface was measured after molding 10 times and 100 times.

【0016】[0016]

【表2】 [Table 2]

【0017】本発明合金は比較合金1,2に比べて耐酸
化性に優れ、また比較合金3〜6に比べると抗折力は全
体に低いが、高温(600℃)硬さが高い上に酸化増量
が少なく、耐熱性および耐酸化性に優れることが分か
る。また、ガラス成形試験における本発明合金の押しピ
ン押圧面は、比較合金に比べて試験前の表面粗さに優
れ、またWC粒度が5〜10μmの粗粒合金においてあ
る程度表面粗さの劣化が観察されたものの、比較合金の
それより著しく劣化し難く損耗しにくいことが分かる。
The alloy of the present invention is superior in oxidation resistance to the comparative alloys 1 and 2, and has a lower transverse rupture strength than the comparative alloys 3 to 6, but has a high high temperature (600 ° C.) hardness. It can be seen that the amount of increase in oxidation is small and the heat resistance and the oxidation resistance are excellent. Further, the push pin pressing surface of the alloy of the present invention in the glass forming test is superior in surface roughness before the test as compared with the comparative alloy, and deterioration of the surface roughness is observed to some extent in the coarse grain alloy having a WC grain size of 5 to 10 μm. However, it can be seen that it is less likely to deteriorate and wear less than that of the comparative alloy.

【0018】これらの結果より、微粒合金はガラスとの
接触面において押しピン表面粗さが劣化し難く、かつ耐
酸化性に優れることからガラス成形用金型部材に、粗粒
合金はガラスとの接触によって表面粗さが多少劣化する
ものの耐酸化性には優れていること、および一般に粗粒
合金は微粒合金よりも熱伝導率が大きいことから金型周
辺部材に適しており、本発明合金はガラスなどの熱間成
形用金型およびその周辺部材用の材料として極めて優れ
ていることが分かる。
From these results, the fine grain alloy is less likely to deteriorate the push pin surface roughness at the contact surface with the glass, and is excellent in oxidation resistance. Although the surface roughness is slightly deteriorated by contact, it is excellent in oxidation resistance, and generally, the coarse grain alloy has a larger thermal conductivity than the fine grain alloy, and therefore is suitable for the die peripheral member. It can be seen that it is extremely excellent as a material for a hot-molding die such as glass and its peripheral members.

【0019】[0019]

【発明の効果】以上説明したように、本発明に係わる焼
結合金は、耐熱性や耐酸化性に優れ、熱間成形用金型と
しての実用試験においても損耗しにくく、産業上の利用
価値が高い。
As described above, the sintered alloy according to the present invention has excellent heat resistance and oxidation resistance, is less likely to be worn in a practical test as a hot forming die, and has an industrial utility value. Is high.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 質量率(以下、同様)で、W:65〜9
6.4%、Si:0.1〜10%、C:3〜10%、N
iおよび/またはCo:0.5〜15%、および不可避
不純物からなる組成を有し、かつ組織中に硬質相として
平均粒度0.5〜10μmの炭化タングステンおよびM
6〜9C型複炭化物(Mは金属元素)相を含むことを特
徴とする焼結合金。
1. Mass ratio (hereinafter, the same), W: 65-9
6.4%, Si: 0.1-10%, C: 3-10%, N
i and / or Co: 0.5 to 15%, and tungsten carbide and M having a composition of inevitable impurities and having an average grain size of 0.5 to 10 μm as a hard phase in the structure.
6-9 A sintered alloy containing a C-type double carbide (M is a metal element) phase.
【請求項2】 Wの10%以下を、Wを除く周期律表I
Va、VaおよびVIa族に属する遷移金属の1種また
は2種以上で置換した請求項1に記載の焼結合金。
2. Periodic table I excluding W is 10% or less of W
The sintered alloy according to claim 1, which is substituted with one kind or two or more kinds of transition metals belonging to the Va, Va and VIa groups.
【請求項3】 Cの20%以下をNで置換した請求項1
に記載の焼結合金。
3. A method in which 20% or less of C is replaced by N.
The sintered alloy according to.
【請求項4】 Wの10%以下をWを除く周期律表IV
a、VaおよびVIa族に属する遷移金属の1種または
2種以上で置換し、Cの20%以下をNで置換した請求
項1に記載の焼結合金。
4. Periodic table IV excluding W up to 10% of W
The sintered alloy according to claim 1, wherein at least one of transition metals belonging to the groups a, Va and VIa is substituted, and 20% or less of C is substituted with N.
【請求項5】 Niおよび/またはCoの合計量の50
%以下をFeで置換した請求項1〜4に記載の焼結合
金。
5. A total amount of Ni and / or Co of 50.
The sintered alloy according to any one of claims 1 to 4, wherein not more than% is replaced by Fe.
【請求項6】 請求項1〜5のいずれかに記載された焼
結合金を用いた熱間成形用金型およびその周辺部材。
6. A hot-molding die and its peripheral member using the sintered alloy according to claim 1.
JP2001253685A 2001-07-19 2001-07-19 Sintered alloy with excellent high-temperature properties and hot forming mold using the same Expired - Lifetime JP4971564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001253685A JP4971564B2 (en) 2001-07-19 2001-07-19 Sintered alloy with excellent high-temperature properties and hot forming mold using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001253685A JP4971564B2 (en) 2001-07-19 2001-07-19 Sintered alloy with excellent high-temperature properties and hot forming mold using the same

Publications (2)

Publication Number Publication Date
JP2003027175A true JP2003027175A (en) 2003-01-29
JP4971564B2 JP4971564B2 (en) 2012-07-11

Family

ID=19081975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001253685A Expired - Lifetime JP4971564B2 (en) 2001-07-19 2001-07-19 Sintered alloy with excellent high-temperature properties and hot forming mold using the same

Country Status (1)

Country Link
JP (1) JP4971564B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089351A (en) * 2004-09-27 2006-04-06 Akita Prefecture WC-SiC-BASED COMPOSITE WITH HIGH HARDNESS, HIGH YOUNG'S MODULUS AND HIGH FRACTURE TOUGHNESS VALUE, AND ITS MANUFACTURING METHOD
WO2011118576A1 (en) * 2010-03-23 2011-09-29 旭硝子株式会社 Sprayed coating of jig for producing glass sheet, and jig for producing glass sheet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001001203A (en) * 1999-04-26 2001-01-09 Sandvik Ab Cutting insert, and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001001203A (en) * 1999-04-26 2001-01-09 Sandvik Ab Cutting insert, and its manufacture

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089351A (en) * 2004-09-27 2006-04-06 Akita Prefecture WC-SiC-BASED COMPOSITE WITH HIGH HARDNESS, HIGH YOUNG'S MODULUS AND HIGH FRACTURE TOUGHNESS VALUE, AND ITS MANUFACTURING METHOD
JP4526343B2 (en) * 2004-09-27 2010-08-18 秋田県 WC-SiC sintered body with high hardness, high Young's modulus, and high fracture toughness
WO2011118576A1 (en) * 2010-03-23 2011-09-29 旭硝子株式会社 Sprayed coating of jig for producing glass sheet, and jig for producing glass sheet
CN102844458A (en) * 2010-03-23 2012-12-26 旭硝子株式会社 Sprayed coating of jig for producing glass sheet, and jig for producing glass sheet
JPWO2011118576A1 (en) * 2010-03-23 2013-07-04 旭硝子株式会社 Glass plate manufacturing jig spray coating and glass plate manufacturing jig

Also Published As

Publication number Publication date
JP4971564B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
US8075661B2 (en) Ultra-hard composite material and method for manufacturing the same
JP5394582B1 (en) Molybdenum heat-resistant alloy
JP5302965B2 (en) Hard powder, method for producing hard powder, and sintered hard alloy
JP2660455B2 (en) Heat resistant hard sintered alloy
CN108642361B (en) High-strength high-hardness ceramic material and production process thereof
JP2008133509A (en) Cermet
JP2008069420A (en) Cemented carbide and coated cemented carbide, and manufacturing methods therefor
TW201915179A (en) A kind of eutectic cermet materials
JP5273987B2 (en) Cermet manufacturing method
JP6049978B1 (en) Oxidation-resistant low-binder hard alloy with a large thermal expansion coefficient or lens mold made of this material
JP3721510B2 (en) Sintered alloy suitable for optical glass mold and its peripheral components
JP2003027175A (en) Sintered alloy excellent in high temperature property and die for hot-formation using the alloy
WO2005037731A1 (en) Hard material excelling in resistance to high-temperature deterioration
JP2002180175A (en) Sintered alloy excellent in high temperature property and die for hot forming using the alloy
JP2012087045A (en) Method for producing binderless alloy
JP4265853B2 (en) Hard sintered alloy excellent in corrosion resistance and thermal shock resistance against molten metal, and member for molten metal using the alloy
JP2008195971A (en) Cermet
JP2008013418A (en) Sintered hard material and mold for forming optical element with high precision using the same
JP7351582B1 (en) Sintered alloy and mold
JPS63199843A (en) Composite molded body of molybdenum or its alloy and zirconia and its production
JPH10259433A (en) Production of hyperfine-grained tungsten carbide base sintered hard alloy having high strength
JP2564857B2 (en) Nickel-Morbuden compound boride sintered body
JPH0687655A (en) Tantalum carbide-based sintered compact and its production
JP2009179519A (en) Binderless alloy
JPS60152650A (en) Sintered hard alloy having superior wear resistance and superior characteristic at high temperature and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250