JP2003027037A - Damping rubber composition and manufacturing method therefor - Google Patents

Damping rubber composition and manufacturing method therefor

Info

Publication number
JP2003027037A
JP2003027037A JP2001215615A JP2001215615A JP2003027037A JP 2003027037 A JP2003027037 A JP 2003027037A JP 2001215615 A JP2001215615 A JP 2001215615A JP 2001215615 A JP2001215615 A JP 2001215615A JP 2003027037 A JP2003027037 A JP 2003027037A
Authority
JP
Japan
Prior art keywords
rubber
softening agent
carbon black
weight
rubber composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001215615A
Other languages
Japanese (ja)
Other versions
JP4795574B2 (en
Inventor
Toshiaki Sakaki
俊明 榊
Katsuyuki Tanaka
克往 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2001215615A priority Critical patent/JP4795574B2/en
Publication of JP2003027037A publication Critical patent/JP2003027037A/en
Application granted granted Critical
Publication of JP4795574B2 publication Critical patent/JP4795574B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a new damping rubber composition that can furnish a damping member having a good performance similar to a silica type damping member, even though it uses a carbon black and a rubber softening agent, and to provide a method for manufacturing the composition with a high productivity, and with a consistent quality realized by effectively preventing slips during the kneading. SOLUTION: This damping rubber composition comprises 100 pts.wt. of a base rubber having >=50 wt.% of a styrene-butadiene copolymer rubber, >=100 pts.wt. of carbon block, and >=80 pts.wt. of a rubber softening agent. In the manufacturing method therefor, a solid base rubber extended with a part of the rubber softening agent is kneaded with the carbon black soaked with at least a part of the residual rubber softening agent, and further with the remaining rubber softening agent, if present.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、例えばケーブル
ダンパなどの制振部材を形成するのに適した制振ゴム組
成物と、その製造方法とに関するものである。
TECHNICAL FIELD The present invention relates to a vibration damping rubber composition suitable for forming a vibration damping member such as a cable damper, and a method for producing the same.

【0002】[0002]

【従来の技術】斜張橋や吊り橋などの橋梁においてケー
ブルの振動を減衰するために使用されるケーブルダンパ
などの制振部材は、一般にゴムの組成物を加硫すること
で形成される。制振部材のもとになるゴム組成物(制振
ゴム組成物)としては、例えば天然ゴムやイソプレンゴ
ムを主体とする基材ゴムに、補強剤としてのシリカと、
カップリング剤としてのアルコキシシランとを配合した
ものなどが知られている(特開平10−81787号公
報)。
2. Description of the Related Art A damping member such as a cable damper used for attenuating a vibration of a cable in a bridge such as a cable-stayed bridge or a suspension bridge is generally formed by vulcanizing a rubber composition. Examples of the rubber composition (damping rubber composition) that forms the basis of the vibration damping member include, for example, a base rubber mainly composed of natural rubber or isoprene rubber, and silica as a reinforcing agent.
It is known that an alkoxysilane is used as a coupling agent (Japanese Patent Laid-Open No. 10-81787).

【0003】上記制振ゴム組成物を加硫して得られる制
振部材は、ケーブルダンパなどとして適切な弾性率と、
優れた振動減衰性能とを有するとともに、これらの特性
の温度依存性が小さく、広い温度域で安定した性能を示
すという利点がある。制振部材の特性の好適な範囲は、
制振部材の形状、構造等によって異なるが、例えば橋梁
用のケーブルダンパとして一般的なせん断型のダンパ構
造においては、測定温度+20℃での、10〜20%せ
ん断変形時のせん断弾性率が0.98〜3.43MPa
であるのが好ましい。また振動減衰能力としては、測定
温度+20℃での損失正接tanδが0.45以上、特
に0.5以上であるのが好ましい。また特性の温度依存
性としては、例えば測定温度−10℃での12.5%せ
ん断変形時のせん断弾性率G[−10℃]と、測定温度+
20℃での12.5%せん断変形時のせん断弾性率G
[+20℃]との比G[−10℃]/G[+20℃]が3以下
であるのが好ましい。
A damping member obtained by vulcanizing the above damping rubber composition has an elastic modulus suitable as a cable damper and the like.
It has the advantages of excellent vibration damping performance, small temperature dependence of these characteristics, and stable performance over a wide temperature range. The preferable range of the characteristics of the damping member is
Although it depends on the shape and structure of the vibration damping member, for example, in a typical shear type damper structure as a cable damper for a bridge, the shear elastic modulus at 10% to 20% shear deformation at the measurement temperature + 20 ° C. is 0. .98 to 3.43 MPa
Is preferred. As the vibration damping ability, it is preferable that the loss tangent tan δ at the measurement temperature + 20 ° C. is 0.45 or more, particularly 0.5 or more. As the temperature dependence of the characteristics, for example, the shear elastic modulus G [-10 ° C] at 12.5% shear deformation at the measuring temperature -10 ° C and the measuring temperature +
Shear modulus G at 12.5% shear deformation at 20 ℃
The ratio G [−10 ° C.] / G [+ 20 ° C.] with [+ 20 ° C.] is preferably 3 or less.

【0004】前記の組成物から形成される制振部材は、
これらの特性を全て満足しうるものである。しかし上記
各成分を配合し、混練して制振ゴム組成物を製造する過
程でシリカとアルコキシシランとが反応して、揮発性、
可燃性などを有するアルコールが発生して、作業所内の
環境を汚染したり、あるいは引火、爆発の危険性を生じ
たりしやすいという問題がある。
The damping member formed from the above composition is
All of these characteristics can be satisfied. However, in the process of blending the above-mentioned components and kneading to produce a vibration-damping rubber composition, silica and alkoxysilane react with each other, resulting in volatility,
There is a problem that alcohol having a flammability is generated, which easily pollutes the environment in the work place or causes a risk of ignition or explosion.

【0005】また上記の反応は、混練条件や混練時の環
境条件などによって進行する度合いが大きく異なるた
め、制振部材の特性が大きく変動しやすいという問題も
ある。このため、制振部材の品質を安定させるのが難し
い。
Further, since the degree of progress of the above reaction greatly varies depending on the kneading conditions and the environmental conditions at the time of kneading, there is also a problem that the characteristics of the vibration damping member are likely to largely change. Therefore, it is difficult to stabilize the quality of the vibration damping member.

【0006】[0006]

【発明が解決しようとする課題】補強剤としてカーボン
ブラックを用いたゴム組成物は古くから知られている
が、かかるゴム組成物を加硫して制振部材を形成して
も、シリカとアルコキシシランとを用いたものに比べて
振動減衰性能が十分でないという問題がある。そこで、
カーボンブラックの配合割合を増加させると振動減衰性
能が向上するという知見に基づいて、カーボンブラック
の配合割合をこれまでよりも増加させることが検討され
たが、配合割合を増加させるほど、弾性率が上昇して制
振部材が硬くなる傾向がある。
A rubber composition using carbon black as a reinforcing agent has been known for a long time. Even if a rubber composition is vulcanized to form a vibration damping member, silica and an alkoxy compound are used. There is a problem that the vibration damping performance is not sufficient as compared with that using silane. Therefore,
Based on the finding that the vibration damping performance is improved by increasing the blending ratio of carbon black, it was studied to increase the blending ratio of carbon black more than ever, but as the blending ratio increases, the elastic modulus increases. The damping member tends to rise and become hard.

【0007】とくに前記の、基材ゴムとして天然ゴムや
イソプレンゴムを用いた系では、カーボンブラックの配
合割合を、制振部材として良好な振動減衰性能が得られ
るようにこれまでよりも多めに設定して制振部材を形成
すると、その弾性率が、制振部材として適切な範囲をは
るかに超えてしまい、当該制振部材が著しく硬いものと
なる。このため、制振部材として使い物にならないとい
う問題を生じる。ゴム軟化剤を添加すれば、制振部材を
ある程度は柔軟化することができる。しかし、組成物の
混練中にスリップを引き起こしやすくなるため、作業者
の技能の程度によって、あるいは混練時の条件等が僅か
に変わるだけで、その品質が大きく変動しやすい。特に
カーボンブラックの分散の度合いが大きく変化しやす
く、品質の安定した制振ゴム組成物を、生産性よく製造
できないという別の問題を生じる。
In particular, in the above-mentioned system using natural rubber or isoprene rubber as the base rubber, the compounding ratio of carbon black is set to be larger than before so that good vibration damping performance can be obtained as the vibration damping member. When the vibration damping member is formed in this manner, the elastic modulus of the vibration damping member far exceeds an appropriate range as the vibration damping member, and the vibration damping member becomes extremely hard. For this reason, there arises a problem that it cannot be used as a vibration damping member. If a rubber softening agent is added, the vibration damping member can be softened to some extent. However, since the composition is likely to cause slip during kneading, the quality of the composition is likely to vary greatly depending on the level of skill of the operator or a slight change in the conditions during kneading. In particular, the degree of dispersion of carbon black is likely to change greatly, which causes another problem that a vibration-damping rubber composition having stable quality cannot be produced with high productivity.

【0008】さらにシリカとカーボンブラックとを併用
することも検討されたが、形成される制振部材は、特に
ケーブルダンパ用としては振動減衰性能が未だ十分でな
く、しかもシリカによる加硫遅れの問題もある。この発
明の第1の目的は、カーボンブラックとゴム軟化剤とを
使用しているにも拘らず、シリカ系と同等の良好な性能
を有する制振部材を製造することができる、新規な制振
ゴム組成物を提供することにある。
Further, it has been studied to use silica and carbon black together, but the damping member formed is not yet sufficient in vibration damping performance, especially for cable dampers, and there is a problem of vulcanization delay due to silica. There is also. A first object of the present invention is to provide a novel vibration damping member capable of producing a vibration damping member having good performance equivalent to that of a silica-based material, even though carbon black and a rubber softening agent are used. To provide a rubber composition.

【0009】またこの発明の第2の目的は、混練中のス
リップの発生をより確実に防止して、上記の制振ゴム組
成物を、品質を安定させつつ、生産性よく製造するため
の製造方法を提供することにある。
A second object of the present invention is to more reliably prevent the occurrence of slip during kneading, and to manufacture the above-mentioned vibration-damping rubber composition with stable quality and high productivity. To provide a method.

【0010】[0010]

【課題を解決するための手段】発明者は、上記の目的を
達成するために、制振ゴム組成物を構成する各成分につ
いて種々、検討を行った。その結果、基材ゴムとしてス
チレンブタジエン共重合ゴム(以下「SBR」とする)
を用いると、カーボンブラックとゴム軟化剤とを併用し
た系において、常温(+20℃)付近で優れた振動減衰
性能を発揮するとともに適切な弾性率を有し、しかもこ
れらの特性の温度依存性が比較的小さい制振部材が得ら
れることを見出した。そこで上記各成分の最適な配合割
合などについてさらに検討した結果、この発明を完成す
るに至った。
Means for Solving the Problems In order to achieve the above-mentioned object, the inventor has made various studies on each component constituting a vibration damping rubber composition. As a result, styrene-butadiene copolymer rubber (hereinafter referred to as "SBR") as the base rubber
When used in combination with carbon black and a rubber softening agent, it exhibits excellent vibration damping performance at around room temperature (+ 20 ° C.), has an appropriate elastic modulus, and has a temperature dependence of these characteristics. It has been found that a relatively small damping member can be obtained. Then, as a result of further studying the optimum blending ratio of each of the above components, the present invention has been completed.

【0011】すなわち請求項1記載の発明は、スチレン
ブタジエン共重合ゴムを50重量%以上の割合で含有す
る基材ゴム100重量部に、カーボンブラックを100
重量部以上、ゴム軟化剤を80重量部以上の割合で配合
したことを特徴とする制振ゴム組成物である。請求項1
の制振ゴム組成物によれば、前記SBRの機能と、当該
SBRと組み合わせるカーボンブラックおよびゴム軟化
剤の配合割合との相乗作用によって、広い温度域で、安
定して良好な性能を有する制振部材を製造することが可
能となる。
That is, according to the first aspect of the invention, 100 parts by weight of a base rubber containing a styrene-butadiene copolymer rubber in a proportion of 50% by weight or more and 100 parts by weight of carbon black are used.
It is a vibration-damping rubber composition characterized in that a rubber softening agent is blended in an amount of 80 parts by weight or more by weight. Claim 1
According to the vibration-damping rubber composition of No. 4, the vibration-damping rubber composition having stable and good performance in a wide temperature range is obtained by the synergistic effect of the function of the SBR and the blending ratio of the carbon black and the rubber softening agent combined with the SBR. It becomes possible to manufacture the member.

【0012】また上記の制振ゴム組成物を製造するため
の、請求項3記載の発明は、ゴム軟化剤の一部で油展し
た固形の基材ゴムと、ゴム軟化剤の残部の少なくとも一
部を吸油させたカーボンブラックと、さらにゴム軟化剤
の残部がある場合は当該残部のゴム軟化剤とを混練する
ことを特徴とする制振ゴム組成物の製造方法である。か
かる請求項3の製造方法では、ゴム軟化剤の一部を基材
ゴムの油展に用いることで固形化し、またゴム軟化剤の
残部の少なくとも一部、好ましくは全部をカーボンブラ
ックに吸油させることで固形化して混練に共している。
このため、例えさらにゴム軟化剤の残部があり、これを
そのまま混練に供したとしても、混練系の大部分は固形
であるため、特に混練初期にスリップを引き起こしにく
くなる。
The invention according to claim 3 for producing the above-mentioned vibration damping rubber composition comprises at least one of a solid base rubber oil-extended with a part of a rubber softening agent and the balance of the rubber softening agent. A method for producing a vibration-damping rubber composition, which comprises kneading carbon black whose part is oil-absorbed, and the remaining part of the rubber softening agent, if any, with the remaining part of the rubber softening agent. According to the manufacturing method of claim 3, a part of the rubber softening agent is used for oil extension of the base rubber so as to be solidified, and at least a part, preferably all of the remaining part of the rubber softening agent is absorbed by the carbon black. It is solidified with and is used for kneading.
Therefore, for example, even if the rubber softening agent remains in the balance and is used for kneading as it is, most of the kneading system is solid, so that slip is less likely to occur particularly in the initial stage of kneading.

【0013】したがって請求項3の製造方法によれば、
作業者の技能や混練時の条件等に拘らず、請求項1の制
振ゴム組成物を、品質を安定させつつより効率的に、生
産性よく製造することが可能となる。
Therefore, according to the manufacturing method of claim 3,
The vibration-damping rubber composition according to claim 1 can be manufactured more efficiently and with high productivity while stabilizing the quality, regardless of the skill of the operator, the conditions during kneading, and the like.

【0014】[0014]

【発明の実施の形態】以下に、この発明を説明する。 〈制振ゴム組成物〉この発明の制振ゴム組成物は、前記
のようにSBRを50重量%以上の割合で含有する基材
ゴム100重量部に、カーボンブラックを100重量部
以上、ゴム軟化剤を80重量部以上の割合で配合してな
るものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below. <Damping rubber composition> As described above, the damping rubber composition of the present invention comprises 100 parts by weight of the base rubber containing SBR in an amount of 50% by weight or more, 100 parts by weight or more of carbon black, and softening the rubber. The agent is blended at a ratio of 80 parts by weight or more.

【0015】このうち基材ゴムにおけるSBRの含有割
合が50重量%以上に限定されるのは、この範囲未満で
は、前述したSBRの機能が十分に発揮されないため、
広い温度域で安定して良好な性能を有する制振部材を形
成できないからである。なおSBRの機能をさらに十分
に発揮させるためには、SBRの含有割合は、上記の範
囲内でもより多いのが好ましく、特に基材ゴムの全量が
SBR、すなわちSBRの含有割合が100重量%であ
るのが好ましい。
Of these, the content ratio of SBR in the base rubber is limited to 50% by weight or more. If the content is less than this range, the above-mentioned function of SBR cannot be sufficiently exhibited.
This is because it is not possible to form a vibration damping member having stable and good performance in a wide temperature range. In order to more fully exert the function of SBR, the content ratio of SBR is preferably higher even within the above range. Particularly, when the total amount of the base rubber is SBR, that is, when the content ratio of SBR is 100% by weight. Preferably.

【0016】SBRと併用してもよい他のゴムとして
は、例えば天然ゴム、アクリロニトリルブタジエン共重
合ゴム、ブチルゴム、ハロゲン化ブチルゴム、臭素化パ
ラメチルスチレン−イソブチレン共重合ゴム、エチレン
プロピレン共重合ゴム、エチレンプロピレンジエン共重
合ゴム、イソプレンゴム、クロロプレンゴム、多硫化ゴ
ム、エピクロルヒドリンゴム、フッ素ゴム、シリコーン
ゴム等の1種または2種以上が挙げられる。
Other rubbers which may be used in combination with SBR include, for example, natural rubber, acrylonitrile butadiene copolymer rubber, butyl rubber, halogenated butyl rubber, brominated paramethylstyrene-isobutylene copolymer rubber, ethylene propylene copolymer rubber, ethylene. One or more of propylenediene copolymer rubber, isoprene rubber, chloroprene rubber, polysulfide rubber, epichlorohydrin rubber, fluororubber, silicone rubber and the like can be mentioned.

【0017】またカーボンブラックの配合割合が、基材
ゴム100重量部に対して100重量部以上に限定され
るのは、この範囲未満では、SBRを主体とする基材ゴ
ムを十分に補強して、制振部材に高い振動減衰性能を付
与できないからである。なお振動減衰性能をさらに向上
することを考慮すると、基材ゴム100重量部に対する
カーボンブラックの配合割合は、上記の範囲内でも特に
110重量部以上であるのが好ましく、120重量部以
上であるのがさらに好ましい。
Further, the mixing ratio of carbon black is limited to 100 parts by weight or more with respect to 100 parts by weight of the base rubber. Below this range, the base rubber mainly composed of SBR is sufficiently reinforced. This is because high vibration damping performance cannot be imparted to the vibration damping member. In consideration of further improving the vibration damping performance, the compounding ratio of carbon black to 100 parts by weight of the base rubber is particularly preferably 110 parts by weight or more, and is 120 parts by weight or more, even within the above range. Is more preferable.

【0018】ただし制振部材が硬くなりすぎないよう
に、その弾性率を好適な範囲に維持することを考慮する
と、基材ゴム100重量部に対するカーボンブラックの
配合割合は、上記の範囲内でも特に200重量部以下で
あるのが好ましく、180重量部以下であるのがより好
ましく、150重量部以下であるのがさらに好ましい。
カーボンブラックとしては、ゴムの補強剤として知られ
る種々のカーボンブラックを、いずれも使用することが
できる。しかし特に、ケーブルダンパ等の制振部材に、
広い温度域で安定して、良好な性能を付与することを考
慮すると、1次粒子径が20nm以下で、かつDBP吸
油量が110ml/100g以上であるカーボンブラッ
クを用いるのが好ましい。
However, considering that the elastic modulus is maintained in a suitable range so that the vibration damping member does not become too hard, the blending ratio of carbon black to 100 parts by weight of the base rubber is particularly within the above range. The amount is preferably 200 parts by weight or less, more preferably 180 parts by weight or less, still more preferably 150 parts by weight or less.
As the carbon black, any of various carbon blacks known as a rubber reinforcing agent can be used. However, especially for damping members such as cable dampers,
Considering that it is stable in a wide temperature range and imparts good performance, it is preferable to use carbon black having a primary particle diameter of 20 nm or less and a DBP oil absorption of 110 ml / 100 g or more.

【0019】カーボンブラックの配合量を多くするほ
ど、制振部材は、先に述べたように振動減衰性能が向上
するものの、弾性率が高くなって硬くなる傾向を示す。
またカーボンブラックの粒子径を小さくするほど、制振
部材の振動減衰性能を向上できるものの、カーボンブラ
ックの、基材ゴムへの分散性が低下する傾向を示し、分
散性が低すぎると、却って制振部材の振動減衰性能を低
下させるおそれがある。そこで制振部材の振動減衰性能
と弾性率とのバランスとを考慮して、基材ゴムとしてS
BRを用いた系で、カーボンブラックの配合割合を前記
の範囲内でもできるだけ小さい値に維持して弾性率の上
昇を防止しつつ、振動減衰性能を向上することを考慮す
ると、上記のようにカーボンブラックの1次粒子径は2
0nm以下で、かつDBP吸油量は110ml/100
g以上であるのが好ましい。
As the blending amount of carbon black increases, the vibration damping member has improved vibration damping performance as described above, but tends to have a higher elastic modulus and become harder.
Further, as the particle size of carbon black is made smaller, the vibration damping performance of the vibration damping member can be improved, but the dispersibility of carbon black in the base rubber tends to decrease. The vibration damping performance of the vibrating member may be reduced. Therefore, in consideration of the balance between the vibration damping performance of the damping member and the elastic modulus, S is used as the base rubber.
In consideration of improving the vibration damping performance while maintaining the blending ratio of carbon black to a value as small as possible within the above range in the system using BR to prevent the elastic modulus from rising, the carbon black as described above is used. The primary particle size of black is 2
0 nm or less, and DBP oil absorption is 110 ml / 100
It is preferably at least g.

【0020】なおカーボンブラックの1次粒子径の下限
値、およびDBP吸油量の上限値は特に限定されない。
現在は、1次粒子径が10nmより少し上で、かつDB
P吸油量が130ml/100gより少し下のものが、
入手可能な最も細かいカーボンブラックであるが、今後
それより細かなものが入手可能となった際には、そのよ
うなカーボンブラックも使用可能であり、かかるカーボ
ンブラックを使用することでさらなる性能向上が期待で
きる。
The lower limit of the primary particle diameter of carbon black and the upper limit of the DBP oil absorption are not particularly limited.
Currently, the primary particle size is slightly above 10 nm, and DB
If the P oil absorption is a little below 130 ml / 100g,
It is the finest carbon black available, but when finer ones become available in the future, such carbon black can also be used, and further improvement in performance can be achieved by using such carbon black. Can be expected.

【0021】カーボンブラックの具体例としては、例え
ばASTM D1765−82aに規定されたN−11
0(タイプ名SAF、1次粒子径11〜19nm、DB
P吸油量113ml/100g)、N−220(タイプ
名ISAF、1次粒子径20〜22nm、DBP吸油量
106〜117ml/100g)、N−339(1次粒
子径24〜26nm、DBP吸油量118〜123ml
/100g)、N−285(タイプ名ISAF−HS、
1次粒子径22〜24nm、DBP吸油量124〜12
9ml/100g)、N−347(タイプ名HAF−H
S、1次粒子径27〜30nm、DBP吸油量126〜
128ml/100g)、N−550(タイプ名FE
F、1次粒子径39〜50nm、DBP吸油量105〜
127ml/100g)、N−660(タイプ名GP
F、1次粒子径62〜80nm、DBP吸油量80〜9
2ml/100g)、N−770(タイプ名SRF、1
次粒子径70〜75nm、DBP吸油量63ml/10
0g)などが挙げられる。中でも特に、1次粒子径が2
0nm以下で、かつDBP吸油量が110ml/100
g以上の範囲に入るN−110が好ましい。
Specific examples of carbon black include N-11 defined in ASTM D1765-82a.
0 (Type name SAF, primary particle size 11 to 19 nm, DB
P oil absorption 113 ml / 100 g), N-220 (type name ISAF, primary particle size 20-22 nm, DBP oil absorption 106-117 ml / 100 g), N-339 (primary particle size 24-26 nm, DBP oil absorption 118). ~ 123 ml
/ 100g), N-285 (type name ISAF-HS,
Primary particle size 22 to 24 nm, DBP oil absorption 124 to 12
9 ml / 100 g), N-347 (type name HAF-H
S, primary particle diameter 27 to 30 nm, DBP oil absorption 126 to
128ml / 100g), N-550 (type name FE
F, primary particle diameter 39 to 50 nm, DBP oil absorption 105 to 105
127 ml / 100 g), N-660 (type name GP
F, primary particle size 62 to 80 nm, DBP oil absorption 80 to 9
2 ml / 100 g), N-770 (type name SRF, 1
Secondary particle size 70-75nm, DBP oil absorption 63ml / 10
0 g) and the like. Especially, the primary particle size is 2
0 nm or less and DBP oil absorption is 110 ml / 100
N-110 which falls within the range of g or more is preferable.

【0022】またこの発明において、ゴム軟化剤の配合
割合が、前記のように基材ゴム100重量部に対して8
0重量部以上に限定されるのは、この範囲未満では、カ
ーボンブラックで補強したことによる弾性率の上昇を抑
えて、制振部材に良好な柔軟性を付与できないからであ
る。なお混練時にスリップが生じて混練できなくなった
り、あるいはカーボンブラックの分散が不十分になった
りするのを防止するとともに、制振部材の弾性率が低く
なりすぎて、振動減衰性能が低下するのを防止すること
を考慮すると、ゴム軟化剤の配合割合は、上記の範囲内
でも特に150重量部以下であるのが好ましい。
In the present invention, the compounding ratio of the rubber softening agent is 8 with respect to 100 parts by weight of the base rubber as described above.
The reason why the amount is limited to 0 parts by weight or more is that if the amount is less than this range, it is not possible to impart a good flexibility to the vibration damping member by suppressing an increase in elastic modulus due to the reinforcement with carbon black. In addition, it is possible to prevent slippage during kneading, which makes it impossible to knead, or insufficient dispersion of carbon black, and to prevent the vibration damping performance from decreasing because the elastic modulus of the vibration damping member becomes too low. Considering prevention, the compounding ratio of the rubber softening agent is preferably 150 parts by weight or less even within the above range.

【0023】ゴム軟化剤としては、例えば鉱物油系軟化
剤としてアロマ系プロセスオイル、ナフテン系プロセス
オイル、パラフィン系プロセスオイル、植物油系軟化剤
としてひまし油、綿実油、あまに油、なたね油、大豆
油、パーム油などが挙げられる。またさらにサブ、脂肪
酸および脂肪酸塩などもゴム軟化剤として使用できる。
これらはそれぞれ単独で使用されるほか、2種以上を併
用することもできる。中でも特に基材ゴムとの相溶性が
良く、しかも安価なアロマ系プロセスオイル、ナフテン
系プロセスオイルが好適に使用される。
Examples of the rubber softener include, for example, mineral oil-based softeners such as aromatic process oil, naphthene-based process oil, paraffin-based process oil, and vegetable oil-based softeners such as castor oil, cottonseed oil, linseed oil, rapeseed oil, soybean oil and palm. Examples include oil. Further, sub, fatty acids and fatty acid salts can also be used as a rubber softening agent.
These may be used alone or in combination of two or more. Among them, aroma-based process oil and naphthene-based process oil, which have good compatibility with the base rubber and are inexpensive, are preferably used.

【0024】制振ゴム組成物には、上記各成分に加え
て、従来同様に加硫剤、加硫促進剤、加硫促進助剤、加
硫遅延剤、老化防止剤、充てん剤、粘着性付与剤、スコ
ーチ防止剤その他、種々の添加剤を配合することができ
る。このうち加硫剤としては、例えば硫黄、有機含硫黄
化合物、有機過酸化物等が挙げられる。また加硫促進剤
としては、例えばスルフェンアミド系、グアニジン系、
チウラム系、ジチオカーバミン酸系、チアゾール系、チ
オウレア系などの有機促進剤が挙げられる。
In addition to the above-mentioned components, the vibration-damping rubber composition contains a vulcanizing agent, a vulcanization accelerator, a vulcanization accelerating aid, a vulcanization retarder, an antiaging agent, a filler, and an adhesive property in the same manner as before. Various additives such as an imparting agent and an anti-scorch agent can be added. Among these, examples of the vulcanizing agent include sulfur, organic sulfur-containing compounds, and organic peroxides. Examples of the vulcanization accelerator include sulfenamide-based, guanidine-based,
Examples thereof include thiuram-based, dithiocarbamic acid-based, thiazole-based, and thiourea-based organic accelerators.

【0025】加硫促進助剤としては、例えばステアリン
酸、オレイン酸、綿実脂肪酸などの脂肪酸や、あるいは
亜鉛華などの金属酸化物などが挙げられる。加硫遅延剤
としては、例えば芳香族有機酸やニトロソ化合物などが
挙げられる。老化防止剤としては、例えばイミダゾール
類、アミン類、フェノール類などが挙げられる。
Examples of the vulcanization accelerator include fatty acids such as stearic acid, oleic acid and cottonseed fatty acid, and metal oxides such as zinc white. Examples of the vulcanization retarder include aromatic organic acids and nitroso compounds. Examples of the antiaging agent include imidazoles, amines, phenols and the like.

【0026】充てん剤としては、例えば炭酸カルシウ
ム、クレー、硫酸バリウム、珪藻土などが挙げられる。
粘着性付与剤としては、例えばクマロン・インデン樹
脂、芳香族系樹脂、芳香族・脂肪族混合系樹脂、ロジン
系樹脂、シクロペンタジエン系樹脂などが挙げられる。
さらにスコーチ防止剤としては、有機酸系、ニトロソ化
合物系などのスコーチ防止剤が挙げられる。特にニトロ
ソ化合物系であるN−(シクロヘキシルチオ)フタルイ
ミドは強力な早期加硫防止剤であって、スルフェンアミ
ド系またはチアゾール系の加硫促進剤との併用によって
加工安全性をコントロールできるという利点を有する。
Examples of the filler include calcium carbonate, clay, barium sulfate, diatomaceous earth and the like.
Examples of the tackifier include coumarone / indene resin, aromatic resin, aromatic / aliphatic mixed resin, rosin resin, cyclopentadiene resin, and the like.
Further, examples of the anti-scorch agent include organic acid-based and nitroso compound-based anti-scorch agents. In particular, N- (cyclohexylthio) phthalimide, which is a nitroso compound type, is a strong early vulcanization inhibitor, and has the advantage of being able to control processing safety when used in combination with a sulfenamide type or thiazole type vulcanization accelerator. Have.

【0027】上記以外にも、制振ゴム組成物にはたとえ
ば分散剤、溶剤などを適宜配合してもよい。 〈制振ゴム組成物の製造方法〉この発明の制振ゴム組成
物は、上記の各成分を混練することで製造される。特
に、前述したゴム軟化剤によるスリップを防止しつつ、
均一な特性を有する制振ゴム組成物を効率よく製造する
ためには、前述したようにゴム軟化剤の一部で油展した
固形の基材ゴムと、ゴム軟化剤の残部の少なくとも一部
を吸油させたカーボンブラックと、さらにゴム軟化剤の
残部がある場合は当該残部のゴム軟化剤とを混練する、
この発明の製造方法を採用するのが好ましい。
In addition to the above, the damping rubber composition may be appropriately blended with a dispersant, a solvent and the like. <Method for producing damping rubber composition> The damping rubber composition of the present invention is produced by kneading the above components. In particular, while preventing the slip due to the rubber softener described above,
In order to efficiently produce a vibration damping rubber composition having uniform properties, as described above, a solid base rubber oil-extended with a part of a rubber softening agent and at least a part of the remaining part of the rubber softening agent are used. Kneading the oil-absorbed carbon black and the remaining portion of the rubber softening agent, if any,
It is preferable to adopt the manufacturing method of the present invention.

【0028】上記の製造方法においては、基材ゴム10
0重量部に対して30重量部以下、好ましくは20重量
部以下、より好ましくは10重量部以下程度の少量であ
れば、ゴム軟化剤単独で添加しても、スリップを防止し
て、均一な特性を有する制振ゴム組成物を効率よく製造
することは可能である。ただし基材ゴムを油展した後
の、ゴム軟化剤の残部の全量をカーボンブラックに吸油
させて、ゴム軟化剤単独での添加を極力なくするのが、
混練時のスリップを防止する上で最も好ましい。
In the above manufacturing method, the base rubber 10
A small amount of 30 parts by weight or less, preferably 20 parts by weight or less, and more preferably 10 parts by weight or less with respect to 0 parts by weight prevents slippage even when the rubber softening agent is added alone, and provides a uniform level. It is possible to efficiently produce a vibration damping rubber composition having characteristics. However, after the base rubber is oil-extended, carbon black absorbs all the remaining amount of the rubber softening agent to minimize the addition of the rubber softening agent alone.
It is most preferable in preventing slippage during kneading.

【0029】混練には、従来同様に、種々の容量を有す
るニーダなどを使用すればよい。かくして製造されるこ
の発明の制振ゴム組成物は、前述したように橋梁用とし
て一般的なせん断型のダンパ構造のケーブルダンパな
ど、従来公知の種々の、制振部材の成形原料として使用
することができる。制振部材を製造するに際しては、従
来同様に、制振部材の形状に対応した型に所定量の制振
ゴム組成物を充てんして、加圧下で加熱して基材ゴムを
加硫させればよい。
For kneading, a kneader or the like having various capacities may be used as in the conventional case. The vibration-damping rubber composition of the present invention thus produced should be used as a raw material for forming various conventionally known vibration-damping members, such as a cable damper having a general shear-type damper structure for bridges as described above. You can When manufacturing the damping member, as in the conventional case, a mold corresponding to the shape of the damping member is filled with a predetermined amount of the damping rubber composition, and heated under pressure to vulcanize the base rubber. Good.

【0030】[0030]

【実施例】以下にこの発明を、実施例、比較例に基づい
て説明する。 実施例1 前出のカーボンブラックN−110と、アロマ系プロセ
スオイル〔出光興産(株)製のダイアナプロセスオイルX
−140〕とを重量比で4:6の割合で配合し、混練機
を用いて混練してカーボンブラックN−110にアロマ
系プロセスオイルを吸油させることで混練物を得た。
EXAMPLES The present invention will be described below based on Examples and Comparative Examples. Example 1 Carbon black N-110 described above and an aroma-based process oil [Diana Process Oil X manufactured by Idemitsu Kosan Co., Ltd.]
-140] in a weight ratio of 4: 6 and kneaded using a kneader to cause carbon black N-110 to absorb the aroma process oil to obtain a kneaded product.

【0031】次に、油展SBR〔住友化学(株)製のSB
R1712、SBR100重量部に対するゴム軟化剤の
油展量37.5重量部〕137.5重量部と、上記の混
練物138重量部と、80重量部のカーボンブラックN
−110と、下記の各添加剤とを、3Lニーダを用いて
混練して制振ゴム組成物を得た。 (添加剤) (重量部) 酸化亜鉛 5 老化防止剤6PPD 2 老化防止剤FR 2 ステアリン酸 1 加硫促進剤(スルフェンアミド系) 1 加硫促進剤(グアニジン系) 0.5 N−(シクロヘキシルチオ)フタルイミド 0.3 制振ゴム組成物における、SBR100重量部に対する
カーボンブラックN−110の合計の配合割合は13
5.2重量部、ゴム軟化剤の合計の配合割合は120.
3重量部であった。
Next, the oil exhibition SBR [SB manufactured by Sumitomo Chemical Co., Ltd.
R1712 and SBR 100 parts by weight of oil softening agent oil extension 37.5 parts by weight] 137.5 parts by weight, the above kneaded product 138 parts by weight, and 80 parts by weight of carbon black N
-110 and each of the following additives were kneaded using a 3L kneader to obtain a vibration damping rubber composition. (Additives) (parts by weight) Zinc oxide 5 Anti-aging agent 6PPD 2 Anti-aging agent FR 2 Stearic acid 1 Vulcanization accelerator (sulfenamide type) 1 Vulcanization accelerator (guanidine type) 0.5 N- (cyclohexyl) Thio) phthalimide 0.3 In the vibration damping rubber composition, the total compounding ratio of carbon black N-110 to 100 parts by weight of SBR is 13
5.2 parts by weight, and the total compounding ratio of the rubber softening agent was 120.
It was 3 parts by weight.

【0032】実施例2、3、比較例1 カーボンブラックN−110とアロマ系プロセスオイル
との混練物、およびカーボンブラックN−110を、そ
れぞれ表1に示す配合割合で配合したこと以外は実施例
1と同様にして制振ゴム組成物を得た。 実施例4 カーボンブラックN−110とアロマ系プロセスオイル
との混練物、およびカーボンブラックN−110を、そ
れぞれ表1に示す配合割合で配合するとともに、さらに
アロマ系プロセスオイルを単独で、表1に示す配合割合
で配合したこと以外は実施例1と同様にして制振ゴム組
成物を得た。
Examples 2 and 3, Comparative Example 1 An example except that a kneaded product of carbon black N-110 and an aroma-based process oil and carbon black N-110 were blended at the blending ratios shown in Table 1, respectively. A vibration damping rubber composition was obtained in the same manner as in 1. Example 4 A kneaded product of carbon black N-110 and an aroma-based process oil, and carbon black N-110 were blended at the blending ratios shown in Table 1, respectively. A vibration damping rubber composition was obtained in the same manner as in Example 1 except that the compounding ratio was as shown.

【0033】[0033]

【表1】 [Table 1]

【0034】従来例1 天然ゴム100重量部と、シリカ135重量部と、トリ
エトキシフェニルシラン〔信越化学(株)製のKBE10
3〕20重量部と、下記の各添加剤とを、3Lニーダを
用いて混練してシリカ系の制振ゴム組成物を得た。 (添加剤) (重量部) 酸化亜鉛 5 老化防止剤6PPD 2 老化防止剤FR 2 ステアリン酸 1 加硫促進剤(スルフェンアミド系) 1 加硫促進剤(チウラム系) 0.7 N−(シクロヘキシルチオ)フタルイミド 0.3 上記各実施例、比較例の制振ゴム組成物について、以下
の試験を行って、その特性を評価した。
Conventional Example 1 100 parts by weight of natural rubber, 135 parts by weight of silica, and triethoxyphenylsilane [KBE10 manufactured by Shin-Etsu Chemical Co., Ltd.]
3] 20 parts by weight and the following additives were kneaded using a 3L kneader to obtain a silica-based vibration damping rubber composition. (Additives) (parts by weight) Zinc oxide 5 Anti-aging agent 6PPD 2 Anti-aging agent FR 2 Stearic acid 1 Vulcanization accelerator (sulfenamide type) 1 Vulcanization accelerator (thiuram type) 0.7 N- (cyclohexyl) Thio) phthalimide 0.3 The following tests were conducted on the vibration damping rubber compositions of the above Examples and Comparative Examples to evaluate their properties.

【0035】〈せん断動的粘弾性試験〉上記各実施例、
比較例の制振ゴム組成物に、それぞれ基材ゴム100重
量部あたり1.5重量部の硫黄を加えて、ロールで練り
こんだ後、所定の型を用いて直径25mm(=25×1
-3m)×厚み5mm(=5×10-3m)の円板状にプ
レス加硫するとともに、このプレス加硫と同時に、図1
(a)(b)に示すように円板10の上下両面に、それぞれ測
定装置への取付用の、板状の金具11、12を加硫接着
して、制振部材としての、せん断型のダンパ構造を有す
るケーブルダンパのモデルを作製した。加硫の条件は1
60℃×25分間とした。
<Shear Dynamic Viscoelasticity Test> Each of the above examples,
To the vibration-damping rubber composition of Comparative Example, 1.5 parts by weight of sulfur was added to 100 parts by weight of the base rubber, respectively, and the mixture was kneaded with a roll, and then, using a predetermined mold, a diameter of 25 mm (= 25 × 1).
While press vulcanizing into a disk shape having a thickness of 0 −3 m) × a thickness of 5 mm (= 5 × 10 −3 m), at the same time as this press vulcanization,
As shown in (a) and (b), the plate-shaped metal fittings 11 and 12 for mounting to the measuring device are vulcanized and adhered to the upper and lower surfaces of the disk 10, respectively, to form a shearing type vibration damping member. A model of a cable damper having a damper structure was made. Vulcanization condition is 1
It was set to 60 ° C. × 25 minutes.

【0036】次いでこのモデルのせん断動的粘弾性特性
を、1.5トン動的試験機〔東京衡機(株)製〕を用いて
測定した。すなわち+20℃または−10℃の恒温槽中
に3時間以上、収容して温度を安定化したケーブルダン
パのモデルを、それぞれ同じ温度の恒温槽中にセットし
た上記1.5トン動的試験機に、2枚の金具11、12
を介して取り付けた。次に、下側の固定金具12を固定
した状態で、上側の固定金具11を、図中白矢印で示す
水平方向に繰り返し変位させて、円板10をせん断変形
させた。
Then, the shear dynamic viscoelastic property of this model was measured using a 1.5 ton dynamic tester (manufactured by Tokyo Hoki Co., Ltd.). That is, the model of the cable damper, which was stored in a + 20 ° C or -10 ° C constant temperature tank for 3 hours or more to stabilize the temperature, was set in the constant temperature constant temperature tank of the same temperature of 1.5 tons. Two metal fittings 11 and 12
Attached through. Next, with the lower fixing metal fitting 12 fixed, the upper fixing metal fitting 11 was repeatedly displaced in the horizontal direction indicated by the white arrow in the figure to shear-deform the disk 10.

【0037】せん断変形は、上側の固定金具11の、水
平方向の変位量d(m)と、円板10の高さt(=5×
10-3m)とから、下記式(i):
The shear deformation is caused by the horizontal displacement d (m) of the upper fixing member 11 and the height t (= 5 ×) of the disk 10.
10 −3 m) and the following formula (i):

【0038】[0038]

【数1】 [Equation 1]

【0039】によって求められるせん断変形D(%)の
最大値が12.5%となる水平変位をサイン波で4サイ
クル繰り返し行った。そして3サイクル目の水平変位に
おける、せん断変形D(%)と水平荷重との関係を測定
した。次に、上記のように測定して得た、図2に示す、
せん断変形D(%)と水平荷重との関係を示すヒステリ
シスループ曲線から、下記式(ii):
The horizontal displacement at which the maximum value of the shear deformation D (%) determined by 12.5% was 12.5% was repeated 4 cycles with a sine wave. Then, the relationship between the shear deformation D (%) and the horizontal load in the horizontal displacement at the third cycle was measured. Next, as shown in FIG. 2, obtained by measuring as described above,
From the hysteresis loop curve showing the relationship between shear deformation D (%) and horizontal load, the following formula (ii):

【0040】[0040]

【数2】 [Equation 2]

【0041】により、等価減衰定数heを求めた。なお
式(ii)中のΔWは、変位1サイクルあたりの損失エネル
ギー(図2においてヒステリシスループ曲線で囲まれた
全領域の面積)を示しWは、最大振幅に至るまでに蓄積
された弾性歪みエネルギー(図2において斜線の領域の
面積)を示す。また図2中のFは最大伸び時(この場合
は伸びD=12.5%)の水平荷重を示す。さらに曲線
Lは、所定の伸び時におけるヒステリシスループ曲線上
のa点の水平荷重とc点の水平荷重との中間点(b点)
を、伸びなし時(D=0%)から最大伸び時(D=1
2.5%)までの全範囲でプロットした曲線である。
Thus, the equivalent damping constant he was obtained. Note that ΔW in the equation (ii) represents the energy loss per displacement cycle (the area of the entire region surrounded by the hysteresis loop curve in FIG. 2), and W is the elastic strain energy accumulated until the maximum amplitude is reached. (The area of the hatched area in FIG. 2) is shown. Further, F in FIG. 2 indicates a horizontal load at the maximum elongation (in this case, elongation D = 12.5%). Further, the curve L is an intermediate point (point b) between the horizontal load at the point a and the horizontal load at the point c on the hysteresis loop curve at a predetermined elongation.
From the time of no elongation (D = 0%) to the time of maximum elongation (D = 1
Curve plotted over the entire range up to 2.5%).

【0042】また上記ヒステリシスループ曲線のうち水
平変位Dの最大値(=12.5%)における変位量d
(m)と、この最大水平変位時の水平荷重F(N)とか
ら、下記式(iii):
The displacement amount d at the maximum value (= 12.5%) of the horizontal displacement D in the above hysteresis loop curve.
From (m) and the horizontal load F (N) at this maximum horizontal displacement, the following formula (iii):

【0043】[0043]

【数3】 [Equation 3]

【0044】により水平ばね定数Khを求め、この水平
ばね定数Khと、円板10の高さt(=5×10-3m)
と、円板10の水平方向の断面積A(=4.9×10-4
2)とから、下記式(iv):
The horizontal spring constant Kh is obtained from the above, and the horizontal spring constant Kh and the height t of the disk 10 (= 5 × 10 −3 m)
And the horizontal sectional area A of the disk 10 (= 4.9 × 10 −4
m 2 ) and the following formula (iv):

【0045】[0045]

【数4】 [Equation 4]

【0046】によりせん断弾性率Gを求めた。また下記
式(v):
The shear modulus G was determined by Also, the following formula (v):

【0047】[0047]

【数5】 [Equation 5]

【0048】により損失正接tanδを求めた。そして
測定温度+20℃での12.5%せん断変形時のせん断
弾性率G[+20℃]により、ケーブルダンパのモデルの
柔軟性を評価した。すなわちせん断型のダンパ構造のケ
ーブルダンパにおいては、前記のように測定温度+20
℃での10〜20%せん断変形時のせん断弾性率が0.
98〜3.43MPaであるのが好ましいことから、上
記の測定結果がこの範囲に入るか否かによって、各モデ
ルの柔軟性の良否を判定した。
The loss tangent tan δ was calculated by Then, the flexibility of the model of the cable damper was evaluated by the shear elastic modulus G [+ 20 ° C.] at 12.5% shear deformation at the measurement temperature of + 20 ° C. That is, in the cable damper having the shear type damper structure, the measured temperature +20 as described above.
Shear modulus at 10 to 20% shear deformation at 0.
Since it is preferably 98 to 3.43 MPa, whether the flexibility of each model is good or bad was judged depending on whether or not the above measurement result falls within this range.

【0049】また測定温度+20℃での損失正接tan
δの大小により、振動減衰性能を評価した。すなわちせ
ん断型のダンパ構造のケーブルダンパにおいては、前記
のように測定温度+20℃での損失正接tanδが0.
45以上、特に0.5以上であるのが好ましいことか
ら、上記の測定結果がこの範囲に入るか否かによって、
各モデルの振動減衰性能の良否を判定した。さらに測定
温度+20℃での12.5%せん断変形時のせん断弾性
率G[+20℃]と、測定温度−10℃での12.5%せ
ん断変形時のせん断弾性率G[−10℃]との比G[−1
0℃]/G[+20℃]を求めて、ケーブルダンパのモデ
ルの、特性の温度依存性を評価した。すなわちせん断型
のダンパ構造のケーブルダンパにおいては、前記のよう
に比G[−10℃]/G[+20℃]が3以下であるのが好
ましいことから、計算結果がこの範囲に入るか否かによ
って、各モデルの特性の温度依存性の良否を判定した。
The loss tangent tan at the measurement temperature + 20 ° C.
The vibration damping performance was evaluated according to the size of δ. That is, in the cable damper having the shear type damper structure, the loss tangent tan δ at the measurement temperature of + 20 ° C. is 0.
Since it is preferably 45 or more, particularly 0.5 or more, depending on whether or not the above measurement result falls within this range,
The quality of vibration damping performance of each model was judged. Further, the shear elastic modulus G [+ 20 ° C.] at 12.5% shear deformation at the measurement temperature + 20 ° C. and the shear elastic modulus G [−10 ° C.] at 12.5% shear deformation at the measurement temperature −10 ° C. Ratio G [-1
[0 ° C.] / G [+ 20 ° C.] was obtained to evaluate the temperature dependence of the characteristics of the model of the cable damper. That is, in the cable damper having the shear type damper structure, it is preferable that the ratio G [−10 ° C.] / G [+ 20 ° C.] is 3 or less as described above, so whether or not the calculation result falls within this range. The quality of the temperature dependence of the characteristics of each model was determined by.

【0050】〈製造作業性試験〉各成分を混練して実施
例、比較例の制振ゴム組成物を製造する際の作業性を、
混練により均一な組成物が得られるのに要した時間の長
短と、混練時におけるアルコール発生の有無とで評価し
た。以上の結果を表2に示す。
<Manufacturing Workability Test> Workability in manufacturing the vibration damping rubber compositions of Examples and Comparative Examples by kneading the respective components,
The time required for obtaining a uniform composition by kneading and the presence or absence of alcohol generation during kneading were evaluated. The above results are shown in Table 2.

【0051】[0051]

【表2】 [Table 2]

【0052】表より、シリカとアルコキシシランとを用
いた従来例1の制振ゴム組成物を用いると、良好な特性
を有するケーブルダンパを形成できるものの、組成物の
混練時にアルコールが発生することが確認された。また
カーボンブラックとゴム軟化剤とを用いた系のうち、カ
ーボンブラックの配合割合が、基材ゴム100重量部に
対して100重量部未満であった比較例1の制振ゴム組
成物を用いると、ケーブルダンパの柔軟性は良好である
ものの、振動減衰性能が不十分になることがわかった。
From the table, it is possible to form a cable damper having good characteristics by using the vibration damping rubber composition of Conventional Example 1 using silica and alkoxysilane, but alcohol is generated when the composition is kneaded. confirmed. In the system using carbon black and a rubber softening agent, the damping rubber composition of Comparative Example 1 in which the compounding ratio of carbon black was less than 100 parts by weight relative to 100 parts by weight of the base rubber was used. , It was found that the vibration damping performance was insufficient although the cable damper had good flexibility.

【0053】これに対し各実施例の制振ゴム組成物を用
いると、従来例1と同等の良好な特性を有するケーブル
ダンパを、組成物の混練時にアルコールを生じることな
しに形成できることがわかった。また上記各実施例の制
振ゴム組成物は、従来例1に比べて、より短い混練時間
で製造できることもわかった。 実施例5 カーボンブラックN−110とアロマ系プロセスオイル
との混練物、およびカーボンブラックN−110を、そ
れぞれ前記表1に示す配合割合で配合するとともに、さ
らにアロマ系プロセスオイルを単独で、表1に示す配合
割合で配合したこと以外は実施例1と同様にして制振ゴ
ム組成物を得た。
On the other hand, it was found that the use of the vibration damping rubber compositions of the respective examples makes it possible to form a cable damper having good characteristics equivalent to those of Conventional Example 1 without producing alcohol during kneading of the composition. . It was also found that the vibration damping rubber composition of each of the above examples can be produced in a shorter kneading time as compared with Conventional Example 1. Example 5 A kneaded product of carbon black N-110 and an aroma-based process oil, and carbon black N-110 were blended at the blending ratios shown in Table 1, respectively, and further, the aroma-based process oil alone was used in Table 1. A vibration-damping rubber composition was obtained in the same manner as in Example 1 except that the compounding ratio was as shown in.

【0054】比較例2 カーボンブラックN−110とアロマ系プロセスオイル
との混練物を配合せず、カーボンブラックN−110
を、前記表1に示す配合割合で配合するとともに、アロ
マ系プロセスオイルを単独で、表1に示す配合割合で配
合したこと以外は実施例1と同様にして制振ゴム組成物
を得ようとした。しかし混練を60分間、継続しても均
一な組成物が得られなかったので作業を断念した。
Comparative Example 2 Carbon black N-110 was used without blending a kneaded product of carbon black N-110 and aroma process oil.
Was blended at the blending ratio shown in Table 1 above, and an aroma-based process oil alone was blended at the blending ratio shown in Table 1 to obtain a vibration damping rubber composition in the same manner as in Example 1. did. However, even if the kneading was continued for 60 minutes, a uniform composition could not be obtained, so the work was abandoned.

【0055】上記実施例5について前記せん断動的粘弾
性試験、および製造作業性試験を行った。結果を実施例
1の結果とあわせて表3に示す。
The shear dynamic viscoelasticity test and the manufacturing workability test for the above Example 5 were conducted. The results are shown in Table 3 together with the results of Example 1.

【0056】[0056]

【表3】 [Table 3]

【0057】表より、比較例2では、前記のように混練
を断念せざるをえなかった。これに対し、この発明にか
かる製造方法を実施した実施例1、5ではともに均一な
組成物を製造することができた。ただし両実施例を比較
すると、アロマ系プロセスオイル単独の配合割合が小さ
い実施例1の方が、実施例5に比べて混練時間を短くで
きることが確認された。
From the table, in Comparative Example 2, the kneading had to be abandoned as described above. On the other hand, in Examples 1 and 5 in which the manufacturing method according to the present invention was carried out, a uniform composition could be manufactured. However, when comparing the two examples, it was confirmed that the kneading time can be shortened in Example 1 in which the blending ratio of the aromatic process oil alone is smaller than that in Example 5.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例、比較例の組成物を用いて形
成した、制振部材としてのケーブルダンパのモデルを示
す図であって、同図(a)は正面図、同図(b)は平面図であ
る。
FIG. 1 is a view showing a model of a cable damper as a vibration damping member formed by using the compositions of Examples and Comparative Examples of the present invention, FIG. 1 (a) is a front view and FIG. ) Is a plan view.

【図2】上記ケーブルダンパのモデルのせん断動的粘弾
性特性を測定した際に得られる、せん断変形D(%)と
水平荷重との関係を示すヒステリシスループ曲線を示す
グラフである。
FIG. 2 is a graph showing a hysteresis loop curve showing the relationship between shear deformation D (%) and horizontal load, which is obtained when the shear dynamic viscoelastic characteristics of the model of the cable damper is measured.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3J048 AA01 AD05 AD12 BD04 DA07 EA39 4J002 AC081 AE002 DA036 EA017 EA027 EA037 GM00    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 3J048 AA01 AD05 AD12 BD04 DA07                       EA39                 4J002 AC081 AE002 DA036 EA017                       EA027 EA037 GM00

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】スチレンブタジエン共重合ゴムを50重量
%以上の割合で含有する基材ゴム100重量部に、カー
ボンブラックを100重量部以上、ゴム軟化剤を80重
量部以上の割合で配合したことを特徴とする制振ゴム組
成物。
1. A blend of 100 parts by weight of a base rubber containing 50% by weight or more of styrene-butadiene copolymer rubber with 100 parts by weight or more of carbon black and 80 parts by weight or more of a rubber softening agent. A vibration-damping rubber composition characterized by:
【請求項2】1次粒子径が20nm以下で、かつDBP
吸油量が110ml/100g以上のカーボンブラック
を配合した請求項1記載の制振ゴム組成物。
2. A DBP having a primary particle size of 20 nm or less
The damping rubber composition according to claim 1, wherein carbon black having an oil absorption of 110 ml / 100 g or more is blended.
【請求項3】請求項1記載の制振ゴム組成物を製造する
方法であって、ゴム軟化剤の一部で油展した固形の基材
ゴムと、ゴム軟化剤の残部の少なくとも一部を吸油させ
たカーボンブラックと、さらにゴム軟化剤の残部がある
場合は当該残部のゴム軟化剤とを混練することを特徴と
する制振ゴム組成物の製造方法。
3. A method for producing the vibration damping rubber composition according to claim 1, wherein a solid base rubber oil-extended with a part of the rubber softening agent and at least a part of the remaining part of the rubber softening agent are used. A method for producing a vibration-damping rubber composition, which comprises kneading an oil-absorbed carbon black and, if there is a balance of a rubber softening agent, the balance of the rubber softening agent.
JP2001215615A 2001-07-16 2001-07-16 Method for producing damping rubber composition Expired - Fee Related JP4795574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001215615A JP4795574B2 (en) 2001-07-16 2001-07-16 Method for producing damping rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001215615A JP4795574B2 (en) 2001-07-16 2001-07-16 Method for producing damping rubber composition

Publications (2)

Publication Number Publication Date
JP2003027037A true JP2003027037A (en) 2003-01-29
JP4795574B2 JP4795574B2 (en) 2011-10-19

Family

ID=19050221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001215615A Expired - Fee Related JP4795574B2 (en) 2001-07-16 2001-07-16 Method for producing damping rubber composition

Country Status (1)

Country Link
JP (1) JP4795574B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103804831A (en) * 2014-01-15 2014-05-21 山东天源化工有限公司 Wet-skid resistance rubber softening agent and preparation technology thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125541A (en) * 1986-11-17 1988-05-28 Bridgestone Corp Flexible article
JPH01272645A (en) * 1988-04-26 1989-10-31 Toyoda Gosei Co Ltd Rubber composition for rubber vibration insulator
JPH03149243A (en) * 1989-11-07 1991-06-25 Japan Synthetic Rubber Co Ltd Rubber composition
JPH03269031A (en) * 1990-03-16 1991-11-29 Mitsubishi Kasei Corp Rubber composition for vibration damping rubber
JPH04356548A (en) * 1990-11-27 1992-12-10 Bridgestone Corp Rubber composition
JPH07196943A (en) * 1993-12-29 1995-08-01 Asahi Carbon Kk High-structure carbon black
JPH07233331A (en) * 1994-02-23 1995-09-05 Nippon Steel Chem Co Ltd Carbon black and rubber composition
JP2001114970A (en) * 1999-10-19 2001-04-24 Jsr Corp Diolefin polymer composition, its preparation method, and vulcanizable rubber composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125541A (en) * 1986-11-17 1988-05-28 Bridgestone Corp Flexible article
JPH01272645A (en) * 1988-04-26 1989-10-31 Toyoda Gosei Co Ltd Rubber composition for rubber vibration insulator
JPH03149243A (en) * 1989-11-07 1991-06-25 Japan Synthetic Rubber Co Ltd Rubber composition
JPH03269031A (en) * 1990-03-16 1991-11-29 Mitsubishi Kasei Corp Rubber composition for vibration damping rubber
JPH04356548A (en) * 1990-11-27 1992-12-10 Bridgestone Corp Rubber composition
JPH07196943A (en) * 1993-12-29 1995-08-01 Asahi Carbon Kk High-structure carbon black
JPH07233331A (en) * 1994-02-23 1995-09-05 Nippon Steel Chem Co Ltd Carbon black and rubber composition
JP2001114970A (en) * 1999-10-19 2001-04-24 Jsr Corp Diolefin polymer composition, its preparation method, and vulcanizable rubber composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103804831A (en) * 2014-01-15 2014-05-21 山东天源化工有限公司 Wet-skid resistance rubber softening agent and preparation technology thereof

Also Published As

Publication number Publication date
JP4795574B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
JP5673737B2 (en) Rubber composition for anti-vibration rubber
KR101829557B1 (en) Improved natural rubber compositions
JP6261131B2 (en) High damping composition, seismic damper and seismic isolation bearing
JP5404716B2 (en) High damping composition
KR101805206B1 (en) High damping composition
KR20130114554A (en) High damping composition and viscoelastic damper
JP2010254872A (en) Rubber composition for vibration insulating rubber
KR20170142861A (en) Highly damping rubber composition and viscoelastic damper
JP2012219150A (en) Highly damping composition
JP2007063425A (en) Highly damping rubber composition and method for producing the same
JP5568581B2 (en) High damping composition and viscoelastic damper
JP2015160903A (en) High attenuation composition, earthquake-proof damper, and aseismic base isolation bearing
JP2014077050A (en) Rubber composition for vibration-proof rubber and vibration-proof rubber
JP4795574B2 (en) Method for producing damping rubber composition
JP2019031607A (en) High attenuation rubber composition and viscoelastic damper
JP2011162585A (en) Rubber composition for vibration-damping rubber, and vibration-damping rubber
JPH10219029A (en) Rubber composition for high-attenuation rubber support
JP2017210532A (en) High attenuation rubber composition and viscoelastic damper
JP2020090665A (en) Rubber composition for vibration-proof rubber and vibration-proof rubber
JP2016204416A (en) Rubber composition and vibration-proof rubber
JP2006316182A (en) Low repulsive rubber composition and quake-absorbing structure body using the same
JP2015038171A (en) Rubber composition for base-isolated structure, and rubber for base-isolated structure
JPWO2019117155A1 (en) Anti-vibration rubber composition and anti-vibration rubber
JP2014088507A (en) Vibration-proof rubber composition
JP2006045325A (en) Highly attenuating rubber composition and quake-free structure using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110728

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees