JP2003023169A - Method for manufacturing thin film solar battery - Google Patents

Method for manufacturing thin film solar battery

Info

Publication number
JP2003023169A
JP2003023169A JP2001204935A JP2001204935A JP2003023169A JP 2003023169 A JP2003023169 A JP 2003023169A JP 2001204935 A JP2001204935 A JP 2001204935A JP 2001204935 A JP2001204935 A JP 2001204935A JP 2003023169 A JP2003023169 A JP 2003023169A
Authority
JP
Japan
Prior art keywords
layer
electrode layer
thin film
film solar
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001204935A
Other languages
Japanese (ja)
Inventor
清雄 ▲斎▼藤
Kiyoo Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2001204935A priority Critical patent/JP2003023169A/en
Publication of JP2003023169A publication Critical patent/JP2003023169A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a thin film solar battery capable of improving reliability by improving adhesive force between a glass substrate and a photoelectric conversion layer, and simplifying the manufacturing process. SOLUTION: In this method for manufacturing a thin film solar battery, a first electrode layer L constituted of a scatter layer S and a high reflective metallic layer and a transparent conductive layer is formed on a glass substrate 1; a photoelectric conversion layer (a) constituted of a micro-crystal or an amorphous semiconductor is formed on the first electrode layer L; and a transparent electrode layer (u) as a second electrode layer is formed at last, and adjacent unit photoelectric conversion parts formed by patterning those respective layers are electrically and serially connected. The patterning process of the first electrode layer L formed on the glass substrate 1 includes not only the patterning process but also a process for projecting or recessing the substrate surface of a patterning part 1a in order to increase the adhesive force of the photoelectric conversion layer (a) to the substrate 1. For example, the projecting and recessing faces are formed so that a difference between the height of the summit and valley of the projection and recession can be set so as to be at least 1 μm by a sand blast method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、薄膜太陽電池の
製造方法、特に、少なくとも凹凸面を有する散乱層と高
反射率金属層とを備えた第1電極層を、ガラス基板の主
面上に形成してなる薄膜太陽電池の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thin film solar cell, and more particularly, a first electrode layer having at least a scattering layer having an uneven surface and a high reflectance metal layer is formed on the main surface of a glass substrate. The present invention relates to a method for manufacturing a thin film solar cell formed.

【0002】[0002]

【従来の技術】同一基板上に形成された複数の太陽電池
素子が、直列接続されてなる太陽電池の代表例は、薄膜
太陽電池である。
2. Description of the Related Art A typical example of a solar cell in which a plurality of solar cell elements formed on the same substrate are connected in series is a thin film solar cell.

【0003】従来の薄膜太陽電池はガラス基板を用いる
ものが一般的であり、近年では、軽量化、施工性、量産
性においてプラスチックフィルムを用いたフレキシブル
タイプの太陽電池の研究開発も進められいるが、ガラス
基板を用いるものも多く使用されている。
Conventional thin film solar cells generally use a glass substrate, and in recent years, research and development of flexible solar cells using a plastic film have been promoted in terms of weight reduction, workability and mass productivity. The one using a glass substrate is also often used.

【0004】上記ガラス基板を用いる薄膜太陽電池の典
型的な構成の一つとして、ガラス基板上の一方の主面上
に、第1電極層,薄膜半導体層からなる光電変換層およ
び第2電極層(以下、透明電極層ともいう)を順次積層
してなる光電変換素子(またはセル)を複数個形成した
ものが知られている。この場合、ある光電変換素子の第
1電極と隣接する光電変換素子の第2電極を電気的に接
続することを繰り返すことにより、最初の光電変換素子
の第1電極と最後の光電変換素子の第2電極とに必要な
電圧を出力させることができる。例えば、インバータに
より交流化し商用電力源として交流100Vを得るため
には、薄膜太陽電池の出力電圧は100V以上が望まし
く、実際には数10個以上の素子が直列接続される。
As a typical structure of a thin film solar cell using the above glass substrate, a photoelectric conversion layer composed of a first electrode layer, a thin film semiconductor layer and a second electrode layer are provided on one main surface of the glass substrate. It is known that a plurality of photoelectric conversion elements (or cells) formed by sequentially stacking (hereinafter, also referred to as transparent electrode layers) are formed. In this case, by repeatedly electrically connecting the first electrode of a certain photoelectric conversion element and the second electrode of the adjacent photoelectric conversion element, the first electrode of the first photoelectric conversion element and the second electrode of the last photoelectric conversion element are repeatedly connected. The required voltage can be output to the two electrodes. For example, the output voltage of the thin-film solar cell is preferably 100 V or higher in order to convert it to an alternating current by an inverter and obtain 100 V AC as a commercial power source, and several tens or more elements are actually connected in series.

【0005】図2は、前記従来の薄膜太陽電池の構成の
一例を示し、(a)は薄膜太陽電池の上面図、(b)は
薄膜太陽電池の断面図である。
2A and 2B show an example of the structure of the conventional thin film solar cell. FIG. 2A is a top view of the thin film solar cell, and FIG. 2B is a sectional view of the thin film solar cell.

【0006】図2において、ガラス基板1の主面に、第
1電極層L1〜L6、薄膜半導体層a1〜a6および第
2電極層(透明電極層)u1〜u6を順次積層する。前
記各層は、互いにパターニングされて、隣合う単位光電
変換部分(ユニットセル)が電気的に直列に接続され
て、直列接続型の薄膜太陽電池が形成される。太陽光線
は第2電極層(透明電極層)側から入射する。
In FIG. 2, first electrode layers L1 to L6, thin film semiconductor layers a1 to a6, and second electrode layers (transparent electrode layers) u1 to u6 are sequentially laminated on the main surface of a glass substrate 1. Each of the layers is patterned so that adjacent unit photoelectric conversion portions (unit cells) are electrically connected in series to form a serial connection type thin film solar cell. Sun rays enter from the second electrode layer (transparent electrode layer) side.

【0007】ところで、上記第1電極層は、薄膜半導体
層を透過した光を散乱させて、太陽電池の光電変換効率
を向上する観点から、通常、凹凸面を有する散乱層と高
反射率金属層とからなる2層構造(特開平4−2189
77号公報参照)、もしくは凹凸面を有する散乱層と高
反射率金属層と透明導電層とからなる3層構造(特開平
4−334069号参照)とするのが望ましい。
From the viewpoint of improving the photoelectric conversion efficiency of the solar cell by scattering the light transmitted through the thin film semiconductor layer, the first electrode layer is usually a scattering layer having an uneven surface and a high reflectance metal layer. And a two-layer structure (Japanese Patent Laid-Open No. 4-2189
77) or a three-layer structure (see JP-A-4-334069) including a scattering layer having an uneven surface, a high reflectance metal layer, and a transparent conductive layer.

【0008】例えば、前記3層構造を有する第1電極層
を備えた、図2に示す薄膜太陽電池の製造方法について
以下に述べる。先ず、ガラス基板1上に、酸化錫や酸化
亜鉛などの透明導電膜等の光散乱層を、熱CVD法また
はスパツタ法を用いて製膜し、フオトエッチングを用い
てパターン形成する。その上に銀等の高反射率金属層を
形成する。さらに、酸化亜鉛や酸化インジウム等の透明
導電層をスパッタ法を用いて製膜し第1電極層を形成す
る。
For example, a method of manufacturing the thin film solar cell shown in FIG. 2 having the first electrode layer having the three-layer structure will be described below. First, a light-scattering layer such as a transparent conductive film made of tin oxide or zinc oxide is formed on the glass substrate 1 by using a thermal CVD method or a sputtering method, and a pattern is formed by using photo etching. A high-reflectance metal layer such as silver is formed thereon. Further, a transparent conductive layer such as zinc oxide or indium oxide is formed by a sputtering method to form a first electrode layer.

【0009】これを所定の形状にレーザ加工してパター
ニングし、第1電極層L1〜L6を形成する。次いで、
アモルファスシリコンや微結晶シリコンからなる薄膜半
導体層を、プラズマCVD法を用いて形成し、第1電極
層のパターニングラインと平行にレーザ加工を用いて薄
膜半導体層をパターニングする。次に、第2電極層を薄
膜半導体層上にマスク形成する。第2電極層は、マスク
形成により直列接続方向に複数個に分割され、それぞれ
第2電極層u1〜u6となる。
This is laser-processed into a predetermined shape and patterned to form the first electrode layers L1 to L6. Then
A thin film semiconductor layer made of amorphous silicon or microcrystalline silicon is formed by a plasma CVD method, and the thin film semiconductor layer is patterned by laser processing parallel to the patterning line of the first electrode layer. Next, the second electrode layer is masked on the thin film semiconductor layer. The second electrode layer is divided into a plurality of pieces in the serial connection direction by forming a mask, and becomes the second electrode layers u1 to u6, respectively.

【0010】このときのパターニングライン(第2電極
層被形成部)は、第1電極層および薄膜半導体層のパタ
ーニングラインと平行であり、第1電極層、薄膜半導体
層、第2電極層の順に並ぶ。
The patterning line (second electrode layer forming portion) at this time is parallel to the patterning lines of the first electrode layer and the thin film semiconductor layer, and the first electrode layer, the thin film semiconductor layer and the second electrode layer are arranged in this order. line up.

【0011】薄膜半導体層のパタ−ニングラインでは、
薄膜半導体層の除去部分に第2電極層が入り、一方のユ
ニツトセルの第1電極層と隣接するユニットセルの第2
電極層とが導通する。これを繰り返すことにより、薄膜
太陽電池の直列接続を行う。以上の工程により、第2電
極層u1、薄膜半導体層a1、第1電極層L1−第2電
極層u2、薄膜半導体層a2、第1電極層L2−・・・
・−第2電極層u6、薄膜半導体層a6、第1電極層L
6の順の薄膜太陽電池の直列接続が完成する。
In the patterning line of the thin film semiconductor layer,
The second electrode layer enters the removed portion of the thin film semiconductor layer, and the second electrode layer of the unit cell adjacent to the first electrode layer of one unit cell.
It is electrically connected to the electrode layer. By repeating this, the thin film solar cells are connected in series. Through the above steps, the second electrode layer u1, the thin film semiconductor layer a1, the first electrode layer L1-the second electrode layer u2, the thin film semiconductor layer a2, the first electrode layer L2 -...
-Second electrode layer u6, thin film semiconductor layer a6, first electrode layer L
The series connection of thin film solar cells in the order of 6 is completed.

【0012】[0012]

【発明が解決しようとする課題】ところで上記薄膜太陽
電池の製造方法においては、下記のような問題があっ
た。
However, the above-mentioned method for manufacturing a thin film solar cell has the following problems.

【0013】前述のように、第1電極層分割ライン上の
ガラス基板表面には、直接、薄膜半導体層が形成され
る。一方、従来の薄膜太陽電池の製造工程においては、
第1電極層のパターニングは、光散乱膜が比較的厚い膜
であることを考慮し、前述のようにフォトエツチング法
やレーザ加工法が用いられており、前記ガラス基板の薄
膜半導体層形成面は比較的平滑である。従って、ガラス
基板と薄膜半導体層との付着力が低く、そのために膜応
力による膜剥がれが起こり易く、太陽電池の性能不良が
発生する問題があった。
As described above, the thin film semiconductor layer is directly formed on the surface of the glass substrate on the first electrode layer dividing line. On the other hand, in the conventional thin film solar cell manufacturing process,
The first electrode layer is patterned by the photoetching method or the laser processing method as described above in consideration of the fact that the light scattering film is a relatively thick film. It is relatively smooth. Therefore, the adhesive force between the glass substrate and the thin film semiconductor layer is low, and thus film peeling due to film stress is likely to occur, resulting in a problem that the solar cell has poor performance.

【0014】この発明は、上記のような問題点を解消す
るためになされたもので、この発明の課題は、ガラス基
板と薄膜半導体層との間の付着力を向上して信頼性を向
上し、かつ製造工程の簡素化も図った薄膜太陽電池の製
造方法を提供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to improve the adhesion between the glass substrate and the thin film semiconductor layer to improve the reliability. Another object of the present invention is to provide a method for manufacturing a thin-film solar cell, which simplifies the manufacturing process.

【0015】[0015]

【課題を解決するための手段】前述の課題を解決するた
め、この発明によれば、ガラス基板の主面上に、凹凸面
を有する散乱層と高反射率金属層とからなる第1電極
層、もしくは凹凸面を有する散乱層と高反射率金属層と
透明導電層とからなる第1電極層を形成し、この第1電
極層の上に、微結晶または非晶質半導体からなる光電変
換層を形成し、最後に第2電極層としての透明電極層を
形成し、前記各層が互いにパターニングされて隣合う単
位光電変換部分(ユニットセル)を電気的に直列に接続
してなる薄膜太陽電池の製造方法において、前記ガラス
基板主面上に形成した第1電極層のパターニング加工工
程は、パターニング加工と同時に、前記光電変換層の基
板への付着力を高めるために当該パターニング部の前記
基板表面を凹凸化する工程を含むこととする(請求項1
の発明)。
In order to solve the above-mentioned problems, according to the present invention, a first electrode layer comprising a scattering layer having an uneven surface and a high reflectance metal layer on the main surface of a glass substrate. Alternatively, a first electrode layer including a scattering layer having an uneven surface, a high reflectance metal layer, and a transparent conductive layer is formed, and a photoelectric conversion layer including a microcrystal or an amorphous semiconductor is formed on the first electrode layer. And finally forming a transparent electrode layer as a second electrode layer, the layers are patterned to each other, and adjacent unit photoelectric conversion portions (unit cells) are electrically connected in series. In the manufacturing method, the step of patterning the first electrode layer formed on the main surface of the glass substrate is performed at the same time as the patterning step so that the substrate surface of the patterning portion is increased in order to increase the adhesion of the photoelectric conversion layer to the substrate. Roughen And including the step (claim 1
Invention).

【0016】前記請求項1の発明によれば、光電変換層
の基板への付着力が向上し、太陽電池の信頼性が向上す
る。また、パターニング加工と凹凸化加工が同時にでき
るので、製造プロセスは簡素である。
According to the invention of claim 1, the adhesion of the photoelectric conversion layer to the substrate is improved and the reliability of the solar cell is improved. Moreover, since the patterning process and the concavo-convex process can be performed at the same time, the manufacturing process is simple.

【0017】前記請求項1の発明の実施態様としては、
下記請求項2ないし4の発明が好適である。即ち、請求
項1記載の薄膜太陽電池の製造方法において、前記第1
電極層のパターニング加工および基板表面の凹凸化加工
工程は、サンドブラスト法ととする(請求項2の発
明)。サンドブラストパターニングはドライ加工である
ので、フオトプロセスを用いたケミカルパターニングに
比べて、パターニング工程が単純であり、指向性が高い
加工なので非加工部の保護が簡素化できる。
As an embodiment of the invention of claim 1,
The inventions of claims 2 to 4 below are preferable. That is, in the method of manufacturing a thin film solar cell according to claim 1, the first
The step of patterning the electrode layer and the step of roughening the surface of the substrate are performed by the sandblast method (the invention of claim 2). Since sandblast patterning is a dry process, the patterning process is simpler and the process has a high directivity as compared with chemical patterning using a photo process, so that protection of a non-processed part can be simplified.

【0018】また、前記請求項1または2記載の薄膜太
陽電池の製造方法において、前記基板表面の凹凸化面
は、凹凸の山の頂点と谷の高さの差が少なくとも1μm
とする(請求項3の発明)。さらにまた、請求項2記載
の薄膜太陽電池の製造方法において、前記サンドブラス
ト法において加工に用いる砥粒の粒径は、5μm以上と
する(請求項4の発明)。上記により所望の凹凸面が得
られる。
In the method for manufacturing a thin-film solar cell according to claim 1 or 2, the uneven surface of the substrate surface has a difference in height between peaks and valleys of unevenness of at least 1 μm.
(Invention of Claim 3). Furthermore, in the method for manufacturing a thin-film solar cell according to claim 2, the grain size of the abrasive grains used for processing in the sandblast method is 5 μm or more (invention of claim 4). With the above, a desired uneven surface can be obtained.

【0019】[0019]

【発明の実施の形態】図面に基づき、本発明の実施例に
ついて以下に述べる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0020】図1は、本発明の実施例に関わる薄膜太陽
電池の製造方法を示す工程図である。図1の工程(a)
〜(f)に基づき、製造方法の実施例について、以下に
述べる。
FIG. 1 is a process chart showing a method of manufacturing a thin film solar cell according to an embodiment of the present invention. Step (a) of FIG.
Based on (f) to (f), examples of the manufacturing method will be described below.

【0021】まず、厚さ2mmのガラス基板1上に、熱
CVD法を用いて、散乱層Sとして厚さ約1μmの酸化
錫膜を形成した。この酸化錫膜の表面は、光散乱効果を
得るために、山の頂上と谷の高さの差が約1μmの凹凸
形状を有するものとした(工程a)。
First, a tin oxide film having a thickness of about 1 μm was formed as the scattering layer S on the glass substrate 1 having a thickness of 2 mm by the thermal CVD method. In order to obtain a light scattering effect, the surface of this tin oxide film had an uneven shape in which the difference between the heights of peaks and valleys was about 1 μm (step a).

【0022】次にスパッタ法を用いて、高い反射率を有
する銀(厚さ100nm)の膜を形成し、さらに、透明
導電膜である酸化亜鉛(厚さ60nm)を製膜し、第1
電極層Lを形成した(工程b)。
Next, a film of silver (thickness 100 nm) having a high reflectance is formed by using a sputtering method, and further zinc oxide (thickness 60 nm) which is a transparent conductive film is formed.
The electrode layer L was formed (step b).

【0023】続いて、前記酸化錫、銀および酸化亜鉛か
らなる第1電極層Lを一括して、サンドブラスト法によ
りパターニングし、G1のパターニングラインにより分
離された第1電極層Lを形成した。このとき、サンドブ
ラストパターニングにより、ガラス基板表面のパターニ
ング部1aは、散乱膜である酸化錫と同様に、山の頂上
と谷の高さの差が約1μm以上の凹凸形状となるように
凹凸化加工を行なった(工程c)。
Subsequently, the first electrode layers L made of tin oxide, silver and zinc oxide were collectively patterned by the sandblast method to form the first electrode layers L separated by the G1 patterning line. At this time, by sand blast patterning, the patterning portion 1a on the surface of the glass substrate is made uneven so that the difference in height between peaks and valleys is about 1 μm or more, similar to tin oxide which is a scattering film. Was performed (step c).

【0024】このガラス基板表面のパターニング部1a
の凹凸状態を制御するには、サンドブラストの砥粒粒径
を最適化することが重要であり、ここでは、酸化アルミ
ナの砥粒(粒径25μm)を用いた。
The patterning portion 1a on the surface of the glass substrate
It is important to optimize the grain size of the sandblast abrasive grains in order to control the uneven state of (3). Here, the abrasive grains of alumina oxide (grain size 25 μm) were used.

【0025】次に、上記第1電極層L上およびパターニ
ング部1aを含む分割溝上に、プラズマCVD法を用い
て、アモルファスシリコン膜およびアモルファスシリコ
ンゲルマニウム膜からなる光電変換層aを形成した(工
程d)。続いて、YAG第2高調波レーザを用いて光電
変換層aをパターニングした(工程e)。
Next, a photoelectric conversion layer a composed of an amorphous silicon film and an amorphous silicon germanium film was formed on the first electrode layer L and on the dividing groove including the patterning portion 1a by the plasma CVD method (step d). ). Subsequently, the photoelectric conversion layer a was patterned using a YAG second harmonic laser (step e).

【0026】光電変換層aとしての薄膜半導体層の層構
成は、nip/nip構造から成る2層タンデム構造とした。
そして、ガラス基板側のi層にはアモルファスシリコン
ゲルマニウム膜を、光入射側のi層にはアモルファスシ
リコン膜を用いた。この光電変換層aの総合膜厚は約
0.6μmとした。また、光電変換層aのパターニング
ラインG2のレーザ加工出力は4.6W、パターニング
幅は0.2mmとした。
The layer structure of the thin film semiconductor layer as the photoelectric conversion layer a has a two-layer tandem structure of a nip / nip structure.
An amorphous silicon germanium film was used for the i layer on the glass substrate side, and an amorphous silicon film was used for the i layer on the light incident side. The total film thickness of the photoelectric conversion layer a was about 0.6 μm. The laser processing output of the patterning line G2 of the photoelectric conversion layer a was 4.6 W and the patterning width was 0.2 mm.

【0027】最後に、光電変換層a上および光電変換層
aのパターニング部に酸化インジウムからなる第2電極
層(透明電極層)uを、製膜温度200℃でスパッタ法
を用いてマスク形成した(工程f)。第2電極層uのパ
ターニングラインG3は、マスクにより形成される。な
お、前記酸化インジウム膜の膜厚は70nmである。
Finally, a second electrode layer (transparent electrode layer) u made of indium oxide was mask-formed on the photoelectric conversion layer a and on the patterned portion of the photoelectric conversion layer a at a film forming temperature of 200 ° C. by a sputtering method. (Step f). The patterning line G3 of the second electrode layer u is formed by a mask. The film thickness of the indium oxide film is 70 nm.

【0028】上記のようにして、ガラス基板表面のパタ
ーニング部1aを凹凸化させることにより、基板1と光
電変換層aの接着強度を向上させることができた。これ
により、光電変換層aの膜応力が原因の膜剥がれが無く
なった。
As described above, by making the patterned portion 1a on the surface of the glass substrate uneven, the adhesive strength between the substrate 1 and the photoelectric conversion layer a could be improved. As a result, film peeling due to the film stress of the photoelectric conversion layer a disappeared.

【0029】[0029]

【発明の効果】この発明によれば前述のように、ガラス
基板の主面上に、凹凸面を有する散乱層と高反射率金属
層とからなる第1電極層、もしくは凹凸面を有する散乱
層と高反射率金属層と透明導電層とからなる第1電極層
を形成し、この第1電極層の上に、微結晶または非晶質
半導体からなる光電変換層を形成し、最後に第2電極層
としての透明電極層を形成し、前記各層が互いにパター
ニングされて隣合う単位光電変換部分(ユニットセル)
を電気的に直列に接続してなる薄膜太陽電池の製造方法
において、前記ガラス基板主面上に形成した第1電極層
のパターニング加工工程は、パターニング加工と同時
に、前記光電変換層の基板への付着力を高めるために当
該パターニング部の前記基板表面を凹凸化する工程を含
むこととし、例えば、前記凹凸面を、サンドブラスト法
により、凹凸の山の頂点と谷の高さの差が少なくとも1
μmとすることにより、ガラス基板と光電変換層との間
の付着力を向上して信頼性を向上し、さらに製造工程の
簡素化を図ることができる。
According to the present invention, as described above, the first electrode layer including the scattering layer having the uneven surface and the high reflectance metal layer or the scattering layer having the uneven surface is formed on the main surface of the glass substrate. And a high reflectance metal layer and a transparent conductive layer are formed on the first electrode layer, a photoelectric conversion layer made of a microcrystalline or amorphous semiconductor is formed on the first electrode layer, and finally the second electrode layer is formed. Forming a transparent electrode layer as an electrode layer, the layers are patterned to be adjacent to each other, and adjacent unit photoelectric conversion portions (unit cells)
In the method for manufacturing a thin-film solar cell in which the above are electrically connected in series, the patterning step of the first electrode layer formed on the glass substrate main surface is performed at the same time as the patterning step to form the photoelectric conversion layer on the substrate. In order to increase the adhesive force, a step of making the substrate surface of the patterning portion uneven is included, and for example, the uneven surface is formed by sandblasting so that the difference in height between the peaks and valleys of the unevenness is at least 1.
By setting the thickness to μm, the adhesion between the glass substrate and the photoelectric conversion layer can be improved, the reliability can be improved, and the manufacturing process can be simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例に関わる薄膜太陽電池の製造
工程の一例を示す図
FIG. 1 is a diagram showing an example of a manufacturing process of a thin film solar cell according to an embodiment of the present invention.

【図2】従来の薄膜太陽電池の構成と製造工程の一例を
説明する図
FIG. 2 is a diagram illustrating an example of the configuration and manufacturing process of a conventional thin-film solar cell.

【符号の説明】[Explanation of symbols]

1:ガラス基板、1a:ガラス基板表面のパターニング
部、a:光電変換層、G1,G2,G3:パターニング
ライン、L:第1電極層、S:散乱層、u:第2電極層
(透明電極層)。
1: glass substrate, 1a: patterning portion on glass substrate surface, a: photoelectric conversion layer, G1, G2, G3: patterning line, L: first electrode layer, S: scattering layer, u: second electrode layer (transparent electrode) layer).

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ガラス基板の主面上に、凹凸面を有する
散乱層と高反射率金属層とからなる第1電極層、もしく
は凹凸面を有する散乱層と高反射率金属層と透明導電層
とからなる第1電極層を形成し、この第1電極層の上
に、微結晶または非晶質半導体からなる光電変換層を形
成し、最後に第2電極層としての透明電極層を形成し、
前記各層が互いにパターニングされて隣合う単位光電変
換部分(ユニットセル)を電気的に直列に接続してなる
薄膜太陽電池の製造方法において、 前記ガラス基板主面上に形成した第1電極層のパターニ
ング加工工程は、パターニング加工と同時に、前記光電
変換層の基板への付着力を高めるために当該パターニン
グ部の前記基板表面を凹凸化する工程を含むことを特徴
とする薄膜太陽電池の製造方法。
1. A first electrode layer comprising a scattering layer having an uneven surface and a high reflectance metal layer on the main surface of a glass substrate, or a scattering layer having an uneven surface, a high reflectance metal layer and a transparent conductive layer. And a photoelectric conversion layer made of a microcrystalline or amorphous semiconductor is formed on the first electrode layer, and finally a transparent electrode layer as a second electrode layer is formed. ,
A method for manufacturing a thin-film solar cell in which each layer is patterned to electrically connect adjacent unit photoelectric conversion portions (unit cells) in series, wherein patterning of a first electrode layer formed on the glass substrate main surface is performed. The method for manufacturing a thin film solar cell, wherein the processing step includes a step of making the surface of the substrate of the patterning portion uneven in order to increase the adhesion of the photoelectric conversion layer to the substrate simultaneously with the patterning processing.
【請求項2】 請求項1記載の薄膜太陽電池の製造方法
において、前記第1電極層のパターニング加工および基
板表面の凹凸化加工工程は、サンドブラスト法とするこ
とを特徴とする薄膜太陽電池の製造方法。
2. The method of manufacturing a thin-film solar cell according to claim 1, wherein the patterning process of the first electrode layer and the roughening process of the substrate surface are performed by a sandblast method. Method.
【請求項3】 請求項1または2記載の薄膜太陽電池の
製造方法において、前記基板表面の凹凸化面は、凹凸の
山の頂点と谷の高さの差が少なくとも1μmとすること
を特徴とする薄膜太陽電池の製造方法。
3. The method for manufacturing a thin film solar cell according to claim 1, wherein the uneven surface of the substrate surface has a difference in height between peaks and valleys of unevenness of at least 1 μm. Method for manufacturing thin film solar cell.
【請求項4】 請求項2記載の薄膜太陽電池の製造方法
において、前記サンドブラスト法において加工に用いる
砥粒の粒径は、5μm以上とすることを特徴とする薄膜
太陽電池の製造方法。
4. The method for manufacturing a thin film solar cell according to claim 2, wherein the grain size of the abrasive grains used for processing in the sandblasting method is 5 μm or more.
JP2001204935A 2001-07-05 2001-07-05 Method for manufacturing thin film solar battery Pending JP2003023169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001204935A JP2003023169A (en) 2001-07-05 2001-07-05 Method for manufacturing thin film solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001204935A JP2003023169A (en) 2001-07-05 2001-07-05 Method for manufacturing thin film solar battery

Publications (1)

Publication Number Publication Date
JP2003023169A true JP2003023169A (en) 2003-01-24

Family

ID=19041329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001204935A Pending JP2003023169A (en) 2001-07-05 2001-07-05 Method for manufacturing thin film solar battery

Country Status (1)

Country Link
JP (1) JP2003023169A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100847593B1 (en) 2006-11-20 2008-07-22 주식회사 티지솔라 Solar cells and method for fabricating the same
KR20110086335A (en) * 2010-01-22 2011-07-28 주성엔지니어링(주) Thin film type solar cell and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100847593B1 (en) 2006-11-20 2008-07-22 주식회사 티지솔라 Solar cells and method for fabricating the same
KR20110086335A (en) * 2010-01-22 2011-07-28 주성엔지니어링(주) Thin film type solar cell and method for manufacturing the same
KR101676364B1 (en) * 2010-01-22 2016-11-16 주성엔지니어링(주) Thin film type Solar Cell and Method for manufacturing the same

Similar Documents

Publication Publication Date Title
TWI335085B (en) Bifacial thin film solar cell and method for fabricating the same
US6372977B1 (en) Electronic apparatus with a solar battery
JP7064590B2 (en) Manufacturing process of series connection structure of thin-film solar cells and series connection structure of thin-film solar cells
JP5927437B2 (en) Solar cell module
US8507310B2 (en) Method for manufacturing thin-film photoelectric conversion device
JP2002057357A (en) Thin-film solar battery and its manufacturing method
JP4379560B2 (en) Thin film solar cell and manufacturing method thereof
JPH10233517A (en) Photoelectric conversion device and its manufacturing method
JP2009289817A (en) Photoelectric conversion device and method of manufacturing the same
JP2003124481A (en) Solar battery
JPH1168131A (en) Manufacture of solar battery
JP2003023169A (en) Method for manufacturing thin film solar battery
JP3492213B2 (en) Manufacturing method of thin film solar cell
KR20050087253A (en) Solar cell using layer transfer process and fabrication method thereof
JP4245135B2 (en) Thin film solar cell manufacturing method
JP3746410B2 (en) Method for manufacturing thin film solar cell
JPH04348570A (en) Integrated type photovoltaic cell module and manufacture thereof
US20210288198A1 (en) Thin Film Photo-Voltaic Module
JP4403654B2 (en) Thin film solar cell
JP2000196113A (en) Solar battery
JPH07105511B2 (en) Photovoltaic device manufacturing method
JP2001111084A (en) Thin film solar cell module
JPH0613637A (en) Large area thin film solar cell
JP2630657B2 (en) Manufacturing method of integrated multilayer amorphous solar cell
JPH0883922A (en) Solar cell and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061017

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081016

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081016

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090616