JP2003017628A - Resin-sealed semiconductor device - Google Patents

Resin-sealed semiconductor device

Info

Publication number
JP2003017628A
JP2003017628A JP2001202645A JP2001202645A JP2003017628A JP 2003017628 A JP2003017628 A JP 2003017628A JP 2001202645 A JP2001202645 A JP 2001202645A JP 2001202645 A JP2001202645 A JP 2001202645A JP 2003017628 A JP2003017628 A JP 2003017628A
Authority
JP
Japan
Prior art keywords
lead
resin
semiconductor device
sealing portion
crank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001202645A
Other languages
Japanese (ja)
Other versions
JP4439143B2 (en
Inventor
Akira Honda
晃 本多
Kotaro Sato
孝太郎 佐藤
Kazuhiro Nakamura
和洋 中村
Toshiyasu Yokosu
寿康 横洲
Takao Senda
孝雄 仙田
Akikazu Tsuchiya
昭和 土屋
Atsushi Ochitani
篤 落谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Inter Electronics Corp
Original Assignee
Nihon Inter Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Inter Electronics Corp filed Critical Nihon Inter Electronics Corp
Priority to JP2001202645A priority Critical patent/JP4439143B2/en
Publication of JP2003017628A publication Critical patent/JP2003017628A/en
Application granted granted Critical
Publication of JP4439143B2 publication Critical patent/JP4439143B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/84801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Abstract

PROBLEM TO BE SOLVED: To obtain an optimal resin-sealed semiconductor device by considering respective characteristics which are in a relation of trade-off. SOLUTION: A first crank 2c-1 and a second crank 2c-2 are formed on a second lead 2 side. The crank 2c-1 is formed inside a resin sealing part 4, and the crank 2c-2 is formed outside a second lead 2 exposed from the side of the part 4. By this configuration, chipping of the corners of the part 4 is prevented, heat dissipating characteristics and moisture-resistance are improved, and current capacity is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電子回路基板等に
面実装のできる特に小型の樹脂封止型半導体装置の改良
構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved structure of a particularly small resin-sealed semiconductor device which can be surface-mounted on an electronic circuit board or the like.

【0002】[0002]

【従来の技術】従来のこの種の樹脂封止型半導体装置の
構造例を図8〜図11に示す。図8の樹脂封止型半導体
装置は、クランク状に折り曲げた第1リード1の立上り
部1c及び同様の第2リード2の立上り部2cが樹脂封
止部4の側面から外部に露出し、かつ、該第1リード1
の外方端1bの下面及び該第2リード2の外方端2bの
下面が樹脂封止部4の下面と同一面となるように形成さ
れたものである。また、第1リード1の内方端1a上に
半導体ペレット3を固着させ、該半導体ペレット3の表
面電極(図示せず)と第2リード2の内方端2a間を細
線ワイヤ5を用いてボンディングにより結線されてい
る。
2. Description of the Related Art A structural example of a conventional resin-sealed semiconductor device of this type is shown in FIGS. In the resin-encapsulated semiconductor device of FIG. 8, the rising portion 1c of the first lead 1 and the similar rising portion 2c of the second lead 2 bent in a crank shape are exposed to the outside from the side surface of the resin-sealing portion 4, and , The first lead 1
The lower surface of the outer end 1b and the lower surface of the outer end 2b of the second lead 2 are formed so as to be flush with the lower surface of the resin sealing portion 4. Further, the semiconductor pellet 3 is fixed on the inner end 1a of the first lead 1, and a fine wire 5 is used between the surface electrode (not shown) of the semiconductor pellet 3 and the inner end 2a of the second lead 2. It is connected by bonding.

【0003】図9の樹脂封止型半導体装置は、第1リー
ド1の外方端1bの一部及びその一部と連続する立上り
部1cを樹脂封止部4内に埋設するようにし、かつ、外
方端1bの一部が樹脂封止部4の底面に露出するように
したものである。なお、第2リード2の構成及び他の構
成は図8の樹脂封止型半導体装置と同様であるため、同
一符号を付してその説明を省略する。
In the resin-sealed type semiconductor device of FIG. 9, a part of the outer end 1b of the first lead 1 and a rising part 1c continuous with the part are embedded in the resin-sealed part 4. A part of the outer end 1b is exposed on the bottom surface of the resin sealing portion 4. The configuration of the second lead 2 and other configurations are similar to those of the resin-encapsulated semiconductor device of FIG. 8, and thus the same reference numerals are given and the description thereof is omitted.

【0004】図10の樹脂封止型半導体装置は、第1リ
ード1と第2リード2との内方端1a,2a間に半導体
ペレット3を挟むように半田固着し、該第1リード1及
び第2リード2の外方端1b,2bの一部及び該一部と
連続する立上り部1c,2cが共に樹脂封止部4内に埋
設するようにしたものである。
In the resin-sealed semiconductor device shown in FIG. 10, the semiconductor pellet 3 is soldered and fixed so as to sandwich the semiconductor pellet 3 between the inner ends 1a, 2a of the first lead 1 and the second lead 2. A part of the outer ends 1b, 2b of the second lead 2 and the rising portions 1c, 2c continuous with the part are both embedded in the resin sealing portion 4.

【0005】図11の樹脂封止型半導体装置は、本出願
人が先に特願2000−112781号として出願した
ものである。すなわち、この樹脂封止型半導体装置は、
第2リード2の立上げ部2cを樹脂封止部4内に埋設さ
せずに外部に露出するようにしたものである。
The resin-encapsulated semiconductor device of FIG. 11 was previously filed by the applicant as Japanese Patent Application No. 2000-112781. That is, this resin-sealed semiconductor device is
The rising portion 2c of the second lead 2 is not buried in the resin sealing portion 4 but is exposed to the outside.

【0006】[0006]

【発明が解決しようとする課題】図8の樹脂封止型半導
体装置では、第1リード1の外方端1bと第2リード2
の外方端2b間の沿面距離(creeping distance)Lc
(図8の太線で示した部分が沿面距離相当長である。)
を比較的長く採ることができる。しかし、この種の装置
のより一層の小型化の要請に如何に応えるかという点で
解決すべき課題があった。
In the resin-sealed semiconductor device of FIG. 8, the outer end 1b of the first lead 1 and the second lead 2 are formed.
Creeping distance Lc between the outer ends 2b of the
(The portion shown by the thick line in FIG. 8 is the length corresponding to the creepage distance.)
Can be taken for a relatively long time. However, there is a problem to be solved in terms of how to meet the demand for further miniaturization of this type of device.

【0007】また、樹脂封止部4の側面から第1リード
1の立上り部1c及び第2リード2の立上り部2cが外
部に露出するようになっているので、半導体ペレット3
の動作時に発生する熱抵抗が、その長さ分大きくなって
しまうという解決すべき課題があった。
Since the rising portion 1c of the first lead 1 and the rising portion 2c of the second lead 2 are exposed to the outside from the side surface of the resin sealing portion 4, the semiconductor pellet 3 is formed.
There was a problem to be solved in that the thermal resistance generated during the operation of was increased by the length.

【0008】さらに、半導体ペレット3の表面と第2リ
ード2の内方端2aとが細線ワイヤ5でボンディングさ
れているため、半導体ペレット3の上面からの放熱が悪
く、該半導体ペレット3に流せる電流を大きくできない
という解決すべき課題もあった。なお、図8〜図11の
樹脂封止型半導体装置における放熱性についての詳しい
考察は後述する。
Further, since the surface of the semiconductor pellet 3 and the inner end 2a of the second lead 2 are bonded by the fine wire 5, the heat radiation from the upper surface of the semiconductor pellet 3 is poor, and the current that can be passed through the semiconductor pellet 3 is low. There was also a problem to be solved that the size could not be increased. Detailed consideration of heat dissipation in the resin-sealed semiconductor device of FIGS. 8 to 11 will be described later.

【0009】図9の樹脂封止型半導体装置では、第1リ
ード1の立上り部1cが樹脂封止部4内に埋設されてい
るので、図8のものに比べその分、放熱性が良好となる
が、その他の点では前記同様の解決すべき課題があっ
た。
In the resin-encapsulated semiconductor device of FIG. 9, since the rising portion 1c of the first lead 1 is buried in the resin-encapsulated portion 4, heat dissipation is better than that of FIG. However, in other respects, there was a problem to be solved similar to the above.

【0010】図10の樹脂封止型半導体装置では、第1
リード1の立上り部1cと第2リード2の立上り部2c
とが樹脂封止部4内に埋設されているので、両リード
1,2間の沿面距離Lcが特に小さくなり、逆電圧の大
きい半導体装置には対応し難い。この種の樹脂封止型半
導体装置は、電子回路基板の小型化や高密度実装化等の
要求に応えるために装置そのものの小型化が一層進んで
おり、外形が長さ方向で約4mm程度となっている。し
たがって、上記の沿面距離Lcも相対的にきわめて小さ
くなり、小型化の要請の中で、400V以上の逆耐圧を
得るために、如何に沿面距離Lcを大きくするかが課題
となっている。因みに、UL規格では400V/2mm
の沿面距離Lcが求められている。
In the resin-sealed semiconductor device of FIG. 10, the first
Rise 1c of lead 1 and rise 2c of second lead 2
Since the and are embedded in the resin sealing portion 4, the creepage distance Lc between the leads 1 and 2 is particularly small, and it is difficult to cope with a semiconductor device having a large reverse voltage. This type of resin-encapsulated semiconductor device has been further miniaturized in order to meet the demands for miniaturization of electronic circuit boards and high-density mounting, and the outer shape is about 4 mm in the longitudinal direction. Has become. Therefore, the creepage distance Lc is also relatively small, and in order to obtain a reverse breakdown voltage of 400 V or more, how to increase the creepage distance Lc is an issue in the demand for miniaturization. By the way, UL standard 400V / 2mm
The creepage distance Lc is calculated.

【0011】図11の樹脂封止型半導体装置では、第2
リード2の立上り部2cが樹脂封止部4の側面から外部
に露出しているため、沿面距離Lcがそこそこ採れ、半
導体ペレット3と第2リード2の内方端2aとが、細線
ワイヤを用いることなくその凸部2dを介して直接固着
しているため、放熱性も良好となっている。しかしなが
ら、クランク状の立上り部2cをフォーミング加工をす
る際に、クランク状の折り曲げ開始点から樹脂封止部4
の頂面までの高さh1が、非常に薄くなるために(例え
ば、h1=0.10〜0.15mmとなる。)、機械的
ストレスが加わって、樹脂封止部4にクラックや欠損等
が発生させ、半導体装置の電気的特性を劣化させるおそ
れがあることが分かった。
In the resin-sealed semiconductor device of FIG. 11, the second
Since the rising portion 2c of the lead 2 is exposed to the outside from the side surface of the resin sealing portion 4, the creepage distance Lc is moderately set, and the semiconductor pellet 3 and the inner end 2a of the second lead 2 use a thin wire. Since it is directly fixed through the convex portion 2d without being formed, the heat dissipation is also good. However, when forming the crank-shaped rising portion 2c, the resin-sealed portion 4 starts from the crank-shaped bending start point.
Since the height h1 to the top surface of the resin is extremely thin (for example, h1 = 0.10 to 0.15 mm), mechanical stress is applied to the resin sealing portion 4 such as cracks or defects. It has been found that there is a risk that the electric characteristics of the semiconductor device are deteriorated.

【0012】次に、上記図8〜図11の構造を有する樹
脂封止型半導体装置の熱抵抗を計算し、3次元シミュレ
ーションの結果を示すと、図12〜図15のようにな
る。なお、図12は図8に、図13は図9に、図14は
図10に、及び図15は図11に、それぞれ対応する構
造を有する樹脂封止型半導体装置の3次元シミュレーシ
ョンの結果である。また、具体的設定条件の概略を示す
と次の通りである。
Next, the thermal resistance of the resin-sealed semiconductor device having the structure shown in FIGS. 8 to 11 is calculated, and the results of the three-dimensional simulation are shown in FIGS. 12 to 15. Note that FIG. 12 is FIG. 8, FIG. 13 is FIG. 9, FIG. 14 is FIG. 10, and FIG. 15 is FIG. 11, which are results of three-dimensional simulation of a resin-sealed semiconductor device having a corresponding structure. is there. The outline of specific setting conditions is as follows.

【0013】分割要素数:約2400個(樹脂封止型
半導体装置の長手方向の中心線に対して対称形状である
ため、長手方向の半分領域のみ計算対象としてある。) 半導体ペレットの寸法:1.05□×0.28t(m
m) 電力消費:1.0(W) 電力密度:3.24(W/cm3) 外表面の放熱係数:1.0E−4(W/cm2) 室温:25℃ 熱伝導率(W/mm・℃):Si(84E−3)、C
u(386.4E−3)、半田35.1E−3)、樹脂
封止部のモールド樹脂(7E−4) 以上の条件で、各構造の樹脂封止型半導体装置に1W
(1A×1V)の電力を連続的に与えた場合、各部の温
度が何度に上昇するかを求めた定常状態の3次元熱分布
シミュレーションである。各図において、T1が最も温
度が高く、T10が最も温度が低い。すなわち、温度勾
配は等温線傾斜として示され、T1>T2>T3>T4
>T5>T6>T7>T8>T9>T10となってい
る。
Number of dividing elements: Approximately 2400 (Because it is symmetrical with respect to the center line of the resin-sealed semiconductor device in the longitudinal direction, only half the region in the longitudinal direction is calculated.) Dimension of semiconductor pellet: 1 .05 □ × 0.28t (m
m) Power consumption: 1.0 (W) Power density: 3.24 (W / cm3) Heat dissipation coefficient of outer surface: 1.0E-4 (W / cm2) Room temperature: 25 ° C Thermal conductivity (W / mm ・C): Si (84E-3), C
u (386.4E-3), solder 35.1E-3), mold resin (7E-4) of resin encapsulation part Under the above conditions, 1 W is applied to the resin-encapsulated semiconductor device of each structure.
It is a steady-state three-dimensional heat distribution simulation in which how many times the temperature of each part rises when a power of (1 A × 1 V) is continuously applied. In each figure, T1 has the highest temperature and T10 has the lowest temperature. That is, the temperature gradient is shown as an isotherm slope, T1>T2>T3> T4.
>T5>T6>T7>T8>T9> T10.

【0014】図12における実際の数値例を示せば次の
通りである。T1=74.940℃,T2=69.37
5℃,T3=63.809℃,T4=58.244℃,
T5=52.678℃,T6=47.113℃,T7=
41.547℃,T8=35.982℃,T9=30.
416℃,T10=24.851℃したがって、熱抵抗
(Rth)は、Rth=T1−T10≒50℃/Wとな
る。
The actual numerical examples in FIG. 12 are as follows. T1 = 74.940 ° C., T2 = 69.37
5 ° C, T3 = 63.809 ° C, T4 = 58.244 ° C,
T5 = 52.678 ° C., T6 = 47.113 ° C., T7 =
41.547 ° C., T8 = 35.982 ° C., T9 = 30.
416 ° C., T10 = 24.851 ° C. Therefore, the thermal resistance (Rth) is Rth = T1−T10≈50 ° C./W.

【0015】同様に、図13の構造を有する樹脂封止型
半導体装置のRthは、T1=50.811℃,T10
=24.948℃であるからRth≒26℃/Wとな
る。同様に、図14の構造を有する樹脂封止型半導体装
置のRthは、T1=38.323℃,T10=25.
000℃であるからRth≒13℃/Wとなる。同様
に、図15の構造を有する樹脂封止型半導体装置のRt
hは、T1=40.956℃,T10=24.983℃
であるからRth≒16℃/Wとなる。
Similarly, Rth of the resin-sealed semiconductor device having the structure of FIG. 13 is T1 = 50.811 ° C., T10.
= 24.948 ° C, Rth≈26 ° C / W. Similarly, Rth of the resin-sealed semiconductor device having the structure of FIG. 14 is T1 = 38.323 ° C., T10 = 25.
Since it is 000 ° C., Rth≈13 ° C./W. Similarly, the Rt of the resin-sealed semiconductor device having the structure of FIG.
h is T1 = 40.956 ° C, T10 = 24.983 ° C
Therefore, Rth≈16 ° C./W.

【0016】また、各構造における等温線傾斜α(℃/
div)を示せば次の通りである。図12(図8)の構
造のものでは、α=5.565,図13(図9)のもの
では、α=2.873,図14(図10)のものでは、
α=1.480,図15(図11)のものでは,α=1.
594であった。
In addition, the isotherm slope α (° C /
If div) is shown, it is as follows. 12 (FIG. 8), α = 5.565, FIG. 13 (FIG. 9), α = 2.873, FIG. 14 (FIG. 10),
α = 1.480, in the case of FIG. 15 (FIG. 11), α = 1.
It was 594.

【0017】さらに、以上の3次元熱分布シミュレーシ
ョンの結果、熱分布の特徴を示せば次の通りである。図
12(図8)の構造のものでは、半導体ペレット3と第2
リード2が細線ワイヤ5で接続されているため、該第2
リード2への熱伝達が少なく、第1リード1と第2リー
ド2間の等温線傾斜が大きい。また、第1リード1から
の放熱が相対的に少ない。最大到達温度であるT1の温
度分布も広い。
Further, as a result of the above three-dimensional heat distribution simulation, the features of the heat distribution will be shown as follows. In the structure of FIG. 12 (FIG. 8), the semiconductor pellet 3 and the second
Since the lead 2 is connected by the thin wire 5,
The heat transfer to the lead 2 is small, and the isotherm slope between the first lead 1 and the second lead 2 is large. Further, the heat radiation from the first lead 1 is relatively small. The temperature distribution of T1 which is the maximum reached temperature is also wide.

【0018】図13(図9)の構造のものでは、図12
(図8)の構造のものと同様に、半導体ペレット3と第2
リード2が細線ワイヤ5で接続されているため、該第2
リード2への熱伝達が少なく、第1リード1と第2リー
ド2間の等温線傾斜も大きい。しかし、第1リード1の
外方端1bの一部及びそれに連続する立上り部1cが樹
脂封止部4内に埋設され、半導体ペレット3からの熱伝
達距離が短くなっているため、第1リード1の放熱は良
好となっている。この第1リード1からの放熱効果が寄
与して最大到達温度であるT1の温度分布範囲が狭くな
っている。
In the structure of FIG. 13 (FIG. 9), the structure of FIG.
Similar to the structure of FIG. 8, the semiconductor pellet 3 and the second
Since the lead 2 is connected by the thin wire 5,
The heat transfer to the lead 2 is small, and the isotherm slope between the first lead 1 and the second lead 2 is also large. However, since a part of the outer end 1b of the first lead 1 and the rising portion 1c continuous with the outer end 1b are embedded in the resin sealing portion 4 and the heat transfer distance from the semiconductor pellet 3 is shortened, the first lead 1 The heat dissipation of No. 1 is good. The heat radiation effect from the first lead 1 contributes to narrow the temperature distribution range of T1 which is the maximum reached temperature.

【0019】図14(図10)の構造のものでは、半導
体ペレット3が第2リード2の内方端2aに直接半田接
続されているため、該第2リード2への熱伝達が大き
い。また、第1リード1と第2リード2間の等温線傾斜
の乱れも少なく、両リード1,2からの放熱も良好であ
る。さらに、半導体ペレット3の固着方法と第2リード
2からの放熱効果が加わって、略左右均等な熱分布とな
っている。
In the structure shown in FIG. 14 (FIG. 10), since the semiconductor pellet 3 is directly soldered to the inner end 2a of the second lead 2, heat transfer to the second lead 2 is large. Further, the disturbance of the isotherm slope between the first lead 1 and the second lead 2 is small, and the heat radiation from both leads 1 and 2 is good. Furthermore, the method of fixing the semiconductor pellets 3 and the effect of radiating heat from the second leads 2 have been added to provide a substantially even heat distribution on the left and right.

【0020】図15(図11)の構造のものでは、上記と
同様に半導体ペレット3が第2リード2の内方端2aに
直接半田接続されていることに加え、半導体ペレット3
から第2リード2の外方端2bに到る距離が相対的に長
くなるために、最大到達温度であるT1の温度分布範囲
が第2リード2側にシフトしている。また、準高温側と
なるT3の温度分布範囲も第2リード側に広がると共
に、第2リード2からの放熱効果が低下している。
In the structure shown in FIG. 15 (FIG. 11), the semiconductor pellet 3 is directly soldered to the inner end 2a of the second lead 2 in the same manner as described above.
Since the distance from to the outer end 2b of the second lead 2 becomes relatively long, the temperature distribution range of T1 which is the maximum reached temperature is shifted to the second lead 2 side. Further, the temperature distribution range of T3 on the quasi-high temperature side is expanded to the second lead side, and the heat radiation effect from the second lead 2 is reduced.

【0021】次に、各構造における沿面距離Lcを比較
して見ると、図12(図8)>図15(図11)>図1
3(図9)>図14(図10)となる。また、電流容量
の点から見ると、図12(図8)と図13(図9)の構
造のものは、放熱特性が十分でないために、かかる電量
容量に制限がある。一方、図14(図10)の構造のも
のは沿面距離Lcが最も短いために、底面リフロー時に
短絡のおそれがある。また、図15(図11)の構造の
ものは、前述したように樹脂封止部4の頂面までの高さ
h1が低くフォーミング加工時に損傷し易いことと、逆
に樹脂封止部4の底面までの高さh2(図11参照)が
高いために、フォーミング加工が困難な点がある。この
ように、各構造における熱抵抗、沿面距離、電流容量等
の特性との間には互いにトレード・オフの関係があり、
全長4mm以下という極端に小型の装置にそれらの特性
を如何に最適化して実現するかが大きな解決すべき課題
となっていた。
Next, comparing the creepage distance Lc in each structure, FIG. 12 (FIG. 8)> FIG. 15 (FIG. 11)> FIG.
3 (FIG. 9)> FIG. 14 (FIG. 10). Also, in terms of current capacity, the structures of FIG. 12 (FIG. 8) and FIG. 13 (FIG. 9) are not sufficient in heat dissipation characteristics, so that the electric capacity is limited. On the other hand, in the structure of FIG. 14 (FIG. 10), the creepage distance Lc is the shortest, so there is a risk of a short circuit during bottom surface reflow. Further, in the structure of FIG. 15 (FIG. 11), as described above, the height h1 to the top surface of the resin sealing portion 4 is low and the resin sealing portion 4 is easily damaged during the forming process. Forming is difficult because the height h2 to the bottom surface (see FIG. 11) is high. In this way, there is a trade-off relationship between the characteristics such as thermal resistance, creepage distance, and current capacity in each structure.
A major problem to be solved is how to optimize those characteristics and realize them in an extremely small device having a total length of 4 mm or less.

【0022】[0022]

【発明の目的】本発明は上記のような課題を解決するた
めになされたもので、放熱特性の向上、沿面距離増
大、樹脂封止部の頂面までの高さh1の確保、第2
リードのフォーミング加工の容易性の確保、第2リー
ドの長手方向への十分な引張強度、半導体ペレットま
での水分侵入経路をできるだけ長くして耐湿性を向上さ
せること、樹脂封止部内でのリード間絶縁耐圧のため
に適した形状の確保、樹脂封止部内部での熱分布状態
や応力への配慮、組立工程の簡便性やトータルコスト
の低減等を総合的に考慮し、現時点で最適な樹脂封止型
半導体装置を提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and improves the heat dissipation characteristics, increases the creepage distance, and secures the height h1 to the top surface of the resin sealing portion.
Ensuring ease of lead forming processing, sufficient tensile strength in the longitudinal direction of the second lead, lengthening the moisture entry path to the semiconductor pellet as much as possible to improve moisture resistance, and between the leads within the resin encapsulation part Optimum resin at the present time in consideration of securing suitable shape for dielectric strength, consideration of heat distribution and stress inside resin encapsulation, simplicity of assembly process and reduction of total cost. It is an object to provide a sealed semiconductor device.

【0023】[0023]

【課題を解決するための手段】第1の発明の樹脂封止型
半導体装置は、第1リードと第2リードの内方端の対向
面間に半導体ペレットを固着し、該半導体ペレット及び
前記内方端の周囲を樹脂にて封止し、樹脂封止部を形成
した樹脂封止型半導体装置において、前記第1リードの
外方端の下面は、前記樹脂封止部の下面と同一平面と
し、かつ、該外方端の一部がその下面のみを前記樹脂封
止部の下面に露出し、該外方端の一部と連続する立上り
部は、前記樹脂封止部内に埋設され、該立上り部に連続
する内方端は、前記半導体ペレットに固着され、該半導
体ペレットの表面と前記第2リードの内方端とが固着さ
れ、該第2リードは、その内方端から連続して下方に所
定の角度傾斜して折り曲がり、かつ、前記樹脂封止部内
に埋設された第1クランクと、該第1クランクと連続し
て下方に所定の角度傾斜して折り曲がり、かつ、前記樹
脂封止部外に露出した第2クランクとを有し、前記第2
リードの外方端の平坦部が前記樹脂封止部の下面と同一
平面となるように形成したことを特徴とするものであ
る。
According to another aspect of the present invention, there is provided a resin-encapsulated semiconductor device, wherein a semiconductor pellet is fixed between opposing surfaces of inner ends of a first lead and a second lead. In a resin-sealed semiconductor device in which the periphery of one end is sealed with resin to form a resin-sealed portion, the lower surface of the outer end of the first lead is flush with the lower surface of the resin-sealed portion. And, a part of the outer end exposes only its lower surface to the lower surface of the resin sealing portion, and a rising part continuous with a part of the outer end is embedded in the resin sealing portion, An inner end continuous to the rising portion is fixed to the semiconductor pellet, a surface of the semiconductor pellet and an inner end of the second lead are fixed, and the second lead is continuous from the inner end. The first claw bent downward at a predetermined angle and embedded in the resin sealing portion. Links and bend folded by a predetermined angle inclined downward continuously with the first crank and a second crank which is exposed to the resin sealing portion outside the second
The flat portion at the outer end of the lead is formed so as to be flush with the lower surface of the resin sealing portion.

【0024】第2の発明の樹脂封止型半導体装置は、前
記第1リード及び第2リードは板材により形成され、該
第1リードの板厚t1が前記第2リードの板材t2より
も相対的に厚くt1>t2になるように形成されている
ことを特徴とするものである。
In the resin-encapsulated semiconductor device of the second invention, the first lead and the second lead are formed of a plate material, and the plate thickness t1 of the first lead is relatively greater than the plate material t2 of the second lead. It is characterized in that it is formed so as to be thick so that t1> t2.

【0025】第3の発明の樹脂封止型半導体装置は、前
記第1リードの板厚t1が、t1=0.10〜0.16
mmの範囲にあり、かつ、前記第2リードの板厚t2
が、t2=0.10〜0.12の範囲にあることを特徴
とするものである。
In the resin-sealed semiconductor device of the third invention, the plate thickness t1 of the first lead is t1 = 0.10 to 0.16.
mm, and the plate thickness t2 of the second lead
Is in the range of t2 = 0.10-0.12.

【0026】第4の発明の樹脂封止型半導体装置では、
樹脂封止部の下面に露出する第1リードの外方端の一部
の長さL2が、L2=0.35〜0.45mmの範囲に
あることを特徴とするものである。
In the resin-sealed semiconductor device of the fourth invention,
The length L2 of a part of the outer end of the first lead exposed on the lower surface of the resin sealing portion is in the range of L2 = 0.35 to 0.45 mm.

【0027】第5の発明の樹脂封止型半導体装置は、前
記第1リードの内方端に固着された前記半導体ペレット
の中心位置が、前記樹脂封止部の長手方向の中心位置よ
りも前記第2リード側に偏在していることを特徴とする
ものである。
In the resin-encapsulated semiconductor device of the fifth invention, the center position of the semiconductor pellet fixed to the inner end of the first lead is set to be greater than the center position of the resin-sealed portion in the longitudinal direction. It is characterized by being unevenly distributed on the second lead side.

【0028】第6の発明の樹脂封止型半導体装置は、前
記樹脂封止部の底面から頂面までの高さをHとしたと
き、前記第2リードにおける第2クランク上面から前記
頂面までの高さh1を、h1≧0.5Hの範囲としたこ
とを特徴とするものである。
In the resin-sealed semiconductor device of the sixth invention, when the height from the bottom surface to the top surface of the resin-sealed portion is H, from the second crank upper surface to the top surface of the second lead. It is characterized in that the height h1 thereof is within the range of h1 ≧ 0.5H.

【0029】[0029]

【作用】第1の発明の樹脂封止型半導体装置では、第1
リードの外方端の一部が樹脂封止部内に埋設され、該樹
脂封止部の底面と面一になるようにその一部の底面を外
部に露出させると共に、第2リードの内方端を直接半導
体ペレットの表面電極に接続させ、該内方端に連続する
斜めに傾斜する第1クランクは、樹脂封止部内に埋設さ
れ、該樹脂封止部の側面から外部に露出したところで、
さらに下方に傾斜する第2クランクをフォーミング加工
し、第2リードの外方端を樹脂封止部の底面と同一平面
となるようにしたものである。
In the resin-sealed semiconductor device of the first invention, the first
A part of the outer end of the lead is embedded in the resin encapsulation portion, the bottom surface of the part is exposed to the outside so as to be flush with the bottom surface of the resin encapsulation portion, and the inner end of the second lead is formed. Is directly connected to the surface electrode of the semiconductor pellet, the first crank which is continuous with the inner end and is inclined obliquely is embedded in the resin sealing portion, and exposed to the outside from the side surface of the resin sealing portion,
Further, the second crank inclined further downward is formed so that the outer end of the second lead is flush with the bottom surface of the resin sealing portion.

【0030】このため、第2リードの樹脂封止部側面
から外部に露出した第2クランクの折り曲げ開始点から
樹脂封止部の頂面までの高さh1を相対的に従来より大
きくすることができ、フォーミング加工時の樹脂封止部
隅角の欠損を防止することができる。 第2リード側の外方端の一部は樹脂封止部内に埋設さ
れず、その底面も樹脂封止部の底面側に露出しないよう
にしたので、第1リードと第2リード間の沿面距離をそ
こそこ確保できる。 第2クランクの形成により樹脂封止部側面から外部に
露出した該第2クランク折り曲げ開始点から樹脂封止部
の底面までの高さh2を低く抑えることができるため、
載置姿態が安定すると共に、半導体ペレットからの長さ
も短縮されるので、放熱効果が向上する。 第2リードの内方端に連続する部分を樹脂封止部内で
一度下方に折り曲げて第1クランクを形成することによ
り、樹脂封止部側面に到る第2リードの水分侵入経路の
長さが長くなるため、耐湿性が向上する。 樹脂封止部内に埋設された第1クランクの屈曲位置と
第1リード内方端の端部位置の最短距離を、半導体ペレ
ットを挟む第1リード、第2リードの内方端距離に略等
しく設定するようにしたため、内部絶縁耐圧を維持する
のに適した形状が確保できる。
Therefore, the height h1 from the bending start point of the second crank, which is exposed from the side surface of the resin seal portion of the second lead, to the top surface of the resin seal portion can be made relatively larger than in the prior art. Therefore, it is possible to prevent the corner angle of the resin-sealed portion from being damaged during the forming process. A part of the outer end on the second lead side is not embedded in the resin sealing portion, and its bottom surface is also not exposed to the bottom surface side of the resin sealing portion. Therefore, the creepage distance between the first lead and the second lead is reduced. Can be secured for a while. Since the second crank is formed, the height h2 from the second crank bending start point exposed to the outside from the side surface of the resin sealing portion to the bottom surface of the resin sealing portion can be suppressed to a low level.
Since the mounting state is stable and the length from the semiconductor pellet is shortened, the heat dissipation effect is improved. By bending a portion of the second lead, which is continuous with the inner end, downward in the resin-sealed portion to form the first crank, the length of the moisture entry path of the second lead reaching the side surface of the resin-sealed portion is reduced. Since it becomes longer, the moisture resistance is improved. The shortest distance between the bending position of the first crank embedded in the resin sealing portion and the end position of the inner end of the first lead is set to be approximately equal to the inner end distance of the first lead and the second lead sandwiching the semiconductor pellet. Therefore, the shape suitable for maintaining the internal dielectric strength can be secured.

【0031】第2の発明の樹脂封止型半導体装置では、
第1リード及び第2リードは板材により形成され、該第
1リードの板厚t1が前記第2リードの板材t2よりも
相対的に厚くt1>t2になるように形成したので、第
1リードからの放熱が一層促進されると共に、第2リー
ド側の放熱との熱分布特性の均衡が図れる。
In the resin-sealed semiconductor device of the second invention,
The first lead and the second lead are formed of a plate material, and the plate thickness t1 of the first lead is formed to be relatively thicker than the plate material t2 of the second lead so that t1> t2. The heat distribution is further promoted, and the heat distribution characteristics can be balanced with the heat dissipation on the second lead side.

【0032】第3の発明の樹脂封止型半導体装置では、
第1リードの板厚t1が、t1=0.10〜0.16m
mの範囲にあり、かつ、第2リードの板厚t2が、t2
=0.10〜0.12の範囲としたので、かかる範囲で
両者の板厚を選択すれば、確実に第1リードからの放熱
の一層の促進を期待できると共に、該半導体装置の熱分
布のバランスを確保することができる。
In the resin-sealed semiconductor device of the third invention,
The plate thickness t1 of the first lead is t1 = 0.10 to 0.16 m
m, and the plate thickness t2 of the second lead is t2
Since the range of 0.10 to 0.12 is set, if both plate thicknesses are selected in such a range, further promotion of heat radiation from the first lead can be surely expected, and heat distribution of the semiconductor device can be expected. A balance can be secured.

【0033】第4の発明の樹脂封止型半導体装置は、前
記樹脂封止部の下面に露出する前記第1リードの外方端
の一部の長さL2が、L2=0.35〜0.45mmの
範囲にあるようにしたので、かかる範囲の露出面と接触
する基板等の外部部材を介して放熱を確実に促進され
る。
In the resin-encapsulated semiconductor device of the fourth invention, the length L2 of a part of the outer end of the first lead exposed on the lower surface of the resin-encapsulated portion is L2 = 0.35-0. Since it is set in the range of 0.45 mm, heat dissipation is surely promoted through an external member such as a substrate that comes into contact with the exposed surface in the range.

【0034】第5の発明の樹脂封止型半導体装置では、
第1リードの内方端に固着された半導体ペレットの中心
位置が、樹脂封止部の長手方向の中心位置よりも第2リ
ード側に偏在するようにしたので、放熱特性の向上、熱
分布特性の均衡等に寄与することができる。
In the resin-sealed semiconductor device of the fifth invention,
Since the center position of the semiconductor pellet fixed to the inner end of the first lead is arranged more eccentrically to the second lead side than the center position of the resin sealing portion in the longitudinal direction, the heat dissipation characteristics are improved and the heat distribution characteristics are improved. Can contribute to the equilibrium of.

【0035】第6の発明の樹脂封止型半導体装置では、
樹脂封止部の底面から頂面までの高さをHとしたとき、
第2リードにおける第2クランク上面から前記頂面まで
の高さh1を、h1≧0.5Hの範囲としたので、フォ
ーミング加工時あるいはその他の外力に対して樹脂封止
部隅角の必要な強度を確保しつつ、樹脂封止部の底面か
ら第2クランク下面までの高さh2を必要限度確保で
き、ドレード・オフの関係に折り合いをつけながら必要
とする沿面距離を確保できる。
In the resin-sealed semiconductor device of the sixth invention,
When the height from the bottom surface to the top surface of the resin sealing portion is H,
Since the height h1 from the upper surface of the second crank to the top surface of the second lead is set in the range of h1 ≧ 0.5H, the required strength of the corner angle of the resin-sealed portion against forming process or other external force. It is possible to secure the required height h2 from the bottom surface of the resin sealing portion to the lower surface of the second crank, and to secure the required creepage distance while making a compromise in the drape-off relationship.

【0036】[0036]

【発明の実施の形態】以下に、本発明の実施の形態を、
図を参照して説明する。図1は、本発明の樹脂封止型半
導体装置の縦断面図である。図において、樹脂封止型半
導体装置10は、第1リード1と第2リード2の内方端
1a,2aの対向面間に半導体ペレット3を固着し、該
半導体ペレット3及び前記内方端1a,2aの周囲を樹
脂にて封止し、所定の樹脂封止部4を形成している。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.
It will be described with reference to the drawings. FIG. 1 is a vertical sectional view of a resin-sealed semiconductor device of the present invention. In the figure, in a resin-sealed semiconductor device 10, a semiconductor pellet 3 is fixed between opposing surfaces of inner ends 1a, 2a of a first lead 1 and a second lead 2, and the semiconductor pellet 3 and the inner end 1a are fixed. , 2a are sealed with resin to form a predetermined resin sealing portion 4.

【0037】上記の樹脂封止型半導体装置10におい
て、第1リード1の外方端1bの下面は、樹脂封止部4
の下面と同一平面とし、かつ、その外方端1bの一部が
その下面のみを樹脂封止部4の下面に露出するように形
成されている。また、その外方端1bの一部と連続する
立上り部1cは、樹脂封止部4内に埋設され、さらに、
その立上り部1cに連続する内方端1aは水平に折り曲
げられ、その水平の内方端1a上に、半導体ペレット3
が載置され半田にて固着されている。
In the resin-sealed semiconductor device 10 described above, the lower surface of the outer end 1b of the first lead 1 has the resin-sealed portion 4
Is formed so as to be flush with the lower surface of the resin, and a part of the outer end 1b is formed so that only the lower surface is exposed to the lower surface of the resin sealing portion 4. Further, the rising portion 1c which is continuous with a part of the outer end 1b is embedded in the resin sealing portion 4, and
An inner end 1a continuous with the rising portion 1c is horizontally bent, and the semiconductor pellet 3 is placed on the horizontal inner end 1a.
Is placed and fixed by soldering.

【0038】一方、半導体ペレット3の表面電極(図示
せず)と第2リード2の内方端2aとが半田固着され、
その第2リード2は、その内方端2aから連続して下方
に所定の角度傾斜して折り曲がり、かつ、樹脂封止部4
内に埋設された第1クランク2c−1が形成されてい
る。この第1クランク2c−1と連続して下方に所定の
角度傾斜して折り曲がり、かつ、樹脂封止部4外に露出
した位置で、第2クランク2c−2が形成され、また、
第2リードの外方端2bの平坦部が樹脂封止部4の下面
と同一平面となるように形成されている。
On the other hand, the surface electrode (not shown) of the semiconductor pellet 3 and the inner end 2a of the second lead 2 are fixed by soldering,
The second lead 2 is continuously bent from the inner end 2 a thereof and is bent downward at a predetermined angle, and the resin sealing portion 4 is provided.
A first crank 2c-1 buried inside is formed. A second crank 2c-2 is formed at a position where the second crank 2c-1 is bent downward at a predetermined angle and is continuous with the first crank 2c-1, and is exposed to the outside of the resin sealing portion 4, and
The flat portion of the outer end 2b of the second lead is formed so as to be flush with the lower surface of the resin sealing portion 4.

【0039】上記の構成により、概略次のような効果が
得られる。 樹脂封止部4側面から外部に露出した第2クランク2
c−2の折り曲げ開始点から樹脂封止部4の頂面までの
高さh1を相対的に、特に図11に示した構造の樹脂封
止型半導体装置に比べ大きくすることができ、フォーミ
ング加工時の樹脂封止部4隅角の欠損やクラックの発生
を効果的に防止することができる。 第2リード2側の外方端2bの一部は、樹脂封止部4
内に埋設されず、その底面も樹脂封止部4の底面側に露
出しないようにしたので、第1リード1と第2リード2
間の沿面距離Lcを必要限度確保できる。 第2クランク2c−2の形成により、樹脂封止部4側
面から外部に露出した位置での折り曲げ開始点から樹脂
封止部4の底面までの高さh2を低く抑えることができ
るため、樹脂封止型半導体装置10の載置姿態が安定す
ると共に、半導体ペレット3からの長さも短縮されるの
で、放熱効果が向上する。 第2リード2の内方端2aに連続する部分を樹脂封止
部4内で一度下方に折り曲げて第1クランク2c−1を
形成することにより、樹脂封止部4側面に到る第2リー
ド2の水分侵入経路長を長くすることができるので、耐
湿性が向上する。
With the above-mentioned structure, the following effects can be obtained. The second crank 2 exposed to the outside from the side surface of the resin sealing portion 4
The height h1 from the bending start point of c-2 to the top surface of the resin-sealed portion 4 can be made relatively large, especially compared with the resin-sealed semiconductor device having the structure shown in FIG. It is possible to effectively prevent the occurrence of cracks and cracks in the corners of the resin-sealed portion 4 at this time. A part of the outer end 2b on the second lead 2 side is provided with the resin sealing portion 4
The first lead 1 and the second lead 2 are not embedded in the inside and the bottom surface thereof is not exposed to the bottom surface side of the resin sealing portion 4.
The creepage distance Lc between them can be secured to the required limit. Since the second crank 2c-2 is formed, the height h2 from the bending start point at the position exposed to the outside from the side surface of the resin sealing portion 4 to the bottom surface of the resin sealing portion 4 can be suppressed to a low level. Since the mounting state of the static semiconductor device 10 is stable and the length from the semiconductor pellet 3 is shortened, the heat dissipation effect is improved. The second lead reaching the side surface of the resin sealing portion 4 is formed by bending the portion of the second lead 2 that is continuous with the inner end 2a once downward in the resin sealing portion 4 to form the first crank 2c-1. Since the moisture penetration path length of 2 can be lengthened, the moisture resistance is improved.

【0040】[0040]

【実施例】次に、上記の発明の実施例について説明す
る。 (1)樹脂封止型半導体装置10の樹脂封止部4の寸法
は、長さ(L)×幅(W)×高さ(H)とすると、2.
3×1.6×1.0(mm)である。 (2)第1リード1の板厚t1は、t1=0.10〜0
・16(mm)である。 (3)第1リード1の樹脂封止部4から露出した外方端
1bの長さL1は、L1=0.25〜0.35mm程度
である。
EXAMPLES Examples of the above invention will be described below. (1) When the dimensions of the resin-sealed portion 4 of the resin-sealed semiconductor device 10 are length (L) × width (W) × height (H), 2.
It is 3 × 1.6 × 1.0 (mm). (2) The plate thickness t1 of the first lead 1 is t1 = 0.10-0.
-It is 16 (mm). (3) The length L1 of the outer end 1b exposed from the resin sealing portion 4 of the first lead 1 is about L1 = 0.25 to 0.35 mm.

【0041】(4)外方端1bに連続し樹脂封止部4内
に埋設され、底面を該樹脂封止部4の底面と同一なるよ
うに露出した部分の長さL2は、L2=0.35〜0.
45mmである。 (5)半導体ペレット3が載置・固定された第1リード
1の内方端1aの下面から樹脂封止部4の底面までの寸
法e1は、e1=0.14〜0.18mm程度ある。 (6)第1リード1の内方端1a上に載置された半導体
ペレット3の中心位置が、樹脂封止部4の長さLの半分
L/2の位置よりもやや第2リード2側に偏在させてあ
る。
(4) The length L2 of the portion which is continuous with the outer end 1b and is embedded in the resin sealing portion 4 and whose bottom surface is exposed so as to be the same as the bottom surface of the resin sealing portion 4 is L2 = 0. .35-0.
It is 45 mm. (5) The dimension e1 from the lower surface of the inner end 1a of the first lead 1 on which the semiconductor pellet 3 is placed and fixed to the bottom surface of the resin sealing portion 4 is about e1 = 0.14 to 0.18 mm. (6) The center position of the semiconductor pellet 3 placed on the inner end 1a of the first lead 1 is slightly closer to the second lead 2 side than the position of half L / 2 of the length L of the resin sealing portion 4. Is unevenly distributed.

【0042】(7)第2リード2の板厚t2は、t2=
0.10〜0.12mmの範囲である。 (8)第2リード2の内方端2aの半導体ペレット3表
面に対向する側には、凸部2dが形成され、該凸部2d
と半導体ペレット3の表面電極(図示せず)を半田固着
させる。 (9)第2リード2の内方端2aの表面側と樹脂封止部
4の頂面までの距離e2は、e2=0.14〜0.18
mmである。
(7) The plate thickness t2 of the second lead 2 is t2 =
The range is 0.10 to 0.12 mm. (8) A convex portion 2d is formed on a side of the inner end 2a of the second lead 2 facing the surface of the semiconductor pellet 3, and the convex portion 2d is formed.
And the surface electrode (not shown) of the semiconductor pellet 3 is fixed by soldering. (9) The distance e2 between the surface side of the inner end 2a of the second lead 2 and the top surface of the resin sealing portion 4 is e2 = 0.14 to 0.18.
mm.

【0043】(10)第2リード2の樹脂封止部4側面
から外部に露出した第2クランク2c−2の折り曲げ開
始点から樹脂封止部4の頂面までの高さh1は、h1≧
0.5Hである。ここで、Hは樹脂封止部4の高さで、
H=1mmである。 (11)第2クランク2c−2の折り曲げ開始点から樹
脂封止部4の底面までの高さh2は、h2=0.29〜
0.33Hである。 (12)第2リード2の樹脂封止部4側面から露出した
平坦な外方端2bの長さR1は、R1=0.85〜0.
95mmの範囲である。 (13)樹脂封止部4側面から第2クランク2c−2の
終了点までの長さR2は、R2=0.50〜0.70m
mの範囲である。
(10) The height h1 from the bending start point of the second crank 2c-2 exposed from the side surface of the resin sealing portion 4 of the second lead 2 to the top surface of the resin sealing portion 4 is h1 ≧
It is 0.5H. Here, H is the height of the resin sealing portion 4,
H = 1 mm. (11) The height h2 from the bending start point of the second crank 2c-2 to the bottom surface of the resin sealing portion 4 is h2 = 0.29 to
It is 0.33H. (12) The length R1 of the flat outer end 2b exposed from the side surface of the resin sealing portion 4 of the second lead 2 is R1 = 0.85-0.
The range is 95 mm. (13) The length R2 from the side surface of the resin sealing portion 4 to the end point of the second crank 2c-2 is R2 = 0.50 to 0.70 m.
The range is m.

【0044】次に、上記の条件設定の下に製作された本
発明の樹脂封止型半導体装置ついて、熱抵抗を計算し、
その結果を3次元シミュレーションしたものを図2に示
す。なお、図3は上記の熱抵抗を計算するにあたり、分
割要素数を約2400個としたメッシュ分割図である。
図2から分かるように、熱分布特性が大幅に改善され
る。すなわち、図15(図11)の構造のものに比較し
て、最大到達温度T1の範囲が縮小され、準高温部とし
てのT3領域も改善されている。第2リード2側からの
放熱も改善されている。また、図15(図11)のもの
よりは、やや右よりではあるが、図14(図10)の構
造のものに近づいて略均等な熱分布となっている。した
がって、熱応力の面においても問題がない。
Next, the thermal resistance of the resin-encapsulated semiconductor device of the present invention manufactured under the above conditions was calculated,
A three-dimensional simulation of the results is shown in FIG. It should be noted that FIG. 3 is a mesh division diagram in which the number of division elements is about 2400 when calculating the above-mentioned thermal resistance.
As can be seen from FIG. 2, the heat distribution characteristic is significantly improved. That is, as compared with the structure of FIG. 15 (FIG. 11), the range of the maximum reached temperature T1 is reduced, and the T3 region as the quasi-high temperature portion is also improved. The heat radiation from the second lead 2 side is also improved. Also, although slightly to the right of the one in FIG. 15 (FIG. 11), the heat distribution approaches the structure in FIG. 14 (FIG. 10) and has a substantially uniform heat distribution. Therefore, there is no problem in terms of thermal stress.

【0045】以上の実施例によれば、熱抵抗(Rth)
=13.7℃/W、最大到達温度は、38.68℃、等
温線傾斜は、1.520℃/divとなる。また、沿面
距離Lcは、Lc=2.24mmである。このように本
発明は、従来の構造に比べ、放熱特性、熱分布の改善、
沿面距離の確保、樹脂封止部隅角の欠損の回避等を、ト
レード・オフの関係の中で最大限確保している。
According to the above embodiments, the thermal resistance (Rth)
= 13.7 ° C./W, the maximum reached temperature is 38.68 ° C., and the isotherm slope is 1.520 ° C./div. The creepage distance Lc is Lc = 2.24 mm. As described above, the present invention improves the heat dissipation characteristics and the heat distribution as compared with the conventional structure.
We have secured the maximum creeping distance and the avoidance of loss of the corner angle of the resin encapsulation in a trade-off relationship.

【0046】次に、上記樹脂封止型半導体装置の製造方
法について説明する。図4に示すように、本発明の樹脂
封止型半導体装置の製作には一連のカソードフレーム1
1及びアノードフレーム21が用いられる。カソードフ
レーム11は、銅(Cu)材を用い、例えば、板厚0.
15mmのものを使用し、第1リード1がプレス等の機
械により形成される。すなわち、第1リード1は内方端
1a、立上り部1c、外方端1bを有し、連結部6を挟
んで該第1リード1が対向配置され、それぞれ一対なる
ように複数形成されている。これらの第1リード1は、
カソードフレーム11の本体連結部12から直角方向に
多数延在する形状となっている。なお、本体連結部12
には一定間隔毎にガイド孔13が形成されている。
Next, a method of manufacturing the resin-sealed semiconductor device will be described. As shown in FIG. 4, a series of cathode frames 1 is used to manufacture the resin-sealed semiconductor device of the present invention.
1 and the anode frame 21 are used. The cathode frame 11 is made of a copper (Cu) material, and has a plate thickness of, for example, 0.
The first lead 1 is formed by a machine such as a press using a 15 mm one. That is, the first lead 1 has an inner end 1a, a rising portion 1c, and an outer end 1b, and the first leads 1 are arranged so as to face each other with the connecting portion 6 interposed therebetween, and a plurality of them are formed so as to form a pair. . These first leads 1 are
The cathode frame 11 has a shape extending from the main body connecting portion 12 in a right angle direction. The body connecting portion 12
The guide holes 13 are formed at regular intervals.

【0047】アノードフレーム21にカソードフレーム
11と同様に銅(Cu)材を用いるが、板厚はカソード
フレーム11よりも薄く、例えば、板厚0.10mmの
ものを使用し、第2リード2がプレス等の機械により形
成される。すなわち、第2リード2は内方端2a、立上
り部2c、外方端2bを有し、連結部7を挟んで該第2
リード2が対向配置され、それぞれ一対なるように複数
形成されている。これらの第2リード2は、アノードフ
レーム21の本体連結部22から直角方向に多数延在す
る形状となっている。なお、本体連結部22は一定間隔
毎にガイド孔23が形成されているのはカソードフレー
ム11と同様である。
A copper (Cu) material is used for the anode frame 21 similarly to the cathode frame 11, but the plate thickness is thinner than the cathode frame 11, for example, a plate thickness of 0.10 mm is used, and the second lead 2 is It is formed by a machine such as a press. That is, the second lead 2 has an inner end 2 a, a rising portion 2 c, and an outer end 2 b, and the second lead 2 is sandwiched by the connecting portion 7.
The leads 2 are arranged so as to face each other, and a plurality of leads 2 are formed so as to form a pair. Many of these second leads 2 extend from the main body connecting portion 22 of the anode frame 21 in the perpendicular direction. Similar to the cathode frame 11, the body connecting portion 22 has guide holes 23 formed at regular intervals.

【0048】上記カソードフレーム11における第1リ
ード1の内方端1a上に半田ペーストを塗布し、その上
に半導体ペレット3を載置し、さらにその上に半田ペー
ストが塗布される。
The solder paste is applied on the inner end 1a of the first lead 1 in the cathode frame 11, the semiconductor pellet 3 is placed thereon, and the solder paste is applied thereon.

【0049】上記第2リード2の内方端2aの略中央下
面には凸部2dが形成され、半導体ペレット3の表面電
極(図示せず)と対向するようにカソードフレーム11
とアノードフレーム21が重ね合わせられる。その際
に、図示しないガイドピンがカソードフレーム11のガ
イド孔13及びアノードフレーム21のガイド孔23間
に挿通され、両者の位置決めがなされ、第2リード2の
凸部2dが半導体ペレット3の上面に確実に対向するよ
うにセットされる。その後、リフロー等の工程を経て第
1リード1と第2リード2との間に半導体ペレット3が
半田固着される。
A convex portion 2d is formed on the lower surface of the center of the inner end 2a of the second lead 2, and the cathode frame 11 is opposed to the surface electrode (not shown) of the semiconductor pellet 3.
And the anode frame 21 are overlapped. At that time, a guide pin (not shown) is inserted between the guide hole 13 of the cathode frame 11 and the guide hole 23 of the anode frame 21 to position them, and the convex portion 2d of the second lead 2 is placed on the upper surface of the semiconductor pellet 3. Set so that they face each other securely. Then, the semiconductor pellet 3 is soldered and fixed between the first lead 1 and the second lead 2 through a process such as reflow.

【0050】次に、上記のカソードフレーム11及びア
ノードフレーム21を図示しない金型に収め、樹脂モー
ルドを行ない、図5の斜線で示したように樹脂封止部4
を形成する。図6は、図5におけるA−A線に沿う断面
図である。この状態では第2リード2の第1クランク2
c−1のみが樹脂封止部4内に形成され、この第1クラ
ンク2c−1に続く部分から水平の外方端2bまでは、
樹脂封止部4の側面が外部に水平に導出されている。
Next, the cathode frame 11 and the anode frame 21 are housed in a mold (not shown), resin molding is performed, and the resin sealing portion 4 is shown as shown by the hatched lines in FIG.
To form. FIG. 6 is a sectional view taken along the line AA in FIG. In this state, the first crank 2 of the second lead 2
Only c-1 is formed in the resin sealing portion 4, and from the portion following the first crank 2c-1 to the horizontal outer end 2b,
The side surface of the resin sealing portion 4 is horizontally led out to the outside.

【0051】次に、上記フレーム11,21をフォーミ
ング金型に収め、フォーミング加工を行ない、樹脂封止
部4の側面から露出した第2リード2に所定の角度傾斜
した第2クランク2c−2を形成する。その後、プレス
等により各連結部6,7及び本体連結部12,22を切
断し、図7に示すような個々の樹脂封止型半導体装置1
0を得る。
Next, the frames 11 and 21 are housed in a forming die and subjected to a forming process to form a second crank 2c-2 inclined at a predetermined angle on the second lead 2 exposed from the side surface of the resin sealing portion 4. Form. After that, the connecting portions 6 and 7 and the main body connecting portions 12 and 22 are cut by a press or the like, and the individual resin-sealed semiconductor device 1 as shown in FIG.
Get 0.

【0052】なお、上記のカソードリードフレーム11
とアノードリードフレーム21の板厚を変えたのは、最
終的に第1リード1の板厚を第2リード2の板厚よりも
厚くすることにより、半導体ペレット3の動作時に発生
する熱抵抗が、図示しない電子回路基板に近い第1リー
ド1側へ伝達され、結果的に電流容量を増加させること
ができるためである。
The cathode lead frame 11 described above is used.
The reason for changing the plate thickness of the anode lead frame 21 is that the thickness of the first lead 1 is finally made larger than the plate thickness of the second lead 2 so that the thermal resistance generated during the operation of the semiconductor pellet 3 is increased. This is because it is transmitted to the first lead 1 side near the electronic circuit board (not shown), and as a result, the current capacity can be increased.

【0053】したがって、特に電流容量の増加を従来の
構造よりは期待せず、同程度で他の特性、例えば樹脂封
止部4隅角の欠損防止を重視するのであれば、かかる板
厚は同じでも本発明の目的は十分達成することができ
る。
Therefore, if the increase in the current capacity is not particularly expected as compared with the conventional structure, and the other characteristics, for example, prevention of chipping of the corners of the resin-sealed portion 4 are emphasized, the plate thickness is the same. However, the object of the present invention can be sufficiently achieved.

【0054】[0054]

【発明の効果】本発明の樹脂封止型半導体装置は上記の
ように構成したので、概略以下の効果を奏する。 (1)樹脂封止部側面から外部に露出する第2リードの
第2クランクを形成しているので、第1リードと第2リ
ード間の沿面距離Lcを大きく採ることができる。 (2)第2クランクのフォーミング加工時に、樹脂封止
部隅角に機械的ストレスが加わる度合いが少なく、樹脂
封止部の欠損、クラック等を生じさせるおそれがない。 (3)第2クランクのフォーミング加工時の加圧力は、
従来のものに比較して相対的に小さくて済むため、半導
体ペレットに与える機械的ストレスも小さく半導体装置
の電気的特性に悪影響を与えることも少ない。 (4)第2クランクの形成により、該クランク開始点裏
面側から樹脂封止部底面までの高さh2を低く抑えるこ
とができ、樹脂封止型半導体装置を電子回路基板等に搭
載する場合にその載置姿態を安定化させることができ
る。 (5)半導体ペレットが第2リードと細線ワイヤでボン
ディングされている従来のものに比べ、放熱性に優れ、
かつ、第1リードの板厚を第2リードの板厚よりも厚く
する場合には、半導体ペレットの動作時に発生する熱抵
抗が、電子回路基板に近い第1リード側に分散されるた
め、電流容量を大きくすることができる。 (6)第1リード及び第2リードとも樹脂封止部の内部
に所定角度傾斜する折曲部(立上げ部、第1クランク)
が形成され、水分侵入経路長を長くすることができるの
で、耐湿性を改善することができる。 (7)第1リードと第2リードの外観形状が異なるた
め、その形状の相異に対応した極性を容易に判別するこ
とができる。 (8)第2リードは、第1クランクが樹脂封止部内部に
埋設されているために、第2リードの長手方向への引張
強度を十分確保することができる。 (9)樹脂封止部内でのリード間絶縁耐圧のために適し
た形状となっている共に、その内部での熱分布状態や応
力への配慮十分がなされている。 (10)組立工程の簡便性やトータルコストの低減等を
総合的に考慮し、かつ、各要素のトレード・オフの関係
の中で、現時点で最適な樹脂封止型半導体装置となって
いる。
Since the resin-encapsulated semiconductor device of the present invention is constructed as described above, it has the following effects. (1) Since the second crank of the second lead exposed to the outside from the side surface of the resin sealing portion is formed, the creeping distance Lc between the first lead and the second lead can be increased. (2) The degree of mechanical stress applied to the corners of the resin-sealed portion during the forming process of the second crank is small, and there is no possibility of causing defects or cracks in the resin-sealed portion. (3) The pressing force during forming of the second crank is
Since it is relatively small as compared with the conventional one, the mechanical stress applied to the semiconductor pellet is small and the electrical characteristics of the semiconductor device are not adversely affected. (4) By forming the second crank, the height h2 from the rear surface of the crank start point to the bottom surface of the resin-sealed portion can be suppressed to a low level, and when mounting the resin-sealed semiconductor device on an electronic circuit board or the like. The placement state can be stabilized. (5) Excellent heat dissipation compared to the conventional one in which the semiconductor pellet is bonded to the second lead with a thin wire,
Moreover, when the plate thickness of the first lead is made thicker than the plate thickness of the second lead, the thermal resistance generated during the operation of the semiconductor pellet is dispersed on the side of the first lead close to the electronic circuit board, so that the current The capacity can be increased. (6) Both the first lead and the second lead are bent portions (starting portion, first crank) that are inclined at a predetermined angle inside the resin sealing portion.
Are formed, and the length of the moisture invasion path can be lengthened, so that the moisture resistance can be improved. (7) Since the external shapes of the first lead and the second lead are different, it is possible to easily determine the polarities corresponding to the different shapes. (8) Since the first crank of the second lead is embedded inside the resin sealing portion, it is possible to sufficiently secure the tensile strength of the second lead in the longitudinal direction. (9) The shape is suitable for the withstand voltage between the leads in the resin-sealed portion, and the heat distribution state and stress inside the resin-sealed portion are sufficiently taken into consideration. (10) The resin-encapsulated semiconductor device is the most suitable at the present time in consideration of the simplicity of the assembling process and the reduction of the total cost, and the trade-off relationship of each element.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の樹脂封止型半導体装置の縦断面図であ
る。
FIG. 1 is a vertical sectional view of a resin-encapsulated semiconductor device of the present invention.

【図2】本発明の樹脂封止型半導体装置の熱抵抗特性を
計算して3次元シミュレーションした結果の表示図であ
る。
FIG. 2 is a display diagram showing a result of three-dimensional simulation by calculating thermal resistance characteristics of the resin-encapsulated semiconductor device of the present invention.

【図3】上記3次元シミュレーションを行なう場合のメ
ッシュ分割図である。
FIG. 3 is a mesh division diagram when the above three-dimensional simulation is performed.

【図4】本発明の樹脂封止型半導体装置の製造工程を説
明するための各部品を示す斜視図である。
FIG. 4 is a perspective view showing each component for explaining the manufacturing process of the resin-encapsulated semiconductor device of the present invention.

【図5】上記製造工程において、半導体ペレットを挟ん
でアノードフレームとカソードフレームを組合わせた状
態の平面図である。
FIG. 5 is a plan view showing a state in which an anode frame and a cathode frame are combined with a semiconductor pellet sandwiched in the manufacturing process.

【図6】図5におけるA−A線に沿う断面図である。6 is a cross-sectional view taken along the line AA in FIG.

【図7】上記製造工程を経て最終的に得られて本発明の
樹脂封止型半導体装置の縦断面図である。
FIG. 7 is a vertical sectional view of a resin-encapsulated semiconductor device of the present invention finally obtained through the above manufacturing steps.

【図8】従来の樹脂封止型半導体装置を示す縦断面図で
ある。
FIG. 8 is a vertical cross-sectional view showing a conventional resin-encapsulated semiconductor device.

【図9】従来の樹脂封止型半導体装置を示す縦断面図で
ある。
FIG. 9 is a vertical cross-sectional view showing a conventional resin-sealed semiconductor device.

【図10】従来の樹脂封止型半導体装置を示す縦断面図
である。
FIG. 10 is a vertical cross-sectional view showing a conventional resin-encapsulated semiconductor device.

【図11】従来の樹脂封止型半導体装置を示す縦断面図
である。
FIG. 11 is a vertical sectional view showing a conventional resin-sealed semiconductor device.

【図12】図8の樹脂封止型半導体装置の熱抵抗特性を
計算して3次元シミュレーションした結果の表示図であ
る。
FIG. 12 is a display diagram showing a result of three-dimensional simulation by calculating thermal resistance characteristics of the resin-encapsulated semiconductor device of FIG.

【図13】図9の樹脂封止型半導体装置の熱抵抗特性を
計算して3次元シミュレーションした結果の表示図であ
る。
FIG. 13 is a display diagram showing a result of three-dimensional simulation by calculating thermal resistance characteristics of the resin-encapsulated semiconductor device of FIG.

【図14】図10の樹脂封止型半導体装置の熱抵抗特性
を計算して3次元シミュレーションした結果の表示図で
ある。
FIG. 14 is a display diagram showing a result of three-dimensional simulation by calculating thermal resistance characteristics of the resin-encapsulated semiconductor device of FIG.

【図15】図11の樹脂封止型半導体装置の熱抵抗特性
を計算して3次元シミュレーションした結果の表示図で
ある。
FIG. 15 is a display diagram showing a result of three-dimensional simulation by calculating thermal resistance characteristics of the resin-encapsulated semiconductor device of FIG.

【符号の説明】[Explanation of symbols]

1 第1リード 1a 内方端 1b 外方端 1c 立上り部 2 第2リード 2a 内方端 2b 外方端 2c 立上り部 2c−1 第1クランク 2c−2 第2クランク 2d 凸部 3 半導体ペレット 4 樹脂封止部 5 細線ワイヤ 6 連結部 7 連結部 10 樹脂封止型半導体装置 11 カソードフレーム 12 本体連結部 13 ガイド孔 21 アノードフレーム 22 本体連結部 23 ガイド孔 1st lead 1a inner edge 1b outer edge 1c Rising part 2 second lead 2a inner edge 2b outer edge 2c Rising part 2c-1 1st crank 2c-2 2nd crank 2d convex part 3 Semiconductor pellet 4 Resin sealing part 5 fine wire 6 connection 7 connection 10 Resin-sealed semiconductor device 11 Cathode frame 12 Body connection part 13 Guide hole 21 Anode frame 22 Body connection part 23 Guide hole

───────────────────────────────────────────────────── フロントページの続き (72)発明者 横洲 寿康 神奈川県秦野市曽屋1204番地 日本インタ ー株式会社内 (72)発明者 仙田 孝雄 神奈川県秦野市曽屋1204番地 日本インタ ー株式会社内 (72)発明者 土屋 昭和 神奈川県秦野市曽屋1204番地 日本インタ ー株式会社内 (72)発明者 落谷 篤 神奈川県秦野市曽屋1204番地 日本インタ ー株式会社内 Fターム(参考) 4M109 AA01 BA01 FA01    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Toshiyasu Yokosu             1204 Soya, Hadano City, Kanagawa Prefecture Japan Inter             -Inside the corporation (72) Inventor Takao Senda             1204 Soya, Hadano City, Kanagawa Prefecture Japan Inter             -Inside the corporation (72) Inventor Tsuchiya Showa             1204 Soya, Hadano City, Kanagawa Prefecture Japan Inter             -Inside the corporation (72) Inventor Atsushi Ochiya             1204 Soya, Hadano City, Kanagawa Prefecture Japan Inter             -Inside the corporation F-term (reference) 4M109 AA01 BA01 FA01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】第1リードと第2リードの内方端の対向面
間に半導体ペレットを固着し、該半導体ペレット及び前
記内方端の周囲を樹脂にて封止し、樹脂封止部を形成し
た樹脂封止型半導体装置において、 前記第1リードの外方端の下面は、前記樹脂封止部の下
面と同一平面とし、かつ、該外方端の一部がその下面の
みを前記樹脂封止部の下面に露出し、該外方端の一部と
連続する立上り部は、前記樹脂封止部内に埋設され、該
立上り部に連続する内方端は、前記半導体ペレットに固
着され、該半導体ペレットの表面と前記第2リードの内
方端とが固着され、該第2リードは、その内方端から連
続して下方に所定の角度傾斜して折り曲がり、かつ、前
記樹脂封止部内に埋設された第1クランクと、該第1ク
ランクと連続して下方に所定の角度傾斜して折り曲が
り、かつ、前記樹脂封止部外に露出した第2クランクと
を有し、前記第2リードの外方端の平坦部が前記樹脂封
止部の下面と同一平面となるように形成したことを特徴
とする樹脂封止型半導体装置。
1. A semiconductor pellet is fixed between opposing surfaces of inner ends of a first lead and a second lead, and the periphery of the semiconductor pellet and the inner end is sealed with a resin, and a resin sealing portion is provided. In the formed resin-encapsulated semiconductor device, the lower surface of the outer end of the first lead is flush with the lower surface of the resin-encapsulation portion, and a part of the outer end has only the lower surface of the resin. Exposed on the lower surface of the encapsulation portion, a rising portion continuous with a part of the outer end is embedded in the resin sealing portion, an inner end continuous with the rising portion is fixed to the semiconductor pellet, The surface of the semiconductor pellet and the inner end of the second lead are fixed to each other, and the second lead is continuously bent downward from the inner end at a predetermined angle and is bent by the resin. A first crank embedded in the section, and a downward inclination of a predetermined angle continuously from the first crank. A second crank that is obliquely bent and is exposed to the outside of the resin sealing portion, and a flat portion of the outer end of the second lead is flush with the lower surface of the resin sealing portion. 1. A resin-encapsulated semiconductor device, which is formed in.
【請求項2】前記第1リード及び第2リードは板材によ
り形成され、該第1リードの板厚t1が前記第2リード
の板材t2よりも相対的に厚くt1>t2になるように
形成されていることを特徴とする請求項1に記載の樹脂
封止型半導体装置。
2. The first lead and the second lead are formed of a plate material, and the plate thickness t1 of the first lead is formed to be relatively thicker than the plate material t2 of the second lead so that t1> t2. The resin-encapsulated semiconductor device according to claim 1, wherein
【請求項3】前記第1リードの板厚t1が、t1=0.
10〜0.16mmの範囲にあり、かつ、前記第2リー
ドの板厚t2が、t2=0.10〜0.12の範囲にあ
ることを特徴とする請求項1に記載の樹脂封止型半導体
装置。
3. The plate thickness t1 of the first lead is t1 = 0.
The resin-sealed mold according to claim 1, wherein the second lead has a plate thickness t2 in the range of 10 to 0.16 mm and in the range of t2 = 0.10 to 0.12. Semiconductor device.
【請求項4】前記樹脂封止部の下面に露出する前記第1
リードの外方端の一部の長さL2が、L2=0.35〜
0.45mmの範囲にあることを特徴とする請求項1に
記載の樹脂封止型半導体装置。
4. The first portion exposed on the lower surface of the resin sealing portion.
The length L2 of a part of the outer end of the lead is L2 = 0.35-
The resin-encapsulated semiconductor device according to claim 1, wherein the resin-encapsulated semiconductor device is in a range of 0.45 mm.
【請求項5】前記第1リードの内方端に固着された前記
半導体ペレットの中心位置は、前記樹脂封止部の長手方
向の中心位置よりも前記第2リード側に偏在しているこ
とを特徴とする請求項1に記載の樹脂封止型半導体装
置。
5. The center position of the semiconductor pellet fixed to the inner end of the first lead is more eccentrically located on the second lead side than the center position of the resin sealing portion in the longitudinal direction. The resin-encapsulated semiconductor device according to claim 1.
【請求項6】前記樹脂封止部の底面から頂面までの高さ
をHとしたとき、前記第2リードにおける第2クランク
上面から前記頂面までの高さh1を、h1≧0.5Hの
範囲としたことを特徴とする請求項1に記載の樹脂封止
型半導体装置。
6. When the height from the bottom surface to the top surface of the resin sealing portion is H, the height h1 from the second crank upper surface to the top surface of the second lead is h1 ≧ 0.5H. The resin-encapsulated semiconductor device according to claim 1, wherein:
JP2001202645A 2001-07-03 2001-07-03 Resin-sealed semiconductor device Expired - Lifetime JP4439143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001202645A JP4439143B2 (en) 2001-07-03 2001-07-03 Resin-sealed semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001202645A JP4439143B2 (en) 2001-07-03 2001-07-03 Resin-sealed semiconductor device

Publications (2)

Publication Number Publication Date
JP2003017628A true JP2003017628A (en) 2003-01-17
JP4439143B2 JP4439143B2 (en) 2010-03-24

Family

ID=19039421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001202645A Expired - Lifetime JP4439143B2 (en) 2001-07-03 2001-07-03 Resin-sealed semiconductor device

Country Status (1)

Country Link
JP (1) JP4439143B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8109430B2 (en) 2005-04-29 2012-02-07 Sukhvinder Singh Dhanjal Cleaning a hot soldering iron tip using dry melamine sponge
JP2012129219A (en) * 2010-12-11 2012-07-05 Angel Kogyo Kk Coating diode and terminal box for solar cell module
US9953961B2 (en) 2012-10-01 2018-04-24 Fuji Electric Co., Ltd. Semiconductor device and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8109430B2 (en) 2005-04-29 2012-02-07 Sukhvinder Singh Dhanjal Cleaning a hot soldering iron tip using dry melamine sponge
JP2012129219A (en) * 2010-12-11 2012-07-05 Angel Kogyo Kk Coating diode and terminal box for solar cell module
US9953961B2 (en) 2012-10-01 2018-04-24 Fuji Electric Co., Ltd. Semiconductor device and method for manufacturing the same

Also Published As

Publication number Publication date
JP4439143B2 (en) 2010-03-24

Similar Documents

Publication Publication Date Title
JP4454916B2 (en) Solid electrolytic capacitor
US6157074A (en) Lead frame adapted for variable sized devices, semiconductor package with such lead frame and method for using same
US9013030B2 (en) Leadframe, semiconductor package including a leadframe and method for producing a leadframe
JP2012089681A (en) Power semiconductor device
JP2023036823A (en) Semiconductor device
KR100990527B1 (en) Power semiconductor module with base plate resistant to bending
US7473990B2 (en) Semiconductor device featuring electrode terminals forming superior heat-radiation system
US11742279B2 (en) Semiconductor device
JP4431756B2 (en) Resin-sealed semiconductor device
JPH11214606A (en) Resin molded semiconductor device and lead frame
JP4703903B2 (en) Semiconductor device manufacturing method and semiconductor device
JP2001298142A (en) Resin-sealed semiconductor device
JP2003017628A (en) Resin-sealed semiconductor device
JP2022168158A (en) Semiconductor device
JP3730469B2 (en) Resin-sealed semiconductor device and manufacturing method thereof
US20050269689A1 (en) Conductor device and method of manufacturing thereof
JP2006147918A (en) Semiconductor device
JP2009164511A (en) Semiconductor device and method of manufacturing the same
US8791555B2 (en) Semiconductor device and lead frame
JP5124329B2 (en) Semiconductor device
JP2009158769A (en) Semiconductor device
JP2006060106A (en) Lead member and surface mounted semiconductor device
JP3040235B2 (en) Lead frame and resin-sealed semiconductor device using the same
JP2003197828A (en) Resin-sealing semiconductor device
US20050189625A1 (en) Lead-frame for electonic devices with extruded pads

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4439143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160115

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term