JP2003014914A - Diffraction element and optical pickup device assembled with the same - Google Patents

Diffraction element and optical pickup device assembled with the same

Info

Publication number
JP2003014914A
JP2003014914A JP2001200942A JP2001200942A JP2003014914A JP 2003014914 A JP2003014914 A JP 2003014914A JP 2001200942 A JP2001200942 A JP 2001200942A JP 2001200942 A JP2001200942 A JP 2001200942A JP 2003014914 A JP2003014914 A JP 2003014914A
Authority
JP
Japan
Prior art keywords
refractive index
dielectric
substrate
diffraction
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001200942A
Other languages
Japanese (ja)
Inventor
Shinya Yoshida
慎也 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2001200942A priority Critical patent/JP2003014914A/en
Publication of JP2003014914A publication Critical patent/JP2003014914A/en
Pending legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Optical Head (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a diffraction element having high diffraction efficiency and high latitude for the design and to provide an optical pickup device in which the element is assembled. SOLUTION: The diffraction element is to be adhered with an adhesive layer to other optical elements. The diffraction element has a diffraction grating consisting of a dielectric material formed on a substrate, with the refractive index of the dielectric material higher than the refractive index of the adhesive which forms the adhesive layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は回折素子およびそれを
組み込んだ光ピックアップ装置に関し、より詳しくは、
ホログラム回折素子として使用される回折素子およびそ
れを組み込んだ光ピックアップ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diffraction element and an optical pickup device incorporating the same, and more specifically,
The present invention relates to a diffraction element used as a hologram diffraction element and an optical pickup device incorporating the same.

【0002】[0002]

【従来技術】回折素子は、計算機ホログラムの手法を用
いることにより、多様な光学的機能と小型化を実現でき
る。そのため、回折素子を用いた光ピックアップ装置が
多数提案されている。
2. Description of the Related Art A diffractive element can realize various optical functions and miniaturization by using a computer hologram method. Therefore, many optical pickup devices using a diffraction element have been proposed.

【0003】図5は、特開平8−329544号公報に
開示された光ピックアップ装置を示す。図5において、
パッケージ101の内部にはSi基板102が設けら
れ、Si基板102上には発光素子としての半導体レー
ザ103、受光素子としての光検出器104、105、
106および偏光分離プリズム110が配置されてい
る。また、透明基板107の半導体レーザ103に対向
する面にはホログラム回折素子108が形成されてお
り、その反対側の面には偏光プリズム109が接着剤を
介して接着されている。偏光プリズム109はビームス
プリッター109aとミラー109bを有している。
FIG. 5 shows an optical pickup device disclosed in Japanese Unexamined Patent Publication No. 8-329544. In FIG.
A Si substrate 102 is provided inside the package 101, and a semiconductor laser 103 as a light emitting element and photodetectors 104 and 105 as light receiving elements are provided on the Si substrate 102.
106 and a polarization separation prism 110 are arranged. A hologram diffractive element 108 is formed on the surface of the transparent substrate 107 facing the semiconductor laser 103, and a polarizing prism 109 is adhered to the opposite surface by an adhesive. The polarization prism 109 has a beam splitter 109a and a mirror 109b.

【0004】半導体レーザ103から放射された光はホ
ログラム回折素子108及び偏光プリズム109を透過
し、対物レンズ111により光磁気記録媒体112上に
集光される。光磁気記録媒体112で反射された光は、
対物レンズ111を再度透過し、偏光プリズム109の
ビームスプリッター109aでその一部が反射されてミ
ラー109bを経て偏光プリズム1 10に入射し、残り
はビームスプリッター109aを透過してホログラム回
折素子108に入射する。
The light emitted from the semiconductor laser 103 passes through the hologram diffraction element 108 and the polarization prism 109, and is condensed on the magneto-optical recording medium 112 by the objective lens 111. The light reflected by the magneto-optical recording medium 112 is
After passing through the objective lens 111 again, a part of the beam is reflected by the beam splitter 109a of the polarizing prism 109 and is incident on the polarizing prism 110 via the mirror 109b. The rest is transmitted through the beam splitter 109a and is incident on the hologram diffractive element 108. To do.

【0005】偏光分離プリズム110に入射した光は2
つの異なる偏光成分(P成分およびS成分)に分離さ
れ、それぞれの成分の受光量が光検出器106で検出さ
れ、これに基づいて光磁気信号が再生される。また、ホ
ログラム回折素子108に入射した光はホログラム回折
素子108で回折され、その受光量が光検出器104及
び105で検出され、この検出結果に基づいてサーボ信
号が生成される。
The light incident on the polarization separation prism 110 is 2
It is separated into two different polarization components (P component and S component), the amount of received light of each component is detected by the photodetector 106, and the magneto-optical signal is reproduced based on this. The light incident on the hologram diffraction element 108 is diffracted by the hologram diffraction element 108, the amount of received light is detected by the photodetectors 104 and 105, and a servo signal is generated based on the detection result.

【0006】ホログラム回折素子108の具体的構造と
しては、図6及び図7に示すようなレリーフ型または屈
折率変調型が一般的に利用される。図6のレリーフ型回
折素子108は、基板120の表面をエッチングにより
彫り込んだり、あるいは金型を用いたプラスチックの射
出成形により、凸部121及び凹部122が形成され
る。図7の屈折率変調型回折素子108は、イオン交換
法などにより、基板125の表面に高屈折率部126を
形成したものである。これらの回折素子108は、通
常、空気層と境界を接して、すなわち、回折格子面を露
出させて使用される。
As a concrete structure of the hologram diffraction element 108, a relief type or a refractive index modulation type as shown in FIGS. 6 and 7 is generally used. In the relief type diffraction element 108 of FIG. 6, the convex portion 121 and the concave portion 122 are formed by engraving the surface of the substrate 120 by etching or by injection molding of plastic using a mold. The refractive index modulation type diffractive element 108 of FIG. 7 has a high refractive index portion 126 formed on the surface of a substrate 125 by an ion exchange method or the like. These diffractive elements 108 are usually used in contact with the boundary of the air layer, that is, with the diffraction grating surface exposed.

【0007】[0007]

【発明が解決しようとする課題】ホログラム回折素子1
08の格子ピッチは、光源(半導体レーザ103)の波
長に比例し、回折角に反比例する。したがって、光源の
短波長化が進む現在では、ホログラム回折素子108を
半導体レーザ103及び光検出器104、105からで
きるだけ離して配置し、格子ピッチが小さくなり過ぎる
のを防ぐ必要がある。例えば、図5において光源の短波
長化を図るためには、透明基板107の偏光プリズム1
09に対向した面にホログラム回折素子108を形成す
ることにより、ホログラム回折素子108を半導体レー
ザ103及び光検出器104、105から遠ざけること
が考えられる。
[Problem to be Solved by the Invention] Hologram diffraction element 1
The grating pitch of 08 is proportional to the wavelength of the light source (semiconductor laser 103) and inversely proportional to the diffraction angle. Therefore, at the present time when the wavelength of the light source is shortened, it is necessary to dispose the hologram diffraction element 108 as far as possible from the semiconductor laser 103 and the photodetectors 104 and 105 to prevent the grating pitch from becoming too small. For example, in order to shorten the wavelength of the light source in FIG. 5, the polarizing prism 1 of the transparent substrate 107 is used.
It is conceivable to form the hologram diffractive element 108 on the surface opposed to 09 so that the hologram diffractive element 108 is separated from the semiconductor laser 103 and the photodetectors 104 and 105.

【0008】従来の光ピックアップ装置は、いわゆる1
ビーム法を利用しているが、これをトレース性能の優れ
た3ビーム法に変更しようとすると、ホログラム回折素
子108と光源の間に光分割用グレーティングを配置す
る必要がある。この場合、構造の複雑化を避けるには、
上記のように、透明基板107の偏光プリズム109に
対向した面にホログラム回折素子108を形成し、さら
に透明基板107の半導体レーザ103に対向した面に
光分割用グレーティングを形成する必要がある。
The conventional optical pickup device is a so-called 1
Although the beam method is used, if the beam method is changed to the three-beam method having excellent tracing performance, it is necessary to dispose a light splitting grating between the hologram diffraction element 108 and the light source. In this case, to avoid the complexity of the structure,
As described above, it is necessary to form the hologram diffraction element 108 on the surface of the transparent substrate 107 facing the polarization prism 109 and further to form the light splitting grating on the surface of the transparent substrate 107 facing the semiconductor laser 103.

【0009】例えば、図6のレリーフ型回折素子108
をホログラム回折素子として用いた場合には、回折素子
108の凹部122が偏光プリズム109との接着に用
いられた光学接着剤で埋められる。光学接着剤は、通
常、透明基板107に近い屈折率を有するため、凸部1
21を通過した光と凹部122を通過した光との位相差
が殆どなくなってしまう。このため、所望の回折効率が
得られないおそれがある。この場合、所望の位相差を得
るためには、凹部122と凸部121を非常に深い凹凸
として形成する必要が生じ、回折素子の作製に要する時
間と手間が増大する。
For example, the relief type diffraction element 108 of FIG.
When is used as a hologram diffraction element, the concave portion 122 of the diffraction element 108 is filled with the optical adhesive used for adhesion with the polarization prism 109. Since the optical adhesive usually has a refractive index close to that of the transparent substrate 107, the convex portion 1
There is almost no phase difference between the light passing through 21 and the light passing through the recess 122. Therefore, the desired diffraction efficiency may not be obtained. In this case, in order to obtain the desired phase difference, it is necessary to form the concave portions 122 and the convex portions 121 as very deep concaves and convexes, which increases the time and labor required for producing the diffraction element.

【0010】また、図7の屈折率変調型回折素子108
を用いた場合には、他の部材と接着しても図6のレリー
フ型回折素子108のような溝部が接着剤に埋まること
はないが、基板125の内部におけるイオン等の横方向
への広がりがあるため、格子ピッチが8μm以下の回折
素子の作製は困難であり、このようなホログラム回折素
子を用いた光ピックアップ装置は設計上の大きな制約を
抱えたものとなる。
Further, the refractive index modulation type diffractive element 108 of FIG.
In the case of using, the groove portion like the relief type diffraction element 108 in FIG. 6 is not buried in the adhesive even if it is bonded to another member, but the ion and the like inside the substrate 125 spread in the lateral direction. Therefore, it is difficult to manufacture a diffractive element having a grating pitch of 8 μm or less, and an optical pickup device using such a hologram diffractive element has great design restrictions.

【0011】この発明は、上記のような問題点に鑑みて
なされたものであり、回折効率が高く、かつ設計の自由
度が高い回折素子並びにこれを用いた光ピックアップ装
置を提供することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a diffraction element having a high diffraction efficiency and a high degree of freedom in design, and an optical pickup device using the same. And

【0012】[0012]

【課題を解決するための手段】この発明によれば、他の
光学素子と接着剤層を介して接着される回折素子であっ
て、回折素子が基板に形成された誘電体からなる回折格
子を有し、誘電体の屈折率が接着剤層を形成する接着剤
の屈折率より高いことを特徴とする回折素子が提供され
る。
According to the present invention, there is provided a diffraction element which is adhered to another optical element via an adhesive layer, the diffraction element including a diffraction grating made of a dielectric material formed on a substrate. A diffractive element is provided, characterized in that the refractive index of the dielectric is higher than the refractive index of the adhesive forming the adhesive layer.

【0013】すなわち、誘電体からなる回折格子を通過
した光とこの回折格子を通過しなかった光の位相差を、
誘電体を構成する誘電体材料の特性および誘電体の厚み
と、接着剤の屈折率とに基づいて、高い自由度で設定す
ることができるので、高い回折効率を得ることができ
る。
That is, the phase difference between the light that has passed through the diffraction grating made of a dielectric material and the light that has not passed through this diffraction grating is
Since it can be set with a high degree of freedom based on the characteristics of the dielectric material forming the dielectric, the thickness of the dielectric, and the refractive index of the adhesive, high diffraction efficiency can be obtained.

【0014】この発明では、誘電体が、TiO2、Ta2O5
SiN 、SiON、CeO2、ZrO2から選択された一つまたは複数
の物質からなるので、回折格子をスパッタ法、あるいは
蒸着法を用いて容易に形成することができ、かつ形成さ
れる回折格子は化学的に安定なものとなる。基板の屈折
率と接着剤の屈折率を略等しくすることにより、接着剤
と基板の界面での反射が抑制され、光利用効率が改善さ
れる。回折格子が、誘電体と基板との間および基板と反
対側の誘電体上部に反射防止層を有することにより、回
折格子と基板の界面及び接着剤層と回折格子の界面での
反射が抑制され、光利用効率が改善される。
In the present invention, the dielectric is TiO 2 , Ta 2 O 5 ,
Since it is made of one or more substances selected from SiN, SiON, CeO 2 , and ZrO 2 , the diffraction grating can be easily formed by the sputtering method or the vapor deposition method, and the formed diffraction grating is It is chemically stable. By making the refractive index of the substrate and the refractive index of the adhesive substantially equal, reflection at the interface between the adhesive and the substrate is suppressed, and the light utilization efficiency is improved. Since the diffraction grating has the antireflection layer between the dielectric and the substrate and on the upper side of the dielectric opposite to the substrate, reflection at the interface between the diffraction grating and the substrate and at the interface between the adhesive layer and the diffraction grating is suppressed. , The light utilization efficiency is improved.

【0015】回折格子が誘電体のみで構成され、誘電体
と基板の境界で生じた反射光および誘電体と接着剤層の
境界で生じた反射光が互いに逆位相となるように、誘電
体の屈折率nおよび誘電体の厚さtが設定されてもよ
い。具体的には、回折パターンが誘電体のみで構成さ
れ、誘電体の屈折率nと前記誘電体の厚さtが、t=2
mλ/(2n) 但し、mは整数、λは光の波長となる関係を満たすこと
により、回折素子は簡潔で製造が容易な構成のまま、基
板と回折格子の界面あるいは接着剤層と回折格子の界面
での反射が抑制されるので、製造コストを抑制しながら
光利用効率が改善できる。
The diffraction grating is composed only of a dielectric material, and the reflected light generated at the boundary between the dielectric material and the substrate and the reflected light generated at the boundary between the dielectric material and the adhesive layer have opposite phases to each other. The refractive index n and the thickness t of the dielectric may be set. Specifically, the diffraction pattern is composed of only a dielectric, and the refractive index n of the dielectric and the thickness t of the dielectric are t = 2.
mλ / (2n) where m is an integer and λ is the wavelength of light, so that the diffractive element has a simple and easy-to-manufacture structure while maintaining the interface between the substrate and the diffraction grating or the adhesive layer and the diffraction grating. Since the reflection at the interface is suppressed, the light utilization efficiency can be improved while suppressing the manufacturing cost.

【0016】この発明によれば、光源と、光源から放射
される光を光記録媒体上に集光する集光光学系と、前記
光記録媒体からの反射光を受光する光検出器を具備し、
前記光源から前記集光光学系に至る光路上、または前記
集光光学系から前記光検出器に至る光路上に本発明の回
折素子を配置してなる光ピックアップ装置が提供され
る。本発明の光ピックアップ装置では、設計の自由度が
広がり、さらなる小型化と高性能化が可能になる。
According to the present invention, it is provided with the light source, the condensing optical system for condensing the light emitted from the light source on the optical recording medium, and the photodetector for receiving the reflected light from the optical recording medium. ,
There is provided an optical pickup device in which the diffraction element of the present invention is arranged on an optical path from the light source to the condensing optical system or on an optical path from the condensing optical system to the photodetector. In the optical pickup device of the present invention, the degree of freedom in design is widened, and further miniaturization and higher performance are possible.

【0017】[0017]

【発明の実施の形態】以下、図に示す実施形態に基づい
てこの発明を詳述する。なお、これによってこの発明が
限定されるものではない。図1は、この発明の実施の一
形態による回折素子の概略構成を示す。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below based on the embodiments shown in the drawings. The present invention is not limited to this. FIG. 1 shows a schematic structure of a diffractive element according to an embodiment of the present invention.

【0018】図1において、本発明による回折素子10
は、基板1と、基板1に形成された所定のパターンから
なる回折格子2と、回折格子2を覆って基板1上に形成
され、他の光学素子3と基板1を接着する、接着剤から
なる接着剤層4とを有する。基板1は、特に限定され
ず、通常この分野で使用できるものであり、ガラス、、
ポリメチルメタアクリレート(PMMA)、ポリカーボ
ネート(PC)等からなる光学プラスチック、熱酸化シ
リコン、石英などが挙げられる。なお、基板1として屈
折率が約1.5であるガラス、あるいは光学プラスチッ
クを用いると、接着剤層4との屈折率の差が殆どなくな
り、接着剤層4との界面における不要な反射が生じにく
くなって好ましい。
Referring to FIG. 1, a diffractive element 10 according to the present invention.
Is a substrate 1, a diffraction grating 2 having a predetermined pattern formed on the substrate 1, and a diffraction grating 2 formed on the substrate 1 so as to cover the diffraction grating 2 and bond another optical element 3 to the substrate 1. The adhesive layer 4 is formed. The substrate 1 is not particularly limited, and can be usually used in this field, such as glass,
Examples thereof include optical plastics such as polymethylmethacrylate (PMMA) and polycarbonate (PC), thermally oxidized silicon, and quartz. When glass or optical plastic having a refractive index of about 1.5 is used as the substrate 1, there is almost no difference in the refractive index with the adhesive layer 4, and unnecessary reflection occurs at the interface with the adhesive layer 4. It is difficult and preferable.

【0019】回折格子2は、接着剤層4より屈折率の高
い誘電体、例えば、屈折率nが2に近いTiO2(n=2.
4)、Ta2O5 (n=2.0)、SiN (n=2.0)、Si
ON(n=1.9)、CeO2(n=2.4)、ZrO2(n=
2.2)からなる誘電体で構成されている。誘電体、す
なわち、この例における回折格子2の厚さtは、次式で
表される関係を満たすように設定されている。 t=2mλ/(2n) (1) 但し、mは整数、λは光の波長、nは誘電体の屈折率で
ある。
The diffraction grating 2 is made of a dielectric material having a refractive index higher than that of the adhesive layer 4, for example, TiO 2 (n = 2.
4), Ta 2 O 5 (n = 2.0), SiN (n = 2.0), Si
ON (n = 1.9), CeO 2 (n = 2.4), ZrO 2 (n =
It is composed of a dielectric material composed of 2.2). The thickness of the dielectric, that is, the thickness t of the diffraction grating 2 in this example is set so as to satisfy the relationship represented by the following equation. t = 2mλ / (2n) (1) where m is an integer, λ is the wavelength of light, and n is the refractive index of the dielectric.

【0020】光学素子3は、特に限定されず、通常この
分野で使用できるものであり、例えば、音声および画像
用ファイル、文章ファイルおよびコンピュータ用外部メ
モリー装置などに用いられ、光ビームを用いて磁気光学
効果により情報の記録、再生などを繰り返して行える光
学式記録再生装置の光磁気ピックアップの光学系を構成
するものである。接着剤層4は、ガラス、または光学プ
ラスチックとほぼ等しい屈折率を有する光学用接着剤で
構成されている(屈折率nが1.4〜1.8程度)。こ
のような光学用接着剤としては、例えば、「UV−21
00」〔商品名;ダイキン工業(株)製〕(n=1.4
77)、「BANI−100V」〔商品名;丸善石油
(株)製〕(n=1.755)、「TFC7700」
〔商品名;東芝シリコーン(株)製〕(n=1.40
4)等が挙げられる。
The optical element 3 is not particularly limited, and can be generally used in this field. For example, it is used for audio and image files, text files, external memory devices for computers, etc. It constitutes an optical system of a magneto-optical pickup of an optical recording / reproducing apparatus capable of repeatedly recording and reproducing information by an optical effect. The adhesive layer 4 is made of glass or an optical adhesive having a refractive index almost equal to that of optical plastic (refractive index n is about 1.4 to 1.8). As such an optical adhesive, for example, "UV-21
00 "[trade name; manufactured by Daikin Industries, Ltd.] (n = 1.4
77), "BANI-100V" [trade name; manufactured by Maruzen Oil Co., Ltd.] (n = 1.755), "TFC7700"
[Product name: manufactured by Toshiba Silicone Co., Ltd.] (n = 1.40
4) etc. are mentioned.

【0021】回折格子2の形成されている部分を通過し
た光と回折格子2の形成されていない部分を透過した光
との位相差φが、回折素子10の回折効率を決定する。
回折素子10における前記位相差φは、次式で表され
る。 φ=2πt(n−ng)/λ (2) 但し、tは誘電体、すなわち回折格子2の厚さ、nは前
記回折格子2の屈折率、ngは接着剤層4の屈折率、λ
は光の波長である。
The phase difference φ between the light passing through the portion where the diffraction grating 2 is formed and the light passing through the portion where the diffraction grating 2 is not formed determines the diffraction efficiency of the diffraction element 10.
The phase difference φ in the diffraction element 10 is expressed by the following equation. φ = 2πt (n-ng) / λ (2) where t is the thickness of the dielectric, that is, the diffraction grating 2, n is the refractive index of the diffraction grating 2, ng is the refractive index of the adhesive layer 4, and λ
Is the wavelength of light.

【0022】例えば、誘電体がTa2O5 であれば、屈折率
n=2.0であるので、接着剤層4の屈折率ng=1.
5との差はおおよそ0.5となり、空気(屈折率=1.
0)とガラス(屈折率≒1.5)との屈折率の差とほぼ
同じになる。したがって、回折格子2の厚さtは、空気
との境界を有して使用される図6の前記レリーフ型回折
素子108と略同等の厚さに抑えることができる。この
ような接着剤層4は、本発明による回折素子10と他の
光学素子3を強固に接着するとともに、接着剤層4と回
折格子2の屈折率の差が十分に確保されるので、所望の
回折効率を得ることができる。
For example, if the dielectric material is Ta 2 O 5 , the refractive index n = 2.0, so that the refractive index ng = 1.
5 is about 0.5, and air (refractive index = 1.
0) and glass (refractive index ≈1.5) have almost the same difference in refractive index. Therefore, the thickness t of the diffraction grating 2 can be suppressed to a thickness substantially equal to that of the relief type diffraction element 108 of FIG. 6 used with a boundary with air. Since such an adhesive layer 4 firmly bonds the diffractive element 10 according to the present invention to the other optical element 3 and sufficiently secures the difference in refractive index between the adhesive layer 4 and the diffraction grating 2, it is desirable. The diffraction efficiency of can be obtained.

【0023】回折格子2を形成する方法としては、スパ
ッタ法等を用いて基板1上に誘電体を一様に形成し、不
要部分をエッチングにより除去して所望のパターンを得
るエッチング法が挙げられる。また、基板1上にレジス
トでネガパターンを形成し、その上に誘電体をスパッタ
法あるいは蒸着法を用いて形成した後、不要な部分をレ
ジストごと除去するリフトオフ法などが適用できる。こ
れらの方法は、いずれもラインおよびライン間のスペー
スの幅を、0.5μm以下にパターニングできるので、
ピッチが1μmまでの回折格子を作製可能である。
As a method of forming the diffraction grating 2, there is an etching method in which a dielectric is uniformly formed on the substrate 1 by using a sputtering method or the like and unnecessary portions are removed by etching to obtain a desired pattern. . Further, a lift-off method or the like may be applied in which a negative pattern is formed on the substrate 1 with a resist, a dielectric is formed thereon by a sputtering method or an evaporation method, and then an unnecessary portion is removed together with the resist. In each of these methods, the width of the line and the space between the lines can be patterned to 0.5 μm or less,
It is possible to fabricate a diffraction grating with a pitch of up to 1 μm.

【0024】また、前記の誘電体を形成するTiO2、Ta2O
5 、SiN 、SiON、CeO2、ZrO2は、スパッタ法や蒸着法で
薄膜を形成することが可能な上、化学的にも安定で工業
的に有用である。
Further, TiO 2 and Ta 2 O forming the above-mentioned dielectric material
5 , SiN, SiON, CeO 2 , and ZrO 2 can be formed into a thin film by a sputtering method or a vapor deposition method, and are chemically stable and industrially useful.

【0025】図2は、回折格子2の部分拡大図である。
図2に示すように、この発明の回折素子2に対して図中
下方から上方に光が透過する場合、回折格子2と基板1
との界面でフレネル反射が生じる。その際の振幅反射率
Rsは、誘電体の屈折率をn、基板1の屈折率をns、
接着剤層4の屈折率をngとして、 Rs=(ns−n)/(ns+n) (3) で与えられる。
FIG. 2 is a partially enlarged view of the diffraction grating 2.
As shown in FIG. 2, when light is transmitted from the lower side to the upper side in the drawing with respect to the diffraction element 2 of the present invention, the diffraction grating 2 and the substrate 1
Fresnel reflection occurs at the interface with. At that time, the amplitude reflectance Rs is n for the refractive index of the dielectric, ns for the substrate 1.
Rs = (ns−n) / (ns + n) (3) where the refractive index of the adhesive layer 4 is ng.

【0026】同様に、回折格子2と接着剤層4との界面
でもフレネル反射が生じる。その際の振幅反射率Rg
は、 Rg=(n−ng)/(ng+n) (4) で与えられる。
Similarly, Fresnel reflection occurs at the interface between the diffraction grating 2 and the adhesive layer 4. Amplitude reflectance Rg at that time
Is given by Rg = (n-ng) / (ng + n) (4).

【0027】ここで基板1の屈折率と接着剤層4の屈折
率をともに1.5程度のほぼ等しい値にしておくと、前
記の振幅反射率RsとRgは、 Rs≒−Rg (5)とな
る。ここで回折格子2の厚さtは、式(1)を満たして
いるので、上記2つの界面からの反射光は、ほぼ同じ強
度を有し且つ逆位相となるので、互いに打ち消し合う。
この結果、回折格子2での反射が抑制され光利用効率の
改善とゴースト抑制が実現される。
Here, if the refractive index of the substrate 1 and the refractive index of the adhesive layer 4 are both set to approximately the same value of about 1.5, the amplitude reflectances Rs and Rg are Rs≈-Rg (5) Becomes Here, since the thickness t of the diffraction grating 2 satisfies the expression (1), the reflected lights from the two interfaces have almost the same intensity and have opposite phases, and thus cancel each other out.
As a result, reflection at the diffraction grating 2 is suppressed, light utilization efficiency is improved, and ghost suppression is realized.

【0028】なお、光の波長λ、接着剤層4の屈折率n
g、位相差φ及び整数mが与えられると、式(1)およ
び式(2)はnの1元1次方程式に帰着し、tとnは一
義的に定まる。
The wavelength λ of light and the refractive index n of the adhesive layer 4 are
Given g, phase difference φ and integer m, equations (1) and (2) result in a one-element linear equation of n, and t and n are uniquely determined.

【0029】図3は、この発明の他の実施の形態による
回折素子の概略構成を示す。図3において、本発明によ
る回折素子20では、回折格子2が反射防止層6a、6
bおよび誘電体5からなる点で前記の回折素子20と異
なるが、他の構成は共通である。反射防止層6aは基板
1と誘電体5の間に設けられ、反射防止層6bは誘電体
5の上部に設けられている。
FIG. 3 shows a schematic structure of a diffractive element according to another embodiment of the present invention. In FIG. 3, in the diffractive element 20 according to the present invention, the diffraction grating 2 includes the antireflection layers 6a and 6a.
Although it is different from the diffractive element 20 in that it is composed of b and the dielectric 5, the other configurations are common. The antireflection layer 6 a is provided between the substrate 1 and the dielectric 5, and the antireflection layer 6 b is provided on the dielectric 5.

【0030】反射防止層6a、6bを有する回折格子2
を形成する方法としては、SiO2(n=1.5)とSiN の
混合物等の反射防止材料をスパッタ法等の技術を用いて
基板1上に反射防止層6aを一様に形成し、次いでスパ
ッタ法等を用いて基板1上に誘電体5を一様に形成し、
さらにこの誘電体パターン上に反射防止層6aと同様
に、反射防止層6bを形成した後に、不要部分をエッチ
ングにより除去して所望の回折格子2を形成する方法が
挙げられる。上記回折格子2の形成は、回折素子10と
同様に、前記のスパッタ法あるいは蒸着法やリフトオフ
法などを適用して行うこともできる。
Diffraction grating 2 having antireflection layers 6a and 6b
As a method of forming the film, an antireflection material such as a mixture of SiO 2 (n = 1.5) and SiN 2 is uniformly formed on the substrate 1 by using a technique such as a sputtering method, and then, The dielectric 5 is uniformly formed on the substrate 1 by using a sputtering method or the like,
Further, as in the case of forming the antireflection layer 6a on the dielectric pattern, after forming the antireflection layer 6b, an unnecessary portion is removed by etching to form a desired diffraction grating 2. The diffraction grating 2 can be formed by applying the above-mentioned sputtering method, vapor deposition method, lift-off method, or the like, similarly to the diffraction element 10.

【0031】回折素子20において、反射防止層6aの
屈折率nasおよびその厚さtasは、誘電体5の屈折
率をn、基板1の屈折率をns、光の波長をλとして、 nas=(n・ns)1/2 (6) tas=λ/(4・nas) (7) でそれぞれ与えられる。
In the diffractive element 20, the refractive index nas of the antireflection layer 6a and the thickness tas thereof are as follows, where n is the refractive index of the dielectric 5, the refractive index of the substrate 1 is ns, and the wavelength of light is λ. n · ns) 1/2 (6) tas = λ / (4 · nas) (7).

【0032】同様に、反射防止層6bの屈折率nagと
その厚さtagは誘電体5の屈折率をn、接着剤層4の
屈折率をng、光の波長をλとして、 nag=(n・ng)1/2 (8) tag=λ/(4・nag) (9) でそれぞれ与えられる。
Similarly, the refractive index nag of the antireflection layer 6b and its thickness tag are nag = (n, where n is the refractive index of the dielectric material 5, ng is the refractive index of the adhesive layer 4, and λ is the wavelength of light. .Ng) 1/2 (8) tag = λ / (4 · nag) (9).

【0033】回折格子2の形成されている部分を透過し
た光と回折格子2の形成されていない部分を透過した光
の位相差φが、回折素子20の回折効率を決定する。回
折素子20の前記位相差φは、誘電体5の厚さをt、屈
折率をn、接着剤層4の屈折率をng、光の波長をλと
して、 φ=2π{t(n−ng)+tas(nas−ng)+tag(nag−ng )}/λ (10) で与えられる。
The phase difference φ between the light transmitted through the portion where the diffraction grating 2 is formed and the light transmitted through the portion where the diffraction grating 2 is not formed determines the diffraction efficiency of the diffraction element 20. The phase difference φ of the diffractive element 20 is φ = 2π {t (n-ng) where t is the thickness of the dielectric 5, n is the refractive index, ng is the refractive index of the adhesive layer 4, and λ is the wavelength of light. ) + Tas (nas-ng) + tag (nag-ng)} / λ (10).

【0034】回折素子20では、反射防止誘層6a、6
bを設けることにより、誘電体5と光透過性基板1の屈
折率の差に起因する反射損失、および誘電体5と接着剤
層4の屈折率の差に起因する反射損失を抑制できるの
で、光利用効率が改善され、反射光によるゴーストが抑
制できる。
In the diffractive element 20, the antireflection inviting layers 6a, 6
By providing b, it is possible to suppress the reflection loss due to the difference in the refractive index between the dielectric 5 and the light transmissive substrate 1 and the reflection loss due to the difference in the refractive index between the dielectric 5 and the adhesive layer 4. The light utilization efficiency is improved and ghosts due to reflected light can be suppressed.

【0035】図4はこの発明に基づく前記の回折素子1
0(または20)を用いた光ピックアップ装置を示す。
図4において、光ピックアップ装置50では、パッケー
ジ51の内部にSi基板11が設けられ、その上には発
光素子としての半導体レーザ12と受光素子としての光
検出器13、14、15、並びに偏光分離プリズム16
が配置されている。回折素子10(または20)は、そ
の回折格子2が偏光プリズム19に対向する基板1の主
面に形成されており、基板1は接着剤層4を介して偏光
プリズム19と接着されている。回折格子2の具体的構
造は前記したので、説明を省略する。
FIG. 4 shows the diffractive element 1 according to the invention.
An optical pickup device using 0 (or 20) is shown.
In FIG. 4, in an optical pickup device 50, a Si substrate 11 is provided inside a package 51, on which a semiconductor laser 12 as a light emitting element, photodetectors 13, 14, 15 as a light receiving element, and polarization separation. Prism 16
Are arranged. The diffraction grating 10 of the diffractive element 10 (or 20) is formed on the main surface of the substrate 1 facing the polarizing prism 19, and the substrate 1 is bonded to the polarizing prism 19 via an adhesive layer 4. Since the specific structure of the diffraction grating 2 has been described above, the description thereof will be omitted.

【0036】半導体レーザ12から放射された光は回折
素子10(20)及び偏光プリズム19を透過し、対物
レンズ17により光磁気記録媒体21上に集光される。
光磁気記録媒体21で反射された光は対物レンズ17を
再度透過し、偏光プリズム19のビームスプリッター1
9aでその一部が反射されミラー19bを経て偏光分離
プリズム1 6に入射し、残りはビームスプリッター19
aを透過して回折格子2に入射する。偏光分離プリズム
16に入射した光は2つの異なる偏光成分に分離され、
それぞれの成分の受光量が光検出器15で検出され、こ
れに基づいて光磁気信号が再生される。また、回折素子
10(20)に入射した光は回折素子10(20)で回
折され、その受光量が光検出器13及び14で検出さ
れ、これに基づいてサーボ信号が生成される。
The light emitted from the semiconductor laser 12 passes through the diffraction element 10 (20) and the polarization prism 19, and is condensed on the magneto-optical recording medium 21 by the objective lens 17.
The light reflected by the magneto-optical recording medium 21 passes through the objective lens 17 again, and the beam splitter 1 of the polarization prism 19
A part of the beam is reflected by 9a, passes through a mirror 19b and is incident on a polarization splitting prism 16 and the rest is a beam splitter 19a.
The light passes through a and enters the diffraction grating 2. The light incident on the polarization splitting prism 16 is split into two different polarization components,
The amount of received light of each component is detected by the photodetector 15, and the magneto-optical signal is reproduced based on this. The light incident on the diffractive element 10 (20) is diffracted by the diffractive element 10 (20), the amount of received light is detected by the photodetectors 13 and 14, and a servo signal is generated based on this.

【0037】この発明による光ピックアップ装置50で
は、回折格子2と半導体レーザ12、または、回折格子
2と光検出器13,14との距離が基板1の厚さ分だけ
遠方へ離すことができるので、回折角を小さくすること
ができる。したがって、光源の波長が短くなっても、回
折格子2のピッチを広く保つことができる。また、この
発明による光ピックアップ装置をトレース性能の優れた
3ビーム法に変更しても、回折素子10(20)の半導
体レーザ12に対向した面に、光分割用グレーティング
を設けるだけで、所望のトレース性能が得られるので、
部品点数を増やすことなく高性能化が図れる。
In the optical pickup device 50 according to the present invention, the distance between the diffraction grating 2 and the semiconductor laser 12 or the distance between the diffraction grating 2 and the photodetectors 13 and 14 can be separated by the thickness of the substrate 1. , The diffraction angle can be reduced. Therefore, the pitch of the diffraction grating 2 can be kept wide even if the wavelength of the light source becomes short. Further, even if the optical pickup device according to the present invention is changed to the three-beam method having excellent tracing performance, a desired light splitting grating is simply provided on the surface of the diffraction element 10 (20) facing the semiconductor laser 12. Because trace performance can be obtained,
High performance can be achieved without increasing the number of parts.

【0038】[0038]

【発明の効果】この発明の回折素子では、誘電体からな
る回折格子を通過した光とこの回折格子を通過しなかっ
た光の位相差を、誘電体を構成する誘電体材料の特性お
よび誘電体の厚みと、接着剤の屈折率とに基づいて、高
い自由度で設定することができるので、高い回折効率を
得ることができる。回折格子は、接着剤で封止されるの
で、塵埃等による汚染がない。この発明の回折素子を用
いた光ピックアップ装置では、設計の自由度が広がり、
さらなる小型化と高性能化が可能になる。
In the diffractive element of the present invention, the phase difference between the light that has passed through the diffraction grating made of a dielectric material and the light that has not passed through this diffraction grating is determined by the characteristics of the dielectric material constituting the dielectric material and the dielectric material. Since it can be set with a high degree of freedom based on the thickness of the adhesive and the refractive index of the adhesive, a high diffraction efficiency can be obtained. Since the diffraction grating is sealed with an adhesive, it is free from contamination such as dust. In the optical pickup device using the diffraction element of the present invention, the degree of freedom in design is expanded,
Further miniaturization and higher performance are possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明による回折素子の実施の一形態を示す
断面図。
FIG. 1 is a sectional view showing an embodiment of a diffractive element according to the present invention.

【図2】図1の回折素子の部分拡大図。FIG. 2 is a partially enlarged view of the diffraction element shown in FIG.

【図3】この発明による回折素子の実施の他の形態を示
す断面図。
FIG. 3 is a sectional view showing another embodiment of the diffractive element according to the present invention.

【図4】この発明による回折素子を用いた光ピックアッ
プ装置の断面図。
FIG. 4 is a sectional view of an optical pickup device using the diffraction element according to the present invention.

【図5】従来例による光ピックアップ装置の断面図。FIG. 5 is a sectional view of an optical pickup device according to a conventional example.

【図6】従来例によるレリーフ型回折素子の断面図。FIG. 6 is a cross-sectional view of a relief type diffraction element according to a conventional example.

【図7】従来例による屈折率変調型回折素子の断面図。FIG. 7 is a cross-sectional view of a conventional refractive index modulation type diffraction element.

【符号の説明】[Explanation of symbols]

1 基板 2 回折格子 3 他の光学素子 4 接着剤層(接着剤) 5 誘電体 6a 反射防止層 6b 反射防止層 10 回折素子 19 偏光プリズム(他の光学素子) 20 回折素子 50 光ピックアップ装置 1 substrate 2 diffraction grating 3 Other optical elements 4 Adhesive layer (adhesive) 5 Dielectric 6a Antireflection layer 6b Antireflection layer 10 Diffraction element 19 Polarizing prism (other optical elements) 20 diffraction element 50 Optical pickup device

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H049 AA03 AA13 AA33 AA37 AA43 AA45 AA48 AA51 AA57 AA64 AA68 2K009 AA04 BB06 CC42 DD03 DD04 DD12 5D119 AA38 AA43 JA03 JA13 JA22 JA24 JA46    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 2H049 AA03 AA13 AA33 AA37 AA43                       AA45 AA48 AA51 AA57 AA64                       AA68                 2K009 AA04 BB06 CC42 DD03 DD04                       DD12                 5D119 AA38 AA43 JA03 JA13 JA22                       JA24 JA46

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 他の光学素子と接着剤層を介して接着さ
れる回折素子であって、回折素子が基板に形成された誘
電体からなる回折格子を有し、誘電体の屈折率が接着剤
層を形成する接着剤の屈折率より高いことを特徴とする
回折素子。
1. A diffractive element bonded to another optical element via an adhesive layer, wherein the diffractive element has a diffraction grating made of a dielectric material formed on a substrate, and the refractive index of the dielectric material is bonded. A diffractive element having a refractive index higher than that of an adhesive forming the agent layer.
【請求項2】 誘電体が、TiO2、Ta2O5 、SiN 、SiON、
CeO2、ZrO2から選択された一つまたは複数の物質を含む
ことを特徴とする請求項1に記載の回折素子。
2. The dielectric is TiO 2 , Ta 2 O 5 , SiN, SiON,
The diffractive element according to claim 1, further comprising one or more substances selected from CeO 2 and ZrO 2 .
【請求項3】 基板の屈折率と接着剤の屈折率が略等し
いことを特徴とする請求項1または2に記載の回折素
子。
3. The diffractive element according to claim 1, wherein the refractive index of the substrate and the refractive index of the adhesive are substantially equal to each other.
【請求項4】 回折格子が、誘電体と基板との間および
基板と反対側の誘電体上部に反射防止層を有してなる請
求項1から3のいずれか1つに記載の回折素子。
4. The diffraction element according to claim 1, wherein the diffraction grating has an antireflection layer between the dielectric and the substrate and on the upper side of the dielectric opposite to the substrate.
【請求項5】 回折格子が誘電体のみで構成され、誘電
体と基板との境界で生じた反射光および誘電体と接着剤
層との境界で生じた反射光が互いに逆位相となるよう
に、誘電体の屈折率および誘電体の厚さが設定されてな
る請求項1から3のいずれか1つに記載の回折素子。
5. The diffraction grating is composed only of a dielectric material, and the reflected light generated at the boundary between the dielectric material and the substrate and the reflected light generated at the boundary between the dielectric material and the adhesive layer have mutually opposite phases. The diffraction element according to claim 1, wherein the refractive index of the dielectric and the thickness of the dielectric are set.
【請求項6】 誘電体の屈折率nと誘電体の厚さtが、 t=2mλ/(2n) 但し、mは整数、λは光の波長 となる関係を満たす請求項1から3のいずれか1つに記
載の回折素子。
6. The refractive index n of the dielectric and the thickness t of the dielectric are: t = 2mλ / (2n) where m is an integer and λ is the wavelength of light. The diffractive element according to one of
【請求項7】 光源と、光源から放射される光を光記録
媒体上に集光する集光光学系と、前記光記録媒体からの
反射光を受光する光検出器を具備し、前記光源から前記
集光光学系に至る光路上、または前記集光光学系から前
記光検出器に至る光路上に請求項1から7のいずれか1
つに記載の回折素子を配置してなる光ピックアップ装
置。
7. A light source, a condensing optical system for condensing light emitted from the light source onto an optical recording medium, and a photodetector for receiving reflected light from the optical recording medium. The optical path leading to the condensing optical system or the optical path reaching the photodetector from the condensing optical system.
An optical pickup device in which the diffractive element according to item 1 is arranged.
JP2001200942A 2001-07-02 2001-07-02 Diffraction element and optical pickup device assembled with the same Pending JP2003014914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001200942A JP2003014914A (en) 2001-07-02 2001-07-02 Diffraction element and optical pickup device assembled with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001200942A JP2003014914A (en) 2001-07-02 2001-07-02 Diffraction element and optical pickup device assembled with the same

Publications (1)

Publication Number Publication Date
JP2003014914A true JP2003014914A (en) 2003-01-15

Family

ID=19037981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001200942A Pending JP2003014914A (en) 2001-07-02 2001-07-02 Diffraction element and optical pickup device assembled with the same

Country Status (1)

Country Link
JP (1) JP2003014914A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004081620A1 (en) 2003-03-13 2004-09-23 Asahi Glass Company Limited Diffraction element and optical device
JP2005114857A (en) * 2003-10-03 2005-04-28 Enplas Corp Optical element and optical pickup device using the same
EP1596226A1 (en) * 2003-02-18 2005-11-16 Sumitomo Electric Industries, Ltd. Diffraction lattice element, production method for diffraction lattice element, and design method for diffraction lattice element
EP1619678A1 (en) * 2003-04-25 2006-01-25 Asahi Glass Company Ltd. Diffraction element and optical head device
KR100697614B1 (en) 2006-01-31 2007-03-22 주식회사 엘지에스 Diffraction grating and method of fabrication thereof
WO2020218106A1 (en) * 2019-04-23 2020-10-29 株式会社小糸製作所 Optical element and light source device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2214037A1 (en) * 2003-02-18 2010-08-04 Sumitomo Electric Industries, Ltd. Diffraction grating element, and production method of diffraction grating element
EP1596226A1 (en) * 2003-02-18 2005-11-16 Sumitomo Electric Industries, Ltd. Diffraction lattice element, production method for diffraction lattice element, and design method for diffraction lattice element
EP1596226A4 (en) * 2003-02-18 2009-09-02 Sumitomo Electric Industries Diffraction lattice element, production method for diffraction lattice element, and design method for diffraction lattice element
EP1602947A1 (en) * 2003-03-13 2005-12-07 Asahi Glass Company Ltd. Diffraction element and optical device
JP2010262320A (en) * 2003-03-13 2010-11-18 Asahi Glass Co Ltd Diffraction element and optical device
EP1602947A4 (en) * 2003-03-13 2007-03-28 Asahi Glass Co Ltd Diffraction element and optical device
WO2004081620A1 (en) 2003-03-13 2004-09-23 Asahi Glass Company Limited Diffraction element and optical device
EP1619678A1 (en) * 2003-04-25 2006-01-25 Asahi Glass Company Ltd. Diffraction element and optical head device
EP1619678A4 (en) * 2003-04-25 2007-04-04 Asahi Glass Co Ltd Diffraction element and optical head device
JP2005114857A (en) * 2003-10-03 2005-04-28 Enplas Corp Optical element and optical pickup device using the same
WO2007089073A1 (en) * 2006-01-31 2007-08-09 Lgs Corporation, Ltd Diffraction grating and method of fabrication thereof
KR100697614B1 (en) 2006-01-31 2007-03-22 주식회사 엘지에스 Diffraction grating and method of fabrication thereof
WO2020218106A1 (en) * 2019-04-23 2020-10-29 株式会社小糸製作所 Optical element and light source device
JP2020181005A (en) * 2019-04-23 2020-11-05 株式会社小糸製作所 Optical element and light source device
CN113544556A (en) * 2019-04-23 2021-10-22 株式会社小糸制作所 Optical element and light source device
CN113544556B (en) * 2019-04-23 2023-08-25 株式会社小糸制作所 Optical element and light source device
JP7398878B2 (en) 2019-04-23 2023-12-15 株式会社小糸製作所 Optical elements and light source devices

Similar Documents

Publication Publication Date Title
US20080310024A1 (en) Diffraction element
US20040013076A1 (en) Diffraction grating, light source unit applying the same therein, and optical head device employing the same
KR970002956A (en) Optical pick-up using vertical resonator surface emitting laser diode
JP3029541B2 (en) Optical pickup device
US8040778B2 (en) Diffraction element and optical head device equipped therewith
JP2003014914A (en) Diffraction element and optical pickup device assembled with the same
JP3545905B2 (en) Polarization separation element and optical head using the polarization separation element
JP2002311242A (en) Polarized light separating element, semiconductor laser unit and optical pickup device
JPH11174226A (en) Polarizing hologram and optical head using the same
JP2002196123A (en) Dual-wavelength diffraction optical element, dual wavelength light source device and optical head device
JPH11306581A (en) Broadband polarized light separating element and optical head using this broadband polarized light separating element
JPH04139628A (en) Optical semiconductor device and its manufacture
JP2002372624A (en) Polalized light separation element, semiconductor laser unit and optical pickup device
JP2001330718A (en) Optical element and optical device using the same
JP3947828B2 (en) Optical head device and manufacturing method thereof
JP3915527B2 (en) Aperture limiting element and optical head device
JP3526811B2 (en) Optical component, manufacturing method thereof, and optical pickup using the same
JP2003077160A (en) Semiconductor laser device
JP4284927B2 (en) Aperture limiting element and optical head device
KR100293464B1 (en) optical source module for generating beams different from the wave length and method for fabricating the same and optical pick-up apparatus using the same
JP2000241616A (en) Diffraction grating, manufacture thereof and optical pickup
US20120213051A1 (en) Optical pickup head
JPH06300921A (en) Hologram element and optical head device
JP2005055772A (en) Polarizing optical element
JP2004280013A (en) Method for manufacturing prism and method for manufacturing optical system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071211