JP2003014516A - Ultrasonic flow velocity measuring method - Google Patents
Ultrasonic flow velocity measuring methodInfo
- Publication number
- JP2003014516A JP2003014516A JP2001202092A JP2001202092A JP2003014516A JP 2003014516 A JP2003014516 A JP 2003014516A JP 2001202092 A JP2001202092 A JP 2001202092A JP 2001202092 A JP2001202092 A JP 2001202092A JP 2003014516 A JP2003014516 A JP 2003014516A
- Authority
- JP
- Japan
- Prior art keywords
- cross point
- zero
- ultrasonic
- point
- flow velocity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measuring Volume Flow (AREA)
Abstract
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】この発明は、超音波を利用し
てガスその他の流体の流速を測定する超音波流速測定方
法に関する。
【0002】
【従来の技術および発明が解決しようとする課題】従
来、ガスその他の流体の流量を求めるに際し、まず流体
の流速を連続的ないし定期的に測定し、これに基いて流
量を演算することが行われている。そして、このような
流体の流速測定方法の一つとして、超音波を利用した方
法が知られている。
【0003】かかる超音波流速測定方法の原理を、図6
にて説明すると次のとおりである。図6において、
(1)は内部をガス等の流体が流れる超音波流速測定管
である。この超音波流速測定管(1)内には、流れ方向
の上流側及び下流側に、所定距離を隔てて超音波振動子
(2)(3)が配置されている。この超音波振動子
(2)(3)は、駆動パルス発生回路(4)からの駆動
パルスにより駆動されて振動し、超音波を発生送信する
一方、送信されてきた超音波を受信するもので、超音波
振動子(3)(2)が振動したときの受信波(J)が受
信増幅回路(5)から出力されるものとなされている。
【0004】そして、上流側の超音波振動子(2)から
流れに対して順方向に送信された超音波が下流側の超音
波振動子(3)で受波されるまでの伝搬時間と、下流側
の超音波振動子(3)から流れに対して逆方向に送信さ
れた超音波が上流側の超音波振動子(2)で受信される
までの伝搬時間との差は、流速に関係することから、こ
の超音波の伝搬時間差をクロック波を利用する等して求
めることにより流体の流速を測定するものとなされてい
る。
【0005】なお、図6において、(6)は各超音波振
動子(2)(3)と駆動パルス発生回路(4)及び受信
増幅回路(5)の接続を切り替える切替回路であり、ま
ず駆動パルス発生回路(4)と上流側の超音波振動子
(2)、下流側の超音波振動子(3)と受信増幅回路
(5)を接続して、上流側から下流側への伝搬時間を測
定したのち、該切替回路(6)の作動により駆動パルス
発生回路(4)と下流側の超音波振動子(3)、上流側
の超音波振動子(2)と受信増幅回路(5)とが接続さ
れるように切替えて、下流側から上流側への伝搬時間を
測定するものとなされている。
【0006】ところで、一般に、超音波の伝搬時間は、
受信増幅回路(5)から出力される受信波(J)の所定
のゼロクロス点Zを基準に求められるが、従来、この受
信波(J)のゼロクロス点Zは以下の方法により特定さ
れていた。
【0007】即ち、まず受信波(J)を一定周期でサン
プリングし、それらサンプル値Pi(電圧値)をサイン
波形として扱い、それらサイン波形のサンプル値Piを
直線のサンプル値Qiに変換する。例えば、図7に示す
ように、受信波(J)のゼロクロス点Zとその直前のサ
ンプル点との位相差がαθで、受信波(J)のサイン波
形が下式[10]で表される場合、下式[11]により
サイン波形のサンプル値Piを直線のサンプル値Qi に
変換する。
Pi=Asin(iα+αθ)・・・[10]
Qi=Pi×B(iα+αθ)/Asin(iα+αθ)・・・[11]
Qi:直線のサンプル値
Pi:サイン波形のサンプル値
i:サンプル番号
A、B:係数
αθ:受信波(J)のゼロクロス点Zとその直前のサン
プル点との位相差
そして、それら直線のサンプル値Qiから最小二乗法に
より近似直線を算出し、その近似直線のゼロクロス点を
受信波(J)のゼロクロス点Zとして特定する。
【0008】しかしながら、上述の方法だと、上式[1
1]によりサイン波形のサンプル値Piを直線のサンプ
ル値Qiに変換するに際し、θが任意の値のときは(i
α+αθ)も任意の値となるので、マイコン等によるs
in(iα+αθ)の計算処理が煩雑化し、受信波
(J)のゼロクロス点Zを特定するのに時間がかかると
いう問題があった。
【0009】この発明は、上述の問題に鑑みてなされた
ものであって、受信波のゼロクロス点を短い時間で精度
良く特定することができ、ひいては迅速かつ高精度の流
速測定が可能な超音波流速測定方法の提供を目的とす
る。
【0010】
【課題を解決するための手段】この発明は、上記目的を
達成するために、受信波(J)のゼロクロス点Zを特定
するための近似直線を求めるに際し、受信波(J)のサ
ンプル値Viをそのまま直線サンプル値に変換するので
はなく、受信波(J)の各サンプル点Si、Si+1を結ぶ
線分SiSi+1を内分し、その内分点Niに対応するサイ
ンサンプル値Wiを直線サンプル値Ziに変換するもので
ある。
【0011】即ち、この発明は、超音波流速測定管1を
流れる計測流体の上流側と下流側にそれぞれ超音波振動
子2、3が配置され、前記各超音波振動子2、3から相
互に超音波を発生送信するとともに、送信された超音波
を相互に受信し、それらの受信波(J)のゼロクロス点
Zを基準に超音波の伝搬時間を求め、それら超音波の伝
搬時間の差に基づいて流速を測定する超音波流速測定方
法において、前記受信波(J)を一定周期でサンプリン
グするステップと、前記受信波(J)のゼロクロス点Z
の直前直後のサンプル点S1、S1’を結ぶ線分S1S1’
がゼロクロスする点を仮ゼロクロス点N0とし、前記サ
ンプル点S1、S1’と仮ゼロクロス点N0の対応関係を
求めるステップと、前記サンプル点S1、S1’と仮ゼロ
クロス点N0の対応関係に応じて、隣り合う各サンプル
点Si、Si+1を結ぶ線分SiSi+1を内分し、その内分点
Niに対応するサインサンプル値Wiを求めるステップ
と、前記サインサンプル値Wiを直線サンプル値Ziに
変換するステップと、前記直線サンプル値Ziに基づい
て最小二乗法により近似直線ai+bを求めるステップ
と、前記近似直線ai+bのゼロクロス点を前記受信波
(J)のゼロクロス点Zとして特定するステップと、を
備えることを特徴とする。
【0012】これによれば、前記サインサンプリング値
Wiは、仮ゼロクロス点Zを基準としたサンプリング周
期Tsごとの電圧値であり、それらサインサンプリング
値Wiで構成される波形は位相差αθを含まないサイン
波形となるので、前記サインサンプリング値Wiを直線
サンプル値Ziに変換するときのマイコン等による処理
が簡単化される。このため。受信波(J)のゼロクロス
点Zを短い処理時間で精度良く特定することができ、ひ
いては迅速かつ高精度な流速測定が可能となる。
【0013】
【発明の実施の形態】図1は、この発明を実施するため
の超音波流速測定装置を示すものである。図1におい
て、(1)は超音波流速測定管、(2)(3)は流れ方
向の上流側および下流側に所定距離を隔てて配置された
超音波振動子、(4)は駆動パルスを発生するパルス発
生回路、(5)は超音波振動子(2)(3)で超音波を
受信したときに受信波(J)を出力する受信増幅回路、
(6)は超音波振動子(2)(3)とパルス発生回路
(4)および受信増幅回路(5)の接続を切り替える切
替回路であり、これらは図6に示したものと同じであ
る。
【0014】(7)は、様々な処理を行う中央演算処理
装置(以下、CPUという)と、随時書き込み読み出し
メモリー(RAM)と、読み出し専用メモリー(RO
M)とを備えたマイクロコンピュータ(以下、マイコン
という)で、前記パルス発生回路(4)、受信増幅回路
(5)および切替回路(6)にそれぞれ接続されてい
る。
【0015】このマイコン(7)は、超音波振動子
(2)(3)から超音波を発生送信せしめ、その超音波
が超音波振動子(3)(2)に受信されたあと、後述の
受信波ゼロクロス特定処理によって受信増幅回路(5)
から出力される受信波(J)のゼロクロス点Zを超音波
受信タイミングとして特定する。そして、そのゼロクロ
ス点Zを基準に順方向と逆方向の超音波の伝搬時間を測
定し、それら超音波の伝搬時間の差に基づいて流体の流
速を求める。
【0016】以下、上記受信波ゼロクロス特定処理につ
いて具体的に説明する。なお、この実施形態では、受信
波(J)の第3波(W3)のゼロクロス点(Z)を超音
波受信タイミングとして特定する。
【0017】この受信波ゼロクロス特定処理は、第1の
ステップから第6のステップからなり、まず第1のステ
ップでは、図2(a)に示すように、受信波(J)のゼ
ロクロス点(Z)付近の電圧値を一定周期Tsでサンプ
リングする。なお、この実施形態では、受信波(J)の
ゼロクロス点(Z)より前のサンプル点をS1、S2、・
・・、Snとし、それらのサンプル値をV1、V2、・・
・、Vnとするとともに、受信波(J)のゼロクロス点
(Z)より後のサンプル点をS1’、S2’、・・・、S
n’とし、それらのサンプル値をV1’、V2’、・・
・、Vn’とする。
【0018】第2のステップでは、図2(b)に示すよ
うに、前記受信波(J)のゼロクロス点Zの直前直後の
サンプル点S1、S1’を結ぶ線分S1S1’がゼロクロス
する点を仮ゼロクロス点N0とし、前記サンプル点S1、
S1’と仮ゼロクロス点N0の対応関係を求める。
【0019】この実施形態では、下式[1]に示すよう
に、まず前記サンプル値V1、V1’に基づいて、前記サ
ンプル点S1から仮ゼロクロス点N0までの時間Tmを求
め、さらに、下式[2]に示すように、前記時間Tmと
サンプリング周期Tsに基づいて、仮ゼロクロス点N0
による前記線分S1S1’の内分比θを求める。この内分
比θは、前記サンプル点S1、S1’と仮ゼロクロス点
Zの対応関係を表すものである。
Tm=Ts×V1/(V1+V1’)・・・[1]
θ=Tm/Ts・・・[2]
Tm:サンプル点S1から仮ゼロクロス点N0までの時間
Ts:サンプリング周期
V1:受信波(J)のゼロクロス点Z直前のサンプリン
グ値
V1’:受信波(J)のゼロクロス点Z直後のサンプリ
ング値
θ:内分比
Ts:サンプリング周期
第3のステップでは、図2(c)に示すように、前記サ
ンプル点S1、S1’と仮ゼロクロス点Zの対応関係に応
じて、隣り合う各サンプル点Si、Si+1を結ぶ線分Si
Si+1を内分し、その内分点Niに対応するサインサンプ
ル値Wiを求める。
【0020】この実施形態では、前記サンプル点S1、
S1’と仮ゼロクロス点N0の対応関係は、仮ゼロクロス
点N0による前記線分S1S1’の内分比θであらわされ
るので、下式[3]に示すように、隣り合う各サンプル
点Si、Si+1を結ぶ線分Si、Si+1を前記内分比θによ
り内分し、その内分点Niに対応するサインサンプル値
Wiを求める。また、下式[4]に示すように、サイン
サンプル値Wi ’についても上述と同様に求める。
Wi=θVi+(1−θ)Vi+1・・・[3]
Wi’=θVi’+(1−θ)Vi+1’・・・[4]
これらサインサンプリング値Wi、Wi’は、仮ゼロクロ
ス点Zを基準としたサンプリング周期Tsごとの電圧値
であり、しかもサンプリング周期Tsも非常に短い。こ
のため、それらサインサンプリング値Wi、Wi’で構成
される波形は位相差αθを含まないサイン波形とみなす
ことができる。
【0021】第4のステップでは、下式[5][6]に
示すように、前記サインサンプル値Wi、Wi’を直線
サンプル値Zi、Zi’に変換する。
Zi=(isinα/siniα)×Wi・・・[5]
Zi’=(isinα/siniα)×Wi’・・・[6]
このように、サインサンプル値Wi、Wi’を直線サン
プル値Zi、Zi’に変換するに際して、従来のような
位相差θαを含まないsiniαで除算するので、マイ
コンによる処理が簡単化される。なお、上式[5]
[6]においてisinαを乗じるのは、サインサンプ
ル値W1、W1’と直線サンプル値Z1、Z1’が一致
するような直線にするためである。
【0022】第5のステップでは、前記直線サンプル値
Zi、Zi’に基づいて最小二乗法により近似直線ai
+bを求める。この最小二乗法については公知であるの
でその説明を省略する。
【0023】第6のステップでは、図3に示すように、
前記近似直線ai+bのゼロクロス点を前記受信波のゼ
ロクロス点Zとして特定する。
【0024】この実施形態では、下式[7]に示すよう
に、サンプル点S1から前記近似直線ai+bのゼロク
ロス点までの前記サンプリング周期Tsに対する時間比
θzを求め、さらに、下式[8]に示すように、前記時
間比θzに基づいて前記サンプル点S1から前記近似直
線ai+bのゼロクロス点までの時間Tmzを求める。
θz=θ−b/a・・・[7]
Tmz=θzTs=(θ−b/a)Ts・・・[8]
θz:サンプル点S1から前記近似直線ai+bのゼロ
クロス点Zまでの前記サンプリング周期Tsに対する時
間比
θ:内分比
a、b:係数
Tmz:サンプル点S1から前記近似直線ai+bのゼ
ロクロス点Zまでの時間
Ts:サンプリング周期
次に上記超音波流速測定装置を用いた超音波流速測定方
法について図4に示すフローチャートを用いて説明す
る。なお、以下の説明及び図面において「ステップ」を
「S」と略記する。
【0025】まず、S1で、マイコン(7)が、駆動パ
ルス発生回路(4)から駆動パルスを発生させて、その
駆動パルスを超音波振動子(2)に印加せしめることに
より超音波振動子(2)から超音波を送信せしめる。
【0026】S2では、前記超音波振動子(2)から送
信された超音波を超音波振動子(3)で受信し、受信増
幅回路(5)から受信波を出力する。
【0027】S3では、マイコン(7)が、後述の受信
波ゼロクロス特定処理により、前記受信増幅回路(7)
から出力された受信波(J)の3波(J3)のゼロクロ
ス点Zを超音波到達タイミンとして特定する。
【0028】S4では、マイコン(7)が、超音波が送
信された時点から受信された時点(超音波到達タイミン
グ)までの時間を超音波の伝搬時間としてクロック波に
より測定する。
【0029】S5では、逆方向の超音波の伝搬時間を測
定したか否かを判定し、逆方向の超音波の伝搬時間を測
定していない場合は(S5でNO)、S6で、駆動パル
ス発生回路(4)と下流側の超音波振動子(3)、上流
側の超音波振動子(2)と受信増幅回路(5)とが接続
されるように切り換えて、上述のS1〜S4の処理によ
り逆方向の超音波の伝搬時間を測定する。一方、逆方向
の超音波の伝搬時間を測定した場合は(S15でYE
S)、S7に進む。
【0030】S7では、順方向および逆方向の超音波の
伝搬時間の差に基づいて流体の流速を求め、リターンす
る。なお、この実施形態では、流体の流速は、下式
[9]により求められる。
V=L/2×(t2−t1)/(t1×t2)・・・・[6]
V:流体の流速
L:測定管の長さ
t1:順方向の超音波の伝搬時間
t2:逆方向の超音波の伝搬時間
図5は、受信波ゼロクロス特定処理(図4のS3の処
理)のサブルーチンを示すフローチャートである。
【0031】まずS31では、図2(a)に示すよう
に、受信波(J)のゼロクロス点(Z)付近の電圧値を
一定周期Tsでサンプリングする。
【0032】S32では、図2(b)に示すように、前
記受信波(J)のゼロクロス点Zの直前直後のサンプル
点S1、S1’を結ぶ線分S1S1’がゼロクロスする点を
仮ゼロクロス点N0とし、前記サンプル点S1、S1’と
仮ゼロクロス点N0の対応関係を求める。
【0033】S33では、図2(c)に示すように、前
記サンプル点S1、S1’と仮ゼロクロス点Zの対応関係
に応じて、隣り合う各サンプル点Si、Si+1を結ぶ線分
SiSi+1を内分し、その内分点Niに対応するサインサ
ンプル値Wiを求める。これらサインサンプリング値W
i、Wi’は、仮ゼロクロス点Zを基準としたサンプリン
グ周期Tsごとの電圧値であり、しかもサンプリング周
期Tsも非常に短い。このため、それらサインサンプリ
ング値Wi、Wi’で構成される波形は位相差αθを含ま
ないサイン波形とみなすことができる。
【0034】S34では、上式[5][6]に示すよう
に、前記サインサンプル値Wi、Wi’を直線サンプル
値Zi、Zi’に変換する。このように、サインサンプ
ル値Wi、Wi’を直線サンプル値Zi、Zi’に変換
するに際して、従来のような位相差θαを含まないsi
niαで除算するので、マイコンによる処理が簡単化さ
れる。
【0035】S35では、前記直線サンプル値Zi、Z
i’に基づいて最小二乗法により近似直線ai+bを求
める。
【0036】S36では、図3に示すように、前記近似
直線ai+bのゼロクロス点を前記受信波のゼロクロス
点Zとして特定し、リターンする。
【0037】このように、受信波(J)のゼロクロス点
Zを特定するための近似直線を求めるに際し、受信波
(J)のサンプル値Viをそのまま直線サンプル値に変
換するのではなく、受信波(J)の各サンプル点Si、
Si+1を結ぶ線分SiSi+1の内分点Niに対応するサイン
サンプル値Wiを直線サンプル値Ziに変換する。そし
て、前記サインサンプリング値Wiは、仮ゼロクロス点
Zを基準としたサンプリング周期Tsごとの電圧値であ
り、それらサインサンプリング値Wiで構成される波形
は位相差αθを含まないサイン波形となるので、前記サ
インサンプリング値Wiを直線サンプル値Ziに変換する
ときのマイコン等による処理が簡単化される。このた
め。受信波(J)のゼロクロス点Zを短い処理時間で精
度良く特定することができ、ひいては迅速かつ高精度な
流速測定が可能となる。
【0038】
【発明の効果】この発明によれば、受信波(J)のゼロ
クロス点Zを特定するための近似直線を求めるに際し、
受信波(J)のサンプル値Viをそのまま直線サンプル
値に変換するのではなく、受信波(J)の各サンプル点
Si、Si+1を結ぶ線分SiSi+1の内分点Niに対応する
サインサンプル値Wiを直線サンプル値Ziに変換する。
そして、前記サインサンプリング値Wiは、仮ゼロクロ
ス点Zを基準としたサンプリング周期Tsごとの電圧値
であり、それらサインサンプリング値Wiで構成される
波形は位相差αθを含まないサイン波形となるので、前
記サインサンプリング値Wiを直線サンプル値Ziに変換
するときのマイコン等による処理が簡単化される。この
ため。受信波(J)のゼロクロス点Zを短い処理時間で
精度良く特定することができ、ひいては迅速かつ高精度
な流速測定が可能となる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flow velocity measuring method for measuring the flow velocity of a gas or other fluid using ultrasonic waves. 2. Description of the Related Art Conventionally, when determining the flow rate of a gas or other fluid, the flow rate of the fluid is measured continuously or periodically, and the flow rate is calculated based on this. That is being done. As one of such fluid flow velocity measuring methods, a method using ultrasonic waves is known. FIG. 6 shows the principle of such an ultrasonic flow velocity measuring method.
The description is as follows. In FIG.
(1) is an ultrasonic flow velocity measuring tube through which a fluid such as gas flows. In the ultrasonic flow velocity measuring tube (1), ultrasonic vibrators (2) and (3) are arranged at a predetermined distance upstream and downstream in the flow direction. The ultrasonic vibrators (2) and (3) are driven by a driving pulse from a driving pulse generating circuit (4) to vibrate, generate and transmit ultrasonic waves, and receive transmitted ultrasonic waves. The reception wave (J) when the ultrasonic transducers (3) and (2) vibrate is output from the reception amplification circuit (5). Then, the propagation time until the ultrasonic wave transmitted in the forward direction from the upstream ultrasonic oscillator (2) to the flow is received by the downstream ultrasonic oscillator (3), The difference between the ultrasonic wave transmitted from the downstream ultrasonic oscillator (3) in the opposite direction to the flow and the propagation time until the ultrasonic wave is received by the upstream ultrasonic oscillator (2) is related to the flow velocity. Therefore, the flow velocity of the fluid is measured by determining the difference in the propagation time of the ultrasonic wave by using a clock wave or the like. In FIG. 6, reference numeral (6) denotes a switching circuit for switching the connection between each of the ultrasonic transducers (2) and (3), the drive pulse generating circuit (4) and the receiving amplifier circuit (5). The pulse generating circuit (4) is connected to the upstream ultrasonic oscillator (2), and the downstream ultrasonic oscillator (3) is connected to the receiving amplifier circuit (5) to reduce the propagation time from the upstream to the downstream. After the measurement, the operation of the switching circuit (6) activates the drive pulse generation circuit (4), the downstream ultrasonic oscillator (3), the upstream ultrasonic oscillator (2), and the reception amplifier circuit (5). Are connected so that the propagation time from the downstream side to the upstream side is measured. Generally, the propagation time of an ultrasonic wave is
The zero-cross point Z of the received wave (J) is obtained based on a predetermined zero-cross point Z of the received wave (J) output from the receiving amplifier circuit (5). Conventionally, the zero-cross point Z of the received wave (J) has been specified by the following method. That is, first, the received wave (J) is sampled at a constant period, the sample values Pi (voltage values) are treated as sine waveforms, and the sine waveform sample values Pi are converted into linear sample values Qi. For example, as shown in FIG. 7, the phase difference between the zero-cross point Z of the received wave (J) and the sample point immediately before it is αθ, and the sine waveform of the received wave (J) is expressed by the following equation [10]. In this case, the sample value Pi of the sine waveform is converted into a linear sample value Qi by the following equation [11]. Pi = Asin (iα + αθ) [10] Qi = Pi × B (iα + αθ) / Asin (iα + αθ) [11] Qi: Sample value of straight line Pi: Sample value of sine waveform i: Sample number A, B: Coefficient αθ: Approximate line is calculated from the phase difference between the zero-cross point Z of the received wave (J) and the immediately preceding sample point by the least squares method from the sample values Qi of these lines, and the zero-cross point of the approximate line is calculated. It is specified as the zero cross point Z of the received wave (J). However, according to the above method, the above equation [1]
When [1] converts a sine waveform sample value Pi into a straight line sample value Qi, when [theta] is an arbitrary value, (i)
α + αθ) is also an arbitrary value.
There is a problem that the calculation process of in (iα + αθ) becomes complicated, and it takes time to specify the zero-cross point Z of the received wave (J). SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and is capable of accurately specifying a zero-cross point of a received wave in a short time, and thus, capable of quickly and highly accurately measuring a flow velocity. The purpose is to provide a method for measuring flow velocity. In order to achieve the above object, the present invention provides a method for determining an approximate straight line for specifying a zero-cross point Z of a received wave (J). Instead of directly converting the sample value Vi to a straight line sample value, a line segment SiSi + 1 connecting each sample point Si and Si + 1 of the received wave (J) is internally divided, and a sign corresponding to the subdivision point Ni is obtained. The sample value Wi is converted into a linear sample value Zi. That is, according to the present invention, the ultrasonic vibrators 2, 3 are arranged on the upstream side and the downstream side of the measuring fluid flowing through the ultrasonic flow velocity measuring tube 1, respectively. While generating and transmitting the ultrasonic waves, the transmitted ultrasonic waves are mutually received, the propagation time of the ultrasonic waves is obtained based on the zero cross point Z of the received waves (J), and the difference between the propagation times of the ultrasonic waves is calculated. In the ultrasonic flow velocity measuring method for measuring the flow velocity based on the above, a step of sampling the received wave (J) at a constant period, and a zero cross point Z of the received wave (J)
Line segment S1S1 'connecting sample points S1 and S1' immediately before and after
A point at which the zero crossing is performed is defined as a temporary zero crossing point N0, and a step of determining the correspondence between the sample points S1 and S1 'and the temporary zero crossing point N0; and according to the correspondence between the sample points S1 and S1' and the temporary zero crossing point N0, A step of internally dividing a line segment SiSi + 1 connecting the adjacent sample points Si and Si + 1 to obtain a sine sample value Wi corresponding to the internally divided point Ni; and converting the sine sample value Wi into a linear sample value Zi. Converting, obtaining an approximate straight line ai + b by the least square method based on the straight line sample value Zi, and specifying a zero cross point of the approximate straight line ai + b as a zero cross point Z of the received wave (J). It is characterized by having. According to this, the sine sampling value Wi is a voltage value for each sampling period Ts based on the temporary zero cross point Z, and the waveform constituted by the sine sampling values Wi does not include the phase difference αθ. Since the signal has a sine waveform, processing by the microcomputer or the like when converting the sine sampling value Wi into the linear sample value Zi is simplified. For this reason. The zero-cross point Z of the received wave (J) can be specified with high accuracy in a short processing time, so that a quick and accurate flow velocity measurement can be performed. FIG. 1 shows an ultrasonic flow velocity measuring device for carrying out the present invention. In FIG. 1, (1) is an ultrasonic flow velocity measuring tube, (2) and (3) are ultrasonic vibrators arranged at a predetermined distance upstream and downstream in a flow direction, and (4) is a driving pulse. A pulse generating circuit that generates a signal; (5) a receiving amplifier circuit that outputs a received wave (J) when ultrasonic waves are received by the ultrasonic transducers (2) and (3);
(6) is a switching circuit for switching the connection between the ultrasonic transducers (2) and (3), the pulse generating circuit (4) and the receiving amplifier circuit (5), which are the same as those shown in FIG. (7) A central processing unit (hereinafter referred to as a CPU) for performing various processes, a read / write memory (RAM) as needed, and a read-only memory (RO)
M), and is connected to the pulse generation circuit (4), the reception amplification circuit (5), and the switching circuit (6), respectively. The microcomputer (7) causes the ultrasonic vibrators (2) and (3) to generate and transmit ultrasonic waves. After the ultrasonic waves are received by the ultrasonic vibrators (3) and (2), the microcomputer (7) will be described later. Receive amplifier circuit by receiving wave zero crossing specification processing (5)
The zero-cross point Z of the received wave (J) output from is specified as the ultrasonic reception timing. Then, the propagation times of the ultrasonic waves in the forward and reverse directions are measured based on the zero cross point Z, and the flow velocity of the fluid is obtained based on the difference between the propagation times of the ultrasonic waves. Hereinafter, the received wave zero-cross identification processing will be specifically described. In this embodiment, the zero-cross point (Z) of the third wave (W3) of the received wave (J) is specified as the ultrasonic reception timing. This received wave zero-crossing specifying process includes a first step to a sixth step. In the first step, as shown in FIG. 2A, the zero-cross point (Z) of the received wave (J) is determined. ) Is sampled at a constant period Ts. In this embodiment, the sample points before the zero cross point (Z) of the received wave (J) are defined as S1, S2,.
.., Sn and their sampled values are V1, V2,.
, Vn, and the sample points after the zero cross point (Z) of the received wave (J) are S1 ', S2',.
n 'and their sample values are V1', V2 ',.
, Vn '. In the second step, as shown in FIG. 2B, the point at which the line segment S1S1 'connecting the sampling points S1 and S1' immediately before and after the zero-cross point Z of the received wave (J) crosses the zero-cross point. A temporary zero-cross point N0 is set, and the sample point S1,
The correspondence between S1 'and the temporary zero cross point N0 is determined. In this embodiment, as shown in the following equation [1], first, a time Tm from the sample point S1 to the temporary zero crossing point N0 is obtained based on the sample values V1 and V1 '. As shown in [2], based on the time Tm and the sampling period Ts, the temporary zero cross point N0
To determine the internal division ratio θ of the line segment S1S1 ′. The internal division ratio θ indicates the correspondence between the sample points S1 and S1 ′ and the temporary zero-cross point Z. Tm = Ts × V1 / (V1 + V1 ′) (1) θ = Tm / Ts (2) Tm: Time Ts from sample point S1 to temporary zero crossing point N0 Ts: Sampling cycle V1: Received wave (J )): Sampling value V1 ′ immediately before the zero-cross point Z: sampling value θ immediately after the zero-cross point Z of the received wave (J): internal division ratio Ts: sampling cycle In the third step, as shown in FIG. According to the correspondence between the sample points S1 and S1 'and the temporary zero cross point Z, a line segment Si connecting the adjacent sample points Si and Si + 1.
Si + 1 is internally divided, and a sine sample value Wi corresponding to the internally divided point Ni is obtained. In this embodiment, the sample points S1,
Since the correspondence between S1 'and the temporary zero-crossing point N0 is represented by the internal division ratio θ of the line segment S1S1' by the temporary zero-crossing point N0, as shown in the following equation [3], each adjacent sample point Si, Si The line segments Si and Si + 1 connecting +1 are internally divided by the internal division ratio θ, and a sine sample value Wi corresponding to the internal division point Ni is obtained. Further, as shown in the following equation [4], the sine sample value Wi 'is obtained in the same manner as described above. Wi = [theta] Vi + (1- [theta]) Vi + 1 ... [3] Wi '= [theta] Vi' + (1- [theta]) Vi + 1 '... [4] These sine sampling values Wi and Wi' are the temporary zero cross points Z. , And the sampling period Ts is very short. Therefore, the waveform composed of the sine sampling values Wi and Wi ′ can be regarded as a sine waveform that does not include the phase difference αθ. In the fourth step, as shown in the following equations [5] and [6], the sine sample values Wi and Wi 'are converted into linear sample values Zi and Zi'. Zi = (isinα / siniα) × Wi (5) Zi ′ = (isinα / siniα) × Wi ′ (6) Thus, the sine sample values Wi and Wi ′ are converted to the linear sample values Zi and Zi. When converting to ′, the processing by the microcomputer is simplified because it is divided by siniα that does not include the phase difference θα as in the related art. Note that the above equation [5]
The reason why [6] is multiplied by isin α is to make a straight line such that the sine sample values W1 and W1 ′ coincide with the straight line sample values Z1 and Z1 ′. In the fifth step, an approximate straight line ai is obtained by the least square method based on the straight line sample values Zi and Zi '.
+ B is obtained. Since the least squares method is known, its description is omitted. In the sixth step, as shown in FIG.
The zero cross point of the approximate straight line ai + b is specified as the zero cross point Z of the received wave. In this embodiment, as shown in the following equation [7], the time ratio θz from the sampling point S1 to the zero cross point of the approximate straight line ai + b with respect to the sampling cycle Ts is obtained. As shown, the time Tmz from the sample point S1 to the zero cross point of the approximate straight line ai + b is obtained based on the time ratio θz. [7] Tmz = [theta] zTs = ([theta] -b / a) Ts [8] [theta] z: The sampling period from the sample point S1 to the zero cross point Z of the approximate straight line ai + b. Time ratio to Ts: Internal division ratio a, b: Coefficient Tmz: Time from sample point S1 to zero crossing point Z of approximate straight line ai + b Ts: Sampling cycle Next, ultrasonic flow velocity measurement using the above ultrasonic flow velocity measuring device The method will be described with reference to the flowchart shown in FIG. In the following description and drawings, “step” is abbreviated as “S”. First, in S1, the microcomputer (7) generates a driving pulse from the driving pulse generating circuit (4) and applies the driving pulse to the ultrasonic vibrator (2) to thereby generate the ultrasonic vibrator ( Transmit the ultrasonic wave from 2). In S2, the ultrasonic wave transmitted from the ultrasonic vibrator (2) is received by the ultrasonic vibrator (3), and a reception wave is output from the reception amplifier circuit (5). In step S3, the microcomputer (7) executes the reception wave zero-cross identification processing described later to execute the reception amplification circuit (7).
The zero-crossing point Z of three waves (J3) of the received waves (J) output from is specified as the ultrasonic arrival timing. At S4, the microcomputer (7) measures the time from the time when the ultrasonic wave is transmitted to the time when the ultrasonic wave is received (ultrasonic arrival timing) by using the clock wave as the ultrasonic wave propagation time. In S5, it is determined whether or not the propagation time of the ultrasonic wave in the reverse direction has been measured. If the propagation time of the ultrasonic wave in the reverse direction has not been measured (NO in S5), the driving pulse is determined in S6. The generation circuit (4) and the downstream ultrasonic vibrator (3), and the upstream ultrasonic vibrator (2) and the reception amplifier circuit (5) are switched so as to be connected, and the above-described S1 to S4 The processing measures the propagation time of the ultrasonic wave in the reverse direction. On the other hand, when the propagation time of the ultrasonic wave in the reverse direction is measured (YE in S15)
S), proceed to S7. In S7, the flow velocity of the fluid is obtained based on the difference between the propagation times of the ultrasonic waves in the forward direction and the backward direction, and the process returns. In this embodiment, the flow velocity of the fluid is obtained by the following equation [9]. V = L / 2 × (t2−t1) / (t1 × t2) (6) V: flow velocity of fluid L: length of measuring tube t1: propagation time of forward ultrasonic wave t2: reverse direction FIG. 5 is a flowchart showing a subroutine of the received wave zero-crossing specifying process (the process of S3 in FIG. 4). First, in S31, as shown in FIG. 2A, a voltage value near the zero cross point (Z) of the received wave (J) is sampled at a constant period Ts. In step S32, as shown in FIG. 2B, the point at which the line segment S1S1 'connecting the sample points S1 and S1' immediately before and after the zero-cross point Z of the received wave (J) crosses the temporary zero-cross point. N0 is set, and the correspondence between the sample points S1 and S1 'and the temporary zero-crossing point N0 is determined. In step S33, as shown in FIG. 2C, a line segment SiSi connecting the adjacent sample points Si and Si + 1 according to the correspondence between the sample points S1 and S1 'and the temporary zero cross point Z. +1 is internally divided to obtain a sine sample value Wi corresponding to the internally divided point Ni. These sine sampling values W
i and Wi 'are voltage values for each sampling period Ts with reference to the temporary zero cross point Z, and the sampling period Ts is also very short. Therefore, the waveform composed of the sine sampling values Wi and Wi ′ can be regarded as a sine waveform that does not include the phase difference αθ. In S34, as shown in the above equations [5] and [6], the sine sample values Wi and Wi 'are converted into linear sample values Zi and Zi'. As described above, when the sine sample values Wi and Wi ′ are converted into the linear sample values Zi and Zi ′, the conventional method does not include the phase difference θα.
The division by niα simplifies the processing by the microcomputer. In S35, the linear sample values Zi, Z
An approximate straight line ai + b is obtained by the least squares method based on i ′. At S36, as shown in FIG. 3, the zero cross point of the approximate straight line ai + b is specified as the zero cross point Z of the received wave, and the process returns. As described above, when obtaining the approximate straight line for specifying the zero-cross point Z of the received wave (J), the sample value Vi of the received wave (J) is not directly converted to a linear sample value, (J) each sample point Si,
The sine sample value Wi corresponding to the subdivision point Ni of the line segment SiSi + 1 connecting Si + 1 is converted into a linear sample value Zi. The sine sampling value Wi is a voltage value for each sampling period Ts based on the temporary zero-crossing point Z, and a waveform composed of the sine sampling values Wi is a sine waveform that does not include the phase difference αθ. Processing by the microcomputer or the like when converting the sine sampling value Wi into the linear sample value Zi is simplified. For this reason. The zero-crossing point Z of the received wave (J) can be specified with high accuracy in a short processing time, so that a quick and highly accurate flow velocity measurement becomes possible. According to the present invention, when obtaining an approximate straight line for specifying the zero-cross point Z of the received wave (J),
The sample value Vi of the received wave (J) is not directly converted to a linear sample value, but corresponds to the subdivision point Ni of the line segment SiSi + 1 connecting the sample points Si and Si + 1 of the received wave (J). The sine sample value Wi is converted to a linear sample value Zi.
The sine sampling value Wi is a voltage value for each sampling period Ts based on the temporary zero-crossing point Z, and a waveform composed of the sine sampling values Wi is a sine waveform that does not include the phase difference αθ. Processing by the microcomputer or the like when converting the sine sampling value Wi into the linear sample value Zi is simplified. For this reason. The zero-crossing point Z of the received wave (J) can be specified with high accuracy in a short processing time, so that a quick and highly accurate flow velocity measurement becomes possible.
【図面の簡単な説明】
【図1】この発明の一実施形態に係る超音波流速測定方
法を実施するための超音波流速測定装置の構成概略図で
ある。
【図2】受信波をサンプリングしてから直線サンプル値
を求めるまでの状態を示す図である。
【図3】近似直線とサンプル点を結ぶ線分との関係を示
す図である。
【図4】図1の超音波流速測定装置の動作を示すフロー
チャートである。
【図5】図4の受信波特定処理のサブルーチンを示すフ
ローチャートである。
【図6】従来の超音波流速測定装置の構成概略図であ
る。
【図7】受信波のサンプル値を直線サンプル値に変換す
る状態を示す図である。
【符号の説明】
1・・・超音波流速測定管
2、3・・・超音波振動子
4・・・駆動パルス発生回路
5・・・受信増幅回路
6・・・切替回路
7・・・マイコンBRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic configuration diagram of an ultrasonic flow velocity measuring device for performing an ultrasonic flow velocity measuring method according to an embodiment of the present invention. FIG. 2 is a diagram showing a state from sampling of a received wave to obtaining a linear sample value. FIG. 3 is a diagram showing a relationship between an approximate straight line and a line segment connecting sample points. FIG. 4 is a flowchart showing the operation of the ultrasonic flow velocity measuring device of FIG. FIG. 5 is a flowchart showing a subroutine of a received wave specifying process of FIG. 4; FIG. 6 is a schematic diagram of a configuration of a conventional ultrasonic flow velocity measuring device. FIG. 7 is a diagram showing a state in which a sample value of a received wave is converted into a linear sample value. [Description of Signs] 1 ... Ultrasonic flow velocity measuring tube 2, 3 ... Ultrasonic vibrator 4 ... Drive pulse generating circuit 5 ... Receiving amplifying circuit 6 ... Switching circuit 7 ... Microcomputer
───────────────────────────────────────────────────── フロントページの続き (72)発明者 江下 和雄 京都市下京区中堂寺鍵田町10 関西ガスメ ータ株式会社内 (72)発明者 保田 哲也 京都市下京区中堂寺鍵田町10 関西ガスメ ータ株式会社内 (72)発明者 忠津 直広 京都市下京区中堂寺鍵田町10 関西ガスメ ータ株式会社内 Fターム(参考) 2F035 DA14 DA22 DA23 ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kazuo Eshita Kansai gas Data Corporation (72) Inventor Tetsuya Yasuda 10 Kansai Gasme, Kagidacho, Chudo-ji, Shimogyo-ku, Kyoto Data Corporation (72) Inventor Naohiro Tadazu Kansai gas Data Corporation F term (reference) 2F035 DA14 DA22 DA23
Claims (1)
上流側と下流側にそれぞれ超音波振動子2、3が配置さ
れ、前記各超音波振動子2、3から相互に超音波を発生
送信するとともに、送信された超音波を相互に受信し、
それらの受信波(J)のゼロクロス点Zを基準に超音波
の伝搬時間を求め、それら超音波の伝搬時間の差に基づ
いて流速を測定する超音波流速測定方法において、 前記受信波(J)を一定周期でサンプリングするステッ
プと、 前記受信波(J)のゼロクロス点Zの直前直後のサンプ
ル点S1、S1’を結ぶ線分S1S1’がゼロクロスする点
を仮ゼロクロス点N0とし、前記サンプル点S1、S1’
と仮ゼロクロス点N0の対応関係を求めるステップと、 前記サンプル点S1、S1’と仮ゼロクロス点N0の対応
関係に応じて、隣り合う各サンプル点Si、Si+1を結ぶ
線分SiSi+1を内分し、その内分点Niに対応するサイ
ンサンプル値Wiを求めるステップと、 前記サインサンプル値Wiを直線サンプル値Ziに変換
するステップと、 前記直線サンプル値Ziに基づいて最小二乗法により近
似直線ai+bを求めるステップと、 前記近似直線ai+bのゼロクロス点を前記受信波
(J)のゼロクロス点Zとして特定するステップと、 を備えることを特徴とする超音波流速測定方法。Claims: 1. Ultrasonic vibrators 2, 3 are arranged on the upstream side and downstream side of a measurement fluid flowing through an ultrasonic flow velocity measuring tube 1, respectively. While generating and transmitting ultrasonic waves to each other, mutually receiving the transmitted ultrasonic waves,
An ultrasonic flow velocity measuring method for determining a propagation time of an ultrasonic wave based on a zero-cross point Z of the received waves (J) and measuring a flow velocity based on a difference between the propagation times of the ultrasonic waves. Is sampled at a constant period. A point at which the line segment S1S1 'connecting the sample points S1 and S1' immediately before and after the zero-cross point Z of the received wave (J) crosses zero is defined as a temporary zero-cross point N0. , S1 '
Calculating a correspondence relationship between the sample points S1 and S1 'and the provisional zero cross point N0, and forming a line segment SiSi + 1 connecting the adjacent sample points Si and Si + 1 according to the correspondence relationship between the sample points S1 and S1' and the provisional zero cross point N0. Subdividing and obtaining a sine sample value Wi corresponding to the subdivision point Ni; converting the sine sample value Wi into a linear sample value Zi; approximating by a least square method based on the linear sample value Zi An ultrasonic flow velocity measuring method, comprising: determining a straight line ai + b; and identifying a zero cross point of the approximate straight line ai + b as a zero cross point Z of the received wave (J).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001202092A JP4889882B2 (en) | 2001-07-03 | 2001-07-03 | Ultrasonic flow velocity measurement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001202092A JP4889882B2 (en) | 2001-07-03 | 2001-07-03 | Ultrasonic flow velocity measurement method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003014516A true JP2003014516A (en) | 2003-01-15 |
JP4889882B2 JP4889882B2 (en) | 2012-03-07 |
Family
ID=19038955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001202092A Expired - Lifetime JP4889882B2 (en) | 2001-07-03 | 2001-07-03 | Ultrasonic flow velocity measurement method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4889882B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010185823A (en) * | 2009-02-13 | 2010-08-26 | Koden Electronics Co Ltd | Ultrasonic flowmeter |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05209781A (en) * | 1991-07-29 | 1993-08-20 | Tokimec Inc | Ultrasonic transmitter/receiver |
-
2001
- 2001-07-03 JP JP2001202092A patent/JP4889882B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05209781A (en) * | 1991-07-29 | 1993-08-20 | Tokimec Inc | Ultrasonic transmitter/receiver |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010185823A (en) * | 2009-02-13 | 2010-08-26 | Koden Electronics Co Ltd | Ultrasonic flowmeter |
Also Published As
Publication number | Publication date |
---|---|
JP4889882B2 (en) | 2012-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6727308B2 (en) | Improved beam shaping acoustic signal propagation time difference type flow meter | |
JPS58167918A (en) | Ultrasonic wave flow speed measuring device | |
DE3676337D1 (en) | DIGITAL CIRCUIT FOR A FLOW METER AND METHOD FOR FLOW MEASUREMENT. | |
JPH10122923A (en) | Ultrasonic flow meter | |
JP2002340642A (en) | Ultrasonic current meter | |
JP2012509473A (en) | Method and apparatus for calibrating a measurement transducer of an ultrasonic flow measurement unit | |
JP2002131105A (en) | Ultrasonic flow rate measuring method | |
CN106643937A (en) | Flow measuring method and device based on ultrasonic flowmeter | |
JPH109914A (en) | Ultrasonic flowmeter | |
JP4889882B2 (en) | Ultrasonic flow velocity measurement method | |
CN112903043A (en) | Multichannel ultrasonic flowmeter system | |
JP2002084659A (en) | Power system analyzing simulator | |
JP2000338123A (en) | Ultrasonic floe speed measuring method | |
JP2021032637A (en) | Simulator for coriolis flowmeters and coriolis flowmeter having simulator within | |
RU88460U1 (en) | ULTRASONIC FLOW METER (OPTIONS) | |
RU2085858C1 (en) | Ultrasound method for detection of product volume which runs through pipe and device which implements said method | |
RU2106603C1 (en) | Ultrasound flowmeter | |
JPS63173920A (en) | Ultrasonic gas current meter | |
JP4689903B2 (en) | Ultrasonic flow velocity measurement method | |
JP2001324362A (en) | Ultrasonic flow velocity measurement method | |
RU2333499C2 (en) | Acoustic method of determining liquid or gas flow direction and velocity variation and device (versions) to this effect | |
JP2001165764A (en) | Method of measuring ultrasonic wave propagation time | |
JP2000275265A (en) | Ultrasonic flow velocity measuring method | |
JP3720155B2 (en) | Ultrasonic flow velocity measurement method | |
JPS6244626A (en) | Calibrating method for transmission type ultrasonic flowmeter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080702 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110624 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110705 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110902 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110920 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111206 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111214 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4889882 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141222 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141222 Year of fee payment: 3 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D02 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |