JP4889882B2 - Ultrasonic flow velocity measurement method - Google Patents

Ultrasonic flow velocity measurement method Download PDF

Info

Publication number
JP4889882B2
JP4889882B2 JP2001202092A JP2001202092A JP4889882B2 JP 4889882 B2 JP4889882 B2 JP 4889882B2 JP 2001202092 A JP2001202092 A JP 2001202092A JP 2001202092 A JP2001202092 A JP 2001202092A JP 4889882 B2 JP4889882 B2 JP 4889882B2
Authority
JP
Japan
Prior art keywords
cross point
ultrasonic
zero cross
sample
flow velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001202092A
Other languages
Japanese (ja)
Other versions
JP2003014516A (en
Inventor
明夫 河野
和雄 江下
哲也 保田
直広 忠津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Elemex Corp
Original Assignee
Ricoh Elemex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Elemex Corp filed Critical Ricoh Elemex Corp
Priority to JP2001202092A priority Critical patent/JP4889882B2/en
Publication of JP2003014516A publication Critical patent/JP2003014516A/en
Application granted granted Critical
Publication of JP4889882B2 publication Critical patent/JP4889882B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、超音波を利用してガスその他の流体の流速を測定する超音波流速測定方法に関する。
【0002】
【従来の技術および発明が解決しようとする課題】
従来、ガスその他の流体の流量を求めるに際し、まず流体の流速を連続的ないし定期的に測定し、これに基いて流量を演算することが行われている。そして、このような流体の流速測定方法の一つとして、超音波を利用した方法が知られている。
【0003】
かかる超音波流速測定方法の原理を、図6にて説明すると次のとおりである。図6において、(1)は内部をガス等の流体が流れる超音波流速測定管である。この超音波流速測定管(1)内には、流れ方向の上流側及び下流側に、所定距離を隔てて超音波振動子(2)(3)が配置されている。この超音波振動子(2)(3)は、駆動パルス発生回路(4)からの駆動パルスにより駆動されて振動し、超音波を発生送信する一方、送信されてきた超音波を受信するもので、超音波振動子(3)(2)が振動したときの受信波(J)が受信増幅回路(5)から出力されるものとなされている。
【0004】
そして、上流側の超音波振動子(2)から流れに対して順方向に送信された超音波が下流側の超音波振動子(3)で受波されるまでの伝搬時間と、下流側の超音波振動子(3)から流れに対して逆方向に送信された超音波が上流側の超音波振動子(2)で受信されるまでの伝搬時間との差は、流速に関係することから、この超音波の伝搬時間差をクロック波を利用する等して求めることにより流体の流速を測定するものとなされている。
【0005】
なお、図6において、(6)は各超音波振動子(2)(3)と駆動パルス発生回路(4)及び受信増幅回路(5)の接続を切り替える切替回路であり、まず駆動パルス発生回路(4)と上流側の超音波振動子(2)、下流側の超音波振動子(3)と受信増幅回路(5)を接続して、上流側から下流側への伝搬時間を測定したのち、該切替回路(6)の作動により駆動パルス発生回路(4)と下流側の超音波振動子(3)、上流側の超音波振動子(2)と受信増幅回路(5)とが接続されるように切替えて、下流側から上流側への伝搬時間を測定するものとなされている。
【0006】
ところで、一般に、超音波の伝搬時間は、受信増幅回路(5)から出力される受信波(J)の所定のゼロクロス点Zを基準に求められるが、従来、この受信波(J)のゼロクロス点Zは以下の方法により特定されていた。
【0007】
即ち、まず受信波(J)を一定周期でサンプリングし、それらサンプル値Pi(電圧値)をサイン波形として扱い、それらサイン波形のサンプル値Piを直線のサンプル値Qiに変換する。例えば、図7に示すように、受信波(J)のゼロクロス点Zとその直前のサンプル点との位相差がαθで、受信波(J)のサイン波形が下式[10]で表される場合、下式[11]によりサイン波形のサンプル値Piを直線のサンプル値Qi に変換する。
Pi=Asin(iα+αθ)・・・[10]
Qi=Pi×B(iα+αθ)/Asin(iα+αθ)・・・[11]
Qi:直線のサンプル値
Pi:サイン波形のサンプル値
i:サンプル番号
A、B:係数
αθ:受信波(J)のゼロクロス点Zとその直前のサンプル点との位相差
そして、それら直線のサンプル値Qiから最小二乗法により近似直線を算出し、その近似直線のゼロクロス点を受信波(J)のゼロクロス点Zとして特定する。
【0008】
しかしながら、上述の方法だと、上式[11]によりサイン波形のサンプル値Piを直線のサンプル値Qiに変換するに際し、θが任意の値のときは(iα+αθ)も任意の値となるので、マイコン等によるsin(iα+αθ)の計算処理が煩雑化し、受信波(J)のゼロクロス点Zを特定するのに時間がかかるという問題があった。
【0009】
この発明は、上述の問題に鑑みてなされたものであって、受信波のゼロクロス点を短い時間で精度良く特定することができ、ひいては迅速かつ高精度の流速測定が可能な超音波流速測定方法の提供を目的とする。
【0010】
【課題を解決するための手段】
この発明は、上記目的を達成するために、受信波(J)のゼロクロス点Zを特定するための近似直線を求めるに際し、受信波(J)のサンプル値Viをそのまま直線サンプル値に変換するのではなく、受信波(J)の各サンプル点Si、Si+1を結ぶ線分SiSi+1を内分し、その内分点Niに対応するサインサンプル値Wiを直線サンプル値Ziに変換するものである。
【0011】
即ち、この発明は、超音波流速測定管1を流れる計測流体の上流側と下流側にそれぞれ超音波振動子2、3が配置され、前記各超音波振動子2、3から相互に超音波を発生送信するとともに、送信された超音波を相互に受信し、それらの受信波(J)のゼロクロス点Zを基準に超音波の伝搬時間を求め、それら超音波の伝搬時間の差に基づいて流速を測定する超音波流速測定方法において、前記受信波(J)を一定周期でサンプリングするステップと、前記受信波(J)のゼロクロス点Zの直前直後のサンプル点S1、S1’を結ぶ線分S1S1’がゼロクロスする点を仮ゼロクロス点N0とし、前記サンプル点S1、S1’と仮ゼロクロス点N0の対応関係を求めるステップと、前記サンプル点S1、S1’と仮ゼロクロス点N0の対応関係に応じて、隣り合う各サンプル点Si、Si+1を結ぶ線分SiSi+1を内分し、その内分点Niに対応し、仮ゼロクロス点Zを基準としたサンプリング周期Tsごとの値であり、サイン波形とみなすことができるサインサンプル値Wiを求めるステップと、前記サインサンプル値Wiを直線サンプル値Ziに変換するステップと、前記直線サンプル値Ziに基づいて最小二乗法により近似直線ai+bを求めるステップと、前記近似直線ai+bのゼロクロス点を前記受信波(J)のゼロクロス点Zとして特定するステップと、を備えることを特徴とする。
【0012】
これによれば、前記サインサンプリング値Wiは、仮ゼロクロス点Zを基準としたサンプリング周期Tsごとの電圧値であり、それらサインサンプリング値Wiで構成される波形は位相差αθを含まないサイン波形となるので、前記サインサンプリング値Wiを直線サンプル値Ziに変換するときのマイコン等による処理が簡単化される。このため、受信波(J)のゼロクロス点Zを短い処理時間で精度良く特定することができ、ひいては迅速かつ高精度な流速測定が可能となる。
【0013】
【発明の実施の形態】
図1は、この発明を実施するための超音波流速測定装置を示すものである。図1において、(1)は超音波流速測定管、(2)(3)は流れ方向の上流側および下流側に所定距離を隔てて配置された超音波振動子、(4)は駆動パルスを発生するパルス発生回路、(5)は超音波振動子(2)(3)で超音波を受信したときに受信波(J)を出力する受信増幅回路、(6)は超音波振動子(2)(3)とパルス発生回路(4)および受信増幅回路(5)の接続を切り替える切替回路であり、これらは図6に示したものと同じである。
【0014】
(7)は、様々な処理を行う中央演算処理装置(以下、CPUという)と、随時書き込み読み出しメモリー(RAM)と、読み出し専用メモリー(ROM)とを備えたマイクロコンピュータ(以下、マイコンという)で、前記パルス発生回路(4)、受信増幅回路(5)および切替回路(6)にそれぞれ接続されている。
【0015】
このマイコン(7)は、超音波振動子(2)(3)から超音波を発生送信せしめ、その超音波が超音波振動子(3)(2)に受信されたあと、後述の受信波ゼロクロス特定処理によって受信増幅回路(5)から出力される受信波(J)のゼロクロス点Zを超音波受信タイミングとして特定する。そして、そのゼロクロス点Zを基準に順方向と逆方向の超音波の伝搬時間を測定し、それら超音波の伝搬時間の差に基づいて流体の流速を求める。
【0016】
以下、上記受信波ゼロクロス特定処理について具体的に説明する。なお、この実施形態では、受信波(J)の第3波(W3)のゼロクロス点(Z)を超音波受信タイミングとして特定する。
【0017】
この受信波ゼロクロス特定処理は、第1のステップから第6のステップからなり、まず第1のステップでは、図2(a)に示すように、受信波(J)のゼロクロス点(Z)付近の電圧値を一定周期Tsでサンプリングする。なお、この実施形態では、受信波(J)のゼロクロス点(Z)より前のサンプル点をS1、S2、・・・、Snとし、それらのサンプル値をV1、V2、・・・、Vnとするとともに、受信波(J)のゼロクロス点(Z)より後のサンプル点をS1’、S2’、・・・、Sn’とし、それらのサンプル値をV1’、V2’、・・・、Vn’とする。
【0018】
第2のステップでは、図2(b)に示すように、前記受信波(J)のゼロクロス点Zの直前直後のサンプル点S1、S1’を結ぶ線分S1S1’がゼロクロスする点を仮ゼロクロス点N0とし、前記サンプル点S1、S1’と仮ゼロクロス点N0の対応関係を求める。
【0019】
この実施形態では、下式[1]に示すように、まず前記サンプル値V1、V1’に基づいて、前記サンプル点S1から仮ゼロクロス点N0までの時間Tmを求め、さらに、下式[2]に示すように、前記時間Tmとサンプリング周期Tsに基づいて、仮ゼロクロス点N0による前記線分S1S1’の内分比θを求める。この内分比θは、前記サンプル点S1、S1’と仮ゼロクロス点Zの対応関係を表すものである。
Tm=Ts×V1/(V1+V1’)・・・[1]
θ=Tm/Ts・・・[2]
Tm:サンプル点S1から仮ゼロクロス点N0までの時間
Ts:サンプリング周期
V1:受信波(J)のゼロクロス点Z直前のサンプリング値
V1’:受信波(J)のゼロクロス点Z直後のサンプリング値
θ:内分比
Ts:サンプリング周期
第3のステップでは、図2(c)に示すように、前記サンプル点S1、S1’と仮ゼロクロス点Zの対応関係に応じて、隣り合う各サンプル点Si、Si+1を結ぶ線分SiSi+1を内分し、その内分点Niに対応するサインサンプル値Wiを求める。
【0020】
この実施形態では、前記サンプル点S1、S1’と仮ゼロクロス点N0の対応関係は、仮ゼロクロス点N0による前記線分S1S1’の内分比θであらわされるので、下式[3]に示すように、隣り合う各サンプル点Si、Si+1を結ぶ線分Si、Si+1を前記内分比θにより内分し、その内分点Niに対応するサインサンプル値Wiを求める。また、下式[4]に示すように、サインサンプル値Wi ’についても上述と同様に求める。
Wi=θVi+(1−θ)Vi+1・・・[3]
Wi’=θVi’+(1−θ)Vi+1’・・・[4]
これらサインサンプリング値Wi、Wi’は、仮ゼロクロス点Zを基準としたサンプリング周期Tsごとの電圧値であり、しかもサンプリング周期Tsも非常に短い。このため、それらサインサンプリング値Wi、Wi’で構成される波形は位相差αθを含まないサイン波形とみなすことができる。
【0021】
この実施形態では、前記サンプル点S1、S1’と仮ゼロクロス点N0の対応関係は、仮ゼロクロス点N0による前記線分S1S1’の内分比θであらわされるので、下式[3]に示すように、隣り合う各サンプル点Si、Si+1を結ぶ線分Si、Si+1を前記内分比θにより内分し、その内分点Niに対応するサインサンプル値Wiを求める。また、下式[4]に示すように、サインサンプル値Wi ’についても上述と同様に求める。
Wi=θVi+(1−θ)Vi+1・・・[3]
Wi’=θVi’+(1−θ)Vi+1’・・・[4]
これらサインサンプリング値Wi、Wi’は、仮ゼロクロス点Zを基準としたサンプリング周期Tsごとの電圧値であり、しかもサンプリング周期Tsも非常に短い。このため、それらサインサンプリング値Wi、Wi’で構成される波形は位相差αθを含まないサイン波形とみなすことができる。
【0022】
第5のステップでは、前記直線サンプル値Zi、Zi’に基づいて最小二乗法により近似直線ai+bを求める。この最小二乗法については公知であるのでその説明を省略する。
【0023】
第6のステップでは、図3に示すように、前記近似直線ai+bのゼロクロス点を前記受信波のゼロクロス点Zとして特定する。
【0024】
この実施形態では、下式[7]に示すように、サンプル点S1から前記近似直線ai+bのゼロクロス点までの前記サンプリング周期Tsに対する時間比θzを求め、さらに、下式[8]に示すように、前記時間比θzに基づいて前記サンプル点S1から前記近似直線ai+bのゼロクロス点までの時間Tmzを求める。
θz=θ−b/a・・・[7]
Tmz=θzTs=(θ−b/a)Ts・・・[8]
θz:サンプル点S1から前記近似直線ai+bのゼロクロス点Zまでの前記サンプリング周期Tsに対する時間比
θ:内分比
a、b:係数
Tmz:サンプル点S1から前記近似直線ai+bのゼロクロス点Zまでの時間Ts:サンプリング周期
次に上記超音波流速測定装置を用いた超音波流速測定方法について図4に示すフローチャートを用いて説明する。なお、以下の説明及び図面において「ステップ」を「S」と略記する。
【0025】
まず、S1で、マイコン(7)が、駆動パルス発生回路(4)から駆動パルスを発生させて、その駆動パルスを超音波振動子(2)に印加せしめることにより超音波振動子(2)から超音波を送信せしめる。
【0026】
S2では、前記超音波振動子(2)から送信された超音波を超音波振動子(3)で受信し、受信増幅回路(5)から受信波を出力する。
【0027】
S3では、マイコン(7)が、後述の受信波ゼロクロス特定処理により、前記受信増幅回路(7)から出力された受信波(J)の3波(J3)のゼロクロス点Zを超音波到達タイミングとして特定する。
【0028】
S4では、マイコン(7)が、超音波が送信された時点から受信された時点(超音波到達タイミング)までの時間を超音波の伝搬時間としてクロック波により測定する。
【0029】
S5では、逆方向の超音波の伝搬時間を測定したか否かを判定し、逆方向の超音波の伝搬時間を測定していない場合は(S5でNO)、S6で、駆動パルス発生回路(4)と下流側の超音波振動子(3)、上流側の超音波振動子(2)と受信増幅回路(5)とが接続されるように切り換えて、上述のS1〜S4の処理により逆方向の超音波の伝搬時間を測定する。一方、逆方向の超音波の伝搬時間を測定した場合は(S5でYES)、S7に進む。
【0030】
S7では、順方向および逆方向の超音波の伝搬時間の差に基づいて流体の流速を求め、リターンする。なお、この実施形態では、流体の流速は、下式[9]により求められる。
V=L/2×(t2−t1)/(t1×t2)・・・・[9]
V:流体の流速
L:測定管の長さ
t1:順方向の超音波の伝搬時間
t2:逆方向の超音波の伝搬時間
図5は、受信波ゼロクロス特定処理(図4のS3の処理)のサブルーチンを示すフローチャートである。
【0031】
まずS31では、図2(a)に示すように、受信波(J)のゼロクロス点(Z)付近の電圧値を一定周期Tsでサンプリングする。
【0032】
S32では、図2(b)に示すように、前記受信波(J)のゼロクロス点Zの直前直後のサンプル点S1、S1’を結ぶ線分S1S1’がゼロクロスする点を仮ゼロクロス点N0とし、前記サンプル点S1、S1’と仮ゼロクロス点N0の対応関係を求める。
【0033】
S33では、図2(c)に示すように、前記サンプル点S1、S1’と仮ゼロクロス点Zの対応関係に応じて、隣り合う各サンプル点Si、Si+1を結ぶ線分SiSi+1を内分し、その内分点Niに対応するサインサンプル値Wiを求める。これらサインサンプリング値Wi、Wi’は、仮ゼロクロス点Zを基準としたサンプリング周期Tsごとの電圧値であり、しかもサンプリング周期Tsも非常に短い。このため、それらサインサンプリング値Wi、Wi’で構成される波形は位相差αθを含まないサイン波形とみなすことができる。
【0034】
S34では、上式[5][6]に示すように、前記サインサンプル値Wi、Wi’を直線サンプル値Zi、Zi’に変換する。このように、サインサンプル値Wi、Wi’を直線サンプル値Zi、Zi’に変換するに際して、従来のような位相差θαを含まないsiniαで除算するので、マイコンによる処理が簡単化される。
【0035】
S35では、前記直線サンプル値Zi、Zi’に基づいて最小二乗法により近似直線ai+bを求める。
【0036】
S36では、図3に示すように、前記近似直線ai+bのゼロクロス点を前記受信波のゼロクロス点Zとして特定し、リターンする。
【0037】
このように、受信波(J)のゼロクロス点Zを特定するための近似直線を求めるに際し、受信波(J)のサンプル値Viをそのまま直線サンプル値に変換するのではなく、受信波(J)の各サンプル点Si、Si+1を結ぶ線分SiSi+1の内分点Niに対応するサインサンプル値Wiを直線サンプル値Ziに変換する。そして、前記サインサンプリング値Wiは、仮ゼロクロス点Zを基準としたサンプリング周期Tsごとの電圧値であり、それらサインサンプリング値Wiで構成される波形は位相差αθを含まないサイン波形となるので、前記サインサンプリング値Wiを直線サンプル値Ziに変換するときのマイコン等による処理が簡単化される。このため。受信波(J)のゼロクロス点Zを短い処理時間で精度良く特定することができ、ひいては迅速かつ高精度な流速測定が可能となる。
【0038】
【発明の効果】
この発明によれば、受信波(J)のゼロクロス点Zを特定するための近似直線を求めるに際し、受信波(J)のサンプル値Viをそのまま直線サンプル値に変換するのではなく、受信波(J)の各サンプル点Si、Si+1を結ぶ線分SiSi+1の内分点Niに対応するサインサンプル値Wiを直線サンプル値Ziに変換する。そして、前記サインサンプリング値Wiは、仮ゼロクロス点Zを基準としたサンプリング周期Tsごとの電圧値であり、それらサインサンプリング値Wiで構成される波形は位相差αθを含まないサイン波形となるので、前記サインサンプリング値Wiを直線サンプル値Ziに変換するときのマイコン等による処理が簡単化される。このため。受信波(J)のゼロクロス点Zを短い処理時間で精度良く特定することができ、ひいては迅速かつ高精度な流速測定が可能となる。
【図面の簡単な説明】
【図1】この発明の一実施形態に係る超音波流速測定方法を実施するための超音波流速測定装置の構成概略図である。
【図2】受信波をサンプリングしてから直線サンプル値を求めるまでの状態を示す図である。
【図3】近似直線とサンプル点を結ぶ線分との関係を示す図である。
【図4】図1の超音波流速測定装置の動作を示すフローチャートである。
【図5】図4の受信波特定処理のサブルーチンを示すフローチャートである。
【図6】従来の超音波流速測定装置の構成概略図である。
【図7】受信波のサンプル値を直線サンプル値に変換する状態を示す図である。
【符号の説明】
1・・・超音波流速測定管
2、3・・・超音波振動子
4・・・駆動パルス発生回路
5・・・受信増幅回路
6・・・切替回路
7・・・マイコン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrasonic flow velocity measuring method for measuring the flow velocity of a gas or other fluid using ultrasonic waves.
[0002]
[Background Art and Problems to be Solved by the Invention]
Conventionally, when determining the flow rate of a gas or other fluid, first, the flow rate of the fluid is measured continuously or periodically, and the flow rate is calculated based on this measurement. A method using ultrasonic waves is known as one of the fluid flow velocity measurement methods.
[0003]
The principle of this ultrasonic flow velocity measuring method will be described with reference to FIG. In FIG. 6, (1) is an ultrasonic flow velocity measuring tube through which a fluid such as a gas flows. In this ultrasonic flow velocity measuring tube (1), ultrasonic transducers (2) and (3) are arranged at a predetermined distance on the upstream side and the downstream side in the flow direction. The ultrasonic transducers (2) and (3) are driven by drive pulses from the drive pulse generation circuit (4) to vibrate, generate and transmit ultrasonic waves, and receive transmitted ultrasonic waves. The received wave (J) when the ultrasonic transducers (3) and (2) vibrate are output from the reception amplification circuit (5).
[0004]
Then, the propagation time until the ultrasonic wave transmitted in the forward direction from the upstream ultrasonic transducer (2) is received by the downstream ultrasonic transducer (3), and the downstream side The difference from the propagation time until the ultrasonic wave transmitted from the ultrasonic transducer (3) in the opposite direction to the flow is received by the upstream ultrasonic transducer (2) is related to the flow velocity. The flow velocity of the fluid is measured by obtaining the difference in propagation time of the ultrasonic waves by using a clock wave or the like.
[0005]
In FIG. 6, (6) is a switching circuit for switching the connection between the ultrasonic transducers (2), (3), the drive pulse generation circuit (4), and the reception amplification circuit (5). First, the drive pulse generation circuit After connecting the upstream ultrasonic transducer (2) and the downstream ultrasonic transducer (3) to the reception amplification circuit (5) and measuring the propagation time from the upstream side to the downstream side, The operation of the switching circuit (6) connects the drive pulse generation circuit (4) to the downstream ultrasonic transducer (3), and the upstream ultrasonic transducer (2) to the reception amplification circuit (5). Thus, the propagation time from the downstream side to the upstream side is measured.
[0006]
By the way, in general, the propagation time of an ultrasonic wave is obtained based on a predetermined zero-cross point Z of the received wave (J) output from the reception amplifier circuit (5). Conventionally, the zero-cross point of the received wave (J) is used. Z was specified by the following method.
[0007]
That is, first, the received wave (J) is sampled at a constant period, the sample values Pi (voltage values) are treated as sine waveforms, and the sample values Pi of the sine waveforms are converted into linear sample values Qi. For example, as shown in FIG. 7, the phase difference between the zero cross point Z of the received wave (J) and the immediately preceding sample point is αθ, and the sine waveform of the received wave (J) is expressed by the following equation [10]. In this case, the sine waveform sample value Pi is converted into a linear sample value Qi by the following equation [11].
Pi = Asin (iα + αθ) [10]
Qi = Pi * B (i [alpha] + [alpha] [theta]) / Asin (i [alpha] + [alpha] [theta]) [11]
Qi: linear sample value Pi: sine waveform sample value i: sample number A, B: coefficient αθ: phase difference between the zero cross point Z of the received wave (J) and the immediately preceding sample point, and sample values of those lines An approximate straight line is calculated from Qi by the least square method, and the zero cross point of the approximate straight line is specified as the zero cross point Z of the received wave (J).
[0008]
However, in the above method, when the sample value Pi of the sine waveform is converted into the linear sample value Qi by the above equation [11], when θ is an arbitrary value, (iα + αθ) is also an arbitrary value. The calculation process of sin (iα + αθ) by a microcomputer or the like is complicated, and there is a problem that it takes time to specify the zero-cross point Z of the received wave (J).
[0009]
The present invention has been made in view of the above-described problem, and it is possible to specify a zero-cross point of a received wave with high accuracy in a short time, and in turn, an ultrasonic flow velocity measurement method capable of rapid and highly accurate flow velocity measurement. The purpose is to provide.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention converts the sample value Vi of the received wave (J) into a straight line sample value as it is when obtaining an approximate straight line for specifying the zero-cross point Z of the received wave (J). Instead, the line segment SiSi + 1 connecting the sample points Si and Si + 1 of the received wave (J) is internally divided, and the sine sample value Wi corresponding to the internal division point Ni is converted into a linear sample value Zi. It is.
[0011]
That is, according to the present invention, the ultrasonic transducers 2 and 3 are arranged on the upstream side and the downstream side of the measurement fluid flowing through the ultrasonic flow velocity measuring tube 1, respectively, and ultrasonic waves are transmitted from the ultrasonic transducers 2 and 3 to each other. Generated and transmitted, mutually received transmitted ultrasonic waves, obtained ultrasonic propagation time with reference to the zero-cross point Z of the received waves (J), and flow velocity based on the difference between the ultrasonic propagation times In the ultrasonic flow velocity measuring method for measuring the received wave (J), a line segment S1S1 connecting the step of sampling the received wave (J) at a constant period and the sample points S1, S1 'immediately before and after the zero cross point Z of the received wave (J). The point at which 'is zero-crossed is set as a temporary zero-cross point N0, the step of obtaining the correspondence between the sample points S1, S1' and the temporary zero-cross point N0, and the correspondence between the sample points S1, S1 'and the temporary zero-cross point N0 , Next to each other Sample points Si, and internally dividing the line segment SiSi + 1 connecting the Si + 1, corresponding to the internal division point Ni, the value of every sampling period Ts relative to the temporary zero-crossing point Z, be regarded as sine wave determining a sign sample value Wi that can, converting the sine sample value Wi to linear sample values Zi, a step of obtaining an approximate line ai + b by the least square method based on the linear sample values Zi, the approximate straight line specifying a zero cross point of ai + b as a zero cross point Z of the received wave (J).
[0012]
According to this, the sine sampling value Wi is a voltage value for each sampling period Ts with the provisional zero cross point Z as a reference, and the waveform constituted by these sine sampling values Wi is a sine waveform that does not include the phase difference αθ. Therefore, the processing by the microcomputer or the like when converting the sine sampling value Wi into the linear sample value Zi is simplified. For this reason, the zero-cross point Z of the received wave (J) can be specified with high accuracy in a short processing time, and as a result, the flow velocity can be measured quickly and with high accuracy.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an ultrasonic flow velocity measuring apparatus for carrying out the present invention. In FIG. 1, (1) is an ultrasonic flow velocity measuring tube, (2) and (3) are ultrasonic transducers arranged at a predetermined distance upstream and downstream in the flow direction, and (4) is a drive pulse. A pulse generation circuit to be generated, (5) a reception amplification circuit that outputs a reception wave (J) when ultrasonic waves are received by the ultrasonic transducers (2) and (3), and (6) an ultrasonic transducer (2 ) (3), a switching circuit for switching the connection between the pulse generation circuit (4) and the reception amplifier circuit (5), which are the same as those shown in FIG.
[0014]
(7) is a microcomputer (hereinafter referred to as a microcomputer) having a central processing unit (hereinafter referred to as a CPU) that performs various processes, an occasional write / read memory (RAM), and a read-only memory (ROM). The pulse generation circuit (4), the reception amplification circuit (5), and the switching circuit (6) are connected to each other.
[0015]
The microcomputer (7) generates and transmits ultrasonic waves from the ultrasonic transducers (2) and (3), and after the ultrasonic waves are received by the ultrasonic transducers (3) and (2), the received wave zero cross described later. The zero cross point Z of the received wave (J) output from the reception amplifier circuit (5) is specified as the ultrasonic reception timing by the specifying process. Then, the propagation time of the ultrasonic waves in the forward direction and the reverse direction is measured with reference to the zero cross point Z, and the flow velocity of the fluid is obtained based on the difference between the propagation times of the ultrasonic waves.
[0016]
The received wave zero cross specifying process will be specifically described below. In this embodiment, the zero cross point (Z) of the third wave (W3) of the received wave (J) is specified as the ultrasonic wave reception timing.
[0017]
This received wave zero cross specifying process includes the first step to the sixth step. First, in the first step, as shown in FIG. 2A, the received wave (J) is near the zero cross point (Z). The voltage value is sampled at a constant period Ts. In this embodiment, sample points before the zero cross point (Z) of the received wave (J) are S1, S2,..., Sn, and their sample values are V1, V2,. In addition, the sample points after the zero cross point (Z) of the received wave (J) are S1 ′, S2 ′,..., Sn ′, and their sample values are V1 ′, V2 ′,. 'And.
[0018]
In the second step, as shown in FIG. 2B, the point where the line segment S1S1 'connecting the sample points S1, S1' immediately before and after the zero cross point Z of the received wave (J) zero crosses is the temporary zero cross point. Let N0 be the correspondence between the sample points S1, S1 'and the provisional zero cross point N0.
[0019]
In this embodiment, as shown in the following formula [1], first, a time Tm from the sample point S1 to the temporary zero cross point N0 is obtained based on the sample values V1 and V1 ′, and further, the following formula [2] As shown in FIG. 5, the internal division ratio θ of the line segment S1S1 ′ at the temporary zero cross point N0 is obtained based on the time Tm and the sampling period Ts. The internal division ratio θ represents the correspondence between the sample points S1 and S1 ′ and the temporary zero cross point Z.
Tm = Ts × V1 / (V1 + V1 ′) [1]
θ = Tm / Ts [2]
Tm: Time from sample point S1 to provisional zero cross point N0: Sampling period V1: Sampling value V1 ′ immediately before zero cross point Z of received wave (J): Sampling value θ immediately after zero cross point Z of received wave (J): Internal division ratio Ts: Sampling period In the third step, as shown in FIG. 2 (c), each adjacent sample point Si, Si according to the correspondence between the sample points S1, S1 'and the provisional zero cross point Z. A line segment SiSi + 1 connecting +1 is internally divided, and a sine sample value Wi corresponding to the internal dividing point Ni is obtained.
[0020]
In this embodiment, the correspondence between the sample points S1, S1 ′ and the temporary zero cross point N0 is expressed by the internal division ratio θ of the line segment S1S1 ′ by the temporary zero cross point N0. Then, line segments Si and Si + 1 connecting adjacent sample points Si and Si + 1 are internally divided by the internal division ratio θ, and a sine sample value Wi corresponding to the internal division point Ni is obtained. Further, as shown in the following equation [4], the sine sample value Wi ′ is also obtained in the same manner as described above.
Wi = θVi + (1−θ) Vi + 1 [3]
Wi ′ = θVi ′ + (1−θ) Vi + 1 ′... [4]
These sine sampling values Wi and Wi ′ are voltage values for each sampling period Ts with the provisional zero cross point Z as a reference, and the sampling period Ts is also very short. For this reason, the waveform constituted by the sine sampling values Wi and Wi ′ can be regarded as a sine waveform that does not include the phase difference αθ.
[0021]
In this embodiment, the correspondence between the sample points S1, S1 ′ and the temporary zero cross point N0 is expressed by the internal division ratio θ of the line segment S1S1 ′ by the temporary zero cross point N0. Then, line segments Si and Si + 1 connecting adjacent sample points Si and Si + 1 are internally divided by the internal division ratio θ, and a sine sample value Wi corresponding to the internal division point Ni is obtained. Further, as shown in the following equation [4], the sine sample value Wi ′ is also obtained in the same manner as described above.
Wi = θVi + (1−θ) Vi + 1 ... [3]
Wi ′ = θVi ′ + (1−θ) Vi + 1 ′... [4]
These sine sampling values Wi and Wi ′ are voltage values for each sampling period Ts with the provisional zero cross point Z as a reference, and the sampling period Ts is also very short. For this reason, the waveform constituted by the sine sampling values Wi and Wi ′ can be regarded as a sine waveform that does not include the phase difference αθ.
[0022]
In the fifth step, an approximate straight line ai + b is obtained by the least square method based on the straight line sample values Zi and Zi ′. Since this least square method is known, its description is omitted.
[0023]
In the sixth step, as shown in FIG. 3, the zero cross point of the approximate straight line ai + b is specified as the zero cross point Z of the received wave.
[0024]
In this embodiment, as shown in the following equation [7], a time ratio θz with respect to the sampling period Ts from the sample point S1 to the zero cross point of the approximate straight line ai + b is obtained, and further, as shown in the following equation [8]. Based on the time ratio θz, a time Tmz from the sample point S1 to the zero cross point of the approximate straight line ai + b is obtained.
θz = θ−b / a [7]
Tmz = θzTs = (θ−b / a) Ts [8]
θz: Time ratio with respect to the sampling period Ts from the sample point S1 to the zero cross point Z of the approximate line ai + b θ: Internal ratio a, b: Coefficient Tmz: Time from the sample point S1 to the zero cross point Z of the approximate line ai + b Ts: Sampling period Next, an ultrasonic flow velocity measuring method using the ultrasonic flow velocity measuring apparatus will be described with reference to the flowchart shown in FIG. In the following description and drawings, “step” is abbreviated as “S”.
[0025]
First, in S1, the microcomputer (7) generates a drive pulse from the drive pulse generation circuit (4) and applies the drive pulse to the ultrasonic vibrator (2), thereby causing the ultrasonic vibrator (2) to generate a drive pulse. Send an ultrasonic wave.
[0026]
In S2, the ultrasonic wave transmitted from the ultrasonic transducer (2) is received by the ultrasonic transducer (3), and the received wave is output from the reception amplification circuit (5).
[0027]
In S3, the microcomputer (7) uses the zero-cross point Z of the three waves (J3) of the received wave (J) output from the reception amplifier circuit (7) by the later-described received wave zero-cross specifying process as the ultrasonic wave arrival timing. Identify.
[0028]
In S4, the microcomputer (7) measures the time from the time when the ultrasonic wave is transmitted to the time when the ultrasonic wave is received (ultrasonic arrival timing) using the clock wave as the ultrasonic wave propagation time.
[0029]
In S5, it is determined whether or not the propagation time of the ultrasonic wave in the reverse direction is measured. If the propagation time of the ultrasonic wave in the reverse direction is not measured (NO in S5), the drive pulse generation circuit ( 4) and the downstream ultrasonic transducer (3), and the upstream ultrasonic transducer (2) and the reception amplification circuit (5) are switched so as to be connected, and the reverse is performed by the processing of S1 to S4 described above. Measure the ultrasonic propagation time in the direction. On the other hand, when the propagation time of the ultrasonic wave in the reverse direction is measured ( YES in S5 ), the process proceeds to S7.
[0030]
In S7, the flow velocity of the fluid is obtained based on the difference between the propagation times of the ultrasonic waves in the forward direction and the reverse direction, and the process returns. In this embodiment, the flow velocity of the fluid is obtained by the following equation [9].
V = L / 2 × (t2−t1) / (t1 × t2)... [9]
V: Fluid flow velocity L: Measurement tube length t1: Forward ultrasonic wave propagation time t2: Reverse ultrasonic wave propagation time FIG. 5 shows a received wave zero cross identification process (the process of S3 in FIG. 4). It is a flowchart which shows a subroutine.
[0031]
First, in S31, as shown in FIG. 2A, the voltage value near the zero cross point (Z) of the received wave (J) is sampled at a constant period Ts.
[0032]
In S32, as shown in FIG. 2 (b), the point where the line segment S1S1 'connecting the sample points S1, S1' immediately before and after the zero cross point Z of the received wave (J) zero crosses is set as a temporary zero cross point N0. The correspondence between the sample points S1, S1 ′ and the temporary zero cross point N0 is obtained.
[0033]
In S33, as shown in FIG. 2C, a line segment SiSi + 1 connecting the adjacent sample points Si and Si + 1 is determined in accordance with the correspondence between the sample points S1 and S1 ′ and the temporary zero cross point Z. Internal division is performed, and a sine sample value Wi corresponding to the internal division point Ni is obtained. These sine sampling values Wi and Wi ′ are voltage values for each sampling period Ts with the provisional zero cross point Z as a reference, and the sampling period Ts is also very short. For this reason, the waveform constituted by the sine sampling values Wi and Wi ′ can be regarded as a sine waveform that does not include the phase difference αθ.
[0034]
In S34, the sine sample values Wi and Wi ′ are converted into linear sample values Zi and Zi ′ as shown in the above equations [5] and [6]. In this way, when the sine sample values Wi and Wi ′ are converted into the linear sample values Zi and Zi ′, the division by siniα that does not include the phase difference θα as in the prior art is performed, so that the processing by the microcomputer is simplified.
[0035]
In S35, an approximate straight line ai + b is obtained by the least square method based on the straight line sample values Zi and Zi ′.
[0036]
In S36, as shown in FIG. 3, the zero cross point of the approximate straight line ai + b is specified as the zero cross point Z of the received wave, and the process returns.
[0037]
As described above, when the approximate straight line for specifying the zero-cross point Z of the received wave (J) is obtained, the sample value Vi of the received wave (J) is not directly converted into the linear sample value, but the received wave (J). The sine sample value Wi corresponding to the internal division point Ni of the line segment SiSi + 1 connecting the respective sample points Si and Si + 1 is converted into a linear sample value Zi. The sine sampling value Wi is a voltage value for each sampling period Ts with the provisional zero-cross point Z as a reference, and the waveform constituted by these sine sampling values Wi is a sine waveform that does not include the phase difference αθ. The processing by the microcomputer or the like when converting the sine sampling value Wi into the linear sample value Zi is simplified. For this reason. The zero cross point Z of the received wave (J) can be specified with high accuracy in a short processing time, and as a result, the flow velocity can be measured quickly and with high accuracy.
[0038]
【Effect of the invention】
According to the present invention, when the approximate straight line for specifying the zero-cross point Z of the received wave (J) is obtained, the sample value Vi of the received wave (J) is not directly converted into the linear sample value, but the received wave ( J) The sine sample value Wi corresponding to the internal dividing point Ni of the line segment SiSi + 1 connecting the sample points Si and Si + 1 is converted into a linear sample value Zi. The sine sampling value Wi is a voltage value for each sampling period Ts with the provisional zero-cross point Z as a reference, and the waveform constituted by these sine sampling values Wi is a sine waveform that does not include the phase difference αθ. The processing by the microcomputer or the like when converting the sine sampling value Wi into the linear sample value Zi is simplified. For this reason. The zero cross point Z of the received wave (J) can be specified with high accuracy in a short processing time, and as a result, the flow velocity can be measured quickly and with high accuracy.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an ultrasonic flow velocity measuring apparatus for carrying out an ultrasonic flow velocity measuring method according to an embodiment of the present invention.
FIG. 2 is a diagram illustrating a state from when a received wave is sampled until a linear sample value is obtained.
FIG. 3 is a diagram illustrating a relationship between an approximate straight line and a line segment connecting sample points.
4 is a flowchart showing the operation of the ultrasonic flow velocity measuring apparatus of FIG.
5 is a flowchart showing a subroutine of received wave specifying processing of FIG. 4;
FIG. 6 is a schematic configuration diagram of a conventional ultrasonic flow velocity measuring apparatus.
FIG. 7 is a diagram illustrating a state in which a sample value of a received wave is converted into a linear sample value.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Ultrasonic flow velocity measuring tube 2, 3 ... Ultrasonic vibrator 4 ... Drive pulse generation circuit 5 ... Reception amplification circuit 6 ... Switching circuit 7 ... Microcomputer

Claims (1)

超音波流速測定管1を流れる計測流体の上流側と下流側にそれぞれ超音波振動子2、3が配置され、前記各超音波振動子2、3から相互に超音波を発生送信するとともに、送信された超音波を相互に受信し、それらの受信波(J)のゼロクロス点Zを基準に超音波の伝搬時間を求め、それら超音波の伝搬時間の差に基づいて流速を測定する超音波流速測定方法において、
前記受信波(J)を一定周期でサンプリングするステップと、
前記受信波(J)のゼロクロス点Zの直前直後のサンプル点S1、S1’を結ぶ線分S1S1’がゼロクロスする点を仮ゼロクロス点N0とし、前記サンプル点S1、S1’と仮ゼロクロス点N0の対応関係を求めるステップと、
前記サンプル点S1、S1’と仮ゼロクロス点N0の対応関係に応じて、隣り合う各サンプル点Si、Si+1を結ぶ線分SiSi+1を内分し、その内分点Niに対応し、仮ゼロクロス点Zを基準としたサンプリング周期Tsごとの値であり、サイン波形とみなすことができるサインサンプル値Wiを求めるステップと、
前記サインサンプル値Wiを直線サンプル値Ziに変換するステップと、
前記直線サンプル値Ziに基づいて最小二乗法により近似直線ai+bを求めるステップと、
前記近似直線ai+bのゼロクロス点を前記受信波(J)のゼロクロス点Zとして特定するステップと、
を備えることを特徴とする超音波流速測定方法。
Ultrasonic transducers 2 and 3 are respectively arranged on the upstream side and the downstream side of the measurement fluid flowing through the ultrasonic flow velocity measuring tube 1, and generate and transmit ultrasonic waves from the ultrasonic transducers 2 and 3. Ultrasonic waves that receive the received ultrasonic waves from each other, determine the ultrasonic wave propagation time based on the zero-cross point Z of the received waves (J), and measure the flow velocity based on the difference in the ultrasonic wave propagation times In the measurement method,
Sampling the received wave (J) at a constant period;
A point where the line segment S1S1 'connecting the sample points S1 and S1' immediately before and after the zero cross point Z of the received wave (J) crosses zero is defined as a temporary zero cross point N0, and the sample points S1, S1 'and the temporary zero cross point N0 A step of finding a correspondence relationship;
In accordance with the correspondence between the sample points S1, S1 ′ and the temporary zero cross point N0, a line segment SiSi + 1 connecting the adjacent sample points Si, Si + 1 is internally divided, corresponding to the internal dividing point Ni , Obtaining a sine sample value Wi that is a value for each sampling period Ts with reference to the provisional zero cross point Z and can be regarded as a sine waveform ;
Converting the sine sample value Wi into a linear sample value Zi;
Obtaining an approximate straight line ai + b by a least square method based on the straight line sample value Zi;
Identifying a zero cross point of the approximate straight line ai + b as a zero cross point Z of the received wave (J);
An ultrasonic flow velocity measuring method comprising:
JP2001202092A 2001-07-03 2001-07-03 Ultrasonic flow velocity measurement method Expired - Lifetime JP4889882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001202092A JP4889882B2 (en) 2001-07-03 2001-07-03 Ultrasonic flow velocity measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001202092A JP4889882B2 (en) 2001-07-03 2001-07-03 Ultrasonic flow velocity measurement method

Publications (2)

Publication Number Publication Date
JP2003014516A JP2003014516A (en) 2003-01-15
JP4889882B2 true JP4889882B2 (en) 2012-03-07

Family

ID=19038955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001202092A Expired - Lifetime JP4889882B2 (en) 2001-07-03 2001-07-03 Ultrasonic flow velocity measurement method

Country Status (1)

Country Link
JP (1) JP4889882B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5231278B2 (en) * 2009-02-13 2013-07-10 株式会社光電製作所 Ultrasonic flow meter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3097882B2 (en) * 1991-07-29 2000-10-10 株式会社トキメック Ultrasonic transducer

Also Published As

Publication number Publication date
JP2003014516A (en) 2003-01-15

Similar Documents

Publication Publication Date Title
CN103344288B (en) A kind of transit-time ultrasonic flow meter measuring method analyzed based on zero point
CN105890685B (en) A kind of device for measuring ultrasonic wave flow based on accumulated phase difference
US6877387B1 (en) Method for measuring displacement of a fluid in a conduit
ATE59700T1 (en) DIGITAL CIRCUIT FOR A FLOW METER AND METHOD OF FLOW MEASUREMENT.
JP2008507693A (en) Acoustic flow meter calibration method
US20080059085A1 (en) Device for Determining and/or Monitoring the Volume Flow Rate and/or Mass Flow Rate of a Medium to be Measured
JP2012509473A (en) Method and apparatus for calibrating a measurement transducer of an ultrasonic flow measurement unit
CN106643937A (en) Flow measuring method and device based on ultrasonic flowmeter
KR950001284A (en) Electromagnetic flowmeter and electronic measurement of flow rate
US4391150A (en) Electro-acoustic flowmeter
JP4889882B2 (en) Ultrasonic flow velocity measurement method
CN112903043B (en) Multichannel ultrasonic flowmeter system
RU68148U1 (en) ULTRASONIC FLOW METER
JP3732570B2 (en) Ultrasonic flow meter
JP2002013958A (en) Ultrasonic flow meter
RU88460U1 (en) ULTRASONIC FLOW METER (OPTIONS)
CN106643940A (en) Method for computing propagation time of ultrasonic flow meters on basis of echo energy
JP3438371B2 (en) Flow measurement device
JP3161664B2 (en) Coriolis mass flowmeter
EP0020537A1 (en) A device for measuring the flow velocity of fluids.
CN111337092B (en) Method for selecting reference signal, calculating method and phase difference type ultrasonic flowmeter
RU2085858C1 (en) Ultrasound method for detection of product volume which runs through pipe and device which implements said method
RU2410647C1 (en) Method to measure flow of liquid mediums and ultrasonic flow metre (versions)
JPH0791996A (en) Ultrasonic flowmeter
JPS6031009A (en) Apparatus for measuring thickness of solidified cast piece

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110902

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111214

R150 Certificate of patent or registration of utility model

Ref document number: 4889882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term