JP2003013280A - Laminated chip component - Google Patents

Laminated chip component

Info

Publication number
JP2003013280A
JP2003013280A JP2001200902A JP2001200902A JP2003013280A JP 2003013280 A JP2003013280 A JP 2003013280A JP 2001200902 A JP2001200902 A JP 2001200902A JP 2001200902 A JP2001200902 A JP 2001200902A JP 2003013280 A JP2003013280 A JP 2003013280A
Authority
JP
Japan
Prior art keywords
plating
chip component
layer
laminated chip
wettability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001200902A
Other languages
Japanese (ja)
Inventor
Hiroshi Ishikawa
洋 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2001200902A priority Critical patent/JP2003013280A/en
Publication of JP2003013280A publication Critical patent/JP2003013280A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a laminated chip component of high connection reliability, provided with plating on the terminal, which has adequate wettability for plating on the terminal of an outer surface of a surface mounting component, and has connection reliability while controlling growth of whisker. SOLUTION: The laminated chip component comprises two plated layers of Sn-Bi eutectic alloy plating on the outermost surface of an external electrode terminal, and Sn-based alloy plating for the undercoat.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ソルダリング実装
のための表面実装型部品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface mount type component for soldering mounting.

【0002】[0002]

【従来の技術】近年、プリント配線板での実装の高集積
化は、一平面状での高密度化(部品の小型化、狭ピッチ
化など)と三次元チップ、多層基板の採用などによる三
次元化による方法が進められている。表面実装方法に
は、現在、三種類存在(リード挿入方式、表面実装方
式、ベアチップ実装方式)し、その中でも現在の主流
は、部品の小型化による高密度化を実装する方式である
表面実装方式である。
2. Description of the Related Art In recent years, high integration of mounting on a printed wiring board has been realized by increasing the density on one plane (miniaturization of components, narrowing pitch, etc.) and the use of three-dimensional chips and multilayer substrates. The method by originalization is being advanced. Currently, there are three types of surface mounting methods (lead insertion method, surface mounting method, and bare chip mounting method). Among them, the current mainstream is the method of mounting high density by miniaturizing components. Is.

【0003】さて、一方、最近、これら表面実装型部品
を実装するのに使用されるはんだのPbをなくす要求が
強まりつつある。つまり、はんだにPbを含有しない、
いわゆる鉛フリー化に向けて急速に進行しつつある状態
であり、その要求は、部品表面の外部電極に及んでい
る。そして、その外部電極は、Sn或いはSnCu、S
n−BiなどのSn合金組成に決定しつつあり、その中
でも、表面実装部品の鉛フリーめっきとしては、下地が
Niめっき、表面が純Snめっきというのが一般的にな
りつつある。
On the other hand, recently, there is an increasing demand for eliminating Pb of the solder used for mounting these surface mount components. In other words, the solder does not contain Pb,
It is in a state of rapidly progressing toward so-called lead-free, and the demand extends to external electrodes on the surface of components. The external electrode is Sn, SnCu, S
Sn alloy compositions such as n-Bi are being determined, and among them, as lead-free plating for surface-mounted components, it is becoming common to use Ni plating for the base and pure Sn plating for the surface.

【0004】[0004]

【発明が解決しようとする課題】ここで、Snめっきは
ストレスマイグレーションであるウイスカの成長が懸念
され、かつ、Snめっきは、もともと酸化しやすい金属
であるので、保存時の酸化によって、ぬれが劣化するこ
とが知られている。これらを一気に解決する手段は、純
Snを合金化することであり、このことによって、全て
解決すると考えられていた。そして、その候補として最
も有力なのが、Sn−Bi合金めっきである。この合金
は、Bi量が多い程ぬれ性向上が顕著になる。しかし、
そのぬれ性を向上させればさせるほど、はんだ付け境界
部に脆い化合物層が発生し、接続信頼性が著しく劣化す
ることもわかってきた。このような経過を辿って、ウイ
スカ・ぬれ性の問題はあるものの、Snめっきに落ち着
いてきているのが実状である。
The Sn plating is concerned about whisker growth, which is a stress migration, and the Sn plating is a metal that is easily oxidized by nature. Is known to do. The means to solve these at once is to alloy pure Sn, and it was thought that this would solve all of them. The most promising candidate is Sn-Bi alloy plating. In this alloy, the greater the amount of Bi, the more remarkable the improvement in wettability. But,
It has also been found that as the wettability is improved, a brittle compound layer is generated at the soldering boundary portion, and the connection reliability is significantly deteriorated. Although there is a problem of whiskers and wettability after going through such a process, the fact is that Sn plating has settled down.

【0005】そこで、本発明の目的は、以上のように表
面実装部品の外表面の端子めっきとしては良好なぬれ性
を確保しウイスカの成長を抑制しつつ、かつ接続信頼性
も確保された端子めっきを有する高い接続信頼性の積層
型チップ部品を提供することにある。
Therefore, as described above, the object of the present invention is to provide a terminal which has good wettability as terminal plating on the outer surface of a surface-mounted component, suppresses whisker growth, and also has connection reliability. An object of the present invention is to provide a layered chip component having high connection reliability with plating.

【0006】[0006]

【課題を解決するための手段】本発明の 積層型チップ
部品によれば、接続信頼性を確保しつつウイスカの発生
がなく、かつぬれ性(はんだ付け性)の優れた積層チッ
プ部品が得られる。本発明の構成のポイントは、上述の
ように、最表面をSn−Bi合金めっきとしたSn系合
金の2層めっき状態にすることによって得られる。
According to the laminated chip component of the present invention, it is possible to obtain a laminated chip component which is free from whiskers and excellent in wettability (solderability) while ensuring connection reliability. . As described above, the point of the configuration of the present invention is obtained by making the Sn-Bi alloy plating the outermost surface of the Sn-based alloy into a two-layer plated state.

【0007】即ち、本発明は、外部電極端子最外表面が
Sn−Bi共晶合金めっきで、かつその下地がSn系合
金めっきで構成された2層めっきとする積層型チップ部
品である。
That is, the present invention is a laminated chip component in which the outermost surface of the external electrode terminal is a Sn-Bi eutectic alloy plating and the underlayer is a two-layer plating composed of a Sn-based alloy plating.

【0008】また、本発明は、外部電極端子最外表面が
Sn−Bi共晶合金めっきで、かつ、その下地がSn系
合金めっきで、更にその下地がSnめっきで構成された
3層めっきとする積層型チップ部品である。
The present invention also provides a three-layer plating in which the outermost surface of the external electrode terminal is Sn-Bi eutectic alloy plating, the underlayer is Sn-based alloy plating, and the underlayer is Sn plating. It is a laminated chip component.

【0009】また、本発明は、外部電極端子最外表面が
Sn−Bi共晶合金めっきで、かつ、その下地がSn系
合金めっきで、かつその下地がSnめっきで、更にその
下地がNiめっきで構成された4層めっきとする積層型
チップ部品である。
Further, according to the present invention, the outermost surface of the external electrode terminal is Sn-Bi eutectic alloy plating, the underlayer is Sn alloy plating, the underlayer is Sn plating, and the underlayer is Ni plating. It is a multilayer chip component that is formed by four-layer plating.

【0010】また、本発明は、前記Sn−Bi共晶合金
めっきの厚みが2μm以下である積層型チップ部品であ
る。
The present invention is also a laminated chip component in which the thickness of the Sn-Bi eutectic alloy plating is 2 μm or less.

【0011】[0011]

【実施例】本発明の実施例による積層型チップ部品につ
いて、以下に説明する。
EXAMPLE A laminated chip component according to an example of the present invention will be described below.

【0012】(実施例1)本発明の実施例1による積層
型チップ部品について、以下に説明する。まず、絶縁性
磁性粉末に対してバインダ樹脂(例えば、PVB樹脂)
5wt%、有機系溶剤(例えば、エチレングリコールエ
ーテル系)60wt%等を添加し、混合を行い、スラリ
ー化する。このスラリーをドクターブレード法を用いて
膜厚200〜600μmの長尺な絶縁性磁性体のグリー
ンシートを作り、所定の寸法に切断する。
(Embodiment 1) A laminated chip component according to Embodiment 1 of the present invention will be described below. First, a binder resin (for example, PVB resin) is added to the insulating magnetic powder.
5 wt%, organic solvent (for example, ethylene glycol ether type) 60 wt% and the like are added and mixed to form a slurry. This slurry is used to form a long green sheet of an insulating magnetic material having a film thickness of 200 to 600 μm using a doctor blade method and cut into a predetermined size.

【0013】以下、得られたグリーンシート上にAgペ
ーストにてスクリーン印刷法により内部導体を所定のパ
ターンに印刷し、加熱により乾燥させ、前記絶縁性磁性
スラリーをスクリーン印刷法により磁性層を印刷し、加
熱により乾燥させる。次に、前記内部導体の接続部分と
接続するようにして、内部導体を所定のパターンに印刷
し、加熱により乾燥させる。同様にして、次々と積層印
刷を所要数、繰り返し、内部導体で螺旋状のコイルを形
成し、また形成されたコイルの両端は外部に露出するよ
うに形成する。
Then, an inner conductor was printed on the obtained green sheet with Ag paste in a predetermined pattern by a screen printing method, dried by heating, and the insulating magnetic slurry was printed with a magnetic layer by a screen printing method. , Dry by heating. Next, the internal conductor is printed in a predetermined pattern so as to be connected to the connection portion of the internal conductor, and dried by heating. In the same manner, the layered printing is repeated a required number of times to form a spiral coil of the internal conductor, and both ends of the formed coil are exposed to the outside.

【0014】このようにして積層印刷された積層体の上
に、上部絶縁性磁性層としてのグリーンシートをホット
プレスにより圧着し、未焼成積層体を形成する。これら
の未焼成のチップを大気雰囲気中で脱バインダーした後
に、大気中で一体焼成を行い、チップの面取りのため、
バレル研磨を行い、前記コイルの両端の外部に露出した
内部導体と接続するようにして、チップ側面にAgペー
スト等をディップにより塗布し、所定の温度と時間で乾
燥させた後、約600℃の温度で大気雰囲気により焼き
付けし、外電極端子を形成する。
A green sheet as an upper insulating magnetic layer is pressure-bonded to the laminated body printed in this manner by hot pressing to form an unfired laminated body. After debinding the unbaked chips in the air, they are integrally baked in the air to chamfer the chips.
Barrel polishing is performed so that the side surface of the chip is coated with a dip such as Ag paste by dipping so as to be connected to the internal conductors exposed to the outside of both ends of the coil, and dried at a predetermined temperature and time, The outer electrode terminals are formed by baking in an air atmosphere at a temperature.

【0015】次に、電極端子に電解めっきによるニッケ
ルめっき層を施し、その後、一つは比較材として、電解
Snめっきを5μm施した3216サイズ積層チップイ
ンダクタを得、もう一方は直ちに乾燥、その後、予め電
解Snめっきを3.5μm処理したものに、直ちにSn
−10wt%Biめっきを1.5μm行った3216サ
イズ積層チップインダクタを得た。
Next, a nickel-plated layer by electrolytic plating is applied to the electrode terminals, and thereafter, as a comparative material, a 3216 size multilayer chip inductor having electrolytic Sn plating of 5 μm is obtained, and the other is immediately dried, then, Immediately Sn the electrolytic Sn plating 3.5μm
A 3216 size multilayer chip inductor obtained by performing -10 wt% Bi plating for 1.5 μm was obtained.

【0016】1)このようにして得られた、3216積
層チップインダクタについて、まず以下条件でウイスカ
評価(N=10)を行った。ウイスカ評価条件は、上記
積層型チップ部品を恒温恒湿槽に50℃×85%RHの
条件で5000Hr放置した。その結果、従来の電解S
nめっき品はウイスカが150μm成長したが、Sn−
Biの2層めっき品については10μm程度のものしか
観察されなかった。
1) The 3216 multilayer chip inductor thus obtained was first subjected to whisker evaluation (N = 10) under the following conditions. As for the whisker evaluation conditions, the above laminated chip component was left in a constant temperature and constant humidity tank under conditions of 50 ° C. and 85% RH for 5000 hours. As a result, conventional electrolysis S
Whiskers of the n-plated product grew 150 μm, but Sn-
Only about 10 μm was observed for the bi-layer plated product of Bi.

【0017】2)ぬれ性評価については、はんだぬれ性
試験機にて急加熱昇温法にて行った。試験条件は、はん
だペーストとしては、千住金属製Sn−3.0Ag−0.
5Cu組成のもので、温度240℃浸漬速度2mm/秒
で10秒間浸漬後、直ちに冷却した。その際のぬれ性
(ゼロクロス時間)を比較評価した結果、本発明品のゼ
ロクロス時間が2.0秒、比較材のそれが3.1秒と、本
発明品がより速く濡れることがわかった。
2) The wettability was evaluated by a rapid heating method with a solder wettability tester. The test conditions are Sn-3.0Ag-0.
A 5Cu composition was used, which was immersed for 10 seconds at a temperature of 240 ° C. and an immersion speed of 2 mm / second, and immediately cooled. As a result of comparatively evaluating the wettability (zero cross time) at that time, it was found that the zero cross time of the product of the present invention was 2.0 seconds and that of the comparative material was 3.1 seconds, and the product of the present invention wets faster.

【0018】(実施例2)本発明の実施例2による積層
型チップ部品について、以下に説明する。まず、実施例
1と同じように、外電極端子を形成すたものに、まず電
極端子に電解めっきによるニッケルめっき層を施し、そ
の後、2層めっきを行った。条件は、2層めっきトータ
ルで5μmを固定条件とし、外部端子の最外表面のSn
−10wt%Biめっきを0.5、1.0、1.5、2.
0、2.5、3.0μm行い、その下地をSnめっきした
3216サイズ積層チップインダクタを得た。
(Embodiment 2) A laminated chip component according to Embodiment 2 of the present invention will be described below. First, in the same manner as in Example 1, a nickel plating layer formed by electrolytic plating was first applied to the electrode terminals on the outer electrode terminals formed, and then two-layer plating was performed. The condition is that the total thickness of the two-layer plating is fixed at 5 μm, and Sn on the outermost surface of the external terminal is used.
-10wt% Bi plating 0.5, 1.0, 1.5, 2.
A 3216 size multilayer chip inductor having a ground layer of Sn plated thereon was performed for 0, 2.5 and 3.0 μm.

【0019】このようにして得られた、3216積層チ
ップインダクタについて、まず以下条件でウイスカ評価
(N=10)を行った。
The 3216 multilayer chip inductor thus obtained was first subjected to whisker evaluation (N = 10) under the following conditions.

【0020】ウイスカ評価条件は、上記積層型チップ部
品を恒温恒湿槽に50℃×85%RHの条件で5000
Hr放置した。その結果、従来の電解Snめっき品は、
ウイスカが150μm成長したが、Sn−Biの2層め
っき品については、いずれも10μm程度のものしか観
察されなかった。
The whisker evaluation conditions were such that the above laminated chip parts were placed in a thermo-hygrostat at 50 ° C. and 85% RH for 5000.
It was left for Hr. As a result, the conventional electrolytic Sn-plated product
Whiskers grew to 150 μm, but for Sn-Bi two-layer plated products, only those having a thickness of about 10 μm were observed.

【0021】次に、ぬれ性評価については、はんだぬれ
性試験機にて急加熱昇温法にて行った。試験条件は、は
んだペーストとしては、千住金属製Sn−3.0Ag−
0.5Cu組成のもので、温度240℃浸漬速度2mm
/秒で10秒間浸漬後、直ちに冷却した。
Next, the wettability was evaluated by a rapid heating method with a solder wettability tester. The test conditions are Sn-3.0Ag- manufactured by Senju Metal Co., Ltd. as a solder paste.
0.5Cu composition, temperature 240 ℃, immersion speed 2mm
Immersion was performed for 10 seconds / second, followed by immediate cooling.

【0022】その際のぬれ性(ゼロクロス時間)を評価
した結果、Sn−10wt%Biめっき厚を0、0.
5、1.0、1.5、2.0、2.5、3.0μmとSn−
Biめっき厚の増加とともにゼロクロス時間が各々3.
1秒、2.0秒、1.9秒、2.0秒、1.8秒、1.8秒
と外表面を0.5μmでもSn−Biの2層構造にする
ことによって速く濡れることがわかった。しかしなが
ら、ぬれ性試験後のはんだの付いた状態の断面組織を其
々の試料についてEPMAで、はんだの最終凝固部周辺
組成を分析した結果、Sn−Bi合金めっき層が2.5
μm、3.0μmのものであったもののみSn−Bi共
晶組成と共にBi単体のみの析出が認められ、高温での
信頼性が劣ることがわかった。よって、最外表面のSn
−Bi共晶めっき層を少なくとも2.0μm以下とする
ことによって高い信頼性のはんだ付けが得られる。
As a result of evaluating the wettability (zero cross time) at that time, the Sn-10 wt% Bi plating thickness was set to 0.
5, 1.0, 1.5, 2.0, 2.5, 3.0 μm and Sn-
Zero crossing time is 3. with increasing Bi plating thickness.
1 second, 2.0 seconds, 1.9 seconds, 2.0 seconds, 1.8 seconds, 1.8 seconds and even if the outer surface is 0.5 μm, it can be wetted quickly by the Sn-Bi double-layer structure. all right. However, as a result of analyzing the composition around the final solidified portion of the solder by EPMA for each sample of the cross-sectional structure of the soldered state after the wettability test, the Sn-Bi alloy plated layer was 2.5.
It was found that the precipitation of only Bi alone was observed together with the Sn-Bi eutectic composition only for those having a thickness of 3.0 μm, and the reliability at high temperature was poor. Therefore, Sn on the outermost surface
-By setting the Bi eutectic plating layer to at least 2.0 μm or less, highly reliable soldering can be obtained.

【0023】(実施例3)本発明の実施例3による積層
型チップ部品について、以下に説明する。まず、実施例
1、実施例2と同じように、外電極端子を形成したもの
に、まず電極端子に電解めっきによるニッケルめっき層
を施し、その後、2層めっきを行った。条件は、2層め
っきトータルで5μmを固定条件とし、外部端子の最外
表面のSn−Bi共晶めっきを1.5μm行い、その下
地めっきをNi及びSnめっきした3216サイズ積層
チップインダクタを得た。このようにして得られた、3
216積層チップインダクタについて、まず、以下の条
件でウイスカ評価(N=10)を行った。
(Embodiment 3) A laminated chip component according to Embodiment 3 of the present invention will be described below. First, in the same manner as in Examples 1 and 2, the outer electrode terminal was formed, first, the electrode terminal was subjected to the nickel plating layer by electrolytic plating, and then the two-layer plating was performed. The condition was that the total thickness of the two-layer plating was fixed at 5 μm, Sn-Bi eutectic plating on the outermost surface of the external terminals was performed at 1.5 μm, and the underlying plating was Ni and Sn plated to obtain a 3216 size multilayer chip inductor. . 3 thus obtained
First, whisker evaluation (N = 10) was performed on the 216 layered chip inductor under the following conditions.

【0024】ウイスカ評価条件は、上記積層型チップ部
品を恒温恒湿槽に50℃×85%RHの条件で5000
Hr放置した。その結果、いずれも10μm程度のもの
しか観察されなかった。次に、ぬれ性評価については、
はんだぬれ性試験機にて急加熱昇温法にて行った。試験
条件は、はんだペーストとしては千住金属製Sn−3.
0Ag−0.5Cu組成のもので、温度240℃浸漬速
度2mm/秒で10秒間浸漬後、直ちに冷却した。
The whisker evaluation conditions were such that the above laminated chip parts were placed in a thermo-hygrostat at 50 ° C. and 85% RH for 5000.
It was left for Hr. As a result, in all cases, only those having a thickness of about 10 μm were observed. Next, regarding wettability evaluation,
It was performed by a rapid heating method with a solder wettability tester. The test conditions are Sn-3.
It was of a composition of 0Ag-0.5Cu and immersed at a temperature of 240 ° C. for 2 seconds at an immersion speed of 2 mm / sec for 10 seconds and then immediately cooled.

【0025】その際のぬれ性(ゼロクロス時間)を評価
した結果、下地Niのものが2.6秒に対して下地Sn
のものは1.9秒と、かなりぬれが良いことがわかっ
た。よって、最外表面のSn−Bi共晶めっき層でSn
下地めっきの場合に限り信頼性の高いはんだ付けが可能
となる。下地はSn合金でもよいと考えられるが、合金
元素としてはBi以外のCuやAgであることが望まし
い。
As a result of evaluating the wettability (zero crossing time) at that time, as for the base Ni, 2.6 seconds was compared with the base Sn.
It was 1.9 seconds, and it was found that it was fairly wet. Therefore, Sn in the outermost surface Sn-Bi eutectic plating layer
Only in the case of undercoating, highly reliable soldering becomes possible. It is considered that the underlayer may be a Sn alloy, but it is desirable that Cu or Ag other than Bi is used as the alloy element.

【0026】[0026]

【発明の効果】上述したように、本発明によれば、イオ
ンマイグレーションの成長やウイスカの成長などの欠陥
のない、かつ、はんだぬれ性の良い高信頼性の積層型チ
ップ部品を提供することができる。また、結果として、
製品歩留まりが著しく上昇し、また簡単な工程であるの
で、低価格化を実現することができる。
As described above, according to the present invention, it is possible to provide a highly reliable laminated chip component free from defects such as ion migration growth and whisker growth and having good solder wettability. it can. Also, as a result,
Since the product yield is remarkably increased and the process is simple, the cost can be reduced.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 外部電極端子最外表面がSn−Bi共晶
合金めっきで、かつ、その下地がSn系合金めっきで構
成された2層めっきとすることを特徴とする積層型チッ
プ部品。
1. A multilayer chip component, wherein the outermost surface of an external electrode terminal is Sn-Bi eutectic alloy plating, and the underlayer is a two-layer plating composed of Sn-based alloy plating.
【請求項2】 外部電極端子最外表面がSn−Bi共晶
合金めっきで、かつ、その下地がSn系合金めっきで、
更にその下地がSnめっきで構成された3層めっきとす
ることを特徴とする積層型チップ部品。
2. The outermost surface of the external electrode terminal is Sn-Bi eutectic alloy plating, and the base thereof is Sn-based alloy plating,
Furthermore, a multilayer chip component, characterized in that the base thereof is a three-layer plating having Sn plating.
【請求項3】 外部電極端子最外表面がSn−Bi共晶
合金めっきで、かつ、その下地がSn系合金めっきで、
かつその下地がSnめっきで、更にその下地がNiめっ
きで構成された4層めっきとすることを特徴とする積層
型チップ部品。
3. The outermost surface of the external electrode terminal is Sn-Bi eutectic alloy plating, and the base thereof is Sn-based alloy plating,
A multilayer chip component, wherein the base is Sn plating and the base is 4-layer plating composed of Ni plating.
【請求項4】 前記Sn−Bi共晶合金めっきの厚みが
2μm以下であることを特徴とする請求項1ないし3の
いずれかに記載の積層型チップ部品。
4. The multilayer chip component according to claim 1, wherein the thickness of the Sn—Bi eutectic alloy plating is 2 μm or less.
JP2001200902A 2001-07-02 2001-07-02 Laminated chip component Pending JP2003013280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001200902A JP2003013280A (en) 2001-07-02 2001-07-02 Laminated chip component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001200902A JP2003013280A (en) 2001-07-02 2001-07-02 Laminated chip component

Publications (1)

Publication Number Publication Date
JP2003013280A true JP2003013280A (en) 2003-01-15

Family

ID=19037947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001200902A Pending JP2003013280A (en) 2001-07-02 2001-07-02 Laminated chip component

Country Status (1)

Country Link
JP (1) JP2003013280A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021007169A (en) * 2016-05-26 2021-01-21 富士電機株式会社 Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021007169A (en) * 2016-05-26 2021-01-21 富士電機株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
JP3861927B1 (en) Electronic component, electronic component mounting structure, and electronic component manufacturing method
KR101645625B1 (en) Electronic component and method for forming junction structure between electronic component and object to be joined
EP0660651B1 (en) Multilayer ceramic circuit substrate, process for producing the same, and electrically conductive material for use in multilayer ceramic circuit substrate
US20070242416A1 (en) Surface-mounting ceramic electronic component
JPH11189894A (en) Sn alloy plated film, electronic part and chip type ceramic electronic part
CN102005297A (en) Ceramic electronic component and method for producing same
JP2018019061A (en) Coil component and manufacturing method thereof
JP2925986B2 (en) Fixed contact material or electrical contact parts consisting of a contact part and a terminal part
US11158460B2 (en) Ceramic electronic component with lead terminals having a coating layer
US10825611B1 (en) Multilayer electronic component and mounting structure thereof
US5128827A (en) Electronic devices, method for forming end terminations thereof and paste material for forming same
JP2009141292A (en) Electronic part having external terminal electrode and electronic supplies material mounted with the same, and method of manufacturing electronic part having external terminal electrode
JP3760770B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
JP4431052B2 (en) Resistor manufacturing method
JP2001230151A (en) Lead-less chip component
JP2000077593A (en) Lead frame for semiconductor
JP2012140678A (en) Plated member for preventing occurrence of whisker in bending part, electric electronic component using the same, method for producing plated member, and method for preventing occurrence of whisker in plated member
JPH0394409A (en) Electronic component and electrode paste; formation of terminal electrode
JP2973558B2 (en) Conductive paste for chip-type electronic components
JP2003013280A (en) Laminated chip component
JPH0525372B2 (en)
KR100438124B1 (en) Ceramic electronic component
JP2001155955A (en) Electronic component equipped having external terminal electrode and mounting electronic article thereof
JP4715000B2 (en) Manufacturing method of chip-type electronic component
JP2003163135A (en) Laminated chip element