JP2003012605A - Method for producing fluorinated vinyl ether - Google Patents

Method for producing fluorinated vinyl ether

Info

Publication number
JP2003012605A
JP2003012605A JP2001198037A JP2001198037A JP2003012605A JP 2003012605 A JP2003012605 A JP 2003012605A JP 2001198037 A JP2001198037 A JP 2001198037A JP 2001198037 A JP2001198037 A JP 2001198037A JP 2003012605 A JP2003012605 A JP 2003012605A
Authority
JP
Japan
Prior art keywords
general formula
vinyl ether
acid fluoride
formula
yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001198037A
Other languages
Japanese (ja)
Other versions
JP4817541B2 (en
Inventor
Nobuhito Hoshi
星  信人
Masanori Ikeda
池田  正紀
Nobuyuki Uematsu
信之 植松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2001198037A priority Critical patent/JP4817541B2/en
Priority to CNB028127935A priority patent/CN100338013C/en
Priority to US10/482,048 priority patent/US7196235B2/en
Priority to PCT/JP2002/006576 priority patent/WO2003002506A1/en
Publication of JP2003012605A publication Critical patent/JP2003012605A/en
Application granted granted Critical
Publication of JP4817541B2 publication Critical patent/JP4817541B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing fluorinated vinyl ether from a fluorinated acid fluoride compound having an ester group which is a precursor of carboxylic acid in a high yield. SOLUTION: This method for producing fluorinated vinyl ester is provided by first converting the fluorinated acid fluoride compound having a specific structure to its potassium salt, and then performing a heat decomposition reaction without solvent.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、食塩電解用隔膜と
して有用なフッ素系ポリマーの原料モノマーであるフッ
素化ビニルエーテルの製造方法に関する。 【0002】 【従来の技術】苛性ソーダや塩素を製造する食塩電解で
はイオン交換膜法が広く採用されており、その隔膜であ
るイオン交換膜としては、電流効率が優れていることか
らパーフルオロスルホン酸ポリマーとパーフルオロカル
ボン酸ポリマーの積層タイプの膜が主として用いられて
いる。用いられているパーフルオロスルホン酸ポリマー
およびパーフルオロカルボン酸ポリマーとしては下記一
般式(4): 【化4】 (式中、m=0〜1、n=1〜5の整数、X=COO
H,SO3 Hである。)の構造のものが一般的である
(三宅晴久、「フッ素系材料の開発」p105、シーエ
ムシー、1994年)。これらのポリマーは、下記一般
式(5): 【化5】 (式中、m、nは上記一般式(4)と同じ、X’=CO
OR,SO2 F、R=アルキル基である。)で表される
フッ素化ビニルエーテルモノマーとテトラフルオロエチ
レン(TFE)との共重合体を製膜した後、加水分解反
応を施すことによって得られる。 【0003】このフッ素化ビニルエーテルモノマーのう
ち、パーフルオロカルボン酸ポリマーの原料となるのは
上記一般式(5)におけるX’=COORのモノマーで
あり、それぞれの構造に応じた種々の製造方法が提案さ
れている。例えば、末端にCH3 OCF2 CF2 −基を
有するビニルエーテルを強酸で処理してエステル基を導
入する方法(特開昭60−156632号公報)、末端
に酸フルオリドを有するビニルエーテルをエステル化す
る方法(特開昭54−112822号公報)、ICF2
CF2 O−構造を有する前駆体から脱IF反応でビニル
基を導入する方法(特開昭55−31004号公報)等
が提案されているが、原料合成が容易で、比較的好収率
を与える製造法は、以下に示すように、酸フルオリドを
熱分解して製造する方法であり、最も有用な製造方法の
ひとつである。 【0004】 【化6】 (式中、Mはアルカリ金属等の金属) この方法には、加熱した炭酸ナトリウム等のアルカリ粉
末中に上記一般式(1)の酸フルオリドをフィードし、
熱分解して生成したビニルエーテルモノマーを冷却捕集
する方法(以下、フロー法と称す)、上記一般式(1)
の酸フルオリドを一旦アルカリと反応させて上記一般式
(6)のカルボン酸塩に変換した後、加熱熱分解してビ
ニルエーテルモノマーを得る方法(以下、2段法と称
す)が知られている。 【0005】前者のフロー法の例としては、特開昭53
−132519号公報に上記一般式(1)、(6)、
(2)においてm=1または2、n=2、M=Na、R
=CH 3 の場合の例があり、m=1の場合で収率67
%、m=2の場合、収率61%でビニルエーテルモノマ
ーを得ている。一方、後者の2段法の例は特開昭52−
78827号公報に記載があり、m=0、n=3、M=
Na、R=C2 5 の場合で収率61%、m=0、n=
3、M=K、R=C2 5 の場合で収率63〜65%、
m=1、n=3、M=K、R=C2 5 の場合で収率5
1%という結果が報告されている。即ち、いずれの場合
も収率は50〜60%台にとどまり決して高いものでは
なかった。特に前者のフロー法では一般に原料の酸フル
オリドの沸点が反応温度よりも低いため、炭酸塩との接
触効率が悪く、転化率を上げにくい欠点もあった。 【0006】また、特表平7−505164号公報に
は、上記一般式(1)においてm=1、n=2、R=C
3 の酸フルオリドをシリルエステルに変換した後、高
温でKFと反応させることにより、上記一般式(2)の
ビニルエーテルを得る方法が開示されている。しかしな
がらこの方法は、プロセスが繁雑な上、収率も69%で
あり、それほど改善されたものではなかった。尚、上記
一般式(6)においてMがナトリウムの場合とカリウム
の場合との反応性の違いについてはそのことを示唆する
ような報告例はなく、実際、特開昭52−78827号
公報の例(m=0、n=3)においても有意の差は認め
られていなかった。 【0007】前述のように、これまでに上記一般式
(1)で表される酸フルオリドより、上記一般式(2)
で表されるフッ素化ビニルエーテルを製造する方法とし
ては、高収率製造法が知られていなかった。それらの公
知文献の反応成績を以下にまとめて示す。 <フロー法>(特開昭53−132519号公報) m=1、n=2、M=Na 収率67% m=2、n=2、M=Na 収率61% <2段法>(特開昭52−78827号公報) m=0、n=3、M=Na 収率61% m=0、n=3、M=K 収率63〜65% m=1、n=3、M=K 収率51% 従って、上記一般式(1)の酸フルオリドより上記一般
式(2)のフッ素化ビニルエーテルを製造する方法は収
率が不充分であり、より経済的に有利な、高収率製造法
が望まれていた。 【0008】 【発明が解決しようとする課題】本発明は上記問題点を
解消するものであり、上記一般式(1)中の特定の酸フ
ルオリドから上記一般式(2)中の特定のフッ素化ビニ
ルエーテルを高収率で製造する方法を提供することを目
的とする。 【0009】 【課題を解決するための手段】本発明者らは、上記一般
式(1)で表される酸フルオリドより上記一般式(2)
で表されるフッ素化ビニルエーテルを高収率で製造する
方法を開発すべく鋭意研究を重ねた結果、上記一般式
(1)中の特定の酸フルオリドを、特定の条件で処理す
ることにより、転化率100%かつ高収率で、高品質
の、上記一般式(2)中の特定のフッ素化ビニルエーテ
ルを得ることができることを見い出し、本発明をなすに
至った。即ち本発明は、下記一般式(1): 【化7】 (式中、m=0〜1、n=1〜5の整数、Rはアルキル
基である。)で表される酸フルオリドより、下記一般式
(2): 【化8】 (式中、m、n、Rは上記一般式(1)と同じ。)で表
されるフッ素化ビニルエーテルを製造するに当たり、上
記一般式(1)においてm=1、n=2の酸フルオリド
から誘導される、下記式(3): 【化9】 (式中、Rは上記一般式(1)と同じ。)で表されるカ
リウム塩を無溶媒で熱分解することにより、上記一般式
(2)においてm=1、n=2のフッ素化ビニルエーテ
ルを製造することを特徴とするフッ素化ビニルエーテル
の製造方法である。 【0010】以下、本発明について詳細に説明する。本
発明の製造方法は、まずは適用される構造が上記一般式
(6)においてm=1、n=2の酸フルオリド、即ち下
記式(7): 【化10】 (式中、Rは上記一般式(1)と同じ。)の酸フルオリ
ドから、上記一般式(2)においてm=1、n=2のフ
ッ素化ビニルエーテル、即ち下記式(8): 【化11】 (式中、Rは上記一般式(1)と同じ。)のフッ素化ビ
ニルエーテルを製造する方法に限定され、且つその反応
条件を特定することで、転化率100%を達成すると同
時に反応収率を特異的に高めたものである。特定の反応
条件とは、まずフロー法ではなく2段法であること、ま
たその際の中間のカルボン酸塩がカリウム塩に限定され
ること、熱分解が無溶媒で行われるということである。 【0011】本発明の製造方法において重要なポイント
は、特定の構造である上記式(7)の酸フルオリドをま
ずは上記式(3)のカリウム塩に変換する点にある。従
来方法で広く用いられていたように上記式(7)の酸フ
ルオリドをナトリウム塩に変換すると、上記式(3)に
相当するナトリウム塩が室温または熱分解前の温度で溶
融しやすく、その際、副反応生成物として上記式(7)
の酸フルオリドがエステル化された下記式(9)のジエ
ステル化合物: 【化12】 (式中、Rは上記一般式(1)と同じ。)が生成するこ
とで目的物の収率を引き下げていることがわかった。し
かしながら本発明者らはこれをナトリウム塩ではなく、
特定の構造である上記式(3)のカリウム塩にすること
で熱分解温度においてもカルボン酸塩が固体状態を保つ
ことを見出した。従って、一旦完全にカルボン酸塩に転
換してしまっても固体状態(流動性のない状態)で熱分
解することが可能になり、カルボン酸塩の流動化による
副反応がないので、高収率で目的の上記式(8)のフッ
素化ビニルエーテルが得られることを見出し、本発明を
完成させた。 【0012】上記式(7)の酸フルオリドを上記式
(3)のカリウム塩に変換する方法としては、溶媒中ま
たは無溶媒でカリウム原子を含むアルカリと反応させれ
ばよい。カリウム原子を含むアルカリとしては、具体的
には炭酸カリウム、水酸化カリウム、リン酸カリウム、
酢酸カリウム等が挙げられるが、カリウムの対イオン成
分がガスとして除けるので炭酸カリウムが好ましい。炭
酸カリウムとしては、顆粒状のもの、粉末状のもの、微
粉状のもの、比表面積を高めた顆粒状のものあるいはそ
の粉末状のもの、微粉状のもののいずれを用いることも
できる。また、使用前によく乾燥しておくことが好まし
い。アルカリとの反応で溶媒を用いる場合、一般には極
性溶媒が用いられる。具体的には水または、メタノー
ル、エタノール、プロパノール等のアルコール類、テト
ラヒドロフラン、ジオキサン、エチレングリコールジメ
チルエーテル、ジエチレングリコールジメチルエーテル
等のエーテル類、アセトニトリル、プロピオニトリル等
のニトリル類、ジメチルホルムアミド、ジメチルアセト
アミド等のアミド類、ジメチルスルホキシド等が挙げら
れる。これらの溶媒は反応後に除去する必要があるが、
除去が容易な沸点100℃以下の溶媒が好ましい。また
熱分解時にプロトン性溶媒が残存するとトリフルオロビ
ニル基の代わりにプロトン化されたCF3 CHF−基が
生成することがあるので、溶媒としては非プロトン性溶
媒が好ましい。これらの条件を満たす溶媒としては、テ
トラヒドロフラン、エチレングリコールジメチルエーテ
ル、アセトニトリル等が挙げられる。アルカリとの反応
で溶媒を用いる場合、副反応を抑制するために反応温度
は0〜80℃の範囲が好ましく、20〜60℃の範囲が
さらに好ましい。尚、アルカリとの反応は無溶媒で行う
こともできる。この場合、カリウムの対イオン成分が反
応後に残らない、炭酸カリウムとの反応を無溶媒で行う
ことが好ましい。この場合には、反応温度は50〜15
0℃が好ましく、80〜120℃がさらに好ましい。 【0013】カリウム塩に変換するときに用いられるア
ルカリの量は、一般には酸フルオリドを完全にカリウム
塩に変換するために必要な当量を用いればよいが、必要
により過剰量用いてもよい。例えば炭酸カリウムの場
合、一般には当量〜4当量の範囲、好ましくは当量〜2
当量の範囲で用いられる。本発明の製造方法において、
用いる上記式(7)の酸フルオリドは純度が高いことが
好ましい。上記式(7)の酸フルオリドに不純物が含ま
れると副反応が起こりやすくなり収率が低下する。この
ような不純物の影響を実質的に排除することためには上
記式(7)の酸フルオリドの純度は80重量%以上が好
ましく、さらに好ましくは90重量%以上であり、さら
に好ましくは95重量%以上である。 【0014】付け加えるならば、上記式(7)の酸フル
オリドの製造する際には下記一般式(10): 【化13】 (式中、mは0または2以上の整数、Rは上記一般式
(1)と同じ。)の酸フルオリドが副生することが一般
的であって、従ってそれらが不純物として混入してくる
ことがあり得る。即ち、上記式(7)の酸フルオリドに
不純物として上記一般式(10)の化合物を含む場合、
その量は20重量%未満であることが好ましく、さらに
好ましくは10重量%未満であり、さらに好ましくは5
重量%未満である。 【0015】本発明の製造方法において、上記式(7)
の酸フルオリドにおけるRのアルキル基は、蒸留精製が
容易になるので炭素数は少ない方が好ましく、通常は炭
素数1〜4個の低級アルキル基が採用される。Rの具体
例としては、メチル基、エチル基、プロピル基、イソプ
ロピル基、n−ブチル基等が例示され、中でもメチル
基、エチル基が好ましく、メチル基が特に好ましい。上
記式(3)のカリウム塩は熱分解温度以上に加熱するこ
とで脱炭酸反応し、上記式(8)のビニルエーテルを生
成する。この熱分解そのものは、溶媒中でも無溶媒でも
進行するが、副反応を抑制し、収率を高めるためには無
溶媒で行う必要がある。加熱温度は脱炭酸反応が進行す
る温度であれば差し支えないが、一般には120〜30
0℃、好ましくは150〜250℃で行われる。熱分解
中は生成したビニルエーテルが系内に滞留しないように
することが望ましく、熱分解温度がビニルエーテルの常
圧での沸点以上である場合には、ビニルエーテルを速や
かにコンデンサーに導き、捕集することが好ましい。ま
た熱分解温度がビニルエーテルの沸点以下の場合でも系
内を減圧にする、あるいは不活性ガスをフローする等の
方法によりビニルエーテルを系内から除去することが好
ましい。 【0016】本発明の方法で製造されたフッ素化ビニル
エーテルは、高収率で得られる上に転化率100%なの
で未反応酸フルオリドを含まず、また副反応も少ないの
で高純度で得られる。従って、本発明の製造方法は反応
後の精製が極めて容易であるという特長を有する。以上
のように本発明の製造方法は、食塩電解用イオン交換膜
の原料として用いられているフッ素化ビニルエーテルを
高収率で製造でき、極めて有用である。また本発明の方
法で製造されたビニルエーテルは、その純度が高く、後
工程としての精製が容易であるという特長を有する。 【0017】以下、本発明を実施例に基づいて説明す
る。尚、反応収率は原料純度から換算して求めた。 【実施例1】100mlのフラスコに、14.5gの炭
酸カリウムと20mlのエチレングリコールジメチルエ
ーテルを入れておき、上記式(7)の酸フルオリドにお
いてR=CH3 の化合物(純度96重量%)48.8g
を、40℃で滴下した。そのまま2時間攪拌を続けた
後、溶媒を減圧で留去し、さらに100℃で真空乾燥
し、KFを含む固体状のカリウム塩を得た。完全にカリ
ウム塩に変換されていることは19F−NMRで確認し
た。フラスコに蒸留ヘッドとコンデンサーを付け、その
まま常圧で200℃まで加熱し、液の生成が収まるまで
200℃で加熱を続けた。その間、カリウム塩は固体状
態を維持していた。回収された液体38.3gをガスク
ロマトグラフィーで分析したところ、上記式(8)のビ
ニルエーテルが純度96重量%で含まれていた(収率9
1%)。また、上記式(9)のジエステルが2重量%含
まれていた。 【0018】 【比較例1】炭酸カリウムの代わりに11.1gの炭酸
ナトリウムを用いた以外、実施例1と同様に反応を行っ
た。溶媒を留去して得られたナトリウム塩は粘稠な液体
であった。また、熱分解で得られた液体35.3gをガ
スクロマトグラフィーで分析したところ、上記式(8)
のビニルエーテルの純度は80重量%であり(収率66
%)、上記式(9)のジエステルは17重量%含まれて
いた。 【比較例2】200mlの三口フラスコに18.5gの
炭酸カリウムを入れておき、220℃に加熱した。この
中に、実施例1で用いたものと同じ上記式(7)の酸フ
ルオリド48.8gを少量ずつ滴下した。生成物はコン
デンサーで捕集し、得られた39.2gの液体をガスク
ロマトグラフィーで分析したところ、上記式(8)のビ
ニルエーテルが65重量%(収率61%、選択率76
%)、未反応の酸フルオリドが25重量%、上記式
(9)のジエステルが1重量%含まれていた。 【0019】 【比較例3】炭酸カリウムの代わりに14.2gの炭酸
ナトリウムを用いた以外、比較例2と同様に反応を行っ
た。得られた液体40.3gをガスクロマトグラフィー
で分析したところ、上記式(8)のビニルエーテルが6
8重量%(収率64%、選択率72%)、未反応の酸フ
ルオリドが13重量%、上記式(9)のジエステルが9
重量%含まれていた。 【0020】 【実施例2】200mlの三口フラスコに27.6gの
炭酸カリウムを入れておき、100℃で実施例1と同じ
上記式(7)の酸フルオリド(純度95重量%)48.
8gを滴下した。さらに2時間反応を続けたところ、全
体が固化した。この段階で、 19F−NMRで酸フルオリ
ドが完全にカリウム塩に変換されていることを確認し
た。そのままフラスコを200℃まで加熱し、熱分解反
応を行った。得られた39.5gの液体をガスクロマト
グラフィーで分析したところ、上記式(8)のビニルエ
ーテルが91重量%(収率89%)、上記式(9)のジ
エステルが4重量%含まれていた。 【0021】 【比較例4】上記式(7)の酸フルオリドの代わりにC
3 OCOCF2 CF2 OCF(CF3 )COF(上記
一般式(1)においてm=0、n=2、R=CH3
(純度93重量%)32.2gを用いた以外、実施例1
と同様に反応を行った。中間で完全にカリウム塩に変換
されていることは19F−NMRで確認した。カリウム塩
は200℃まで加熱すると激しく白煙を生じながら分解
したが、液の生成が収まるまで200℃で加熱を続け
た。回収された液体15.7gをガスクロマトグラフィ
ーで分析したところ、上記一般式(2)においてm=
0、n=2、R=CH 3 のビニルエーテルを少量含む複
雑な混合物であった。 【比較例5】炭酸カリウムの代わりに11.1gの炭酸
ナトリウムを用いた以外、比較例4と同様に反応を行っ
た。中間で生成したナトリウム塩は粘稠な液体であっ
た。また、熱分解で得られた液体16.5gをガスクロ
マトグラフィーで分析したところ、比較例4と同じビニ
ルエーテルを少量含む複雑な混合物であった。 【0022】 【比較例6】上記式(7)の酸フルオリドの代わりに上
記一般式(1)においてm=1、n=3、R=CH3
酸フルオリド(純度95重量%)53.8g、炭酸カリ
ウムの代わりに11.1gの炭酸ナトリウムを用いた以
外、実施例1と同様に反応を行った。溶媒を留去して得
られたナトリウム塩は粘稠な液体であった。また、熱分
解で得られた液体39.2gをガスクロマトグラフィー
で分析したところ、上記一般式(2)においてm=1、
n=3、R=CH3 のビニルエーテルの純度は73重量
%であり(収率64%)、ジエステル化合物が18重量
%含まれていた。 【0023】 【発明の効果】本発明の製造方法は、食塩電解用イオン
交換膜の原料として用いられているフッ素化ビニルエー
テルを高収率で製造でき、極めて有用である。また本発
明の方法で製造されたビニルエーテルは、その純度が高
く、後工程としての精製が容易であるという特長を有す
る。
DETAILED DESCRIPTION OF THE INVENTION [0001] TECHNICAL FIELD The present invention relates to a diaphragm for salt electrolysis and
Which is a useful raw material monomer for fluoropolymers
The present invention relates to a method for producing a fluorinated vinyl ether. [0002] 2. Description of the Related Art Salt electrolysis for producing caustic soda and chlorine
The ion exchange membrane method is widely used for
The current efficiency is excellent for an ion exchange membrane
Perfluorosulfonic acid polymer and perfluorocal
Laminated type film of boronic acid polymer is mainly used
I have. Perfluorosulfonic acid polymer used
And perfluorocarboxylic acid polymer
General formula (4): Embedded image (Wherein, m = 0 to 1, n = 1 to 5; X = COO
H, SOThreeH. ) Structure is common
(Haruhisa Miyake, "Development of Fluorine-based Materials", p. 105, CIE
Moussy, 1994). These polymers are generally
Equation (5): Embedded image (Where m and n are the same as those in the above general formula (4), X ′ = CO
OR, SOTwoF and R are alkyl groups. )
Fluorinated vinyl ether monomer and tetrafluoroethyl
After forming a copolymer with styrene (TFE), the hydrolysis reaction
It is obtained by applying a reaction. [0003] This fluorinated vinyl ether monomer
The raw material of the perfluorocarboxylic acid polymer is
X '= COOR monomer in the above general formula (5)
There are various manufacturing methods proposed for each structure.
Have been. For example, the terminal CHThreeOCFTwoCFTwo-Group
Of vinyl ether with a strong acid to introduce ester groups
Method (JP-A-60-156632),
Esterification of vinyl ether with acid fluoride
Method (Japanese Patent Laid-Open No. 54-112822), ICFTwo
CFTwoO-structure precursor to vinyl by de-IF reaction
Method for introducing a group (JP-A-55-31004), etc.
However, the synthesis of raw materials is easy and the yield is relatively high.
The production method to give acid fluoride as shown below
It is a method of manufacturing by pyrolysis, and is the most useful manufacturing method.
One. [0004] Embedded image (Where M is a metal such as an alkali metal) In this method, heated alkaline powder such as sodium carbonate
Feeding the acid fluoride of the above general formula (1) into the powder;
Cooling and collecting vinyl ether monomer generated by thermal decomposition
(Hereinafter referred to as a flow method), the above general formula (1)
Is reacted with an alkali once to obtain the above-mentioned general formula
After being converted to the carboxylate of (6), it is heated and pyrolyzed to
A method for obtaining a phenyl ether monomer (hereinafter referred to as a two-stage method)
Is known. An example of the former flow method is disclosed in
JP-A-132519 discloses the above general formulas (1), (6),
In (2), m = 1 or 2, n = 2, M = Na, R
= CH ThreeIn the case of m = 1, the yield is 67
%, M = 2, vinyl ether monomer with a yield of 61%
-Has been obtained. On the other hand, an example of the latter two-stage method is disclosed in
No. 78827, m = 0, n = 3, M =
Na, R = CTwoHFive61%, m = 0, n =
3, M = K, R = CTwoHFive63-65% in the case of
m = 1, n = 3, M = K, R = CTwoHFiveIn case of 5
A result of 1% has been reported. That is, in any case
But the yield is only in the 50-60% range,
Did not. In particular, in the former flow method, the acid
Since the boiling point of the oxide is lower than the reaction temperature,
There was also a disadvantage that the contact efficiency was poor and it was difficult to increase the conversion. Further, Japanese Patent Application Laid-Open No. 7-505164 discloses
In the general formula (1), m = 1, n = 2, and R = C
HThreeAfter conversion of the acid fluoride to the silyl ester,
By reacting with KF at a temperature, the above-mentioned general formula (2)
Methods for obtaining vinyl ethers are disclosed. But
In this method, the process is complicated and the yield is 69%.
Yes, not much. The above
In the general formula (6), when M is sodium and potassium
This suggests the difference in reactivity with
There have been no such reports, and in fact, JP-A-52-78827.
No significant difference was recognized in the gazette examples (m = 0, n = 3).
Had not been. As described above, the above general formula
From the acid fluoride represented by (1), the above-mentioned general formula (2)
The method for producing a fluorinated vinyl ether represented by
Thus, a high-yield production method has not been known. Those public
The reaction results of the intellectual literature are summarized below. <Flow method> (JP-A-53-132519) m = 1, n = 2, M = Na 67% yield m = 2, n = 2, M = Na yield 61% <Two-step method> (JP-A-52-78827) m = 0, n = 3, M = Na yield 61% m = 0, n = 3, M = K Yield 63-65% m = 1, n = 3, M = K Yield 51% Therefore, the acid fluoride of the general formula (1) is more
The method for producing the fluorinated vinyl ether of the formula (2) is
Inefficient, more economically advantageous, high-yield production process
Was desired. [0008] The present invention solves the above problems.
The specific acid fluoride in the above general formula (1)
The specific fluorinated vinyl in general formula (2)
With the aim of providing a method for producing
Target. [0009] Means for Solving the Problems The present inventors have made the above general description
From the acid fluoride represented by the formula (1), the general formula (2)
To produce fluorinated vinyl ether represented by
As a result of intensive studies to develop a method, the above general formula
Treating the specific acid fluoride in (1) under specific conditions
By converting, 100% conversion, high yield and high quality
Specific fluorinated vinyl ether in the above general formula (2)
To achieve the present invention.
Reached. That is, the present invention provides the following general formula (1): Embedded image (Wherein, m is an integer of 0 to 1, n is an integer of 1 to 5, R is alkyl
Group. ), The following general formula
(2): Embedded image (Where m, n, and R are the same as those in the general formula (1)).
To produce fluorinated vinyl ethers
In the general formula (1), m = 1, n = 2 acid fluoride
The following formula (3) derived from: Embedded image (In the formula, R is the same as the general formula (1).)
By thermally decomposing the lithium salt without solvent, the above general formula
In (2), the fluorinated vinyl ether having m = 1 and n = 2
Fluorinated vinyl ether characterized by producing
Is a manufacturing method. Hereinafter, the present invention will be described in detail. Book
In the manufacturing method of the invention, first, the structure applied is the above general formula
In (6), an acid fluoride having m = 1 and n = 2, that is,
Notation (7): Embedded image (Wherein R is the same as in the above general formula (1))
From the formula (2), m = 1 and n = 2
Fluorinated vinyl ether, that is, the following formula (8): Embedded image (Wherein R is the same as in the above general formula (1))
Limited to the method for producing a nyl ether, and the reaction
By specifying the conditions, it is possible to achieve a conversion of 100%.
Occasionally, the reaction yield is specifically increased. Specific reactions
The condition is that the two-step method is used instead of the flow method.
The intermediate carboxylate is limited to potassium salt
That is, the thermal decomposition is performed without a solvent. Important points in the manufacturing method of the present invention
Is an acid fluoride of the above formula (7) having a specific structure.
Is that it is converted to the potassium salt of the above formula (3). Obedience
The acid fluorinated compound of the above formula (7) has been widely used in the conventional method.
When converting rulide to the sodium salt, the above formula (3)
The corresponding sodium salt is dissolved at room temperature or at the temperature before pyrolysis.
It is easy to melt, and in this case, the above formula (7)
An ester of the following formula (9) in which the acid fluoride is esterified
Stele compound: Embedded image (Wherein R is the same as in the general formula (1)).
Thus, it was found that the yield of the target product was reduced. I
However, we did not call this a sodium salt,
To be a potassium salt of the above formula (3) having a specific structure
Keeps carboxylate in solid state even at thermal decomposition temperature
I found that. Therefore, once completely converted to carboxylate
Even if it is exchanged, the heat component remains in a solid state (a state without fluidity).
And the fluidization of the carboxylate
Since there is no side reaction, the target compound of the above formula (8) can be obtained in high yield.
The present invention has found that
Completed. The acid fluoride of the above formula (7) is
As a method for converting to the potassium salt of (3), a method in a solvent may be used.
Or react with alkali containing potassium atom without solvent
Just fine. Specific examples of the alkali containing a potassium atom include:
Include potassium carbonate, potassium hydroxide, potassium phosphate,
Potassium acetate and the like can be mentioned.
Potassium carbonate is preferred because it can be removed as a gas. Charcoal
As potassium acid, granules, powders, fine
Powder, granular with increased specific surface area, or
Powder or fine powder
it can. In addition, it is preferable to dry well before use.
No. When a solvent is used in the reaction with an alkali,
A neutral solvent is used. Specifically, water or methanol
Alcohol, such as ethanol, propanol,
Lahydrofuran, dioxane, ethylene glycol dime
Tyl ether, diethylene glycol dimethyl ether
Such as ethers, acetonitrile, propionitrile, etc.
Nitriles, dimethylformamide, dimethylacetate
Amides such as amides, dimethyl sulfoxide and the like.
It is. These solvents need to be removed after the reaction,
A solvent having a boiling point of 100 ° C. or less, which is easy to remove, is preferred. Also
If a protic solvent remains during thermal decomposition,
Protonated CF instead of Nyl groupThreeCHF-
Aprotic solvent as a solvent
Medium is preferred. Solvents that meet these conditions include
Trahydrofuran, ethylene glycol dimethyl ether
And acetonitrile. Reaction with alkali
If a solvent is used at the reaction temperature,
Is preferably in the range of 0 to 80 ° C, more preferably in the range of 20 to 60 ° C.
More preferred. The reaction with alkali is performed without solvent.
You can also. In this case, the counter ion component of potassium
Performs reaction with potassium carbonate without solvent, which does not remain after reaction
Is preferred. In this case, the reaction temperature is 50 to 15
0 ° C is preferred, and 80 to 120 ° C is more preferred. [0013] The catalyst used when converting to a potassium salt
The amount of lukali is generally that acid fluoride is completely potassium
It is sufficient to use the equivalent required to convert to salt, but it is necessary
May be used in excess. For example, for potassium carbonate
In general, the range is generally equivalent to 4 equivalents, preferably equivalent to 2 equivalents.
Used in the range of equivalents. In the production method of the present invention,
The acid fluoride of the above formula (7) used has a high purity.
preferable. The acid fluoride of the above formula (7) contains impurities.
If this occurs, side reactions tend to occur and the yield decreases. this
In order to substantially eliminate the effects of such impurities,
The purity of the acid fluoride of the formula (7) is preferably 80% by weight or more.
More preferably, it is 90% by weight or more.
It is preferably at least 95% by weight. [0014] In addition, the acid fur
When producing an oride, the following general formula (10): Embedded image (Wherein, m is 0 or an integer of 2 or more, and R is the above general formula.
Same as (1). ) Is generally a by-product of acid fluoride
And therefore they are introduced as impurities
It is possible. That is, the acid fluoride of the above formula (7)
When the compound of the general formula (10) is contained as an impurity,
Preferably the amount is less than 20% by weight,
Preferably less than 10% by weight, more preferably 5% by weight.
% By weight. In the manufacturing method of the present invention, the above formula (7)
The alkyl group of R in the acid fluoride of
It is preferable that the number of carbon atoms is small because it is easy.
A lower alkyl group having 1 to 4 prime numbers is employed. Specific of R
Examples include methyl, ethyl, propyl, isop
Examples thereof include a propyl group and an n-butyl group.
Groups and ethyl groups are preferred, and methyl groups are particularly preferred. Up
The potassium salt of the above formula (3) should be heated above the thermal decomposition temperature.
Decarboxylation reaction to produce vinyl ether of the above formula (8)
To achieve. This thermal decomposition itself can be carried out with or without a solvent.
Although it proceeds, it is not necessary to suppress side reactions and increase the yield.
Must be done with solvent. Heating temperature causes the decarboxylation reaction to proceed
Temperature is acceptable, but generally 120 to 30
It is carried out at 0 ° C, preferably at 150 to 250 ° C. Thermal decomposition
In order to prevent the generated vinyl ether from staying in the system
And the thermal decomposition temperature is
If the boiling point is higher than the pressure, the vinyl ether
It is preferable to guide the crab to a crab and collect it. Ma
Even if the thermal decomposition temperature is below the boiling point of vinyl ether
Such as reducing the pressure inside or flowing an inert gas
It is preferable to remove vinyl ether from the system by a method.
Good. Fluorinated vinyl prepared by the method of the present invention
Ethers are obtained in high yields and have 100% conversion.
Contains no unreacted acid fluoride and has few side reactions
In high purity. Therefore, the production method of the present invention
It has the feature that subsequent purification is very easy. that's all
As described above, the production method of the present invention is an ion exchange membrane for salt electrolysis.
Fluorinated vinyl ether used as a raw material for
It can be produced in high yield and is very useful. Also, the person of the present invention
The vinyl ether produced by the method has high purity,
It has the feature that purification as a process is easy. Hereinafter, the present invention will be described with reference to examples.
You. In addition, the reaction yield was determined by converting from the purity of the raw material. EXAMPLE 1 14.5 g of charcoal was placed in a 100 ml flask.
Potassium salt and 20 ml of ethylene glycol dimethyl ether
And add it to the acid fluoride of the above formula (7).
And R = CHThree48.8 g of the compound (purity 96% by weight)
Was added dropwise at 40 ° C. The stirring was continued for 2 hours.
After that, the solvent is distilled off under reduced pressure, and further dried at 100 ° C. under vacuum.
Thus, a solid potassium salt containing KF was obtained. Completely potash
Is converted to um salt19Confirm by F-NMR
Was. Attach the distillation head and condenser to the flask,
Heat to 200 ° C under normal pressure until liquid formation stops
Heating was continued at 200 ° C. Meanwhile, the potassium salt is solid
Had maintained his state. 38.3 g of the recovered liquid is gasket
Analysis by chromatography showed that the equation (8)
Nyl ether was contained at a purity of 96% by weight (yield 9
1%). The diester of the above formula (9) contains 2% by weight.
Had been rare. [0018] Comparative Example 1 11.1 g of carbonic acid instead of potassium carbonate
The reaction was carried out in the same manner as in Example 1 except that sodium was used.
Was. The sodium salt obtained by distilling off the solvent is a viscous liquid
Met. In addition, 35.3 g of the liquid obtained by pyrolysis was
When analyzed by chromatography, the above formula (8) was obtained.
Of vinyl ether was 80% by weight (yield 66
%), And 17% by weight of the diester of the above formula (9) is contained.
Was. Comparative Example 2 18.5 g of a 200 ml three-necked flask
Potassium carbonate was charged and heated to 220 ° C. this
Among them, the same acid fluorinated compound of the above formula (7) used in Example 1 was used.
48.8 g of rulide were added dropwise little by little. The product is
It was collected with a denser, and 39.2 g of the obtained liquid was
Analysis by chromatography showed that the equation (8)
Nyl ether is 65% by weight (yield 61%, selectivity 76
%), 25% by weight of unreacted acid fluoride,
The diester of (9) was contained in an amount of 1% by weight. [0019] Comparative Example 3 14.2 g of carbonic acid instead of potassium carbonate
The reaction was carried out in the same manner as in Comparative Example 2 except that sodium was used.
Was. 40.3 g of the obtained liquid is subjected to gas chromatography.
When the vinyl ether of the above formula (8)
8% by weight (yield 64%, selectivity 72%), unreacted acid
13% by weight of rulide and 9% of diester of the above formula (9)
% By weight. [0020] Example 2 In a 200 ml three-necked flask, 27.6 g of
Put potassium carbonate, and at 100 ° C, same as in Example 1.
48. Acid fluoride of the above formula (7) (purity: 95% by weight)
8 g was added dropwise. After continuing the reaction for another 2 hours,
The body solidified. At this stage, 19Acid Fluoride by F-NMR
Make sure that the salt is completely converted to potassium salt
Was. Heat the flask to 200 ° C as it is
Responded. The obtained 39.5 g of liquid was subjected to gas chromatography.
Analysis of the vinyl ether of the above formula (8)
91% by weight (89% yield).
It contained 4% by weight of ester. [0021] Comparative Example 4 In place of the acid fluoride of the above formula (7), C
HThreeOCOCFTwoCFTwoOCF (CFThree) COF (above
In the general formula (1), m = 0, n = 2, R = CHThree)
Example 1 (purity 93% by weight) except that 32.2 g was used.
The reaction was carried out in the same manner as described above. Completely converted to potassium salt in the middle
What is being done19Confirmed by F-NMR. Potassium salt
Decomposes when heated to 200 ° C, producing violent white smoke
However, heating was continued at 200 ° C until the generation of liquid stopped.
Was. Gas chromatography of 15.7 g of the recovered liquid
As a result of the above analysis, in the above general formula (2), m =
0, n = 2, R = CH ThreeContaining a small amount of vinyl ether
It was a rough mixture. Comparative Example 5 11.1 g of carbonic acid instead of potassium carbonate
The reaction was carried out in the same manner as in Comparative Example 4 except that sodium was used.
Was. The sodium salt formed in the middle is a viscous liquid.
Was. In addition, 16.5 g of the liquid obtained by the thermal decomposition was subjected to gas chromatography.
When analyzed by chromatography, the same vinyl
It was a complex mixture containing a small amount of thiol ether. [0022] Comparative Example 6 In place of the acid fluoride of the above formula (7)
In the general formula (1), m = 1, n = 3, R = CHThreeof
53.8 g of acid fluoride (purity 95% by weight), potassium carbonate
Instead of using 11.1 g of sodium carbonate instead of
The reaction was carried out in the same manner as in Example 1. Solvent
The sodium salt obtained was a viscous liquid. Also the heat
39.2 g of the liquid obtained by the solution was subjected to gas chromatography.
As a result, m = 1 in the general formula (2),
n = 3, R = CHThree73% pure vinyl ether
% (Yield 64%), and the diester compound was 18% by weight.
% Was included. [0023] As described above, the production method of the present invention provides
Fluorinated vinyl acetate used as a raw material for exchange membranes
Ter can be produced in high yield and is very useful. Again
Vinyl ether produced by the Ming method has high purity.
And it is easy to purify as a post-process.
You.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 植松 信之 静岡県富士市鮫島2番地の1 旭化成株式 会社内 Fターム(参考) 4H006 AA02 AC26 BB15 BC10 BE12 BM10 BM71 BP10 KF10    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Nobuyuki Uematsu             1 Asahi Kasei stock, 2 Samejima, Fuji City, Shizuoka Prefecture             In the company F-term (reference) 4H006 AA02 AC26 BB15 BC10 BE12                       BM10 BM71 BP10 KF10

Claims (1)

【特許請求の範囲】 【請求項1】 下記一般式(1): 【化1】 (式中、m=0〜1、n=1〜5の整数、Rはアルキル
基である。)で表される酸フルオリドより、下記一般式
(2): 【化2】 (式中、m、n、Rは上記一般式(1)と同じ。)で表
されるフッ素化ビニルエーテルを製造するに当たり、上
記一般式(1)においてm=1、n=2の酸フルオリド
から誘導される、下記式(3): 【化3】 (式中、Rは上記一般式(1)と同じ。)で表されるカ
リウム塩を無溶媒で熱分解することにより、上記一般式
(2)においてm=1、n=2のフッ素化ビニルエーテ
ルを製造することを特徴とするフッ素化ビニルエーテル
の製造方法。
[Claim 1] The following general formula (1): (Wherein, m is an integer of 0 to 1 and n is an integer of 1 to 5 and R is an alkyl group) from the acid fluoride represented by the following general formula (2): (Where m, n, and R are the same as those in the general formula (1)). In the production of the fluorinated vinyl ether represented by the general formula (1), an acid fluoride having m = 1 and n = 2 in the general formula (1) is used. Induced, the following formula (3): (Wherein R is the same as in the above general formula (1)) by thermally decomposing the potassium salt represented by the general formula (1) without solvent to obtain a fluorinated vinyl ether having m = 1 and n = 2 in the above general formula (2). A method for producing a fluorinated vinyl ether, characterized by producing
JP2001198037A 2001-06-29 2001-06-29 Method for producing fluorinated vinyl ether Expired - Lifetime JP4817541B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001198037A JP4817541B2 (en) 2001-06-29 2001-06-29 Method for producing fluorinated vinyl ether
CNB028127935A CN100338013C (en) 2001-06-29 2002-06-28 Process for producing fluorinated vinyl ether
US10/482,048 US7196235B2 (en) 2001-06-29 2002-06-28 Process for producing fluorinated vinyl ether
PCT/JP2002/006576 WO2003002506A1 (en) 2001-06-29 2002-06-28 Process for producing fluorinated vinyl ether

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001198037A JP4817541B2 (en) 2001-06-29 2001-06-29 Method for producing fluorinated vinyl ether

Publications (2)

Publication Number Publication Date
JP2003012605A true JP2003012605A (en) 2003-01-15
JP4817541B2 JP4817541B2 (en) 2011-11-16

Family

ID=19035548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001198037A Expired - Lifetime JP4817541B2 (en) 2001-06-29 2001-06-29 Method for producing fluorinated vinyl ether

Country Status (1)

Country Link
JP (1) JP4817541B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS417949B1 (en) * 1963-09-13 1966-04-26
JPS5278827A (en) * 1975-12-26 1977-07-02 Asahi Glass Co Ltd Preparation of ester-group-containing fluorovinyl ethers
DE2708677A1 (en) * 1977-02-28 1978-08-31 Asahi Glass Co Ltd Ester gp.-contg. fluoro-vinyl ether monomerS - prepd. by pyrolysis of corresp. alkali metal fluorocarboxylates to improve yield
JPS5690054A (en) * 1979-12-21 1981-07-21 Asahi Chem Ind Co Ltd Fluorinated vinyl ether compound and its preparation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS417949B1 (en) * 1963-09-13 1966-04-26
JPS5278827A (en) * 1975-12-26 1977-07-02 Asahi Glass Co Ltd Preparation of ester-group-containing fluorovinyl ethers
DE2708677A1 (en) * 1977-02-28 1978-08-31 Asahi Glass Co Ltd Ester gp.-contg. fluoro-vinyl ether monomerS - prepd. by pyrolysis of corresp. alkali metal fluorocarboxylates to improve yield
JPS5690054A (en) * 1979-12-21 1981-07-21 Asahi Chem Ind Co Ltd Fluorinated vinyl ether compound and its preparation

Also Published As

Publication number Publication date
JP4817541B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
US4358412A (en) Preparation of vinyl ethers
US7176331B2 (en) Method of making fluorinated vinyl ethers
US7196235B2 (en) Process for producing fluorinated vinyl ether
JP5564487B2 (en) Novel process for producing cyclohexanecarboxylic acid derivatives
JP4565837B2 (en) Method for producing perfluorovinylcarboxylic acid ester
JP2003012605A (en) Method for producing fluorinated vinyl ether
JP4143810B2 (en) Method for producing fluorine-containing fluorosulfonylalkyl vinyl ether
JPH0367059B2 (en)
WO2021177260A1 (en) Methods for producing iodofluoroalkane and fluoroolefin
JP4025390B2 (en) Method for producing allyl perfluoroalkyl ether
US11820733B2 (en) Process for producing sulfonic acid group-containing monomer
JP4817542B2 (en) Production method of fluorinated vinyl ether
JP2002179622A (en) Method for producing 4-acetoxystyrene
US20140339096A1 (en) Method for producing perfluorosulfonic acid having ether structure and derivative thereof, and surfactant containing fluorine-containing ether sulfonic acid compound and derivative thereof
JP3271887B2 (en) Method for producing allyl perfluoroalkyl ether
JP3677786B2 (en) Method for producing aryloxypropionic acid
JP4324373B2 (en) Alkyl ester of 2- (2-fluorosulfonyl) -perfluoroethyleneoxy 3-halogen-propionic acid and method for producing the same
JP4367998B2 (en) Process for producing 1,3-cycloalkadiene
JP4131917B2 (en) Production method of fluorinated monomer
JP2021031398A (en) Method for producing fluorine-containing vinyl ether
JPH04346957A (en) Fluorinated compound and its production
JPH021818B2 (en)
JPH0347144A (en) Production of m-phenoxybenzyl alcohol
JP2000154158A (en) Fluorine-containing compound and its production
JPS6356218B2 (en)

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20031204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4817541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term