WO2021177260A1 - Methods for producing iodofluoroalkane and fluoroolefin - Google Patents

Methods for producing iodofluoroalkane and fluoroolefin Download PDF

Info

Publication number
WO2021177260A1
WO2021177260A1 PCT/JP2021/007802 JP2021007802W WO2021177260A1 WO 2021177260 A1 WO2021177260 A1 WO 2021177260A1 JP 2021007802 W JP2021007802 W JP 2021007802W WO 2021177260 A1 WO2021177260 A1 WO 2021177260A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
general formula
fluorine
producing
containing alkyl
Prior art date
Application number
PCT/JP2021/007802
Other languages
French (fr)
Japanese (ja)
Inventor
翼 仲上
伊万理 中村
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2021177260A1 publication Critical patent/WO2021177260A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/16Preparation of halogenated hydrocarbons by replacement by halogens of hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/23Preparation of halogenated hydrocarbons by dehalogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • C07C19/16Acyclic saturated compounds containing halogen atoms containing fluorine and iodine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine

Definitions

  • the present disclosure relates to a method for producing fluoroalkane iodide and fluoroolefin.
  • HFO-1336 mcyf The fluoroolefin 2,3,3,4,5,4-hexafluoro-1-butene (HFO-1336 mcyf) is promising as a next-generation refrigerant.
  • HFO-1336 mcyf can be produced, for example, from 1,1,1,2,2,3,3-heptafluoro-4-iodobutane (IHFB), which is a fluoroalkane iodide.
  • IHFB 1,1,1,2,2,3,3-heptafluoro-4-iodobutane
  • a method for producing IHFB for example, first, 2,2,3,3,4,5,4-heptafluoro-1-butanol (7FB) is reacted with p-toluenesulfonyl chloride to produce 1,1-di.
  • Non-Patent Document 1 A method is known in which -H-perfluorobutyl p-toluenesulfonate is obtained, and then this and NaI are heated in diethylene glycol until the reaction vessel temperature reaches 220 ° C. to react (Non-Patent Document 1). ).
  • 7FB is first reacted with 1,1,1,3,3,3-hexamethyldisilazane (HMDS) to obtain C 3 F 7 CH 2 OSiMe 3 .
  • HMDS 1,1,1,3,3,3-hexamethyldisilazane
  • Ph 3 PICl is added thereto, reflux is carried out in hexane, the solvent is distilled off, and the obtained powder is thermally decomposed at 160 to 190 ° C.
  • Non-Patent Document 2 As another method for producing fluoroalkane iodide, for example, HCF 2 (CF 2 ) 3 CH 2 OH or HCF 2 (CF 2 ) 9 CH 2 OH, triphenylphosphine, imidazole and iodine are used as diethyl ether. A method of reacting in a mixed solvent of acetonitrile is known (Non-Patent Document 3).
  • An object of the present disclosure is to provide a novel production method capable of efficiently producing fluoroalkane iodide and fluoroolefin in high yield.
  • the iodide according to Item 1 wherein the solvent contains at least one selected from the group consisting of N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMA) and N-methylpyrrolidone (NMP).
  • DMF N-dimethylformamide
  • DMA N-dimethylacetamide
  • NMP N-methylpyrrolidone
  • R 1 CF CH 2 (In the formula, R 1 represents a fluorine-containing alkyl group having 1 to 10 carbon atoms) It is a method for producing a fluoroolefin represented by A production method comprising a step of dehalogenating the fluoroalkane iodide obtained by the method for producing a fluoroalkane iodide according to any one of Items 1 to 5 in the presence of a catalyst. Item 7.
  • R 1 represents a fluorine-containing alkyl group having 1 to 10 carbon atoms
  • a composition comprising a compound represented by. Item 8.
  • Item 2. The composition according to Item 7, wherein the total content of the compound represented by the general formula (4) and the compound represented by the general formula (5) is 20% by mass or less of the total composition.
  • the present disclosure provides a novel production method capable of efficiently producing fluoroalkane iodide and fluoroolefin in high yield.
  • the disclosure includes the following embodiments:
  • the present disclosure describes the general formula (2): R 1 CF 2 CH 2 I (In the formula, R 1 represents a fluorine-containing alkyl group having 1 to 10 carbon atoms) It is a method for producing fluoroalkane iodide represented by.
  • General formula (1): R 1 CF 2 CH 2 OH (In the formula, R 1 represents a fluorine-containing alkyl group having 1 to 10 carbon atoms) Includes a step of reacting a fluorine-containing alkyl alcohol represented by (1) with iodine in the presence of triphenylphosphine in a solvent.
  • the present invention relates to a production method, wherein the solvent contains at least one selected from the group consisting of a compound containing a sulfur atom and an amide.
  • R 1 represents a fluorine-containing alkyl group having 1 to 10 carbon atoms.
  • the fluorine-containing alkyl group having 1 to 10 carbon atoms is not particularly limited as long as it is an alkyl group having 1 to 10 carbon atoms in which one or more -H is substituted with -F, and is a linear or branched chain. It may be in the shape or ring shape. Further, as the fluorine-containing alkyl group having 1 to 10 carbon atoms, a perfluoroalkyl group having 1 to 10 carbon atoms is preferably mentioned.
  • the cyclic perfluoroalkyl group having 1 to 10 carbon atoms include -C 3 F 5 , -C 4 F 7 , -C 5 F 9 , -C 6 F 11 , -C 7 F 13 , and -C 8.
  • the carbon number of R 1 is preferably 1 to 3, more preferably 1 to 2, and particularly preferably 2.
  • the fluorine-containing alkyl group having 1 to 10 carbon atoms a perfluoroalkyl group having 1 to 3 carbon atoms is preferable, a perfluoroalkyl group having 1 to 2 carbon atoms is more preferable, and a perfluoroalkyl group having 2 carbon atoms is more preferable.
  • Alkyl groups are particularly preferred.
  • the fluorine-containing alkyl alcohol represented by the general formula (1) 2,2,3,3,4,5,4-heptafluoro-1-butanol (7FB) is particularly preferable.
  • fluorine-containing alkyl group having 1 to 10 carbon atoms of R 1 in the general formula (2) examples (preferably examples, etc.) of the fluorine-containing alkyl group having 1 to 10 carbon atoms in R 1 in the above general formula (1). (Including) and the same.
  • fluoroalkane iodide represented by the general formula (2) 1,1,1,2,2,3,3-heptafluoro-4-iodobutane (IHFB) is particularly preferable.
  • the solvent used in the iodination reaction step contains at least one selected from the group consisting of compounds containing sulfur atoms and amides.
  • the solvent include amides such as N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMA) and N-methylpyrrolidone (NMP); sulfur atoms such as dimethyl sulfoxide (DMSO) and sulfolane ( Examples thereof include compounds containing S).
  • the solvent may be used alone or in combination of two or more.
  • the solvent preferably contains amide from the viewpoint of easy synthesis of fluoroalkane iodide (with high reaction efficiency) and high yield; N, N-dimethylformamide (DMF), N, N-dimethyl. More preferably, it comprises at least one selected from the group consisting of acetamide (DMA) and N-methylpyrrolidone (NMP); the group consisting of N, N-dimethylformamide (DMF) and N, N-dimethylacetamide (DMA). It is more preferable to include at least one selected from the above; it is particularly preferable to include N, N-dimethylacetamide (DMA).
  • the solubility of each of the salts (active species) is further improved, so that the reaction between the fluoroalkyl alcohol and the salt (active species) and / or the iodide ion. It is considered that the reactivity of the nucleophilic substitution reaction (SN2 reaction) is further improved and fluoroalcohol iodide can be obtained in a higher yield.
  • the amount of iodine and triphenylphosphine used can be increased, and the yield of fluoroalkane iodide can be improved.
  • the amount of iodine used is not particularly limited, but from the viewpoint of ease of synthesis of the target product (reaction efficiency, etc.), yield, etc., 1. 5 to 5 mol is preferable, 2 to 4 mol is more preferable, and 2.5 to 3.0 mol is further preferable.
  • the amount of triphenylphosphine used is not particularly limited, but from the viewpoint of ease of synthesis of the target product (reaction efficiency, etc.), yield, etc., the amount of triphenylphosphine used is based on 1 mol of fluorine-containing alkyl alcohol. 1.5 to 5 mol is preferable, 2 to 4 mol is more preferable, and 2.5 to 3.0 mol is further preferable.
  • a base can be added to the reaction system.
  • the base does not particularly affect the iodination reaction and can remove the by-product HI.
  • the base is not particularly limited, and for example, alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide; alkali metal alkoxides such as potassium tert-butoxide and sodium methoxydo; triethylamine, pyridine and imidazole.
  • alkali metal carbonates such as sodium carbonate and potassium carbonate
  • alkali metal hydrogen carbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate and the like can be mentioned.
  • amines are preferable, and aromatic amines such as imidazole are more preferable, from the viewpoint of removing by-products.
  • the amount used is not particularly limited, but from the viewpoint of removing by-products and the like, 1.0 to 5 mol is preferable with respect to 1 mol of the fluorine-containing alkyl alcohol, and 1.0 to 1.0 to 4 mol is more preferable, and 1.0 to 3.0 mol is even more preferable.
  • the reaction temperature of the iodination reaction is not particularly limited, but is preferably 40 to 150 ° C., more preferably 50 to 140 ° C. from the viewpoint of ease of synthesis (reaction efficiency, etc.) and yield of the target product. 80 to 120 ° C. is more preferable.
  • the reaction pressure of the iodination reaction is not particularly limited, and the reaction can be carried out at normal pressure (atmospheric pressure).
  • the reaction time of the iodination reaction is not particularly limited, but is preferably 0.1 to 240 hours, preferably 0.3 to 24 hours, from the viewpoint of ease of synthesis of the target product (reaction efficiency, etc.) and yield. Is more preferable, and 1 to 8 hours is even more preferable.
  • the obtained fluoroalkane iodide can also be purified.
  • the purification method is not particularly limited, but for example, by adding a solvent (for example, water or the like) to the solution after the reaction and separating the liquids, unreacted iodine is separated and recovered in the aqueous layer, and the organic layer is also used. Examples thereof include a method of obtaining fluoroalkane iodide by distilling.
  • the conventional method for producing fluoroalkane iodide requires high temperature conditions, goes through a multi-step reaction, and the reaction is difficult to proceed depending on the substrate. Therefore, the yield of the target product is not always high, and scale-up is not easy. It was a thing.
  • the method for producing fluoroalkane iodide of the present disclosure is a one-step reaction under mild conditions, fluoroalkane iodide can be efficiently produced in a high yield and can be easily scaled up. ..
  • R 1 CF CH 2 (In the formula, R 1 represents a fluorine-containing alkyl group having 1 to 10 carbon atoms) It is a method for producing a fluoroolefin represented by The present invention relates to a production method including a step of dehalogenating the fluoroalkane iodide obtained by the above-mentioned production method of fluoroalkane iodide in the presence of a catalyst.
  • fluorine-containing alkyl group having 1 to 10 carbon atoms of R 1 in the general formula (3) examples (preferably examples, etc.) of the fluorine-containing alkyl group having 1 to 10 carbon atoms in R 1 in the above general formula (1). (Including) and the same.
  • fluoroolefin represented by the general formula (3) 2,3,3,4,5,4-hexafluoro-1-butene (HFO-1336 mcyf) is particularly preferable.
  • the process for producing a fluoroalkane iodide is as described above. Further, the intermediate fluoroalkane iodide may be produced by the above-mentioned iodination reaction step, and then the fluoroalkane iodide may be purified and then used in the next dehalogenation step, without purifying the fluoroalkane iodide. It may be used in the next dehalogenation step.
  • the catalyst is not particularly limited, and for example, a transition metal is preferable.
  • transition metals include zinc, magnesium, copper, tin, mercury, zinc alloys and the like.
  • zinc alloy include Zn / Cu, Zn / Sn, Zn / Hg and the like.
  • the transition metal may be used alone or in combination of two or more. Since zinc powder can be covered with oxides or form a thin oxide film on the surface, it is preferable to remove oxides and the like to give an active surface when used as a catalyst.
  • the oxide film removing agent is not particularly limited as long as it can remove the oxide film on the surface of the zinc particles and does not affect the subsequent reaction.
  • oxide film removing agent examples include dihalogenated hydrocarbons such as 1,2-diiodoethane, 1,2-dibromoethane, and 1,2-dichloroethane; chlorotrimethylsilane, dichlorodimethylsilane, trichloromethylsilane, tetrachlorosilane, and the like.
  • Halogenated silane examples thereof include water, hydrogen chloride, a diethyl ether solution of hydrogen chloride, boron trifluoride / diethyl ether complex, boron trifluoride / dibutyl ether complex, diethyl aluminum chloride and the like.
  • the particle size of the zinc particles is preferably 3 mm or less, more preferably 1 mm or less, still more preferably 200 ⁇ m or less from the viewpoint of dispersibility in a solvent; from the viewpoint of handleability of zinc particles and ease of separation from products. Therefore, 1 ⁇ m or more is preferable.
  • the particle size of the zinc particles is a value measured by a laser diffraction method.
  • a solvent can be used in the dehalogenation step.
  • the solvent is not particularly limited, but for example, ethers such as ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, tetrahydrofuran (THF); N, N-dimethylformamide (DMF), N, N- Amides such as dimethylacetamide (DMA) and N-methylpyrrolidone (NMP); compounds containing sulfur atoms such as dimethyl sulfoxide (DMSO) and sulfolane; water and the like.
  • the solvent may be used alone or in combination of two or more. In the above solvent, ether and amide are preferable, and THF and DMA are more preferable, from the viewpoint of ease of synthesis of fluoroolefin (reaction efficiency and the like) and yield.
  • the reaction temperature of the dehalogenation reaction is not particularly limited, but is preferably 20 to 200 ° C., more preferably 30 to 180 ° C., from the viewpoint of ease of synthesis of the target product (reaction efficiency, etc.) and yield. , 50-160 ° C. is more preferable.
  • the reaction pressure of the dehalogenation reaction is not particularly limited, and the reaction can be carried out at normal pressure (atmospheric pressure).
  • the reaction time of the dehalogenation reaction is not particularly limited, but is preferably 10 minutes to 48 hours, preferably 30 minutes to 24 hours, from the viewpoint of ease of synthesis of the target product (reaction efficiency, etc.) and yield. More preferably, 1 to 10 hours is even more preferable.
  • the obtained fluoroolefin can also be purified.
  • the purification method is not particularly limited, and examples thereof include a method of separating and recovering by distillation and rectification, which is usually performed; a method of purifying by filtration and liquid separation; a method of purifying by combining the above methods. It is also possible to recover the solvent during purification and use it again.
  • the method for producing the fluoroolefin is carried out following the method for producing the fluoroalkane iodide, which can efficiently obtain the intermediate fluoroalkane iodide in a high yield, the fluoroolefin can be produced efficiently in a high yield. Can be manufactured.
  • R 1 represents a fluorine-containing alkyl group having 1 to 10 carbon atoms
  • the present invention relates to a composition containing a compound represented by.
  • Examples of the alkyl group having 1 to 3 carbon atoms of R 2 in the general formula (4) include a methyl group, an ethyl group and a propyl group, and a methyl group is preferable.
  • the compound represented by the general formula (4) is by-produced in, for example, an iodination reaction, and the compound represented by the general formula (5) is by-produced in, for example, a dehalogenation reaction.
  • the total content of the compound represented by the general formula (4) and the compound represented by the general formula (5) is 20% by mass of the entire composition from the viewpoint of containing a larger amount of fluoroalkane iodide and / or fluoroolefin. The following is preferable, and 15% by mass or less is more preferable.
  • the above composition can be preferably used, for example, as an intermediate component, a refrigerant, or the like.
  • the content of the fluoroalkane iodide represented by the general formula (2) is high (for example, 80% by mass or more of the entire composition), and the content of the compound represented by the general formula (4) is low (for example, the composition).
  • the composition (20% by mass or less of the whole product) can be preferably used as an intermediate component for producing a fluoroolefin represented by the general formula (3).
  • the content of the fluoroolefin represented by the general formula (3) is high (for example, 80% by mass or more of the entire composition), and the content of the compound represented by the general formula (5) is low (for example, the entire composition).
  • the composition (20% by mass or less) can be preferably used as a refrigerant or the like.
  • the reaction product was distilled under reduced pressure (pressure 0.04 kPa, oil bath temperature 75 ° C.) to obtain 1,1,1,2,2,3,3-heptafluoro-4-iodobutane (IHFB). The yield was 98%.
  • the by-product was acetic acid- (1H, 1H-heptafluorobutyl ester) (4%).
  • Example 2 10.02 g (0.03 mol) of IHFB and 4.85 g (0.07 mol) of zinc powder (particle size 150 ⁇ m or less) were added to 57 ml of N, N-dimethylacetamide (DMA) and mixed. The mixture is stirred at 120 ° C., 0.59 g (0.003 mol) of 1,2-dibromoethane is added, and the mixture is stirred for 4 hours to react, and 2,3,3,4,5,4- Hexafluoro-1-butene (HFO-1336 mcyf) was obtained. The yield was 88%. The by-product was 1,1,1,2,2,3,3-heptafluorobutane (HFC-347ccd) (11%).
  • DMA N, N-dimethylacetamide
  • Example 3 1.00 g (0.003 mol) of IHFB and 0.42 g (0.006 mol) of zinc were added to 0.99 ml of N, N-dimethylacetamide (DMA) and 0.99 ml of water and mixed. The mixed solution was stirred at 100 ° C. for 4 hours and reacted to obtain HFO-1336 mcyf. The yield was 97%. The by-product was HFC-347ccd (3%).
  • DMA N, N-dimethylacetamide

Abstract

Novel production methods are provided by which an iodofluoroalkane and a fluoroolefin can be efficiently produced in high yield. One of the methods is for producing an iodofluoroalkane represented by the general formula (2): R1CF2CH2I (wherein R1 represents a fluoroalkyl group having 1-10 carbon atoms), and includes a step in which a fluoroalkyl alcohol represented by the general formula (1): R1CF2CH2OH (wherein R1 represents a fluoroalkyl group having 1-10 carbon atoms) is reacted with iodine in a solvent in the presence of triphenylphosphine, the solvent including at least one compound selected from the group consisting of sulfur-atom-containing compounds and amides.

Description

ヨウ化フルオロアルカン及びフルオロオレフィンの製造方法Method for producing fluoroalkane iodide and fluoroolefin
 本開示は、ヨウ化フルオロアルカン及びフルオロオレフィンの製造方法に関する。 The present disclosure relates to a method for producing fluoroalkane iodide and fluoroolefin.
 フルオロオレフィンである2,3,3,4,4,4-ヘキサフルオロ-1-ブテン(HFO-1336mcyf)は、次世代冷媒として有望視されている。HFO-1336mcyfは、例えば、ヨウ化フルオロアルカンである1,1,1,2,2,3,3-ヘプタフルオロ-4-ヨードブタン(IHFB)から製造することができる。
 IHFBの製造方法としては、例えば、まず、2,2,3,3,4,4,4-ヘプタフルオロ-1-ブタノール(7FB)をp-トルエンスルホニルクロライドと反応させて、1,1-ジ-H-パーフルオロブチルp-トルエンスルホネートを得、次に、これとNaIをジエチレングリコール中で、反応容器温度が220℃になるまで加熱して、反応させる方法が知られている(非特許文献1)。
 IHFBの他の製造方法としては、例えば、まず、7FBを1,1,1,3,3,3-ヘキサメチルジシラザン(HMDS)と反応させて、CCHOSiMeを得、次に、これにPhPIClを加えてヘキサン中で還流後、溶媒を留去し、得られた粉末を160~190℃で熱分解させる方法が知られている(非特許文献2)。
 他のヨウ化フルオロアルカンの製造方法としては、例えば、HCF(CFCHOH又はHCF(CFCHOHと、トリフェニルホスフィン、イミダゾール及びヨウ素とを、ジエチルエーテルとアセトニトリルの混合溶媒中で、反応させる方法が知られている(非特許文献3)。
The fluoroolefin 2,3,3,4,5,4-hexafluoro-1-butene (HFO-1336 mcyf) is promising as a next-generation refrigerant. HFO-1336 mcyf can be produced, for example, from 1,1,1,2,2,3,3-heptafluoro-4-iodobutane (IHFB), which is a fluoroalkane iodide.
As a method for producing IHFB, for example, first, 2,2,3,3,4,5,4-heptafluoro-1-butanol (7FB) is reacted with p-toluenesulfonyl chloride to produce 1,1-di. A method is known in which -H-perfluorobutyl p-toluenesulfonate is obtained, and then this and NaI are heated in diethylene glycol until the reaction vessel temperature reaches 220 ° C. to react (Non-Patent Document 1). ).
As another method for producing IHFB, for example, 7FB is first reacted with 1,1,1,3,3,3-hexamethyldisilazane (HMDS) to obtain C 3 F 7 CH 2 OSiMe 3 . Next, a method is known in which Ph 3 PICl is added thereto, reflux is carried out in hexane, the solvent is distilled off, and the obtained powder is thermally decomposed at 160 to 190 ° C. (Non-Patent Document 2).
As another method for producing fluoroalkane iodide, for example, HCF 2 (CF 2 ) 3 CH 2 OH or HCF 2 (CF 2 ) 9 CH 2 OH, triphenylphosphine, imidazole and iodine are used as diethyl ether. A method of reacting in a mixed solvent of acetonitrile is known (Non-Patent Document 3).
 本開示は、ヨウ化フルオロアルカン及びフルオロオレフィンを効率よく高収率で製造できる新規な製造方法を提供することを目的とする。 An object of the present disclosure is to provide a novel production method capable of efficiently producing fluoroalkane iodide and fluoroolefin in high yield.
項1.一般式(2):RCFCH
(式中、Rは炭素数1~10の含フッ素アルキル基を表す)
で表されるヨウ化フルオロアルカンの製造方法であって、
 一般式(1):RCFCHOH
(式中、Rは炭素数1~10の含フッ素アルキル基を表す)
で表される含フッ素アルキルアルコールを、トリフェニルホスフィンの存在下、溶媒中で、ヨウ素と反応させる工程を含み、
 前記溶媒が、硫黄原子を含有する化合物及びアミドからなる群より選ばれる少なくとも1種を含む、製造方法。
項2.前記溶媒が、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMA)及びN-メチルピロリドン(NMP)からなる群より選ばれる少なくとも1種を含む、項1に記載のヨウ化フルオロアルカンの製造方法。
項3.前記Rが炭素数1~2のパーフルオロアルキル基である、項1又は2に記載のヨウ化フルオロアルカンの製造方法。
項4.前記含フッ素アルキルアルコール1モルに対して、1.5~5モルのヨウ素を反応させる、項1~3のいずれか一項に記載のヨウ化フルオロアルカンの製造方法。
項5.前記ヨウ素と反応させる工程を40~150℃の温度で行う、項1~4のいずれか一項に記載のヨウ化フルオロアルカンの製造方法。
項6.一般式(3):RCF=CH
(式中、Rは炭素数1~10の含フッ素アルキル基を表す)
で表されるフルオロオレフィンの製造方法であって、
 項1~5のいずれか一項に記載のヨウ化フルオロアルカンの製造方法により得られたヨウ化フルオロアルカンを、触媒の存在下で脱ハロゲン化する工程
を含む、製造方法。
項7.一般式(2):RCFCH
(式中、Rは炭素数1~10の含フッ素アルキル基を表す)
で表されるヨウ化フルオロアルカン、及び/又は、
 一般式(3):RCF=CH
(式中、Rは炭素数1~10の含フッ素アルキル基を表す)
で表されるフルオロオレフィンを含み、
 さらに、一般式(4):RCFCHOC(=O)R
(式中、Rは炭素数1~10の含フッ素アルキル基を表し、Rは-H又は炭素数1~3のアルキル基を表す)
で表される化合物、及び/又は、
 一般式(5):RCFCH
(式中、Rは炭素数1~10の含フッ素アルキル基を表す)
で表される化合物を含む、組成物。
項8.前記一般式(4)で表される化合物及び前記一般式(5)で表される化合物の合計含有量が、組成物全体の20質量%以下である、項7に記載の組成物。
Item 1. General formula (2): R 1 CF 2 CH 2 I
(In the formula, R 1 represents a fluorine-containing alkyl group having 1 to 10 carbon atoms)
It is a method for producing fluoroalkane iodide represented by.
General formula (1): R 1 CF 2 CH 2 OH
(In the formula, R 1 represents a fluorine-containing alkyl group having 1 to 10 carbon atoms)
Includes a step of reacting a fluorine-containing alkyl alcohol represented by (1) with iodine in the presence of triphenylphosphine in a solvent.
A production method, wherein the solvent contains at least one selected from the group consisting of compounds containing sulfur atoms and amides.
Item 2. Item 2. The iodide according to Item 1, wherein the solvent contains at least one selected from the group consisting of N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMA) and N-methylpyrrolidone (NMP). Method for producing fluoroalkane.
Item 3. Item 3. The method for producing a fluoroalkane iodide according to Item 1 or 2, wherein R 1 is a perfluoroalkyl group having 1 to 2 carbon atoms.
Item 4. Item 3. The method for producing a fluoroalkane iodide according to any one of Items 1 to 3, wherein 1.5 to 5 mol of iodine is reacted with 1 mol of the fluorine-containing alkyl alcohol.
Item 5. The method for producing a fluoroalkane iodide according to any one of Items 1 to 4, wherein the step of reacting with iodine is carried out at a temperature of 40 to 150 ° C.
Item 6. General formula (3): R 1 CF = CH 2
(In the formula, R 1 represents a fluorine-containing alkyl group having 1 to 10 carbon atoms)
It is a method for producing a fluoroolefin represented by
A production method comprising a step of dehalogenating the fluoroalkane iodide obtained by the method for producing a fluoroalkane iodide according to any one of Items 1 to 5 in the presence of a catalyst.
Item 7. General formula (2): R 1 CF 2 CH 2 I
(In the formula, R 1 represents a fluorine-containing alkyl group having 1 to 10 carbon atoms)
Fluoroalkane iodide represented by and / or
General formula (3): R 1 CF = CH 2
(In the formula, R 1 represents a fluorine-containing alkyl group having 1 to 10 carbon atoms)
Contains fluoroolefins represented by
Further, the general formula (4): R 1 CF 2 CH 2 OC (= O) R 2
(In the formula, R 1 represents a fluorine-containing alkyl group having 1 to 10 carbon atoms, and R 2 represents an alkyl group having −H or 1 to 3 carbon atoms).
Compounds represented by and / or
General formula (5): R 1 CF 2 CH 3
(In the formula, R 1 represents a fluorine-containing alkyl group having 1 to 10 carbon atoms)
A composition comprising a compound represented by.
Item 8. Item 2. The composition according to Item 7, wherein the total content of the compound represented by the general formula (4) and the compound represented by the general formula (5) is 20% by mass or less of the total composition.
 本開示により、ヨウ化フルオロアルカン及びフルオロオレフィンを効率よく高収率で製造できる新規な製造方法が提供される。 The present disclosure provides a novel production method capable of efficiently producing fluoroalkane iodide and fluoroolefin in high yield.
 本開示は、以下の実施形態を含む。
 本開示は、一般式(2):RCFCH
(式中、Rは炭素数1~10の含フッ素アルキル基を表す)
で表されるヨウ化フルオロアルカンの製造方法であって、
 一般式(1):RCFCHOH
(式中、Rは炭素数1~10の含フッ素アルキル基を表す)
で表される含フッ素アルキルアルコールを、トリフェニルホスフィンの存在下、溶媒中で、ヨウ素と反応させる工程を含み、
 前記溶媒が、硫黄原子を含有する化合物及びアミドからなる群より選ばれる少なくとも1種を含む、製造方法に関する。
The disclosure includes the following embodiments:
The present disclosure describes the general formula (2): R 1 CF 2 CH 2 I
(In the formula, R 1 represents a fluorine-containing alkyl group having 1 to 10 carbon atoms)
It is a method for producing fluoroalkane iodide represented by.
General formula (1): R 1 CF 2 CH 2 OH
(In the formula, R 1 represents a fluorine-containing alkyl group having 1 to 10 carbon atoms)
Includes a step of reacting a fluorine-containing alkyl alcohol represented by (1) with iodine in the presence of triphenylphosphine in a solvent.
The present invention relates to a production method, wherein the solvent contains at least one selected from the group consisting of a compound containing a sulfur atom and an amide.
 上記一般式(1)において、Rは炭素数1~10の含フッ素アルキル基を表す。炭素数1~10の含フッ素アルキル基としては、炭素数1~10のアルキル基において1つ以上の-Hが-Fで置換されたものであれば特に限定されず、直鎖状、分岐鎖状及び環状のいずれでもよい。また、炭素数1~10の含フッ素アルキル基としては、炭素数1~10のパーフルオロアルキル基が好ましく挙げられる。
 炭素数1~10の直鎖状及び分岐鎖状のパーフルオロアルキル基としては、例えば、-CF、-C、-C、-C、-C11、-C13、-C15、-C17、-C19、-C1021等の-C2n+1(n=1~10)等が挙げられる。炭素数1~10の環状のパーフルオロアルキル基としては、例えば、-C、-C、-C、-C11、-C13、-C15、-C17、-C1019等の-C2n-1(n=1~10)等が挙げられる。
 また、ヨウ化フルオロアルカンを合成しやすく(高い反応効率で)、高収率で得る観点から、Rの炭素数は、1~3が好ましく、1~2がより好ましく、2が特に好ましい。
 このように、炭素数1~10の含フッ素アルキル基としては、炭素数1~3のパーフルオロアルキル基が好ましく、炭素数1~2のパーフルオロアルキル基がより好ましく、炭素数2のパーフルオロアルキル基が特に好ましい。
 上記一般式(1)で表される含フッ素アルキルアルコールとしては、2,2,3,3,4,4,4-ヘプタフルオロ-1-ブタノール(7FB)が特に好ましい。
In the above general formula (1), R 1 represents a fluorine-containing alkyl group having 1 to 10 carbon atoms. The fluorine-containing alkyl group having 1 to 10 carbon atoms is not particularly limited as long as it is an alkyl group having 1 to 10 carbon atoms in which one or more -H is substituted with -F, and is a linear or branched chain. It may be in the shape or ring shape. Further, as the fluorine-containing alkyl group having 1 to 10 carbon atoms, a perfluoroalkyl group having 1 to 10 carbon atoms is preferably mentioned.
Examples of linear and branched perfluoroalkyl groups having 1 to 10 carbon atoms include -CF 3 , -C 2 F 5 , -C 3 F 7 , -C 4 F 9 , and -C 5 F 11. , -C 6 F 13 , -C 7 F 15 , -C 8 F 17 , -C 9 F 19 , -C 10 F 21, etc. -C n F 2n + 1 (n = 1 to 10) and the like. Examples of the cyclic perfluoroalkyl group having 1 to 10 carbon atoms include -C 3 F 5 , -C 4 F 7 , -C 5 F 9 , -C 6 F 11 , -C 7 F 13 , and -C 8. F 15, -C 9 F 17, -C 10 -C such F 19 n F 2n-1 ( n = 1 ~ 10) , and the like.
Further, from the viewpoint that fluoroalkane iodide can be easily synthesized (with high reaction efficiency) and obtained in high yield, the carbon number of R 1 is preferably 1 to 3, more preferably 1 to 2, and particularly preferably 2.
As described above, as the fluorine-containing alkyl group having 1 to 10 carbon atoms, a perfluoroalkyl group having 1 to 3 carbon atoms is preferable, a perfluoroalkyl group having 1 to 2 carbon atoms is more preferable, and a perfluoroalkyl group having 2 carbon atoms is more preferable. Alkyl groups are particularly preferred.
As the fluorine-containing alkyl alcohol represented by the general formula (1), 2,2,3,3,4,5,4-heptafluoro-1-butanol (7FB) is particularly preferable.
 上記一般式(2)におけるRの炭素数1~10の含フッ素アルキル基としては、上述の一般式(1)におけるRの炭素数1~10の含フッ素アルキル基の例示(好ましい例示等も含む)と同じものが挙げられる。
 上記一般式(2)で表されるヨウ化フルオロアルカンとしては、1,1,1,2,2,3,3-ヘプタフルオロ-4-ヨードブタン(IHFB)が特に好ましい。
As the fluorine-containing alkyl group having 1 to 10 carbon atoms of R 1 in the general formula (2), examples (preferably examples, etc.) of the fluorine-containing alkyl group having 1 to 10 carbon atoms in R 1 in the above general formula (1). (Including) and the same.
As the fluoroalkane iodide represented by the general formula (2), 1,1,1,2,2,3,3-heptafluoro-4-iodobutane (IHFB) is particularly preferable.
 上記ヨウ素化反応工程(ヨウ素と反応させる工程)で用いられる溶媒は、硫黄原子を含有する化合物及びアミドからなる群より選ばれる少なくとも1種を含む。当該溶媒としては、例えば、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMA)、N-メチルピロリドン(NMP)等のアミド;ジメチルスルホキシド(DMSO)、スルホラン等の硫黄原子(S)を含有する化合物等が挙げられる。
 当該溶媒は、1種で用いてもよいし、2種以上を併用することもできる。
The solvent used in the iodination reaction step (step of reacting with iodine) contains at least one selected from the group consisting of compounds containing sulfur atoms and amides. Examples of the solvent include amides such as N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMA) and N-methylpyrrolidone (NMP); sulfur atoms such as dimethyl sulfoxide (DMSO) and sulfolane ( Examples thereof include compounds containing S).
The solvent may be used alone or in combination of two or more.
 上記溶媒としては、ヨウ化フルオロアルカンを合成しやすく(高い反応効率で)、高収率で得る観点から、アミドを含むことが好ましく;N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMA)及びN-メチルピロリドン(NMP)からなる群より選ばれる少なくとも1種を含むことがより好ましく;N,N-ジメチルホルムアミド(DMF)及びN,N-ジメチルアセトアミド(DMA)からなる群より選ばれる少なくとも1種を含むことがさらに好ましく;N,N-ジメチルアセトアミド(DMA)を含むことが特に好ましい。 The solvent preferably contains amide from the viewpoint of easy synthesis of fluoroalkane iodide (with high reaction efficiency) and high yield; N, N-dimethylformamide (DMF), N, N-dimethyl. More preferably, it comprises at least one selected from the group consisting of acetamide (DMA) and N-methylpyrrolidone (NMP); the group consisting of N, N-dimethylformamide (DMF) and N, N-dimethylacetamide (DMA). It is more preferable to include at least one selected from the above; it is particularly preferable to include N, N-dimethylacetamide (DMA).
 なお、上記ヨウ素化反応においては、まずトリフェニルホスフィン(PPh)とヨウ素(I)の反応による塩:[PhPI]が生成する。続いて、塩:[PhPI]と一般式(1)の含フッ素アルキルアルコールが反応して、塩:[RCFCHO-PPhが生成し、最後にヨウ化物イオンの求核置換反応(SN2反応)によりヨウ化フルオロアルカンが得られる。ここで、上記溶媒がアミドである場合は、上記各塩(活性種)の溶解性がより向上するため、含フッ素アルキルアルコールと上記塩(活性種)の反応、及び/又は、ヨウ化物イオンの求核置換反応(SN2反応)の反応性がより向上し、ヨウ化フルオロアルカンがより高い収率で得られると考えられる。 In the above iodination reaction, first, a salt: [Ph 3 PI] + I is produced by the reaction of triphenylphosphine (PPh 3 ) and iodine (I 2). Subsequently, the salt: [Ph 3 PI] + I - a fluorine-containing alkyl alcohol of the general formula (1) react, the salt: [R 1 CF 2 CH 2 O-PPh 3] + I - is produced, Finally, a fluoroalkane iodide is obtained by a nucleophilic substitution reaction (SN2 reaction) of iodide ions. Here, when the solvent is an amide, the solubility of each of the salts (active species) is further improved, so that the reaction between the fluoroalkyl alcohol and the salt (active species) and / or the iodide ion. It is considered that the reactivity of the nucleophilic substitution reaction (SN2 reaction) is further improved and fluoroalcohol iodide can be obtained in a higher yield.
 また、ヨウ素及びトリフェニルホスフィンの使用量を増やすことによっても、上記各塩(活性種)の生成量を増やすことができ、ひいてはヨウ化フルオロアルカンの収率を向上させることができる。
 上記ヨウ素化反応において、ヨウ素の使用量は、特に限定されないが、目的物の合成のしやすさ(反応効率等)及び収率等の観点から、含フッ素アルキルアルコール1モルに対して、1.5~5モルが好ましく、2~4モルがより好ましく、2.5~3.0モルがさらに好ましい。
 上記ヨウ素化反応において、トリフェニルホスフィンの使用量は、特に限定されないが、目的物の合成のしやすさ(反応効率等)及び収率等の観点から、含フッ素アルキルアルコール1モルに対して、1.5~5モルが好ましく、2~4モルがより好ましく、2.5~3.0モルがさらに好ましい。
Further, by increasing the amount of iodine and triphenylphosphine used, the amount of each of the above salts (active species) produced can be increased, and the yield of fluoroalkane iodide can be improved.
In the above iodination reaction, the amount of iodine used is not particularly limited, but from the viewpoint of ease of synthesis of the target product (reaction efficiency, etc.), yield, etc., 1. 5 to 5 mol is preferable, 2 to 4 mol is more preferable, and 2.5 to 3.0 mol is further preferable.
In the above iodination reaction, the amount of triphenylphosphine used is not particularly limited, but from the viewpoint of ease of synthesis of the target product (reaction efficiency, etc.), yield, etc., the amount of triphenylphosphine used is based on 1 mol of fluorine-containing alkyl alcohol. 1.5 to 5 mol is preferable, 2 to 4 mol is more preferable, and 2.5 to 3.0 mol is further preferable.
 上記ヨウ素化反応においては、反応系に塩基を添加することもできる。当該塩基は、ヨウ素化反応に特に影響を与えず、副生成物のHIを除去することができる。
 当該塩基としては、特に限定されず、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物;カリウムtert-ブトキシド、ナトリウムメトキシド等のアルカリ金属アルコキシド;トリエチルアミン、ピリジン、イミダゾール等のアミン;炭酸ナトリウム、炭酸カリウム等のアルカリ金属の炭酸塩;炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属の炭酸水素塩等が挙げられる。これら塩基は、単独で用いることもでき、2種以上を組合せて用いることもできる。なかでも、副生成物の除去等の観点から、アミンが好ましく、イミダゾール等の芳香族アミンがより好ましい。
 当該塩基を使用する場合、その使用量は、特に限定されないが、副生成物の除去等の観点から、含フッ素アルキルアルコール1モルに対して、1.0~5モルが好ましく、1.0~4モルがより好ましく、1.0~3.0モルがさらに好ましい。
In the above iodination reaction, a base can be added to the reaction system. The base does not particularly affect the iodination reaction and can remove the by-product HI.
The base is not particularly limited, and for example, alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide; alkali metal alkoxides such as potassium tert-butoxide and sodium methoxydo; triethylamine, pyridine and imidazole. Such as amines; alkali metal carbonates such as sodium carbonate and potassium carbonate; alkali metal hydrogen carbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate and the like can be mentioned. These bases can be used alone or in combination of two or more. Of these, amines are preferable, and aromatic amines such as imidazole are more preferable, from the viewpoint of removing by-products.
When the base is used, the amount used is not particularly limited, but from the viewpoint of removing by-products and the like, 1.0 to 5 mol is preferable with respect to 1 mol of the fluorine-containing alkyl alcohol, and 1.0 to 1.0 to 4 mol is more preferable, and 1.0 to 3.0 mol is even more preferable.
 上記ヨウ素化反応の反応温度は、特に限定されないが、目的物の合成のしやすさ(反応効率等)及び収率等の観点から、40~150℃が好ましく、50~140℃がより好ましく、80~120℃がさらに好ましい。
 上記ヨウ素化反応の反応圧力は、特に限定されず、常圧(大気圧)で反応を行うことができる。
The reaction temperature of the iodination reaction is not particularly limited, but is preferably 40 to 150 ° C., more preferably 50 to 140 ° C. from the viewpoint of ease of synthesis (reaction efficiency, etc.) and yield of the target product. 80 to 120 ° C. is more preferable.
The reaction pressure of the iodination reaction is not particularly limited, and the reaction can be carried out at normal pressure (atmospheric pressure).
 上記ヨウ素化反応の反応時間は、特に限定されないが、目的物の合成のしやすさ(反応効率等)及び収率等の観点から、0.1~240時間が好ましく、0.3~24時間がより好ましく、1~8時間がさらに好ましい。 The reaction time of the iodination reaction is not particularly limited, but is preferably 0.1 to 240 hours, preferably 0.3 to 24 hours, from the viewpoint of ease of synthesis of the target product (reaction efficiency, etc.) and yield. Is more preferable, and 1 to 8 hours is even more preferable.
 上記ヨウ素化反応後、得られたヨウ化フルオロアルカンを精製することもできる。
 精製方法としては、特に限定されないが、例えば、反応後の溶液に、溶媒(例えば水等)を添加して分液することにより、水層に未反応のヨウ素を分離回収し、また、有機層を蒸留してヨウ化フルオロアルカンを得る方法等が挙げられる。
After the above iodination reaction, the obtained fluoroalkane iodide can also be purified.
The purification method is not particularly limited, but for example, by adding a solvent (for example, water or the like) to the solution after the reaction and separating the liquids, unreacted iodine is separated and recovered in the aqueous layer, and the organic layer is also used. Examples thereof include a method of obtaining fluoroalkane iodide by distilling.
 従来のヨウ化フルオロアルカンの製造方法は、高温条件を必要としたり、多段階反応を経由したり、基質により反応が進みにくい等、目的物の収率が必ずしも高くなく、スケールアップも容易ではないものであった。
 しかし、本開示のヨウ化フルオロアルカンの製造方法は、マイルドな条件下の1段階反応であるため、ヨウ化フルオロアルカンを効率よく高収率で製造することができ、またスケールアップも容易である。
The conventional method for producing fluoroalkane iodide requires high temperature conditions, goes through a multi-step reaction, and the reaction is difficult to proceed depending on the substrate. Therefore, the yield of the target product is not always high, and scale-up is not easy. It was a thing.
However, since the method for producing fluoroalkane iodide of the present disclosure is a one-step reaction under mild conditions, fluoroalkane iodide can be efficiently produced in a high yield and can be easily scaled up. ..
 また、本開示は、一般式(3):RCF=CH
(式中、Rは炭素数1~10の含フッ素アルキル基を表す)
で表されるフルオロオレフィンの製造方法であって、
 上述のヨウ化フルオロアルカンの製造方法により得られたヨウ化フルオロアルカンを、触媒の存在下で脱ハロゲン化する工程
を含む、製造方法に関する。
Further, the present disclosure describes the general formula (3): R 1 CF = CH 2
(In the formula, R 1 represents a fluorine-containing alkyl group having 1 to 10 carbon atoms)
It is a method for producing a fluoroolefin represented by
The present invention relates to a production method including a step of dehalogenating the fluoroalkane iodide obtained by the above-mentioned production method of fluoroalkane iodide in the presence of a catalyst.
 上記一般式(3)におけるRの炭素数1~10の含フッ素アルキル基としては、上述の一般式(1)におけるRの炭素数1~10の含フッ素アルキル基の例示(好ましい例示等も含む)と同じものが挙げられる。
 上記一般式(3)で表されるフルオロオレフィンとしては、2,3,3,4,4,4-ヘキサフルオロ-1-ブテン(HFO-1336mcyf)が特に好ましい。
As the fluorine-containing alkyl group having 1 to 10 carbon atoms of R 1 in the general formula (3), examples (preferably examples, etc.) of the fluorine-containing alkyl group having 1 to 10 carbon atoms in R 1 in the above general formula (1). (Including) and the same.
As the fluoroolefin represented by the general formula (3), 2,3,3,4,5,4-hexafluoro-1-butene (HFO-1336 mcyf) is particularly preferable.
 当該フルオロオレフィンの製造方法において、ヨウ化フルオロアルカンの製造工程は上述のとおりである。
 また、上記ヨウ素化反応工程により中間体のヨウ化フルオロアルカンを製造後、ヨウ化フルオロアルカンを精製してから次の脱ハロゲン化工程に用いてもよいし、ヨウ化フルオロアルカンを精製することなく次の脱ハロゲン化工程に用いてもよい。
In the method for producing a fluoroolefin, the process for producing a fluoroalkane iodide is as described above.
Further, the intermediate fluoroalkane iodide may be produced by the above-mentioned iodination reaction step, and then the fluoroalkane iodide may be purified and then used in the next dehalogenation step, without purifying the fluoroalkane iodide. It may be used in the next dehalogenation step.
 脱ハロゲン化工程において、触媒としては、特に限定されないが、例えば遷移金属が好ましく挙げられる。
 遷移金属としては、例えば、亜鉛、マグネシウム、銅、スズ、水銀、亜鉛合金等が挙げられる。上記亜鉛合金としては、例えば、Zn/Cu、Zn/Sn、Zn/Hg等が挙げられる。当該遷移金属は、1種で用いてもよいし、2種以上を併用することもできる。
 なお、亜鉛粉末は、酸化物で覆われていたり、表面に薄い酸化被膜を形成し得るため、触媒として用いる際は、酸化物等を取り除いて活性な表面を出すことが好ましい。酸化被膜除去剤としては、亜鉛粒子表面の酸化被膜を除去することができ、その後の反応へ影響を及ぼさないものであれば特に限定されない。当該酸化被膜除去剤としては、例えば、1,2-ジヨードエタン、1,2-ジブロモエタン、1,2-ジクロロエタン等のジハロゲン化炭化水素;クロロトリメチルシラン、ジクロロジメチルシラン、トリクロロメチルシラン、テトラクロロシラン等のハロゲン化シラン;水、塩化水素、塩化水素のジエチルエーテル溶液、三フッ化ホウ素・ジエチルエーテル錯体、三フッ化ホウ素・ジブチルエーテル錯体、ジエチルアルミニウムクロリド等が挙げられる。
 上記亜鉛粒子の粒子径は、溶媒中での分散性の観点から、3mm以下が好ましく、1mm以下がより好ましく、200μm以下がさらに好ましく;亜鉛粒子の取扱性及び生成物との分離容易性の観点から、1μm以上が好ましい。なお、亜鉛粒子の粒子径とは、レーザー回折法により測定した値である。
In the dehalogenation step, the catalyst is not particularly limited, and for example, a transition metal is preferable.
Examples of transition metals include zinc, magnesium, copper, tin, mercury, zinc alloys and the like. Examples of the zinc alloy include Zn / Cu, Zn / Sn, Zn / Hg and the like. The transition metal may be used alone or in combination of two or more.
Since zinc powder can be covered with oxides or form a thin oxide film on the surface, it is preferable to remove oxides and the like to give an active surface when used as a catalyst. The oxide film removing agent is not particularly limited as long as it can remove the oxide film on the surface of the zinc particles and does not affect the subsequent reaction. Examples of the oxide film removing agent include dihalogenated hydrocarbons such as 1,2-diiodoethane, 1,2-dibromoethane, and 1,2-dichloroethane; chlorotrimethylsilane, dichlorodimethylsilane, trichloromethylsilane, tetrachlorosilane, and the like. Halogenated silane; examples thereof include water, hydrogen chloride, a diethyl ether solution of hydrogen chloride, boron trifluoride / diethyl ether complex, boron trifluoride / dibutyl ether complex, diethyl aluminum chloride and the like.
The particle size of the zinc particles is preferably 3 mm or less, more preferably 1 mm or less, still more preferably 200 μm or less from the viewpoint of dispersibility in a solvent; from the viewpoint of handleability of zinc particles and ease of separation from products. Therefore, 1 μm or more is preferable. The particle size of the zinc particles is a value measured by a laser diffraction method.
 脱ハロゲン化工程においては、溶媒を使用することができる。当該溶媒としては、特に限定されないが、例えばエチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、テトラヒドロフラン(THF)等のエーテル;N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMA)、N-メチルピロリドン(NMP)等のアミド;ジメチルスルホキシド(DMSO)、スルホラン等の硫黄原子を含有する化合物;水等が挙げられる。
 当該溶媒は、1種で用いてもよいし、2種以上を併用することもできる。
 上記溶媒において、フルオロオレフィンの合成のしやすさ(反応効率等)及び収率等の観点から、好ましくはエーテルとアミドであり、より好ましくはTHFとDMAである。
A solvent can be used in the dehalogenation step. The solvent is not particularly limited, but for example, ethers such as ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, tetrahydrofuran (THF); N, N-dimethylformamide (DMF), N, N- Amides such as dimethylacetamide (DMA) and N-methylpyrrolidone (NMP); compounds containing sulfur atoms such as dimethyl sulfoxide (DMSO) and sulfolane; water and the like.
The solvent may be used alone or in combination of two or more.
In the above solvent, ether and amide are preferable, and THF and DMA are more preferable, from the viewpoint of ease of synthesis of fluoroolefin (reaction efficiency and the like) and yield.
 上記脱ハロゲン化反応の反応温度は、特に限定されないが、目的物の合成のしやすさ(反応効率等)及び収率等の観点から、20~200℃が好ましく、30~180℃がより好ましく、50~160℃がさらに好ましい。
 上記脱ハロゲン化反応の反応圧力は、特に限定されず、常圧(大気圧)で反応を行うことができる。
The reaction temperature of the dehalogenation reaction is not particularly limited, but is preferably 20 to 200 ° C., more preferably 30 to 180 ° C., from the viewpoint of ease of synthesis of the target product (reaction efficiency, etc.) and yield. , 50-160 ° C. is more preferable.
The reaction pressure of the dehalogenation reaction is not particularly limited, and the reaction can be carried out at normal pressure (atmospheric pressure).
 上記脱ハロゲン化反応の反応時間は、特に限定されないが、目的物の合成のしやすさ(反応効率等)及び収率等の観点から、10分間~48時間が好ましく、30分間~24時間がより好ましく、1~10時間がさらに好ましい。 The reaction time of the dehalogenation reaction is not particularly limited, but is preferably 10 minutes to 48 hours, preferably 30 minutes to 24 hours, from the viewpoint of ease of synthesis of the target product (reaction efficiency, etc.) and yield. More preferably, 1 to 10 hours is even more preferable.
 上記脱ハロゲン化反応後、得られたフルオロオレフィンを精製することもできる。
 精製方法としては、特に限定されないが、例えば通常行われる蒸留・精留により分離回収して精製する方法;ろ過、分液により精製する方法;前記方法を組み合わせて精製する方法等が挙げられる。また、精製の際に溶媒を回収して、再度使用することもできる。
After the above dehalogenation reaction, the obtained fluoroolefin can also be purified.
The purification method is not particularly limited, and examples thereof include a method of separating and recovering by distillation and rectification, which is usually performed; a method of purifying by filtration and liquid separation; a method of purifying by combining the above methods. It is also possible to recover the solvent during purification and use it again.
 当該フルオロオレフィンの製造方法は、中間体のヨウ化フルオロアルカンを効率よく高収率で得ることのできる上記ヨウ化フルオロアルカンの製造方法に引き続いて行われるため、フルオロオレフィンを効率よく高収率で製造することができる。 Since the method for producing the fluoroolefin is carried out following the method for producing the fluoroalkane iodide, which can efficiently obtain the intermediate fluoroalkane iodide in a high yield, the fluoroolefin can be produced efficiently in a high yield. Can be manufactured.
 さらに、本開示は、一般式(2):RCFCH
(式中、Rは炭素数1~10の含フッ素アルキル基を表す)
で表されるヨウ化フルオロアルカン、及び/又は、
 一般式(3):RCF=CH
(式中、Rは炭素数1~10の含フッ素アルキル基を表す)
で表されるフルオロオレフィンを含み、
 さらに、一般式(4):RCFCHOC(=O)R
(式中、Rは炭素数1~10の含フッ素アルキル基を表し、Rは-H又は炭素数1~3のアルキル基を表す)
で表される化合物、及び/又は、
 一般式(5):RCFCH
(式中、Rは炭素数1~10の含フッ素アルキル基を表す)
で表される化合物を含む、組成物に関する。
Further, the present disclosure describes the general formula (2): R 1 CF 2 CH 2 I.
(In the formula, R 1 represents a fluorine-containing alkyl group having 1 to 10 carbon atoms)
Fluoroalkane iodide represented by and / or
General formula (3): R 1 CF = CH 2
(In the formula, R 1 represents a fluorine-containing alkyl group having 1 to 10 carbon atoms)
Contains fluoroolefins represented by
Further, the general formula (4): R 1 CF 2 CH 2 OC (= O) R 2
(In the formula, R 1 represents a fluorine-containing alkyl group having 1 to 10 carbon atoms, and R 2 represents an alkyl group having −H or 1 to 3 carbon atoms).
Compounds represented by and / or
General formula (5): R 1 CF 2 CH 3
(In the formula, R 1 represents a fluorine-containing alkyl group having 1 to 10 carbon atoms)
The present invention relates to a composition containing a compound represented by.
 一般式(2)~(5)におけるRの炭素数1~10の含フッ素アルキル基としては、上述の一般式(1)におけるRの炭素数1~10の含フッ素アルキル基の例示(好ましい例示等も含む)と同じものが挙げられる。
 また、一般式(4)におけるRの炭素数1~3のアルキル基としては、メチル基、エチル基、プロピル基が挙げられ、好ましくはメチル基である。
Examples of the fluorine-containing alkyl group of the general formula (2) to carbon atoms of R 1 in (5) 1-10, an exemplary fluorine-containing alkyl group having 1 to 10 carbon atoms for R 1 in the above general formula (1) ( The same as (including preferred examples) can be mentioned.
Examples of the alkyl group having 1 to 3 carbon atoms of R 2 in the general formula (4) include a methyl group, an ethyl group and a propyl group, and a methyl group is preferable.
 上記一般式(4)で表される化合物は、例えばヨウ素化反応の際に副生し、上記一般式(5)で表される化合物は、例えば脱ハロゲン化反応の際に副生する。
 一般式(4)で表される化合物及び一般式(5)で表される化合物の合計含有量は、ヨウ化フルオロアルカン及び/又はフルオロオレフィンをより多く含む観点から、組成物全体の20質量%以下が好ましく、15質量%以下がより好ましい。
The compound represented by the general formula (4) is by-produced in, for example, an iodination reaction, and the compound represented by the general formula (5) is by-produced in, for example, a dehalogenation reaction.
The total content of the compound represented by the general formula (4) and the compound represented by the general formula (5) is 20% by mass of the entire composition from the viewpoint of containing a larger amount of fluoroalkane iodide and / or fluoroolefin. The following is preferable, and 15% by mass or less is more preferable.
 上記組成物は、例えば中間体成分や冷媒等として好ましく用いることができる。
 例えば、一般式(2)で表されるヨウ化フルオロアルカンの含有量が多く(例えば組成物全体の80質量%以上)、一般式(4)で表される化合物の含有量が少ない(例えば組成物全体の20質量%以下)組成物は、一般式(3)で表されるフルオロオレフィン製造のための中間体成分等として好ましく用いることができる。
 例えば、一般式(3)で表されるフルオロオレフィンの含有量が多く(例えば組成物全体の80質量%以上)、一般式(5)で表される化合物の含有量が少ない(例えば組成物全体の20質量%以下)組成物は、冷媒等として好ましく用いることができる。
The above composition can be preferably used, for example, as an intermediate component, a refrigerant, or the like.
For example, the content of the fluoroalkane iodide represented by the general formula (2) is high (for example, 80% by mass or more of the entire composition), and the content of the compound represented by the general formula (4) is low (for example, the composition). The composition (20% by mass or less of the whole product) can be preferably used as an intermediate component for producing a fluoroolefin represented by the general formula (3).
For example, the content of the fluoroolefin represented by the general formula (3) is high (for example, 80% by mass or more of the entire composition), and the content of the compound represented by the general formula (5) is low (for example, the entire composition). The composition (20% by mass or less) can be preferably used as a refrigerant or the like.
 以上、実施形態を説明したが、特許請求の範囲の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。 Although the embodiments have been described above, it will be understood that various modifications of the forms and details are possible without deviating from the purpose and scope of the claims.
 以下に、実施例を挙げてさらに詳細に説明する。ただし、本開示は、これら実施例の態様に限定されるものではない。 The following will be described in more detail with examples. However, the present disclosure is not limited to the embodiments of these examples.
 (実施例1)
 2,2,3,3,4,4,4-ヘプタフルオロ-1-ブタノール(7FB)を50.06g(0.25モル)、ヨウ素190.23g(0.75モル)、トリフェニルホスフィン196.60g(0.75モル)、イミダゾール17.21g(0.25モル)を、212mlのN,N-ジメチルアセトアミド(DMA)に添加し、混合した。この混合液を120℃で6時間撹拌して反応させた。反応物を減圧蒸留(圧力0.04kPa、オイルバス温度75℃)し、1,1,1,2,2,3,3-ヘプタフルオロ-4-ヨードブタン(IHFB)を得た。収率は98%であった。副生成物は、酢酸-(1H,1H-ヘプタフルオロブチルエステル)(4%)であった。
(Example 1)
2,2,3,3,4,5,4-heptafluoro-1-butanol (7FB) in an amount of 50.06 g (0.25 mol), iodine in 190.23 g (0.75 mol), triphenylphosphine in 196. 60 g (0.75 mol) and 17.21 g (0.25 mol) of imidazole were added to 212 ml of N, N-dimethylacetamide (DMA) and mixed. The mixed solution was stirred at 120 ° C. for 6 hours to react. The reaction product was distilled under reduced pressure (pressure 0.04 kPa, oil bath temperature 75 ° C.) to obtain 1,1,1,2,2,3,3-heptafluoro-4-iodobutane (IHFB). The yield was 98%. The by-product was acetic acid- (1H, 1H-heptafluorobutyl ester) (4%).
 (比較例1)
 7FBを1.53g(0.77×10-2モル)、ヨウ素2.86g(1.1×10-2モル)、トリフェニルホスフィン2.95g(1.1×10-2モル)、イミダゾール1.53g(2.3×10-2モル)を、3.5mlのジエチルエーテルと6.5mlのアセトニトリルの混合溶媒に添加し、混合した。この混合液を40℃で3時間撹拌して反応させた。しかし、反応は進まず、IHFBを得ることはできなかった。
(Comparative Example 1)
1.53 g (0.77 x 10 -2 mol) of 7FB, 2.86 g (1.1 x 10 -2 mol) of iodine, 2.95 g (1.1 x 10 -2 mol) of triphenylphosphine, imidazole 1 .53g the (2.3 × 10 -2 mol) was added to a mixed solvent of acetonitrile diethyl ether and 6.5ml of 3.5 ml, were mixed. The mixed solution was stirred at 40 ° C. for 3 hours to react. However, the reaction did not proceed and IHFB could not be obtained.
 (比較例2)
 7FBを1.52g(0.76×10-2モル)、ヨウ素7.61g(0.03モル)、トリフェニルホスフィン7.87g(0.03モル)を、5.8mlのトリエチレングリコールジメチルエーテルに添加し、混合した。この混合液を120℃で6時間撹拌して反応させた。しかし、反応は進まず、IHFBを得ることはできなかった。
(Comparative Example 2)
The 7FB 1.52g (0.76 × 10 -2 mol), iodine 7.61 g (0.03 mol), triphenylphosphine 7.87g (0.03 mol), triethylene glycol dimethyl ether 5.8ml Added and mixed. The mixed solution was stirred at 120 ° C. for 6 hours to react. However, the reaction did not proceed and IHFB could not be obtained.
 (比較例3)
 7FBを1.56g(0.78×10-2モル)、ヨウ素2.88g(1.1×10-2モル)、トリフェニルホスフィン2.96g(1.1×10-2モル)を、5.7mlのテトラヒドロフラン(THF)に添加し、混合した。この混合液を80℃で3時間撹拌して反応させた。しかし、反応は進まず、IHFBを得ることはできなかった。
(Comparative Example 3)
1.56 g (0.78 x 10 -2 mol) of 7 FB, 2.88 g (1.1 x 10 -2 mol) of iodine, 2.96 g (1.1 x 10 -2 mol) of triphenylphosphine, 5 It was added to .7 ml of tetrahydrofuran (THF) and mixed. The mixed solution was stirred at 80 ° C. for 3 hours to react. However, the reaction did not proceed and IHFB could not be obtained.
 (実施例2)
 IHFB10.02g(0.03モル)、亜鉛粉末(粒子径150μm以下)4.85g(0.07モル)を57mlのN,N-ジメチルアセトアミド(DMA)に添加し、混合した。この混合液を120℃で撹拌して、1,2-ジブロモエタン0.59g(0.003モル)を添加し、4時間攪拌して反応させ、2,3,3,4,4,4-ヘキサフルオロ-1-ブテン(HFO-1336mcyf)を得た。収率は88%であった。副生成物は、1,1,1,2,2,3,3-ヘプタフルオロブタン(HFC-347ccd)(11%)であった。
(Example 2)
10.02 g (0.03 mol) of IHFB and 4.85 g (0.07 mol) of zinc powder (particle size 150 μm or less) were added to 57 ml of N, N-dimethylacetamide (DMA) and mixed. The mixture is stirred at 120 ° C., 0.59 g (0.003 mol) of 1,2-dibromoethane is added, and the mixture is stirred for 4 hours to react, and 2,3,3,4,5,4- Hexafluoro-1-butene (HFO-1336 mcyf) was obtained. The yield was 88%. The by-product was 1,1,1,2,2,3,3-heptafluorobutane (HFC-347ccd) (11%).
 (実施例3)
 IHFB1.00g(0.003モル)、亜鉛0.42g(0.006モル)を0.99mlのN,N-ジメチルアセトアミド(DMA)と0.99mlの水に添加し、混合した。この混合液を100℃で4時間攪拌して反応させ、HFO-1336mcyfを得た。収率は97%であった。副生成物は、HFC-347ccd(3%)であった。
(Example 3)
1.00 g (0.003 mol) of IHFB and 0.42 g (0.006 mol) of zinc were added to 0.99 ml of N, N-dimethylacetamide (DMA) and 0.99 ml of water and mixed. The mixed solution was stirred at 100 ° C. for 4 hours and reacted to obtain HFO-1336 mcyf. The yield was 97%. The by-product was HFC-347ccd (3%).
 上記実施例1~3では、本開示の製造方法を用いると、ヨウ化フルオロアルカン及びフルオロオレフィンを効率よく高収率で製造することができた。一方、上記比較例1~3では、原料の含フッ素アルキルアルコールを溶媒中で充分に溶解できないため反応が進まず、目的物のヨウ化フルオロアルカンを得ることができなかった。 In Examples 1 to 3 above, using the production method of the present disclosure, fluoroalkane iodide and fluoroolefin could be efficiently produced in high yield. On the other hand, in Comparative Examples 1 to 3, the reaction did not proceed because the fluorinated alkyl alcohol as a raw material could not be sufficiently dissolved in the solvent, and the desired fluoroalkane iodide could not be obtained.

Claims (8)

  1.  一般式(2):RCFCH
    (式中、Rは炭素数1~10の含フッ素アルキル基を表す)
    で表されるヨウ化フルオロアルカンの製造方法であって、
     一般式(1):RCFCHOH
    (式中、Rは炭素数1~10の含フッ素アルキル基を表す)
    で表される含フッ素アルキルアルコールを、トリフェニルホスフィンの存在下、溶媒中で、ヨウ素と反応させる工程を含み、
     前記溶媒が、硫黄原子を含有する化合物及びアミドからなる群より選ばれる少なくとも1種を含む、製造方法。
    General formula (2): R 1 CF 2 CH 2 I
    (In the formula, R 1 represents a fluorine-containing alkyl group having 1 to 10 carbon atoms)
    It is a method for producing fluoroalkane iodide represented by.
    General formula (1): R 1 CF 2 CH 2 OH
    (In the formula, R 1 represents a fluorine-containing alkyl group having 1 to 10 carbon atoms)
    Includes a step of reacting a fluorine-containing alkyl alcohol represented by (1) with iodine in the presence of triphenylphosphine in a solvent.
    A production method, wherein the solvent contains at least one selected from the group consisting of compounds containing sulfur atoms and amides.
  2.  前記溶媒が、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMA)及びN-メチルピロリドン(NMP)からなる群より選ばれる少なくとも1種を含む、請求項1に記載のヨウ化フルオロアルカンの製造方法。 The iodine according to claim 1, wherein the solvent contains at least one selected from the group consisting of N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMA) and N-methylpyrrolidone (NMP). A method for producing fluoroalkane.
  3.  前記Rが炭素数1~2のパーフルオロアルキル基である、請求項1又は2に記載のヨウ化フルオロアルカンの製造方法。 The method for producing a fluoroalkane iodide according to claim 1 or 2, wherein R 1 is a perfluoroalkyl group having 1 to 2 carbon atoms.
  4.  前記含フッ素アルキルアルコール1モルに対して、1.5~5モルのヨウ素を反応させる、請求項1~3のいずれか一項に記載のヨウ化フルオロアルカンの製造方法。 The method for producing a fluoroalkane iodide according to any one of claims 1 to 3, wherein 1.5 to 5 mol of iodine is reacted with 1 mol of the fluorine-containing alkyl alcohol.
  5.  前記ヨウ素と反応させる工程を40~150℃の温度で行う、請求項1~4のいずれか一項に記載のヨウ化フルオロアルカンの製造方法。 The method for producing fluoroalkane iodide according to any one of claims 1 to 4, wherein the step of reacting with iodine is carried out at a temperature of 40 to 150 ° C.
  6.  一般式(3):RCF=CH
    (式中、Rは炭素数1~10の含フッ素アルキル基を表す)
    で表されるフルオロオレフィンの製造方法であって、
     請求項1~5のいずれか一項に記載のヨウ化フルオロアルカンの製造方法により得られたヨウ化フルオロアルカンを、触媒の存在下で脱ハロゲン化する工程
    を含む、製造方法。
    General formula (3): R 1 CF = CH 2
    (In the formula, R 1 represents a fluorine-containing alkyl group having 1 to 10 carbon atoms)
    It is a method for producing a fluoroolefin represented by
    A production method comprising a step of dehalogenating the fluoroalkane iodide obtained by the method for producing a fluoroalkane iodide according to any one of claims 1 to 5 in the presence of a catalyst.
  7.  一般式(2):RCFCH
    (式中、Rは炭素数1~10の含フッ素アルキル基を表す)
    で表されるヨウ化フルオロアルカン、及び/又は、
     一般式(3):RCF=CH
    (式中、Rは炭素数1~10の含フッ素アルキル基を表す)
    で表されるフルオロオレフィンを含み、
     さらに、一般式(4):RCFCHOC(=O)R
    (式中、Rは炭素数1~10の含フッ素アルキル基を表し、Rは-H又は炭素数1~3のアルキル基を表す)
    で表される化合物、及び/又は、
     一般式(5):RCFCH
    (式中、Rは炭素数1~10の含フッ素アルキル基を表す)
    で表される化合物を含む、組成物。
    General formula (2): R 1 CF 2 CH 2 I
    (In the formula, R 1 represents a fluorine-containing alkyl group having 1 to 10 carbon atoms)
    Fluoroalkane iodide represented by and / or
    General formula (3): R 1 CF = CH 2
    (In the formula, R 1 represents a fluorine-containing alkyl group having 1 to 10 carbon atoms)
    Contains fluoroolefins represented by
    Further, the general formula (4): R 1 CF 2 CH 2 OC (= O) R 2
    (In the formula, R 1 represents a fluorine-containing alkyl group having 1 to 10 carbon atoms, and R 2 represents an alkyl group having −H or 1 to 3 carbon atoms).
    Compounds represented by and / or
    General formula (5): R 1 CF 2 CH 3
    (In the formula, R 1 represents a fluorine-containing alkyl group having 1 to 10 carbon atoms)
    A composition comprising a compound represented by.
  8.  前記一般式(4)で表される化合物及び前記一般式(5)で表される化合物の合計含有量が、組成物全体の20質量%以下である、請求項7に記載の組成物。 The composition according to claim 7, wherein the total content of the compound represented by the general formula (4) and the compound represented by the general formula (5) is 20% by mass or less of the total composition.
PCT/JP2021/007802 2020-03-03 2021-03-02 Methods for producing iodofluoroalkane and fluoroolefin WO2021177260A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020036210A JP2021138632A (en) 2020-03-03 2020-03-03 Methods for producing iodofluoroalkane and fluoroolefin
JP2020-036210 2020-03-03

Publications (1)

Publication Number Publication Date
WO2021177260A1 true WO2021177260A1 (en) 2021-09-10

Family

ID=77613073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007802 WO2021177260A1 (en) 2020-03-03 2021-03-02 Methods for producing iodofluoroalkane and fluoroolefin

Country Status (2)

Country Link
JP (2) JP2021138632A (en)
WO (1) WO2021177260A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114516781B (en) * 2022-03-17 2023-09-19 山东大学 Preparation method of perfluorooctyl ethyl iodide and perfluorooctyl ethylene

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS615032A (en) * 1984-06-19 1986-01-10 Daikin Ind Ltd Preparation of olefin
WO2008053811A1 (en) * 2006-11-01 2008-05-08 Daikin Industries, Ltd. Method for producing olefin
JP2017137313A (en) * 2016-02-03 2017-08-10 ダイキン工業株式会社 Production method of tetrafluoropropene
JP2017193511A (en) * 2016-04-21 2017-10-26 ダイキン工業株式会社 Method for producing hydrochlorofluorocarbon and/or hydrofluorocarbon
JP2018123126A (en) * 2017-01-31 2018-08-09 ダイキン工業株式会社 Manufacturing method of fluorine-containing halogenated hydrocarbon

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS615032A (en) * 1984-06-19 1986-01-10 Daikin Ind Ltd Preparation of olefin
WO2008053811A1 (en) * 2006-11-01 2008-05-08 Daikin Industries, Ltd. Method for producing olefin
JP2017137313A (en) * 2016-02-03 2017-08-10 ダイキン工業株式会社 Production method of tetrafluoropropene
JP2017193511A (en) * 2016-04-21 2017-10-26 ダイキン工業株式会社 Method for producing hydrochlorofluorocarbon and/or hydrofluorocarbon
JP2018123126A (en) * 2017-01-31 2018-08-09 ダイキン工業株式会社 Manufacturing method of fluorine-containing halogenated hydrocarbon

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HAYAKAWA TERUAKI, WANG JIANGUO, XIANG MAOLIANG, LI XUEFA, UEDA MITSURU, OBER CHRISTOPHER K., GENZER JAN, SIVANIAH EASAN, KRAMER ED: "Effect of Changing Molecular End Groups on Surface Properties: Synthesis and Characterization of Poly(styrene-b-semifluorinated isoprene) Block Copolymers with -CF2H End Groups", MACROMOLECULES, vol. 33, no. 21, 23 September 2000 (2000-09-23), pages 8012 - 8019, XP055852513 *
MCBEE E. T., CAMPBELL D. H., ROBERTS C. W.: "Highly halogenated alkanes derived from fluorine-containing alcohols", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 77, no. 11, 5 June 1955 (1955-06-05), pages 3149 - 3151, XP055852518 *
MONTANARI V; QUICI S; RESNATI G: "1-Iodo-polyfluoroalkanes from polyfluoroalkoxy trimethylsilanes and iodochloro triphenylphosphorane", TETRAHEDRON LETTERS, vol. 35, no. 12, 1994, pages 1941 - 1944, XP000434499, DOI: 10.1016/S0040-4039(00)73201-1 *
SHINICHI SAITO; TAISHI KAWASAKI; NORIE TSUBOYA; YOSHINORI YAMAMOTO: "Highly Regioselective Cyclotrimerization of 1-Perfluoroalkylenynes Catalyzed by Nickel", JOURNAL OF ORGANIC CHEMISTRY, vol. 66, no. 3, 2001, pages 796 - 802, XP055384171, DOI: 10.1021/jo0056242 *
TOMASZEWSKA, J ET AL.: "Fluorinated organic azides - their preparation and synthetic applications", ARKIVOC, vol. 2017, no. 2, 2017, Gainesville, FL, United States, pages 421 - 432, XP055852509 *

Also Published As

Publication number Publication date
JP2021138632A (en) 2021-09-16
JP2022048291A (en) 2022-03-25

Similar Documents

Publication Publication Date Title
JP2022048291A (en) Methods for producing iodofluoroalkane and fluoroolefin
JP2003183190A (en) Method for manufacturing fluoroalkyl iodide
JP2001302571A (en) Method for producing fluoroalcohol
WO2011136355A1 (en) 1,1-bis[(ethenyloxy)methyl]cyclohexane and process for producing same
JP2021102583A (en) Method for producing alkoxymethyl=alkynyl=ether compound having terminal triple bond
JP5135889B2 (en) Process for producing bromotetrafluoroalkanols
JP5453885B2 (en) N-monomethyl-3,5-dibromoaniline compound and process for producing the same
WO2021066155A1 (en) Method for producing perfluoro(2,4-dimethyl-2-fluoroformyl-1,3-dioxolane)
JP4561120B2 (en) Method for producing 2,2,3,3-tetrafluorooxetane
JPWO2020095915A1 (en) Method for producing perfluoro (2-methylene-4-methyl-1,3-dioxolane)
JP4797449B2 (en) Iodine-containing fluoropolyether and process for producing the same
EP1403238B1 (en) Process for producing fluorinated alcohol
WO2023233774A1 (en) Novel diallyl-containing fluoropolyether compound and method for producing same
JP2008044896A (en) Method for producing fluoroolefin
JP5194500B2 (en) Method for producing high purity fluorine-containing alkyl ether
JP2010235589A (en) 4-polyfluoroacylphenylalkyl ketone, and method of producing the same
JP2813025B2 (en) Fluorine-containing allyl ether and its production method
JPWO2006064628A1 (en) Method for producing vinyl silane
JP2007291044A (en) Method for producing fluorine-containing alcohol derivative
JP2016135803A (en) Manufacturing method of perfluoroalkenyl oxy group-containing arene compound
JP4150540B2 (en) Method for producing fluorine-containing alcohol
JP2725350B2 (en) Method for producing propargylfuran carbinols
JPH1112204A (en) 9,10-dichloroanthracene compounds and production of 9,10-dihaloanthracene compounds
JPH0347144A (en) Production of m-phenoxybenzyl alcohol
JPH059150A (en) Oligohexafluoropropylene oxide derivative and its production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21764478

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21764478

Country of ref document: EP

Kind code of ref document: A1