JP4817542B2 - Production method of fluorinated vinyl ether - Google Patents

Production method of fluorinated vinyl ether Download PDF

Info

Publication number
JP4817542B2
JP4817542B2 JP2001198038A JP2001198038A JP4817542B2 JP 4817542 B2 JP4817542 B2 JP 4817542B2 JP 2001198038 A JP2001198038 A JP 2001198038A JP 2001198038 A JP2001198038 A JP 2001198038A JP 4817542 B2 JP4817542 B2 JP 4817542B2
Authority
JP
Japan
Prior art keywords
formula
vinyl ether
above formula
solvent
fluorinated vinyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001198038A
Other languages
Japanese (ja)
Other versions
JP2003012634A (en
Inventor
信人 星
池田  正紀
信之 植松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2001198038A priority Critical patent/JP4817542B2/en
Priority to CNB028127935A priority patent/CN100338013C/en
Priority to PCT/JP2002/006576 priority patent/WO2003002506A1/en
Priority to US10/482,048 priority patent/US7196235B2/en
Publication of JP2003012634A publication Critical patent/JP2003012634A/en
Application granted granted Critical
Publication of JP4817542B2 publication Critical patent/JP4817542B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、食塩電解用隔膜や燃料電池用隔膜として有用なフッ素系イオン交換膜の原料モノマーであるフッ素化ビニルエーテルの製造方法に関する。
【0002】
【従来の技術】
苛性ソーダや塩素を製造する食塩電解ではイオン交換膜法が広く採用されており、その隔膜であるイオン交換膜としては、電流効率が優れていることからパーフルオロスルホン酸ポリマーとパーフルオロカルボン酸ポリマーの積層タイプの膜が主として用いられている。また近年、電解質として固体高分子隔膜を用いた燃料電池が、小型軽量化が可能であり、かつ比較的低温でも高い出力密度が得られることから注目され、特に自動車用途に向けた開発が加速されている。ここでも現在、実用化に向けた検討としては固体電解質膜としてパーフルオロスルホン酸ポリマーが採用されている。
【0003】
どちらの用途においても用いられているパーフルオロスルホン酸ポリマーとしては下記式(4):
【化4】

Figure 0004817542
(式中、m=0〜1、n=1〜5の整数である。)
の構造のものが一般的である。これらのポリマーは、下記式(5):
【化5】
Figure 0004817542
(式中、m、nは上記式(4)と同じ。)
で表されるフッ素化ビニルエーテルモノマーとテトラフルオロエチレン(TFE)との共重合体を製膜した後、加水分解反応を施すことによって得られる。
【0004】
このフッ素化ビニルエーテルモノマーについては、それぞれの構造に応じた種々の製造方法が提案されている。特により一般的に用いられているm=1、即ち上記式(2)のモノマーに限定すると、最も有用な製造方法は上記式(1)の酸フルオリドを熱分解して製造する方法である。例えば特開昭47−365号公報(n=2)や特開昭56−90054号公報(n=3)には235〜240℃に加熱した炭酸ナトリウム粉末中に、上記式(1)の酸フルオリドをフィードし、熱分解して生成したビニルエーテルモノマーを冷却捕集する方法が開示されている。さらには上記式(1)の酸フルオリド(n=2)を炭酸ナトリウムと反応させて酸フルオリドをカルボン酸のナトリウム塩に変換した後、このナトリウム塩を加熱して熱分解させ、ビニルエーテルモノマーを得る方法も知られている(特公昭41−7949号公報)。
【0005】
これらの熱分解を経由する方法は簡便で且つ比較的好収率を与える製造法ではあるが、まず特開昭47−365号公報や特開昭56−90054号公報の方法では一般に原料の酸フルオリドの沸点が反応温度よりも低いため、炭酸塩との接触効率が悪く、転化率を上げにくい欠点があった。その上、炭酸ナトリウムを用いた熱分解の場合、SO2 F基が高温の炭酸ナトリウムと反応してしまうため、収率が上がりにくい欠点があった。一方、特公昭41−7949号公報の方法のように一旦、ナトリウム塩に変換してから熱分解を行う場合においては副反応が多く、収率はやはり上がりにくいものであった。
従って上記式(1)の酸フルオリドを熱分解して上記式(2)のフッ素化ビニルエーテルを製造する方法は収率の点で課題の残るものであった。またこれらの熱分解において、一般には炭酸ナトリウムと炭酸カリウムとではその反応性は同等と考えられており、実際に比較検討されたことはなく、炭酸カリウムを用いた熱分解反応は報告されていない。
【0006】
【発明が解決しようとする課題】
本発明は上記問題点を解消するものであり、上記式(1)の酸フルオリドから上記式(2)のフッ素化ビニルエーテルを高収率で製造する方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは上記課題を解決するために鋭意研究を重ねた結果、特定の条件を設定することで高転化率と同時に反応収率を特異的に高められることを見出し、本発明をなすに至った。即ち本発明は、
1.下記式(1):
【化6】
Figure 0004817542
(式中、nは1〜5の整数である。)
で表される酸フルオライドを、カリウムを含むアルカリに反応させて、下記式(3):
【化7】
Figure 0004817542
(式中、nは上記式(1)と同じ。)
で表されるカリウム塩に変換してから、無溶媒で上記式(3)で表わされるカリウム塩を熱分解して下記式(2):
【化8】
Figure 0004817542
(式中、nは上記式(1)と同じ。)
で表されるフッ素化ビニルエーテルを製造することを特徴とするフッ素化ビニルエーテルの製造方法
2.前記一般式(3)で表わされるカリウム塩を固体状態で保って、熱分解を行うことを特徴とする上記1に記載のフッ素化ビニルエーテルの製造方法、
3.溶媒中で0〜80℃、又は無溶媒中で80〜120℃で、前記式(1)で表される酸フルオライドをカリウムを含むアルカリとで反応させることを特徴とする上記1又は2に記載のフッ素化ビニルエーテルの製造方法、
4.熱分解を120〜300℃で行うことを特徴とする上記1〜3のいずれか一つに記載のフッ素化ビニルエーテルの製造方法、
である。
【0008】
以下、本発明について詳細に説明する。
本発明の製造方法は、上記式(1)の酸フルオリドから上記式(2)のフッ素化ビニルエーテルを製造する方法について、その反応条件を新規に特定したもので、高転化率を達成すると同時に反応収率を特異的に高めたものである。
本発明の製造方法において重要なポイントは、上記式(1)の酸フルオリドをまずは上記式(3)のカリウム塩に変換する点にある。従来方法で行われていたように、上記式(1)の酸フルオリドをナトリウム塩にした場合、上記式(3)に相当するナトリウム塩が室温または熱分解前の温度で溶融しやすく、その際、副反応物が生成することで目的物の収率を引き下げていることがわかった。しかしながら本発明者らはこれを上記式(3)のようにカリウム塩にすることで熱分解温度においてもカルボン酸塩が固体状態を保ち、この固体状態で熱分解させることにより良好な目的物の収率を得ることができることを見出した。このような高収率の理由は明らかではないが、ひとつの可能性として分子間で起こり得る副反応を抑制し、従って目的物の収率を高められたと考えられる。
【0009】
上記式(1)の酸フルオリドを上記式(3)のカリウム塩に変換する方法としては、溶媒中または無溶媒でカリウムを含むアルカリと反応させればよい。カリウムを含むアルカリとは、具体的には炭酸カリウム、水酸化カリウム、リン酸カリウム、酢酸カリウム等が挙げられるが、カリウムの対イオン成分がガスとして除けるので炭酸カリウムが好ましい。炭酸カリウムとしては、顆粒状のもの、粉末状のもの、微粉状のもの、比表面積を高めた顆粒状のものあるいはその粉末状のもの、微粉状のもののいずれを用いることもできる。また使用前によく乾燥しておくことが好ましい。アルカリとの反応で溶媒を用いる場合、一般には極性溶媒が用いられる。具体的には水または、メタノール、エタノール、プロパノール等のアルコール類、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類、アセトニトリル、プロピオニトリル等のニトリル類、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類、ジメチルスルホキシド等が挙げられる。これらの溶媒は反応後に除去する必要があるが、除去が容易な沸点100℃以下の溶媒が好ましい。また熱分解時にプロトン性溶媒が残存するとトリフルオロビニル基の代わりにプロトン化されたCF3 CHF−基が生成することがあるので、溶媒としては非プロトン性溶媒が好ましい。これらの条件を満たす溶媒としては、テトラヒドロフラン、エチレングリコールジメチルエーテル、アセトニトリル等が挙げられる。アルカリとの反応で溶媒を用いる場合、副反応を抑制するために反応温度は0〜80℃の範囲が好ましく、20〜60℃の範囲がさらに好ましい。一方、アルカリとの反応を無溶媒で行う場合、例えば炭酸カリウムとの反応を無溶媒で行う場合、反応温度は50〜150℃が好ましく、80〜120℃がさらに好ましい。
【0010】
カリウム塩に変換するときに用いられるアルカリの量は、一般には完全にカリウム塩に変換するために必要な当量を用いる。
上記のように、上記式(3)のカリウム塩は熱分解温度まで固体状態を保つことが重要である。しかしながら、上記式(1)の酸フルオリドに不純物が含まれると融点降下や、不純物への溶解により上記式(3)のカリウム塩が液化する場合があり、その場合には副反応により収率が低下する。従って本発明の製造方法において、なるべく用いる上記式(1)の酸フルオリドの純度が高い方が、高収率になり易いので好ましく、このような不純物の影響を実質的に排除するためには上記式(1)の酸フルオリドの純度は80重量%以上が好ましく、さらに好ましくは90重量%以上であり、さらに好ましくは95重量%以上である。
本発明の製造方法において、上記式(1)(従って上記式(2)、(3)についても同様)におけるnは1〜5の整数であるが、上記式(1)の酸フロオリドの製造が比較的容易であることからnは2または3が好ましく、本発明の方法の効果がより顕著にあらわれるのでnは2が最も好ましい。
【0011】
上記式(3)のカリウム塩は熱分解温度以上に加熱することで脱炭酸反応し、上記式(2)のビニルエーテルを生成する。この熱分解そのものは、溶媒中でも無溶媒でも進行するが、収率を高めるためには無溶媒で行う必要がある。この場合、無溶媒とは実質的に溶媒成分を含まないことを指し、上記式(3)のカリウム塩を生成する際に用いられる溶媒等の溶媒成分が、該カリウム塩に対して5重量%以内、好ましくは3重量%で含まれていても差し支えない。加熱温度は脱炭酸反応が進行する温度であれば差し支えないが、一般には120〜300℃、好ましくは150〜250℃で行われる。熱分解中は生成したビニルエーテルが系内に滞留しないようにすることが望ましく、熱分解温度がビニルエーテルの常圧での沸点以上である場合には、ビニルエーテルを速やかにコンデンサーに導き、捕集することが好ましい。また熱分解温度が沸点以下の場合でも系内を減圧にする、不活性ガスをフローする等の方法によりビニルエーテルを系内から除去することが好ましい。
【0012】
本発明の方法で製造されたフッ素化ビニルエーテルは、高収率である上に高転化率なので未反応酸フルオリドをほとんど含まず、また副反応も少ないので高純度で得られる。従って、反応後の精製が極めて容易であるという特徴を有する。
以上のように本発明の製造方法は、食塩電解用イオン交換膜や燃料電池用隔膜の原料として用いられているフッ素化ビニルエーテルを高収率で製造でき、極めて有用である。また本発明の方法で製造されたビニルエーテルは、その純度が高く、後工程としての精製が容易であるという特徴を有する。
【0013】
以下、本発明を実施例に基づいて説明する。
【実施例1】
200mlの三口フラスコに、上記式(1)においてn=2の化合物51.2gと20mlのエチレングリコールジメチルエーテルを入れておき、60℃に加熱しながら14.5gの炭酸カリウムを少量ずつ加えた。さらに60℃で30分間攪拌を続けた後、溶媒を減圧で留去し、KFを含む固体状のカリウム塩を得た。19F−NMRから求められた転化率は96%であった。フラスコに蒸留ヘッドとコンデンサーを付け、そのまま常圧で220℃まで加熱し、液の生成が収まるまで220℃で加熱を続けた。その間、カリウム塩は固体状態を維持していた。回収された液体42.9gをガスクロマトグラフィーで分析したところ、上記式(2)においてn=2のビニルエーテルが84重量%含まれていた(収率81%)。
【0014】
【実施例2】
200mlの三口フラスコに13.8gの炭酸カリウムと20mlのエチレングリコールジメチルエーテルを入れておき、攪拌しながら40℃で実施例1と同じ上記式(1)の酸フルオリド51.2gを滴下した。さらに1時間反応を続けた後、溶媒を減圧で留去し、KFを含む固体状のカリウム塩を得た。19F−NMRから求められた転化率は93%であった。実施例1と同様に220℃で熱分解を行い、回収された液体40.3gをガスクロマトグラフィーで分析したところ、上記式(2)においてn=2のビニルエーテルが91重量%含まれていた(収率82%)。
【実施例3】
エチレングリコールジメチルエーテルの代わりにアセトニトリルを用いた以外、実施例2と同じ方法で反応を行った。19F−NMRから求められたカリウム塩の転化率は96%であった。実施例1と同様に220℃で熱分解を行い、回収された液体40.3gをガスクロマトグラフィーで分析したところ、上記式(2)においてn=2のビニルエーテルが92重量%含まれていた(収率83%)。
【0015】
【比較例1】
炭酸カリウムの代わりに10.6gの炭酸ナトリウムを用いた以外、実施例2と同様に反応を行った。溶媒を留去して得られたナトリウム塩は粘稠な液体であり、19F−NMRから求められた転化率は99%であった。熱分解は200℃で進行し、得られた液体41.2gをガスクロマトグラフィーで分析したところ、上記式(2)においてn=2のビニルエーテルが70重量%含まれていた(収率65%)。
【比較例2】
200mlの三口フラスコに10.6gの炭酸ナトリウムを入れておき、220℃に加熱した。この中に、実施例1と同じ上記式(1)の酸フルオリド51.2gを少量ずつ滴下した。生成物はコンデンサーで捕集し、得られた48.4gの液体をガスクロマトグラフィーで分析したところ、上記式(2)においてn=2のビニルエーテルが20重量%(収率22%、選択率70%)、未反応の酸フルオリドが72重量%(回収率68%)含まれていた。
【0016】
【発明の効果】
本発明の製造方法は、食塩電解用イオン交換膜や燃料電池用隔膜の原料として用いられているフッ素化ビニルエーテルを高収率で製造でき、極めて有用である。また本発明の方法で製造されたビニルエーテルは、その純度が高く、後工程としての精製が容易であるという特徴を有する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a fluorinated vinyl ether, which is a raw material monomer for a fluorine-based ion exchange membrane that is useful as a diaphragm for salt electrolysis or a diaphragm for a fuel cell.
[0002]
[Prior art]
In salt electrolysis that produces caustic soda and chlorine, the ion exchange membrane method is widely adopted, and the ion exchange membrane that is the diaphragm is made of perfluorosulfonic acid polymer and perfluorocarboxylic acid polymer because of its excellent current efficiency. A laminated film is mainly used. In recent years, fuel cells using solid polymer membranes as electrolytes have attracted attention because they can be reduced in size and weight, and can be obtained at high power densities even at relatively low temperatures. In particular, development for automotive applications has been accelerated. ing. Also here, as a study for practical use, a perfluorosulfonic acid polymer is used as a solid electrolyte membrane.
[0003]
The perfluorosulfonic acid polymer used in both applications is represented by the following formula (4):
[Formula 4]
Figure 0004817542
(In the formula, m = 0 to 1, n = 1 to 5 are integers.)
The structure of this is common. These polymers have the following formula (5):
[Chemical formula 5]
Figure 0004817542
(In the formula, m and n are the same as the above formula (4).)
It can be obtained by forming a copolymer of a fluorinated vinyl ether monomer represented by the formula (II) and tetrafluoroethylene (TFE) and then subjecting it to a hydrolysis reaction.
[0004]
For this fluorinated vinyl ether monomer, various production methods corresponding to the respective structures have been proposed. Particularly when m = 1, which is more commonly used, that is, limited to the monomer of the above formula (2), the most useful production method is a method of pyrolyzing the acid fluoride of the above formula (1). For example, JP-A-47-365 (n = 2) and JP-A-56-90054 (n = 3) describe an acid of the above formula (1) in sodium carbonate powder heated to 235 to 240 ° C. A method is disclosed in which a fluoride is fed and a vinyl ether monomer produced by thermal decomposition is cooled and collected. Furthermore, after reacting the acid fluoride (n = 2) of the above formula (1) with sodium carbonate to convert the acid fluoride into a sodium salt of carboxylic acid, the sodium salt is heated and thermally decomposed to obtain a vinyl ether monomer. A method is also known (Japanese Patent Publication No. 41-7949).
[0005]
These methods via pyrolysis are simple and relatively high yielding production methods. First, the methods disclosed in JP-A-47-365 and JP-A-56-90054 generally use raw acid. Since the boiling point of fluoride is lower than the reaction temperature, the contact efficiency with the carbonate is poor, and it is difficult to increase the conversion rate. In addition, in the case of thermal decomposition using sodium carbonate, the SO 2 F group reacts with high-temperature sodium carbonate, so that the yield is difficult to increase. On the other hand, in the case of performing thermal decomposition once converted to a sodium salt as in the method of Japanese Patent Publication No. 41-7949, there are many side reactions, and the yield is hardly increased.
Therefore, the method for producing the fluorinated vinyl ether of the above formula (2) by thermally decomposing the acid fluoride of the above formula (1) remains a problem in terms of yield. In these thermal decompositions, sodium carbonate and potassium carbonate are generally considered to have the same reactivity, and have never been compared and no thermal decomposition reaction using potassium carbonate has been reported. .
[0006]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems, and an object thereof is to provide a method for producing the fluorinated vinyl ether of the above formula (2) in high yield from the acid fluoride of the above formula (1).
[0007]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have found that the reaction yield can be specifically increased simultaneously with the high conversion rate by setting specific conditions. It came. That is, the present invention
1. Following formula (1):
[Chemical 6]
Figure 0004817542
(In the formula, n is an integer of 1 to 5.)
An acid fluoride represented by the following formula (3) is reacted with an alkali containing potassium:
[Chemical 7]
Figure 0004817542
(In the formula, n is the same as the above formula (1).)
Is converted to a potassium salt represented by the following formula, and the potassium salt represented by the above formula (3) is pyrolyzed without solvent to the following formula (2):
[Chemical 8]
Figure 0004817542
(In the formula, n is the same as the above formula (1).)
A method for producing a fluorinated vinyl ether, characterized by producing a fluorinated vinyl ether represented by :
2. The method for producing a fluorinated vinyl ether according to the above 1, wherein the potassium salt represented by the general formula (3) is maintained in a solid state and is thermally decomposed.
3. 3. The above 1 or 2, wherein the acid fluoride represented by the formula (1) is reacted with an alkali containing potassium at 0 to 80 ° C. in a solvent or at 80 to 120 ° C. without solvent. A process for producing a fluorinated vinyl ether of
4). The method for producing a fluorinated vinyl ether according to any one of the above 1 to 3, wherein the thermal decomposition is performed at 120 to 300 ° C,
It is.
[0008]
Hereinafter, the present invention will be described in detail.
The production method of the present invention is a method for newly producing the fluorinated vinyl ether of the above formula (2) from the acid fluoride of the above formula (1). The reaction conditions are newly specified, and at the same time a high conversion is achieved. The yield is specifically increased.
An important point in the production method of the present invention is that the acid fluoride of the above formula (1) is first converted to the potassium salt of the above formula (3). When the acid fluoride of the above formula (1) is converted to a sodium salt as conventionally performed, the sodium salt corresponding to the above formula (3) is likely to melt at room temperature or a temperature before thermal decomposition. It was found that the yield of the target product was reduced by the formation of side reaction products. However, the present inventors make this a potassium salt as in the above formula (3), so that the carboxylate remains in a solid state even at the thermal decomposition temperature, and a good target is obtained by thermally decomposing in this solid state. It was found that a yield can be obtained. The reason for such a high yield is not clear, but it is considered that one possibility was to suppress side reactions that could occur between molecules, thus increasing the yield of the target product.
[0009]
As a method for converting the acid fluoride of the above formula (1) into the potassium salt of the above formula (3), it may be reacted with an alkali containing potassium in a solvent or without a solvent. Specific examples of the alkali containing potassium include potassium carbonate, potassium hydroxide, potassium phosphate, potassium acetate, and the like, but potassium carbonate is preferable because the counter ion component of potassium can be removed as a gas. As potassium carbonate, any of granular, powder, fine powder, granule having an increased specific surface area, powder, fine powder, or the like can be used. Moreover, it is preferable to dry well before use. When using a solvent in the reaction with an alkali, a polar solvent is generally used. Specifically, water or alcohols such as methanol, ethanol and propanol, ethers such as tetrahydrofuran, dioxane, ethylene glycol dimethyl ether and diethylene glycol dimethyl ether, nitriles such as acetonitrile and propionitrile, amides such as dimethylformamide and dimethylacetamide And dimethyl sulfoxide. Although it is necessary to remove these solvents after the reaction, a solvent having a boiling point of 100 ° C. or less that is easy to remove is preferable. In addition, if a protic solvent remains at the time of thermal decomposition, a protonated CF 3 CHF- group may be formed instead of a trifluorovinyl group, and therefore an aprotic solvent is preferable as the solvent. Examples of the solvent that satisfies these conditions include tetrahydrofuran, ethylene glycol dimethyl ether, acetonitrile, and the like. When using a solvent in the reaction with an alkali, the reaction temperature is preferably in the range of 0 to 80 ° C, more preferably in the range of 20 to 60 ° C, in order to suppress side reactions. On the other hand, when the reaction with alkali is performed without a solvent, for example, when the reaction with potassium carbonate is performed without a solvent, the reaction temperature is preferably 50 to 150 ° C, more preferably 80 to 120 ° C.
[0010]
In general, the amount of alkali used for conversion to the potassium salt is equivalent to the amount necessary for complete conversion to the potassium salt.
As described above, it is important that the potassium salt of the formula (3) is kept in a solid state up to the thermal decomposition temperature. However, when an impurity is contained in the acid fluoride of the above formula (1), the potassium salt of the above formula (3) may be liquefied due to a melting point drop or dissolution in the impurity. descend. Therefore, in the production method of the present invention, it is preferable that the purity of the acid fluoride of the above formula (1) used as much as possible is high because the yield tends to be high. In order to substantially eliminate the influence of such impurities, The purity of the acid fluoride of the formula (1) is preferably 80% by weight or more, more preferably 90% by weight or more, and further preferably 95% by weight or more.
In the production method of the present invention, n in the above formula (1) (the same applies to the above formulas (2) and (3)) is an integer of 1 to 5, but the production of the acid fluoride of the above formula (1) is Since it is relatively easy, n is preferably 2 or 3, and since the effect of the method of the present invention is more remarkable, n is most preferably 2.
[0011]
The potassium salt of the above formula (3) is decarboxylated by heating to a temperature equal to or higher than the thermal decomposition temperature to produce the vinyl ether of the above formula (2). This thermal decomposition itself proceeds with or without a solvent, but it is necessary to carry out without a solvent in order to increase the yield. In this case, the term “solvent-free” means that the solvent component is not substantially contained, and the solvent component such as a solvent used in producing the potassium salt of the formula (3) is 5% by weight based on the potassium salt. Or less, preferably 3% by weight. The heating temperature may be any temperature at which the decarboxylation reaction proceeds, but is generally 120 to 300 ° C, preferably 150 to 250 ° C. It is desirable to prevent the generated vinyl ether from staying in the system during the thermal decomposition. If the thermal decomposition temperature is equal to or higher than the boiling point of vinyl ether at normal pressure, the vinyl ether should be promptly guided to the condenser and collected. Is preferred. Even when the thermal decomposition temperature is lower than the boiling point, it is preferable to remove vinyl ether from the system by a method such as reducing the pressure in the system or flowing an inert gas.
[0012]
The fluorinated vinyl ether produced by the method of the present invention has a high yield and a high conversion, so it contains almost no unreacted acid fluoride and has few side reactions, so that it can be obtained with high purity. Therefore, it has the feature that purification after the reaction is extremely easy.
As described above, the production method of the present invention is extremely useful because it can produce fluorinated vinyl ethers used as raw materials for ion exchange membranes for salt electrolysis and diaphragms for fuel cells in a high yield. Further, the vinyl ether produced by the method of the present invention is characterized by its high purity and easy purification as a subsequent step.
[0013]
Hereinafter, the present invention will be described based on examples.
[Example 1]
In a 200 ml three-necked flask, 51.2 g of the compound of n = 2 in the above formula (1) and 20 ml of ethylene glycol dimethyl ether were placed, and 14.5 g of potassium carbonate was added little by little while heating to 60 ° C. Further, stirring was continued at 60 ° C. for 30 minutes, and then the solvent was distilled off under reduced pressure to obtain a solid potassium salt containing KF. The conversion rate determined from 19 F-NMR was 96%. A distillation head and a condenser were attached to the flask, and the mixture was heated to 220 ° C. at normal pressure as it was, and the heating was continued at 220 ° C. until the formation of the liquid was stopped. Meanwhile, the potassium salt remained in a solid state. When 42.9 g of the recovered liquid was analyzed by gas chromatography, 84 wt% of vinyl ether of n = 2 in the above formula (2) was contained (yield 81%).
[0014]
[Example 2]
13.8 g of potassium carbonate and 20 ml of ethylene glycol dimethyl ether were placed in a 200 ml three-necked flask, and 51.2 g of the acid fluoride of the same formula (1) as in Example 1 was added dropwise at 40 ° C. with stirring. The reaction was further continued for 1 hour, and then the solvent was distilled off under reduced pressure to obtain a solid potassium salt containing KF. The conversion rate determined from 19 F-NMR was 93%. When pyrolysis was performed at 220 ° C. in the same manner as in Example 1 and 40.3 g of the recovered liquid was analyzed by gas chromatography, 91 wt% of vinyl ether of n = 2 in the above formula (2) was contained ( Yield 82%).
[Example 3]
The reaction was performed in the same manner as in Example 2 except that acetonitrile was used instead of ethylene glycol dimethyl ether. The conversion of potassium salt determined from 19 F-NMR was 96%. When pyrolysis was performed at 220 ° C. in the same manner as in Example 1 and 40.3 g of the recovered liquid was analyzed by gas chromatography, 92 wt% of vinyl ether of n = 2 in the above formula (2) was contained ( Yield 83%).
[0015]
[Comparative Example 1]
The reaction was performed in the same manner as in Example 2 except that 10.6 g of sodium carbonate was used instead of potassium carbonate. The sodium salt obtained by distilling off the solvent was a viscous liquid, and the conversion obtained from 19 F-NMR was 99%. Thermal decomposition proceeded at 200 ° C., and 41.2 g of the obtained liquid was analyzed by gas chromatography. As a result, 70 wt% of vinyl ether of n = 2 in the above formula (2) was contained (yield 65%). .
[Comparative Example 2]
10.6 g of sodium carbonate was placed in a 200 ml three-necked flask and heated to 220 ° C. In this, 51.2 g of acid fluorides of the said Formula (1) same as Example 1 was dripped little by little. The product was collected by a condenser, and the obtained 48.4 g of liquid was analyzed by gas chromatography. As a result, in the above formula (2), n = 2 vinyl ether was 20% by weight (yield 22%, selectivity 70). %) And 72% by weight (recovery rate: 68%) of unreacted acid fluoride.
[0016]
【The invention's effect】
The production method of the present invention can produce fluorinated vinyl ether used as a raw material for an ion exchange membrane for salt electrolysis and a membrane for a fuel cell in a high yield and is extremely useful. Further, the vinyl ether produced by the method of the present invention is characterized by its high purity and easy purification as a subsequent step.

Claims (4)

下記式(1):
Figure 0004817542
(式中、nは1〜5の整数である。)
で表される酸フルオライドを、カリウムを含むアルカリに反応させて、下記式(3):
Figure 0004817542
(式中、nは上記式(1)と同じ。)
で表されるカリウム塩に変換してから、無溶媒で上記式(3)で表わされるカリウム塩を熱分解して下記式(2):
Figure 0004817542
(式中、nは上記式(1)と同じ。)
で表されるフッ素化ビニルエーテルを製造することを特徴とするフッ素化ビニルエーテルの製造方法。
Following formula (1):
Figure 0004817542
(In the formula, n is an integer of 1 to 5.)
An acid fluoride represented by the following formula (3) is reacted with an alkali containing potassium:
Figure 0004817542
(In the formula, n is the same as the above formula (1).)
Is converted to a potassium salt represented by the following formula, and the potassium salt represented by the above formula (3) is pyrolyzed without solvent to the following formula (2):
Figure 0004817542
(In the formula, n is the same as the above formula (1).)
The manufacturing method of the fluorinated vinyl ether characterized by manufacturing the fluorinated vinyl ether represented by these.
前記一般式(3)で表わされるカリウム塩を固体状態で保って、熱分解を行うことを特徴とする請求項1に記載のフッ素化ビニルエーテルの製造方法。The method for producing a fluorinated vinyl ether according to claim 1, wherein the pyrolysis is carried out while maintaining the potassium salt represented by the general formula (3) in a solid state. 溶媒中で0〜80℃、又は無溶媒中で80〜120℃で、前記式(1)で表される酸フルオライドをカリウムを含むアルカリとで反応させることを特徴とする請求項1又は2に記載のフッ素化ビニルエーテルの製造方法。The acid fluoride represented by the formula (1) is reacted with an alkali containing potassium at 0 to 80 ° C in a solvent or at 80 to 120 ° C in the absence of a solvent. The manufacturing method of fluorinated vinyl ether of description. 熱分解を120〜300℃で行うことを特徴とする請求項1〜3のいずれか一項に記載のフッ素化ビニルエーテルの製造方法。Thermal decomposition is performed at 120-300 degreeC, The manufacturing method of the fluorinated vinyl ether as described in any one of Claims 1-3 characterized by the above-mentioned.
JP2001198038A 2001-06-29 2001-06-29 Production method of fluorinated vinyl ether Expired - Lifetime JP4817542B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001198038A JP4817542B2 (en) 2001-06-29 2001-06-29 Production method of fluorinated vinyl ether
CNB028127935A CN100338013C (en) 2001-06-29 2002-06-28 Process for producing fluorinated vinyl ether
PCT/JP2002/006576 WO2003002506A1 (en) 2001-06-29 2002-06-28 Process for producing fluorinated vinyl ether
US10/482,048 US7196235B2 (en) 2001-06-29 2002-06-28 Process for producing fluorinated vinyl ether

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001198038A JP4817542B2 (en) 2001-06-29 2001-06-29 Production method of fluorinated vinyl ether

Publications (2)

Publication Number Publication Date
JP2003012634A JP2003012634A (en) 2003-01-15
JP4817542B2 true JP4817542B2 (en) 2011-11-16

Family

ID=19035549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001198038A Expired - Lifetime JP4817542B2 (en) 2001-06-29 2001-06-29 Production method of fluorinated vinyl ether

Country Status (1)

Country Link
JP (1) JP4817542B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2006102953A (en) * 2003-07-02 2006-07-27 Асахи Гласс Компани, Лимитед (Jp) METHOD FOR PRODUCING FLUORIATED SULFONILFLUORIDE COMPOUND
CN100384817C (en) * 2003-07-04 2008-04-30 旭硝子株式会社 Process for production of fluorinated sulfonyl fluorides

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1034197A (en) * 1963-09-13 1966-06-29 Du Pont Sulphonic acid derivatives of fluorocarbon vinyl ethers, and polymers thereof
JPS5278827A (en) * 1975-12-26 1977-07-02 Asahi Glass Co Ltd Preparation of ester-group-containing fluorovinyl ethers
DE2708677C3 (en) * 1977-02-28 1982-04-22 Asahi Glass Co. Ltd., Tokyo Process for the preparation of alkoxycarbonyl perfluoroalkyl perfluorovinyl ethers
JPS5911581B2 (en) * 1979-12-21 1984-03-16 旭化成株式会社 Fluorinated vinyl ether compound and its production method

Also Published As

Publication number Publication date
JP2003012634A (en) 2003-01-15

Similar Documents

Publication Publication Date Title
US7176331B2 (en) Method of making fluorinated vinyl ethers
US20070088142A1 (en) Perfluorovinyl ether monomer having a sulfonamido group
US7196235B2 (en) Process for producing fluorinated vinyl ether
JP4817542B2 (en) Production method of fluorinated vinyl ether
US20040122256A1 (en) Perfluorvinyl ether monomer having sulfonamide group
JP4143810B2 (en) Method for producing fluorine-containing fluorosulfonylalkyl vinyl ether
JP4565837B2 (en) Method for producing perfluorovinylcarboxylic acid ester
JP4817541B2 (en) Method for producing fluorinated vinyl ether
JP2006232704A (en) New fluorosulfonyl group-containing compound
JP4013951B2 (en) Water-soluble fluorine-containing vinyl ether production method
JP4189631B2 (en) Method for producing fluorine-containing fluorosulfonylalkyl vinyl ether
WO2019176425A1 (en) Method for producing sulfonic-acid-group-containing monomer
JP4131917B2 (en) Production method of fluorinated monomer
EP1514868B1 (en) Process for producing fluorinated fluorosulfonylalkyl vinyl ether
WO2023179071A1 (en) Method for preparing high-purity fluorination derivative of ethylene carbonate
JP2001114750A (en) Method for producing perfluorovinyl ether sulfonate derivative
EP1325906B1 (en) Alkyl esters of 2-(2-fluorosulphonyl)-perfluoroethylenoxy-3-halogen-propionic acid
CN116425712A (en) Preparation method of 4-fluoro-1, 3-dioxolan-2-one
CN117736243A (en) Preparation method of ethoxy (pentafluoro) cyclotriphosphazene
JP2019156782A (en) Production method of sulfonate
CN112299960A (en) Synthesis method and application of bis (2,2, 2-trifluoroethyl) ether
KR20230108992A (en) Process for preparing perfluorinated sulfonyl fluoride vinyl ether
CN116986560A (en) Preparation method of difluoro sulfimide sodium salt and sodium ion battery
JP2021031398A (en) Method for producing fluorine-containing vinyl ether
WO2007142266A1 (en) Method for producing fluorinated fluorosulfonylalkyl vinyl ether

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20031204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4817542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term