JP2003011099A - Porous layer and device, and its manufacturing method - Google Patents
Porous layer and device, and its manufacturing methodInfo
- Publication number
- JP2003011099A JP2003011099A JP2001194859A JP2001194859A JP2003011099A JP 2003011099 A JP2003011099 A JP 2003011099A JP 2001194859 A JP2001194859 A JP 2001194859A JP 2001194859 A JP2001194859 A JP 2001194859A JP 2003011099 A JP2003011099 A JP 2003011099A
- Authority
- JP
- Japan
- Prior art keywords
- pores
- group
- pore
- porous layer
- pore group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Carbon And Carbon Compounds (AREA)
- Cold Cathode And The Manufacture (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、密度制御された細
孔を有する多孔質層と該多孔質層を備えたデバイス及び
その製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous layer having pores whose density is controlled, a device including the porous layer, and a method for producing the same.
【0002】[0002]
【従来の技術】微細構造を有するナノ構造体が、電気
的、光学的に特異な物性を示すことから、大きく注目さ
れるようになってきている。このような微細構造を有す
るナノ構造体は、真空マイクロデバイス、磁気デバイ
ス、発光デバイス、フォトニックデバイス、量子効果デ
バイス、化学センサー、磁気メモリ等への種々の分野へ
の応用が期待されている。微細構造を有するナノ構造体
として、アルミナ陽極酸化膜が古くから知られている。
アルミナ陽極酸化膜は、ナノ構造体を自己組織的に形成
することが可能であり、フォトリソグラフィー、電子線
露光、X線露光等の微細加工技術が不要である点で、工
業的に有利なナノ構造体と言える。2. Description of the Related Art Nanostructures having a fine structure have attracted a great deal of attention because they exhibit electrically and optically unique physical properties. Nanostructures having such a fine structure are expected to be applied to various fields such as vacuum microdevices, magnetic devices, light emitting devices, photonic devices, quantum effect devices, chemical sensors, and magnetic memories. An alumina anodic oxide film has long been known as a nanostructure having a fine structure.
The alumina anodic oxide film is capable of forming a nanostructure in a self-organizing manner, and does not require microfabrication techniques such as photolithography, electron beam exposure, and X-ray exposure, which is an industrially advantageous nanostructure. It can be called a structure.
【0003】従来から知られている陽極酸化技術によれ
ば、アルミナ陽極酸化膜は、アルミニウム板を硫酸、シ
ュウ酸等の酸性溶液中で陽極酸化することにより自己組
織的に形成する。図12に示すように、アルミニウム基
板1上に形成されたアルミナ陽極酸化膜2は、直径が5
〜200nm程度の細孔3を多数有し、この細孔3が規
則正しく配列した構造をもっている。このような規則性
が優れる配列構造は、アルミナ陽極酸化膜2がセル構造
25で形成されることに由来するものである。このよう
なセル構造25は、印加電圧等の陽極酸化条件で容易に
制御される。According to a conventionally known anodic oxidation technique, an alumina anodic oxide film is formed in a self-organizing manner by anodizing an aluminum plate in an acidic solution of sulfuric acid, oxalic acid or the like. As shown in FIG. 12, the alumina anodic oxide film 2 formed on the aluminum substrate 1 has a diameter of 5
It has a large number of pores 3 of about 200 nm and has a structure in which the pores 3 are regularly arranged. Such an array structure with excellent regularity is derived from the fact that the alumina anodic oxide film 2 is formed with the cell structure 25. Such a cell structure 25 is easily controlled by anodizing conditions such as applied voltage.
【0004】近年、アルミナ陽極酸化膜の細孔を精密に
制御する技術が特開平10−121292号公報に開示
された。特開平10−121292号公報によれば、複
数の突起を表面に備えた基板を陽極酸化するアルミニウ
ム基板に圧着することにより、アルミニウム基板表面に
窪みを形成し、この窪みを起点として陽極酸化する。こ
のようにして形成された細孔は、圧着する基板の窪みの
間隔、配列で精密に制御され、細孔の真円度、細孔径及
び間隔の均一性が向上できる点で大きなメリットがあ
る。Recently, a technique for precisely controlling the pores of the alumina anodic oxide film has been disclosed in Japanese Patent Laid-Open No. 121122/1998. According to Japanese Unexamined Patent Application Publication No. 10-112292, a substrate having a plurality of protrusions on its surface is pressure-bonded to an anodizing aluminum substrate to form a recess on the surface of the aluminum substrate, and the anodization is performed starting from the recess. The pores thus formed are precisely controlled by the spacing and arrangement of the depressions of the substrate to be pressure-bonded, and have a great advantage in that the roundness of the pores, the uniformity of the pore diameter and the spacing can be improved.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、特開平
10−121292号公報に開示される多孔質性陽極酸
化アルミナ膜は、細孔の間隔、配列を大面積で制御する
ことができないという課題があった。また、特開平10
−121292号公報に開示される技術は、デバイス設
計された細孔径、間隔を有する凸部を予め、母基板(モ
ールド)に形成する必要があり、このモールド形成に微
細加工技術を必要とするという課題があった。本発明
は、上記従来技術の課題を解決するためになされたもの
であり、ナノ構造からなる細孔を有し、細孔密度を簡
便、且つ、低コストに制御し、細孔制御の大面積化を可
能にした多孔質層と該多孔質層を備えたデバイス及びそ
の製造方法を提供することを目的とする。However, the porous anodized alumina film disclosed in Japanese Unexamined Patent Publication No. 10-112292 has a problem that the interval and arrangement of pores cannot be controlled in a large area. It was In addition, JP-A-10
According to the technique disclosed in Japanese Patent Laid-Open No. 112192, it is necessary to previously form a convex portion having a device-designed pore diameter and a space on a mother substrate (mold), and a fine processing technique is required for forming the mold. There were challenges. The present invention has been made in order to solve the above-mentioned problems of the prior art, having pores composed of nanostructures, controlling the pore density simply, and at low cost, a large area for pore control. It is an object of the present invention to provide a porous layer capable of being made into a material, a device including the porous layer, and a method for manufacturing the device.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
に、本願発明による多孔質層は、基本的に、好ましくは
ナノ構造を有する複数の細孔から構成される多孔質層で
あって、表面に開口を有し、ある深さで終端する第1の
細孔群と、前記第1の細孔群の一部と深さ方向に連続
し、少なくとも第1の細孔群とは孔径の異なる第2の細
孔群とを備えたことを特徴とする。To achieve the above object, the porous layer according to the present invention is basically a porous layer composed of a plurality of pores having a nanostructure, A first fine pore group having an opening on the surface and terminating at a certain depth, and a part of the first fine pore group and being continuous in the depth direction, at least the first fine pore group has a pore diameter of And a different second pore group.
【0007】すなわち、本願発明による多孔質層では、
ナノ構造を有する複数の細孔から構成される第1の細孔
群を所望の間隔で間引きして、該間引きされた細孔に対
して該細孔とは孔径の異なる第2の細孔群を連続させる
ことにより、制御された有効細孔密度構造を持つ多孔質
層を提供するようにしている。好ましくは、本願発明の
多孔質層において、第1の細孔群と第2の細孔群とは異
なるセル構造を有しており、セル構造が異なることによ
り、細孔径、細孔密度(細孔ピッチ)、細孔長さ等の形
状が異なる第1の細孔群と第2の細孔群が形成される。That is, in the porous layer according to the present invention,
A second group of pores having a pore size different from that of the thinned pores, the first pore group including a plurality of pores having a nanostructure being thinned out at a desired interval. Are provided continuously to provide a porous layer having a controlled effective pore density structure. Preferably, in the porous layer of the present invention, the first pore group and the second pore group have different cell structures, and since the cell structures are different, the pore diameter and pore density (fine A first pore group and a second pore group having different shapes such as pore pitch) and pore length are formed.
【0008】本願発明の多孔質層の一形態において、前
記第2の細孔群の孔径が前記第1の細孔群の孔径よりも
大きいものとされ、好ましくは、そこにおいて、前記第
2の細孔群が前記第1の細孔群に連続する形態が、一つ
の第1の細孔群の細孔に対して、複数の第2の細孔群の
細孔が連続する形態とされる。また、本願発明の多孔質
層の一形態において、前記第2の細孔群が前記多孔質層
の前記表面のもう一方の表面に開口を有するようにされ
る。In one form of the porous layer of the present invention, the pore diameter of the second pore group is larger than the pore diameter of the first pore group, and preferably, the second pore group is formed in the second pore group. The mode in which the group of pores is continuous with the first group of pores is a mode in which the pores of the plurality of second groups of pores are continuous with the pores of one first group of pores. . In one form of the porous layer of the present invention, the second group of pores has an opening on the other surface of the surface of the porous layer.
【0009】上記の多孔質層を製造する本発明による製
造方法は、基本的に、陽極酸化基体を陽極酸化して第1
の細孔群を形成する第1の工程と、前記第1の工程とは
異なる条件で陽極酸化して第1の細孔群の一部と連続す
る第2の細孔群を形成する工程とを含むことを特徴とす
る。そこにおいて、好ましくは、前記異なる条件が陽極
酸化における化成電圧であり、前記第2の工程における
化成電圧が前記第1の工程における化成電圧のほぼ整数
倍とされる。The production method according to the present invention for producing the above-mentioned porous layer is basically the first step of anodizing the anodized substrate.
And a step of forming a second pore group continuous with a part of the first pore group by anodizing under a condition different from that of the first step. It is characterized by including. Here, preferably, the different condition is a formation voltage in anodization, and the formation voltage in the second step is approximately an integral multiple of the formation voltage in the first step.
【0010】より具体的に説明する。本願発明による多
孔質層及びその製造方法は、2つに分類するとことがで
きる。まず、第1の多孔質層及びその製造方法を説明す
る。ここで、第1の細孔群を基板外側(実質的には、空
間的に露出する第1の表面)、第2の細孔群を基板内側
(実質的には、基板と接触する第2の表面)とする。第
1の細孔群は、好ましくはナノ構造体を形成する程度の
微細セル構造を有する。第2の細孔群を形成するセル構
造は、第1の細孔群を形成するセル構造よりも大きい。
従って、第2の細孔群の細孔は、第1の細孔群の細孔の
細孔径よりも大きく、細孔ピッチも大きい(細孔密度が
小さい)。後に説明する図2に示すように、第1の具体
的な構成として後に説明する多孔質層は、ナノ構造体を
有する第1の細孔群の細孔3が間引きされ、間引きされ
た第1の細孔群の細孔3aに第2の細孔群の細孔4が連
結する構成を有する。A more specific description will be given. The porous layer and the manufacturing method thereof according to the present invention can be classified into two types. First, the first porous layer and its manufacturing method will be described. Here, the first group of pores is outside the substrate (substantially, the first surface that is spatially exposed), and the second group of pores is inside the substrate (substantially, the second surface in contact with the substrate). Surface). The first group of pores preferably has a fine cell structure that forms a nanostructure. The cell structure forming the second group of pores is larger than the cell structure forming the first group of pores.
Therefore, the pores of the second pore group are larger than the pore diameters of the pores of the first pore group, and the pore pitch is also large (the pore density is small). As shown in FIG. 2 described later, in the porous layer described later as the first specific configuration, the pores 3 of the first pore group having the nanostructure are thinned, and the thinned first The pores 3a of the group of pores are connected to the pores 4 of the second group of pores.
【0011】上記の多孔質層の製造方法は、多段階陽極
酸化法(ここでは、2段階陽極酸化法のみを最も単純な
方法として説明する)を用いることを特徴とする。そこ
において、第2の細孔群を形成するための化成電圧を第
1の細孔群を形成するための化成電圧よりも大きくす
る。第1の細孔群を形成する化成電圧をV1、第2の細
孔群を形成する化成電圧をV2とすると、第1の細孔群
のセルサイズと第2の細孔群のセルサイズの比はV1/
V2となると共に、第1の細孔群の細孔のV2/V1毎
に第2の細孔群の細孔が形成される。例えば、V1=3
0V、V2=150Vであるとすれば、第1の細孔群の
セルサイズ:第2の細孔群のセルサイズ=1:5とな
り、第1の細孔群の細孔の5つ毎に第2の細孔群の細孔
が形成される。この時、第2の細孔群の細孔密度と第1
の細孔群の細孔密度との比は1:25となり、多孔質層
の第1の表面から第2の表面まで貫通する細孔をデバイ
スに用いることにより、第1の表面側に形成した細孔の
1/25を間引きでき、実質的な細孔密度の制御が可能
となる。以上のことから、第1の細孔群を形成する化成
電圧と第2の細孔群を形成する化成電圧とを制御するこ
とにより、デバイス設計に応じた細孔密度を有する多孔
質層が提供可能となる。The above method for producing a porous layer is characterized by using a multi-step anodizing method (here, only the two-step anodizing method will be described as the simplest method). There, the formation voltage for forming the second group of pores is made higher than the formation voltage for forming the first group of pores. When the formation voltage forming the first pore group is V1 and the formation voltage forming the second pore group is V2, the cell size of the first pore group and the cell size of the second pore group are Ratio is V1 /
In addition to V2, the pores of the second pore group are formed every V2 / V1 of the pores of the first pore group. For example, V1 = 3
If 0 V and V2 = 150 V, the cell size of the first pore group: the cell size of the second pore group = 1: 5, and for every five pores of the first pore group The pores of the second pore group are formed. At this time, the pore density of the second pore group and the first
The ratio to the pore density of the group of pores was 1:25, and the pores penetrating from the first surface to the second surface of the porous layer were used for the device to form on the first surface side. It is possible to thin out 1/25 of the pores, and it is possible to substantially control the pore density. From the above, by controlling the formation voltage forming the first pore group and the formation voltage forming the second pore group, a porous layer having a pore density according to the device design is provided. It will be possible.
【0012】次に、第2の多孔質層及びその製造方法を
説明する。この多孔質層は、上記した多孔質層の構成と
全く逆であり、第1の細孔群を形成するセル構造は、第
2の細孔群を形成するセル構造よりも大きい。第2の細
孔群を形成するセル構造は微細であり、実質的には、第
1の細孔群の一つ細孔から基板へ達する細孔集合体(第
2の細孔群)で構成される。後に説明する図9に示すよ
うに、第2の多孔質層は、ナノ構造体を有する第1の細
孔群の細孔3が間引きされ、間引きされた第1の細孔群
の細孔3aには、細孔集合体から構成される第2の細孔
群17が設けられ、第1の細孔群の細孔3aを基板へと
導く構成を有する。Next, the second porous layer and its manufacturing method will be described. This porous layer is completely opposite to the structure of the porous layer described above, and the cell structure forming the first pore group is larger than the cell structure forming the second pore group. The cell structure forming the second group of pores is fine, and is substantially composed of a group of pores (second group of pores) reaching from one of the pores of the first group of pores to the substrate. To be done. As shown in FIG. 9 to be described later, in the second porous layer, the pores 3 of the first pore group having the nanostructure are thinned out, and the thinned pores 3a of the first pore group 3a. Is provided with a second group of pores 17 composed of a group of pores, and has a configuration for guiding the pores 3a of the first group of pores to the substrate.
【0013】上記の多孔質層の製造方法は、第1の多孔
質層の製造方法と同様に、多段階陽極酸化法を用いるこ
とを特徴とする。そこにおいて、第2の細孔群を形成す
るための化成電圧は第1の細孔群を形成するための化成
電圧よりも小さくされる。第1の細孔群を形成する化成
電圧をV1、第2の細孔群を形成する化成電圧をV2と
すると、V1/V2毎に間引きされた、下地膜(基板)
まで貫通する細孔が形成される。例えば、V1=40
V、V2=20Vであるとすれば、図9のように、第2
の細孔群の細孔集合体17は、第1の細孔群の細孔3の
2個に1個の割合で形成される。The above-mentioned method for producing a porous layer is characterized by using a multi-step anodic oxidation method as in the method for producing the first porous layer. There, the formation voltage for forming the second group of pores is made smaller than the formation voltage for forming the first group of pores. Assuming that the formation voltage for forming the first group of pores is V1 and the formation voltage for forming the second group of pores is V2, the base film (substrate) thinned out every V1 / V2.
Pores that penetrate up to are formed. For example, V1 = 40
Assuming that V and V2 = 20V, as shown in FIG.
The pore aggregate 17 of the pore group is formed at a ratio of one to two of the pores 3 of the first pore group.
【0014】以上のように、本願発明の多孔質層は、第
1の細孔群、第2の細孔群の2つの異なる細孔構造から
構成され、第1の細孔群の一部と第2の細孔群とが連続
性を有することにより、細孔密度が制御されたナノ構造
を備えた多孔質層を提供することを可能にする。また、
このような多孔質層は、化成電圧変化を利用した多段階
陽極酸化法で容易、且つ、低コストに形成されると共
に、大面積なデバイスに提供可能となる。As described above, the porous layer of the present invention is composed of two different pore structures, that is, the first pore group and the second pore group, and constitutes a part of the first pore group. The continuity with the second group of pores makes it possible to provide a porous layer having a nanostructure with controlled pore density. Also,
Such a porous layer can be easily formed at low cost by a multi-step anodic oxidation method utilizing a change in formation voltage and can be provided to a large-area device.
【0015】従って、本発明は、また、電極上に上記し
たいずれかの多孔質層を備え、前記第2の細孔群と前記
第2の細孔群と連続する前記第1の細孔群の細孔に設け
られた電子放出部を更に備え、前記電子放出部が前記電
極と実質的に電気的に接続されていることを特徴とする
電子デバイスを開示し、また、電極上に上記したいずれ
か記載の多孔質層を備え、前記第2の細孔群と前記第2
の細孔群と連続する前記第1の細孔群の細孔に設けられ
た化学センサー部を更に備え、前記化学センサー部が前
記電極と実質的に電気的に接続されていることを特徴と
する化学センサーデバイスをも開示する。本発明によれ
ば、そのようなデバイスにおいて、低密度なナノ構造が
提供可能となり、それらデバイスの特性向上が可能とな
る。なお、本発明において「実質的に電気的に接続」と
は、例えば、薄い絶縁物等を介した接続であっても、動
作時に、トンネリング等により一方から他方への電荷の
移動、供給が実質的に行われるような接続態様をも含む
ものとして用いている。Therefore, the present invention also comprises any of the above-mentioned porous layers on the electrode, and the first group of pores which is continuous with the second group of pores and the second group of pores. Disclosed is an electronic device characterized by further comprising an electron emitting portion provided in the pores of the electronic device, wherein the electron emitting portion is substantially electrically connected to the electrode. The porous layer according to any one of claims 1 to 3, which comprises the second pore group and the second pore group.
Further comprising a chemical sensor portion provided in the pores of the first pore group continuous with the pore group of, and the chemical sensor portion is substantially electrically connected to the electrode. Also disclosed is a chemical sensor device that does. According to the present invention, in such a device, a low-density nanostructure can be provided, and the characteristics of those devices can be improved. Note that in the present invention, “substantially electrically connected” means that, for example, even if a connection is made through a thin insulator or the like, the movement and supply of charges from one side to the other side due to tunneling or the like is substantially performed during operation. It is used to include a connection mode that is typically performed.
【0016】[0016]
【発明の実施の形態】<第1の実施形態>第1の実施形
態に於いては、2段階陽極酸化法を用い、第1段階目の
陽極酸化(第1の細孔群)の化成電圧に対して、第2段
階目の陽極酸化(第2の細孔群)の化成電圧を増加する
ことにより、選択(間引き)した細孔構造の細孔を有す
る多孔質層の製造方法を説明する。図1〜3は、本実施
形態の多孔質層の製造方法を示す工程断面図である。BEST MODE FOR CARRYING OUT THE INVENTION <First Embodiment> In the first embodiment, the formation voltage of the first stage anodic oxidation (first pore group) is formed by using a two-stage anodic oxidation method. On the other hand, a method for producing a porous layer having pores of a selected (thinning) pore structure by increasing the formation voltage of the second stage anodic oxidation (second pore group) will be described. . 1 to 3 are process cross-sectional views showing the method for manufacturing the porous layer of the present embodiment.
【0017】図1は、第1段階目(第1の細孔群)の陽
極酸化後の多孔質層の工程断面図を示す。図1のよう
に、アルミニウム基板1(純度は99%以上が好まし
い)を陽極酸化し、アルミナ陽極酸化膜2と細孔群3を
形成した。アルミニウム基板1は、0.3Mシュウ酸中
(温度:16℃)、40Vの電圧を印加し、陽極酸化し
た。図2は、第2段階目(第2の細孔群)の陽極酸化後
の多孔質層の工程断面図を示す。図2のように、第1の
細孔群で形成された一部の細孔3aと接続する第2の細
孔群の細孔4を形成した。陽極酸化条件は、0.3Mリ
ン酸中(温度:0℃)、195Vであった。FIG. 1 is a process sectional view of the porous layer after the first stage (first pore group) anodizing. As shown in FIG. 1, an aluminum substrate 1 (preferably having a purity of 99% or more) was anodized to form an alumina anodic oxide film 2 and pore groups 3. The aluminum substrate 1 was anodized by applying a voltage of 40 V in 0.3 M oxalic acid (temperature: 16 ° C.). FIG. 2 is a process sectional view of the porous layer after the second stage (second pore group) after anodizing. As shown in FIG. 2, the pores 4 of the second pore group, which are connected to some of the pores 3a formed in the first pore group, were formed. The anodizing conditions were 195 V in 0.3 M phosphoric acid (temperature: 0 ° C.).
【0018】この時、選択率(間引きき率)K(第1の
細孔群の細孔のピッチ5/第2の細孔群の細孔のピッチ
6)は、第1段階目(第1の細孔群)の陽極酸化の印加
電圧:V1、第2段階目(第2の細孔群)の陽極酸化の
印加電圧:V2を用い、
K≒V1/V2
と表わすことができる。Kは整数に近似される。本実施
形態に於いては、
K=40/195≒1/5
と計算できる。即ち、アルミニウム基板を貫通する細孔
(第1の細孔群の細孔と第2の細孔群の細孔から形成さ
れる細孔)は、第1段階目の陽極酸化後に形成した細孔
の5つの内、4つを選択(間引き)する構造が形成でき
た。この時、アルミニウム基板を貫通する細孔の細孔密
度は、第1の細孔群の細孔の細孔密度の1/25((V
1/V2)2)に減少した。また、細孔径及びセルサイ
ズは、第1の細孔群の細孔のそれらの5倍(V2/V
1)に増加した。At this time, the selectivity (thinning rate) K (the pitch 5 of the pores of the first pore group / the pitch 6 of the pores of the second pore group) is at the first stage (first The applied voltage for anodic oxidation of the group of pores) is V1 and the applied voltage for the anodic oxidation of the second stage (second group of pores) is V2, which can be expressed as K≈V1 / V2. K is approximated to an integer. In the present embodiment, K = 40 / 195≈1 / 5 can be calculated. That is, the pores penetrating the aluminum substrate (the pores formed from the pores of the first pore group and the pores of the second pore group) are the pores formed after the first-stage anodic oxidation. It was possible to form a structure for selecting (thinning out) four out of five. At this time, the pore density of the pores penetrating the aluminum substrate is 1/25 ((V
1 / V2) 2 ). Also, the pore diameter and cell size are 5 times those of the pores of the first pore group (V2 / V
It increased to 1).
【0019】以上のように、第1段階目(第1の細孔
群)の陽極酸化の印加電圧、第2段階目(第2の細孔
群)の陽極酸化の印加電圧を制御することにより、デバ
イス設計に応じて選択(間引き)された第1の細孔群の
細孔に第2の細孔群の細孔が設けられ、陽極酸化膜2の
一方の表面からもう一方の表面へ貫通する貫通細孔の密
度が制御可能になった。As described above, the applied voltage for anodic oxidation in the first step (first pore group) and the applied voltage for anodic oxidation in the second step (second pore group) are controlled. , The pores of the second pore group are provided in the pores of the first pore group selected (thinned) according to the device design, and penetrate from one surface of the anodic oxide film 2 to the other surface. It has become possible to control the density of through-holes.
【0020】図3は、第2の細孔群の細孔4とアルミニ
ウム基板1をコンタクトさせるための電流回復処理後の
多孔質層の工程断面図を示す。図3のように、第2の細
孔群の細孔4の底部に樹状の微細孔7が形成した。この
ような微細孔7を形成することにより、選択された第1
の細孔群の細孔3と第2の細孔群の細孔4から形成され
る貫通細孔は、アルミニウム基板1とコンタクト可能に
なる。このような電流回復処理は、第2の0.3Mリン
酸中(温度:0℃)、195Vに対して、印加電圧を1
0Vずつ減少(195V→185V→175V→…→…
→…)することにより、達成された。アルミニウム基板
1とのコンタクトが不十分である場合、硫酸溶液中で数
時間放置することにより、微細孔7近傍の陽極酸化膜2
(アルミナ;Ar2O3)がエッチング除去され、アルミ
ニウム基板1に対するコンタクトが十分となる。このよ
うなコンタクトは、実質的にアルミニウム基板1と電気
的に接続されている必要がある。実質的な電気的接続と
は、細孔3底部のバリア層が完全に除去されていること
が好ましいが、導電性が確保されればバリア層が完全に
除去されていなくても構わないことを意味する。即ち、
バリア層が十分に薄い場合、トンネリングによる導電性
の確保が可能となるためである。FIG. 3 is a process cross-sectional view of the porous layer after the current recovery treatment for bringing the pores 4 of the second pore group into contact with the aluminum substrate 1. As shown in FIG. 3, dendritic micropores 7 were formed at the bottom of the pores 4 of the second pore group. By forming such fine holes 7, the selected first
The through-pores formed by the pores 3 of the pore group and the pores 4 of the second pore group can contact the aluminum substrate 1. The current recovery process is performed by applying an applied voltage of 1 to 195 V in the second 0.3 M phosphoric acid (temperature: 0 ° C.).
Decrease by 0V (195V → 185V → 175V → ... → ...
→…) When the contact with the aluminum substrate 1 is insufficient, the anodic oxide film 2 in the vicinity of the fine holes 7 is left by leaving it in the sulfuric acid solution for several hours.
(Alumina; Ar 2 O 3 ) is removed by etching, and the contact with the aluminum substrate 1 becomes sufficient. Such a contact needs to be substantially electrically connected to the aluminum substrate 1. The term “substantially electrical connection” means that the barrier layer at the bottom of the pores 3 is preferably completely removed, but the barrier layer may not be completely removed as long as the conductivity is secured. means. That is,
This is because if the barrier layer is sufficiently thin, conductivity can be secured by tunneling.
【0021】図4(a)〜(c)は、図1〜図3で形成
した貫通細孔を用い、貫通細孔に充填材料を充填した多
孔質層の工程断面図を示す。このような製造方法は、真
空マイクロデバイス、磁気デバイス、発光デバイス、フ
ォトニックデバイス、量子効果デバイス、化学センサ
ー、磁気メモリ等に応用可能である。本実施形態に於い
ては、化学センサーを代表例として説明する。図4
(a)は、図3のように形成したアルミニウム基板1上
の第1の細孔群の細孔3、第2の細孔群の細孔4、樹状
の微細孔7を設げた陽極酸化膜2を分離し、第1の細孔
群のアルミニウム基板と反対側の表面に電極材料8を設
けた多孔質層の工程断面図を示す。FIGS. 4A to 4C are process sectional views of a porous layer in which the through pores formed in FIGS. 1 to 3 are used and a filling material is filled in the through pores. Such a manufacturing method can be applied to vacuum microdevices, magnetic devices, light emitting devices, photonic devices, quantum effect devices, chemical sensors, magnetic memories, and the like. In this embodiment, a chemical sensor will be described as a typical example. Figure 4
(A) is anodization in which the pores 3 of the first pore group, the pores 4 of the second pore group, and the dendritic micropores 7 are provided on the aluminum substrate 1 formed as shown in FIG. The process sectional drawing of the porous layer which isolate | separated the membrane 2 and provided the electrode material 8 on the surface of the 1st pore group on the opposite side to the aluminum substrate is shown.
【0022】アルミニウム基板1からの陽極酸化膜2
は、アルミニウム基板1をエッチング除去するか、また
は、陽極酸化時の電位を逆点するかのどちらかの方法に
より、分離する。電極材料8は、スパッタ法、または、
蒸着法を用い、形成する。電極材料8の膜厚は、0.5
〜1μm程度が好ましく、膜厚が薄いと陽極酸化膜2表
面を十分に覆えず、一方、膜厚が厚いと薄膜を形成し難
いという問題が生じる。Anodized film 2 from aluminum substrate 1
Are separated by either removing the aluminum substrate 1 by etching or by reversing the potential during anodic oxidation. The electrode material 8 is formed by sputtering or
It is formed by using a vapor deposition method. The thickness of the electrode material 8 is 0.5
The thickness is preferably about 1 μm, and when the film thickness is thin, the surface of the anodic oxide film 2 cannot be sufficiently covered, while when the film thickness is thick, it is difficult to form a thin film.
【0023】図4(b)は、アルミニウム基板1側に形
成した樹状の微細孔7のバリア層を除去し、第2の細孔
群に接続した第1の細孔群の細孔に選択的にセンシング
材料10を充填した多孔質層の工程断面図を示す。樹状
の微細孔7のバリア層は、0.5〜1%程度の濃度の希
フッ酸を用いて除去した。このように樹状の微細孔7の
バリア層を除去することにより、開口部9が形成され、
第2の細孔群の細孔4に接続した第1の細孔群の細孔3
が選択的に空間的に露出することになる。引き続き、電
気的な堆積法、例えば、電気メッキ法により、空間的に
露出した第1の細孔群の細孔3に選択的に、センシング
材料10が充填される。In FIG. 4 (b), the barrier layer of the dendritic micropores 7 formed on the aluminum substrate 1 side is removed and selected as the pores of the first pore group connected to the second pore group. The process sectional drawing of the porous layer which is filled with the sensing material 10 is shown. The barrier layer of the dendritic micropores 7 was removed by using dilute hydrofluoric acid having a concentration of about 0.5 to 1%. In this way, by removing the barrier layer of the dendritic micropores 7, the opening 9 is formed,
The pores 3 of the first pore group connected to the pores 4 of the second pore group
Will be selectively exposed spatially. Subsequently, the sensing material 10 is selectively filled in the spatially exposed pores 3 of the first pore group by an electric deposition method, for example, an electroplating method.
【0024】図4(c)は、間引き(選択)された第1
の細孔群の細孔3に充填されたセンシング材料10の先
端を空間に露出した多孔質層の工程断面図を示す。ここ
では、第2の細孔群の陽極酸化膜部分を除去する。陽極
酸化膜の除去は、エッチング除去法、または、化学的・
機械的研磨(CMP;Chemical Mechan
ical Polishing)法を用いる。製造の容
易さの点では、エッチング法、具体的にはウエットエッ
チング法が好ましく、フッ酸、リン酸/塩酸混酸、水酸
化ナトリウム等を用いることができる。図4(c)のよ
うに、多孔質層は、第1段階目(第1の細孔群)の陽極
酸化の印加電圧、第2段階目(第2の細孔群)の陽極酸
化の印加電圧で決まる選択率(間引き率)でセンシング
材料を貫通細孔に充填される。本実施形態に於いては、
第1の細孔群の細孔の5個毎に充填された多孔質層が形
成された。このようにして製造されたナノ構造体を用い
た化学センサーは、従来の化学センサーと異なり、ナノ
構造体の密度が制御され、ナノ構造体に充填されたセン
シング材料が適度に散在した構成を有するため、化学セ
ンサーのセンシング特性が大きく向上した。FIG. 4C shows the first thinned (selected) first
7A to 7C are process cross-sectional views of a porous layer in which the tips of the sensing material 10 filled in the pores 3 of the pore group are exposed in the space. Here, the anodic oxide film portion of the second pore group is removed. The anodic oxide film can be removed by etching or chemical
Mechanical polishing (CMP; Chemical Mechanical)
The chemical polishing method is used. From the viewpoint of ease of production, an etching method, specifically a wet etching method is preferable, and hydrofluoric acid, phosphoric acid / hydrochloric acid mixed acid, sodium hydroxide or the like can be used. As shown in FIG. 4C, the porous layer is applied with an applied voltage for anodization in the first stage (first pore group), and for anodization in the second stage (second pore group). The penetrating pores are filled with the sensing material at a selectivity (thinning rate) determined by the voltage. In this embodiment,
A porous layer filled with every 5 pores of the first pore group was formed. Unlike conventional chemical sensors, the chemical sensor using the nanostructure manufactured in this manner has a structure in which the density of the nanostructure is controlled and the sensing material filled in the nanostructure is appropriately scattered. Therefore, the sensing characteristics of the chemical sensor are greatly improved.
【0025】<第2の実施形態>本実施形態では、第1
の実施形態で説明した2段階陽極酸化法を用い、ガラス
基板、シリコン基板等の支持基板を用いた場合の多孔質
層の製造方法を、図5及び図6を用いて説明する。この
ような構成の多孔質層を用いたデバイスは、現在、広く
デバイスに用いられる構造であり、種々の電子デバイ
ス、光デバイス等に広く応用可能である。本実施形態に
於いては、電子デバイスを代表例に挙げて説明する。<Second Embodiment> In the present embodiment, the first embodiment
A method of manufacturing a porous layer when a supporting substrate such as a glass substrate or a silicon substrate is used by using the two-step anodic oxidation method described in the above embodiment will be described with reference to FIGS. 5 and 6. The device using the porous layer having such a structure has a structure that is widely used at present, and is widely applicable to various electronic devices, optical devices, and the like. In this embodiment, an electronic device will be described as a typical example.
【0026】図5(a)は、第1段階目(第1の細孔
群)の陽極酸化後の多孔質層の工程断面図を示す。支持
基板11としては、ガラス基板、シリコン基板等が好ま
しい。ガラス基板を用いる場合、支持基板11上に電極
材料の形成が必要である。本実施形態に於いては、シリ
コン基板を用いた。シリコン基板11上に、スパッタ
法、蒸着法等でアルミニウム堆積膜12を形成する。ア
ルミニウム堆積膜12の膜厚は、2〜4μm程度が好ま
しく、膜厚が薄い場合は、細孔形成が阻害され、一方、
膜厚が厚い場合は、製造工程が厳しくなる。また、アル
ミニウム堆積膜12の表面はフラットであることが不可
欠であり、目視検査に於いては、鏡面であることが好ま
しい。FIG. 5A is a process sectional view of the porous layer after the first stage (first pore group) anodizing. The support substrate 11 is preferably a glass substrate, a silicon substrate or the like. When using a glass substrate, it is necessary to form an electrode material on the support substrate 11. In this embodiment, a silicon substrate is used. An aluminum deposition film 12 is formed on the silicon substrate 11 by a sputtering method, a vapor deposition method or the like. The film thickness of the aluminum deposition film 12 is preferably about 2 to 4 μm, and when the film thickness is thin, pore formation is hindered, while
If the film thickness is large, the manufacturing process becomes difficult. Further, it is essential that the surface of the aluminum deposited film 12 is flat, and it is preferable that the surface is a mirror surface in the visual inspection.
【0027】このようにして形成されたアルミニウム堆
積膜12に、図1と同様に、第1段階目(第1の細孔
群)の陽極酸化を行った。陽極酸化条件は、0.3Mシ
ュウ酸、温度:16℃、印加電圧:40Vであった。図
5(a)のように、シリコン基板11上のアルミニウム
堆積膜12の表面部分に陽極酸化膜2が形成すると共
に、第1の細孔群の細孔3が形成した。The aluminum deposition film 12 thus formed was subjected to the first stage (first pore group) anodization in the same manner as in FIG. The anodizing conditions were 0.3 M oxalic acid, temperature: 16 ° C., and applied voltage: 40V. As shown in FIG. 5A, the anodic oxide film 2 was formed on the surface portion of the aluminum deposition film 12 on the silicon substrate 11, and the pores 3 of the first pore group were formed.
【0028】図5(b)は、第2段階目(第2の細孔
群)の陽極酸化後の多孔質層の工程断面図を示す。図2
の場合と同様に、第1の細孔群で形成された一部の細孔
3aと接続する第2の細孔群の細孔4を形成した。陽極
酸化条件は、0.05Mシュウ酸、温度:16℃、印加
電圧:80Vであった。図5(b)に示すように、第2
の細孔群の細孔4の底部(シリコン基板11側の細孔底
部)にはバリア層13が存在する。FIG. 5B is a process sectional view of the porous layer after the second stage (second pore group) after anodic oxidation. Figure 2
In the same manner as in the above case, the pores 4 of the second pore group, which are connected to the partial pores 3a formed in the first pore group, were formed. The anodizing conditions were 0.05 M oxalic acid, temperature: 16 ° C., and applied voltage: 80V. As shown in FIG. 5B, the second
The barrier layer 13 exists at the bottom of the pores 4 of the group of pores (the bottom of the pores on the silicon substrate 11 side).
【0029】図6(a)は、第2の細孔群の細孔4の底
部のバリア層13を除去した後の工程断面図を示す。シ
リコン基板上のバリア層13は、陽極酸化を図5(b)
に引き続き行うことにより、容易に除去可能であった。
このように、陽極酸化時間を制御することにより、第2
の細孔群の細孔4の底部のバリア層13が除去され、シ
リコン基板の露出部分14が形成した。図6(a)に示
すように、シリコン基板11の露出部分14を有する細
孔は、選択(間引き)されたものであり、このように選
択(間引き)された細孔を用いることにより、細孔密度
を制御した多孔質層を提供できるようになる。FIG. 6 (a) is a process sectional view after removing the barrier layer 13 at the bottom of the pores 4 of the second pore group. The barrier layer 13 on the silicon substrate is anodized as shown in FIG.
It was possible to easily remove it by carrying out the subsequent steps.
In this way, by controlling the anodization time, the second
The barrier layer 13 at the bottom of the pores 4 of the group of pores was removed to form the exposed portion 14 of the silicon substrate. As shown in FIG. 6A, the pores having the exposed portion 14 of the silicon substrate 11 are those selected (thinned), and by using the pores thus selected (thinned), It becomes possible to provide a porous layer having a controlled pore density.
【0030】図6(b)は、図6(a)で選択(間引
き)された細孔に充填材料15を充填した後の工程断面
図を示す。選択(間引き)された細孔に充填材料15を
充填する方法は、電気化学的堆積、即ち、電気メッキが
好ましい。図6(b)のように、充填材料15は、電気
メッキにより、シリコン基板11が露出した細孔に選択
的に充填され、結果的に第1の細孔群の細孔が間引きさ
れた。このように、本願発明の多孔質層は、アルミニウ
ム基板だけではなく、シリコン基板、ガラス基板上にも
形成可能であり、電子デバイス、光デバイス等の種々の
デバイスに搭載可能であることが確認できた。FIG. 6B is a process sectional view after the filling material 15 is filled in the pores selected (thinned) in FIG. 6A. The method of filling the selected (thinned) pores with the filling material 15 is preferably electrochemical deposition, that is, electroplating. As shown in FIG. 6B, the filling material 15 was selectively filled in the exposed pores of the silicon substrate 11 by electroplating, and as a result, the pores of the first pore group were thinned out. Thus, it can be confirmed that the porous layer of the present invention can be formed not only on the aluminum substrate but also on the silicon substrate and the glass substrate, and can be mounted on various devices such as electronic devices and optical devices. It was
【0031】<第3の実施形態>本実施形態では、第2
の実施形態と同様に、シリコン基板等の支持基板11を
用いた場合の多孔質層の製造方法を図7を用いて説明す
る。本実施形態に於いては、真空マイクロデバイスを代
表例に挙げて説明する。特に、低電圧駆動可能な電子源
の製造方法の一例として、カーボンナノチューブ電子源
の製造方法を説明する。但し、本願発明の電子源材料と
しては、このような炭素材料に限定され得るものではな
い。<Third Embodiment> In this embodiment, the second
Similar to the embodiment described above, a method of manufacturing the porous layer when the supporting substrate 11 such as a silicon substrate is used will be described with reference to FIG. 7. In this embodiment, a vacuum microdevice will be described as a typical example. In particular, as an example of a method of manufacturing an electron source that can be driven at a low voltage, a method of manufacturing a carbon nanotube electron source will be described. However, the electron source material of the present invention is not limited to such a carbon material.
【0032】図7(a)は、図6(a)と同様にして2
段階陽極酸化法で支持基板11上に細孔構造を形成し、
その細孔構造を鋳型としてカーボンナノチューブ16を
形成した後の工程断面図を示す。カーボンナノチューブ
16は、CVD(ChemicaI Vapor De
position)法で形成され得るものである。この
ようなカーボンナノチューブ16の形成方法としては、
第2の細孔群の細孔4の底部の支持基板露出部14に金
属触媒を配設し、この金属触媒を成長起点として、カー
ボンナノチューブを形成する方法(特許第300885
2号のカーボンナノチューブ形成方法を参照)もある。
図7(a)のように、カーボンナノチューブ16は、第
1の細孔群の細孔3、及び第1の細孔群の細孔3と第2
の細孔群の細孔4が接続して形成した貫通細孔のそれぞ
れに形成された。FIG. 7 (a) is similar to FIG. 6 (a).
Forming a pore structure on the supporting substrate 11 by a stepwise anodic oxidation method,
A process cross-sectional view after forming the carbon nanotubes 16 using the pore structure as a template is shown. The carbon nanotubes 16 are formed by CVD (Chemica I Vapor De).
It can be formed by the position method. As a method of forming such a carbon nanotube 16,
A method of disposing a metal catalyst in the exposed portion 14 of the support substrate at the bottom of the pores 4 of the second pore group and forming carbon nanotubes using this metal catalyst as a growth starting point (Patent No. 300885).
(See No. 2 carbon nanotube formation method).
As shown in FIG. 7A, the carbon nanotubes 16 have pores 3 of the first pore group, and pores 3 and 2 of the first pore group.
Formed in each of the through pores formed by connecting the pores 4 of the pore group.
【0033】図7(b)は、選択(間引き)された細孔
の先端を露出した後の工程断面図を示す。陽極酸化膜2
からのカーボンナノチューブ16の先端露出は、ウエッ
トエッチング法を用いた。陽極酸化膜2除去のためのエ
ッチングとしては、フッ酸、リン酸、水酸化ナトリウ
ム、リン酸/塩酸等が用いられる。このようなウエット
エッチングを行うと、図7(b)のように、第1の細孔
群の細孔3と第2の細孔群の細孔4が接続して形成した
貫通細孔以外の細孔3に形成したカーボンナノチューブ
16aは、陽極酸化膜2のエッチングと共に、リフトオ
フされ、貫通細孔に形成したカーボンナノチューブ16
のみが残存する。結果的に、形成するカーボンナノチュ
ーブ16は間引きされ、カーボンナノチューブ16の密
度は減少する。FIG. 7B is a process sectional view after exposing the tips of the selected (thinned) pores. Anodized film 2
Wet etching was used to expose the tips of the carbon nanotubes 16 from. As the etching for removing the anodic oxide film 2, hydrofluoric acid, phosphoric acid, sodium hydroxide, phosphoric acid / hydrochloric acid or the like is used. When such wet etching is performed, as shown in FIG. 7B, except for the through pores formed by connecting the pores 3 of the first pore group and the pores 4 of the second pore group. The carbon nanotubes 16a formed in the pores 3 are lifted off together with the etching of the anodic oxide film 2, and the carbon nanotubes 16 formed in the through pores.
Only remains. As a result, the formed carbon nanotubes 16 are thinned and the density of the carbon nanotubes 16 is reduced.
【0034】但し、図7(a)で説明した細孔構造を鋳
型とするCVD法によるカーボンナノチューブの製造方
法の場合、細孔3及び4の内壁だけではなく、陽極酸化
膜2表面に対しても炭素膜が被覆されるため、陽極酸化
膜2表面の炭素膜を除去する必要がある。陽極酸化膜2
表面の炭素膜は、RIE(Reactive IonE
tching)を用いた酸素プラズマエッチングで容易
に除去可能である。以上のように、2段階陽極酸化法を
用いることにより、カーボンナノチューブの密度が低減
し、カーボンナノチューブの先端を露出することによ
り、電界集中を高め、低電圧エミッションを可能にする
ことができた。However, in the case of the method for producing carbon nanotubes by the CVD method using the pore structure as a template as described in FIG. 7A, not only the inner walls of the pores 3 and 4 but also the surface of the anodic oxide film 2 Since the carbon film is also covered, it is necessary to remove the carbon film on the surface of the anodic oxide film 2. Anodized film 2
The carbon film on the surface is RIE (Reactive IonE).
It can be easily removed by oxygen plasma etching using tching). As described above, by using the two-step anodic oxidation method, the density of the carbon nanotubes was reduced, and by exposing the tips of the carbon nanotubes, it was possible to enhance the electric field concentration and enable low voltage emission.
【0035】<第4の実施形態>第4の実施形態に於い
ては、別の2段階陽極酸化法を用いた多孔質層の製造方
法を説明する。第1の実施形態と異なる点は、第1段階
目の陽極酸化(第1の細孔群)の化成電圧に対して、第
2段階目の陽極酸化(第2の細孔群)の化成電圧を減少
することにより、選択(間引き)した細孔構造の細孔を
有する多孔質層を製造する。図8〜9は、本実施形態の
多孔質層の製造方法を示す工程断面図である。<Fourth Embodiment> In the fourth embodiment, a method of manufacturing a porous layer using another two-step anodic oxidation method will be described. The difference from the first embodiment is that the formation voltage of the second stage anodization (second pore group) is different from the formation voltage of the first stage anodization (first pore group). By reducing the value of (3) to produce a porous layer having pores of a selected (thinning) pore structure. 8 to 9 are process cross-sectional views showing the method for manufacturing the porous layer of the present embodiment.
【0036】図8は、図1と同様に、アルミニウム基板
1に対して、第1段階目の陽極酸化を行った後の工程断
面図を示す。陽極酸化条件は、0.3Mシュウ酸、温
度:16℃、印加電圧:40Vであった。図8のよう
に、アルミニウム基板1上に陽極酸化膜2が形成すると
共に、第1の細孔群の細孔3が形成した。図9は、第2
段階目の陽極酸化を行った後の工程断面図を示す。陽極
酸化条件は、0.3Mシュウ酸、温度:16℃、印加電
圧:20Vであり、第1の細孔群の細孔3aを間引きし
た第2の細孔群の細孔(細孔集合体)17が形成した。Similar to FIG. 1, FIG. 8 is a process sectional view after the first stage anodic oxidation is performed on the aluminum substrate 1. The anodizing conditions were 0.3 M oxalic acid, temperature: 16 ° C., and applied voltage: 40V. As shown in FIG. 8, the anodic oxide film 2 was formed on the aluminum substrate 1, and the pores 3 of the first pore group were formed. FIG. 9 shows the second
The process sectional drawing after performing the anodization of the step is shown. The anodic oxidation conditions were 0.3 M oxalic acid, temperature: 16 ° C., applied voltage: 20 V, and the pores of the second pore group (pore assembly) in which the pores 3a of the first pore group were thinned out. ) 17 formed.
【0037】この時、選択率(間引き率)K(第1の細
孔群の細孔のピッチ18/第2の細孔群の細孔集合体が
形成した細孔のピッチ19)は、第1段階目(第1の細
孔群)の陽極酸化の印加電圧:V1、第2段階目(第2
の細孔群)の陽極酸化の印加電圧:V2を用い、
K≒V2/V1
となり、本実施形態に於いては、1/2となる。即ち、
第1の細孔群の細孔の2つに1つが第2の細孔群の細孔
(細孔集合体)17が形成する。この時、陽極酸化膜2
を貫通する細孔の細孔密度は、第1の細孔群の細孔の1
/4に減少した。At this time, the selectivity (thinning rate) K (pitch 18 of the pores of the first pore group / pitch 19 of the pores formed by the pore aggregate of the second pore group) is Applied voltage for anodization in the first stage (first pore group): V1, second stage (second stage)
Using an applied voltage of V2 for anodic oxidation of the group of pores), K≈V2 / V1, and in the present embodiment, it becomes 1/2. That is,
One of the two pores of the first pore group forms the pore (pore assembly) 17 of the second pore group. At this time, the anodic oxide film 2
The pore density of the pores penetrating through is 1 of the pores of the first pore group.
It decreased to / 4.
【0038】以上のように、第1の実施形態と同様に、
第1段階目(第1の細孔群)の陽極酸化の印加電圧、第
2段階目(第2の細孔群)の陽極酸化の印加電圧を制御
することにより、デバイス設計に応じて選択(間引き)
された第1の細孔群の細孔に第2の細孔群の細孔(細孔
集合体)が設けられ、陽極酸化膜2の一方の表面からも
う一方の表面へ貫通する貫通細孔の密度が制御可能にな
った。As described above, as in the first embodiment,
It is selected according to the device design by controlling the applied voltage for anodic oxidation in the first stage (first pore group) and the applied voltage for anodic oxidation in the second stage (second pore group) ( Thinning)
Through pores in which the pores (pore assembly) of the second pore group are provided in the pores of the first pore group, and which penetrate from one surface of the anodic oxide film 2 to the other surface. The density of can be controlled.
【0039】次に、このような構成の多孔質層をデバイ
スに応用するための代表例を図10、図11で説明す
る。図10(a)〜(c)は、アルミニウム基板を用い
た場合の代表例(化学センサーに応用可能な構成)であ
り、図11(a)〜(c)は、ガラス基板、シリコン基
板等の支持基板11を用いた場合の代表例(電子源に応
用可能な構成)である。Next, a typical example of applying the porous layer having such a structure to a device will be described with reference to FIGS. 10A to 10C are typical examples (configurations applicable to chemical sensors) when an aluminum substrate is used, and FIGS. 11A to 11C show a glass substrate, a silicon substrate, and the like. This is a typical example (a configuration applicable to an electron source) when the supporting substrate 11 is used.
【0040】図10(a)は、図9で示した多孔質層に
対して、アルミニウム基板1を除去し、電極20を設け
た後の工程断面図を示す。アルミニウム基板1は、リン
酸/硝酸/酢酸の混酸でエッチング除去した。電極20
は、スパッタ法、蒸着法で堆積した。図10(b)は、
第2の細孔群の細孔集合体17のバリア層を除去後、間
引きされた細孔にセンシング材料22を充填した後の工
程断面図を示す。バリア層はフッ酸で除去し、細孔集合
体17に開口部21を設けた。図10(c)は、充填し
たセンシング材料22の先端を露出した後の工程断面図
を示す。陽極酸化膜2は、ウエットエッチング法、また
は、化学的・機械的研磨法を用いて除去した。陽極酸化
膜2を除去することにより、第2の細孔群の細孔集合体
が形成した第1の細孔群の細孔にのみ充填されたセンシ
ング材料22の先端が露出した。FIG. 10A is a sectional view showing the steps after the aluminum substrate 1 is removed and the electrodes 20 are provided on the porous layer shown in FIG. The aluminum substrate 1 was removed by etching with a mixed acid of phosphoric acid / nitric acid / acetic acid. Electrode 20
Was deposited by sputtering or vapor deposition. FIG. 10 (b) shows
FIG. 11 is a process cross-sectional view after removing the barrier layer of the pore assembly 17 of the second pore group and filling the thinned pores with the sensing material 22. The barrier layer was removed with hydrofluoric acid, and the opening 21 was provided in the pore assembly 17. FIG. 10C is a process cross-sectional view after exposing the tip of the filled sensing material 22. The anodic oxide film 2 was removed by a wet etching method or a chemical / mechanical polishing method. By removing the anodic oxide film 2, the tip of the sensing material 22 filled only in the pores of the first pore group formed by the pore aggregate of the second pore group was exposed.
【0041】次に、もう一つのデバイスの応用例を説明
する。図11(a)は、第2の実施形態で説明したよう
に、シリコン基板11上にアルミニウム堆積膜2を形成
し、図8及び図9のように第1及び第2段階目の陽極酸
化を施し、CVD法で炭素膜16を細孔3、17の内壁
に被着した後の工程断面図を示す。アルミニウム堆積膜
2は、シリコン基板11上にスパッタ法で2μm形成し
た。また、第1段階目の陽極酸化は0.3Mシュウ酸中
(温度:16℃)、40Vで行い、第2段階目の陽極酸
化は0.3Mシュウ酸中(温度:16℃)、20Vで行
った。炭素膜(カーボンナノチューブ)は、石英反応管
中、800℃、プロピレン(窒素中2.5%)を3時間
流通させることで形成した。Next, an application example of another device will be described. As shown in FIG. 11A, as described in the second embodiment, the aluminum deposition film 2 is formed on the silicon substrate 11, and the first and second stages of anodic oxidation are performed as shown in FIGS. The process cross-sectional view after applying and depositing the carbon film 16 on the inner walls of the pores 3 and 17 by the CVD method is shown. The aluminum deposition film 2 was formed on the silicon substrate 11 to have a thickness of 2 μm by a sputtering method. The first-stage anodic oxidation was performed in 0.3M oxalic acid (temperature: 16 ° C) at 40V, and the second-stage anodic oxidation was performed in 0.3M oxalic acid (temperature: 16 ° C) at 20V. went. The carbon film (carbon nanotube) was formed by flowing propylene (2.5% in nitrogen) at 800 ° C. for 3 hours in a quartz reaction tube.
【0042】図11(b)は、カーボンナノチューブ1
6を空間に露出した後の工程断面図である。陽極酸化膜
2をフッ酸等でエッチング除去することにより、カーボ
ンナノチューブの先端が露出する。この時、露出したカ
ーボンナノチューブは、第1の細孔群の細孔3と第2の
細孔群の細孔集合体17からなる貫通細孔に形成するカ
ーボンナノチューブ23、及び第1の細孔群単独の細孔
に形成されるカーボンナノチューブ24とからなるもの
の、カーボンナノチューブ24は電気的にフローティン
グしているため、実質的にカーボンナノチューブ23の
みがデバイス的に活性である。従って、結果的に第1段
階目の陽極酸化で形成した細孔は間引きされ、細孔密度
(カーボンナノチューブ密度)は低減された。但し、カ
ーボンナノチューブ24がデバイス構造的に問題がある
場合、陽極酸化膜2のオーバーエッチングにより、リフ
トオフし、不要なカーボンナノチューブ24を除去する
ことが必要である。FIG. 11B shows the carbon nanotube 1.
6 is a process cross-sectional view after exposing 6 to the space. FIG. By etching away the anodic oxide film 2 with hydrofluoric acid or the like, the tips of the carbon nanotubes are exposed. At this time, the exposed carbon nanotubes are the carbon nanotubes 23 formed in the through-pores composed of the pores 3 of the first pore group and the pore aggregates 17 of the second pore group, and the first pores. Although composed of the carbon nanotubes 24 formed in the pores of the group alone, the carbon nanotubes 24 are electrically floating, so that substantially only the carbon nanotubes 23 are active as devices. Therefore, as a result, the pores formed by the first step of anodic oxidation were thinned, and the pore density (carbon nanotube density) was reduced. However, if the carbon nanotubes 24 have a device structural problem, it is necessary to lift off by removing the unnecessary carbon nanotubes 24 by overetching the anodic oxide film 2.
【0043】以上のように、2段階陽極酸化法を用い、
第2段階目の陽極酸化の化成電圧を第1段階目の陽極酸
化の化成電圧よりも小さくすることにより、第1段階目
の陽極酸化で形成した細孔が間引きされ、実質的に形成
するカーボンナノチューブ電子源の密度が低減されるこ
とにより、電界集中が高められ、低電圧エミッションが
可能な電子源が提供できた。As described above, using the two-step anodic oxidation method,
By making the formation voltage of the second-stage anodic oxidation smaller than the formation voltage of the first-stage anodic oxidation, the pores formed by the first-stage anodic oxidation are thinned to substantially form carbon. By reducing the density of the nanotube electron source, the concentration of the electric field is enhanced, and an electron source capable of low voltage emission can be provided.
【0044】[0044]
【発明の効果】以上のように、本願発明の多孔質層は、
ナノ構造を有する第1の細孔群を所望の間隔で間引きす
ることによって得られるため、簡便な構造を有する多孔
質層でありながら、所望の制御された細孔密度のものを
容易に得ることができる。また、本願発明による多孔質
層の製造方法は、多段階陽極酸化に於ける化成電圧を変
化させることに基づくため、大面積な多孔質層の形成を
可能とし、同時に、微細加工可能な、高価な製造装置が
一切不要となった。更に、本願発明による多孔質層は、
低密度のナノ構造体を有するデバイスに有利な構造を提
供するものであり、特に、化学センサー、電子源のデバ
イス特性向上を可能にした。As described above, the porous layer of the present invention is
Since it is obtained by thinning out the first pore group having a nanostructure at a desired interval, it is possible to easily obtain a porous layer having a simple structure and a desired controlled pore density. You can Further, since the method for producing a porous layer according to the present invention is based on changing the formation voltage in multi-step anodization, it is possible to form a large-area porous layer, and at the same time, it is possible to perform fine processing and is expensive. No more manufacturing equipment is needed. Further, the porous layer according to the present invention,
The present invention provides an advantageous structure for a device having a low-density nanostructure, and in particular, enables improvement of device characteristics of chemical sensors and electron sources.
【図1】第1の実施形態に於ける多孔質層の工程断面図
を示す。FIG. 1 is a process cross-sectional view of a porous layer according to a first embodiment.
【図2】第1の実施形態に於ける多孔質層の工程断面図
を示す。FIG. 2 is a process cross-sectional view of a porous layer according to the first embodiment.
【図3】第1の実施形態に於ける多孔質層の工程断面図
を示す。FIG. 3 is a process sectional view of a porous layer in the first embodiment.
【図4】第1の実施形態に於ける多孔質層を用いた化学
センサーの工程断面図を示す。FIG. 4 is a process cross-sectional view of the chemical sensor using the porous layer according to the first embodiment.
【図5】第2の実施形態に於ける多孔質層を用いた電子
デバイスの工程断面図を示す。5A to 5C are process cross-sectional views of an electronic device using a porous layer according to the second embodiment.
【図6】第2の実施形態に於ける多孔質層を用いた電子
デバイスの工程断面図を示す。FIG. 6 is a process sectional view of an electronic device using a porous layer according to a second embodiment.
【図7】第3の実施形態に於ける多孔質層を用いたカー
ボンナノチューブ電子源の工程断面図を示す。FIG. 7 is a process cross-sectional view of a carbon nanotube electron source using a porous layer according to a third embodiment.
【図8】第4の実施形態に於ける多孔質層の工程断面図
を示す。FIG. 8 is a process cross-sectional view of a porous layer in the fourth embodiment.
【図9】第4の実施形態に於ける多孔質層の工程断面図
を示す。FIG. 9 is a process sectional view of a porous layer in the fourth embodiment.
【図10】第4の実施形態に於ける多孔質層を用いた化
学センサーの工程断面図を示す。FIG. 10 is a process cross-sectional view of the chemical sensor using the porous layer according to the fourth embodiment.
【図11】第4の実施形態に於ける多孔質層を用いたカ
ーボンナノチューブ電子源の工程断面図を示す。FIG. 11 is a process sectional view of a carbon nanotube electron source using a porous layer according to a fourth embodiment.
【図12】アルミナ陽極酸化膜の斜視図を示す。FIG. 12 shows a perspective view of an alumina anodic oxide film.
1 アルミニウム基板
2 陽極酸化膜
3、3a 第1の細孔群の細孔
4 第2の細孔群の細孔
5 第1の細孔群の細孔のピッチ
6 第2の細孔群の細孔のピッチ
7 微細孔
8 電極
9 第2の細孔群の細孔底部の開口部
10 センシング材料
11 支持基板
12 アルミニウム堆積膜
13 第2の細孔群の細孔のバリア層
14 第2の細孔群の細孔底部のコンタクト部
15 充填材料
16 カーボンナノチューブ
17 細孔集合体
18 第1の細孔群の細孔のピッチ
19 第2の細孔群の細孔集合体が形成した第1の細孔
群の細孔のピッチ
20 電極
21 細孔集合体底部の開口部
22 センシング材料
23 下地層とコンタクトしたカーボンナノチューブ
24 フローティングしたカーボンナノチューブDESCRIPTION OF SYMBOLS 1 Aluminum substrate 2 Anodized films 3 and 3a Fine pores of the first fine pore group 4 Fine pores of the second fine pore group 5 Pitch of fine pores of the first fine pore group 6 Fine pores of the second fine pore group Pore pitch 7 Micropores 8 Electrode 9 Openings at the bottom of the pores of the second pore group 10 Sensing material 11 Support substrate 12 Aluminum deposited film 13 Barrier layer 14 of the pores of the second pore group 14 Second fine pores Contact part at the bottom of the pores of the pore group 15 Filling material 16 Carbon nanotube 17 Pore aggregate 18 Pitch of the pores of the first pore group 19 First formed by the pore aggregate of the second pore group Pitch of pores in pore group 20 Electrode 21 Opening at bottom of pore assembly 22 Sensing material 23 Carbon nanotube contacting with underlying layer 24 Floating carbon nanotube
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C01B 31/02 101 C01B 31/02 101F (72)発明者 浦山 雅夫 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 益田 秀樹 東京都八王子市別所2−13−2−510 Fターム(参考) 4G046 CB01 CB03 CC06 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) // C01B 31/02 101 C01B 31/02 101F (72) Inventor Masao Urayama 22 Nagaikecho, Abeno-ku, Osaka-shi, Osaka No. 22 Inside Sharp Corporation (72) Inventor Hideki Masuda 2-13-2-510 Bessho, Hachioji City, Tokyo (reference) 4G046 CB01 CB03 CC06
Claims (8)
って、第1の表面に開口を有し、ある深さで終端する第
1の細孔群と、前記第1の細孔群の一部と深さ方向に連
続し、少なくとも第1の細孔群とは孔径の異なる第2の
細孔群とを備えたことを特徴とする多孔質層。1. A porous layer composed of a plurality of pores, the first pore group having an opening on a first surface and terminating at a certain depth, and the first pore. A porous layer comprising: a second group of pores, which is continuous with a part of the group in the depth direction and has a pore size different from at least the first group of pores.
孔群の孔径よりも大きいことを特徴とする請求項1記載
の多孔質層。2. The porous layer according to claim 1, wherein the pore size of the second pore group is larger than the pore size of the first pore group.
連続する形態が、一つの第1の細孔群の細孔に対して、
複数の第2の細孔群の細孔が連続する形態であることを
特徴とする請求項2記載の多孔質層。3. The form in which the second group of pores is continuous with the first group of pores is such that, with respect to the pores of one first group of pores,
The porous layer according to claim 2, wherein the pores of the plurality of second pore groups are continuous.
第1の表面のもう一方の表面である第2の表面に開口を
有することを特徴とする請求項1ないし3いずれか記載
の多孔質層。4. The second pore group has an opening at a second surface which is the other surface of the first surface of the porous layer. The porous layer described.
の多孔質層を備え、前記第2の細孔群と前記第2の細孔
群と連続する前記第1の細孔群の細孔に設けられた電子
放出部を更に備え、前記電子放出部が前記電極と実質的
に電気的に接続されていることを特徴とする電子デバイ
ス。5. A porous layer according to claim 1, which is provided on an electrode, and comprises a fine pore of the first fine pore group which is continuous with the second fine pore group and the second fine pore group. An electronic device further comprising an electron emitting portion provided in the hole, wherein the electron emitting portion is substantially electrically connected to the electrode.
の多孔質層を備え、前記第2の細孔群と前記第2の細孔
群と連続する前記第1の細孔群の細孔に設けられた化学
センサー部を更に備え、前記化学センサー部が前記電極
と実質的に電気的に接続されていることを特徴とする化
学センサーデバイス。6. A porous layer according to any one of claims 1 to 4 is provided on an electrode, and the fine pores of the first fine pore group continuous with the second fine pore group and the second fine pore group. A chemical sensor device further comprising a chemical sensor portion provided in a hole, wherein the chemical sensor portion is substantially electrically connected to the electrode.
群を形成する第1の工程と、前記第1の工程とは異なる
条件で陽極酸化して第1の細孔群の一部と連続する第2
の細孔群を形成する工程とを含むことを特徴とする多孔
質層の製造方法。7. A first step of forming a first group of pores by anodizing an anodized substrate, and one step of a first group of pores being anodized under conditions different from those of the first step. The second which is continuous with the section
And a step of forming a group of pores.
あって、前記異なる条件が陽極酸化における化成電圧で
あり、前記第2の工程における化成電圧が前記第1の工
程における化成電圧のほぼ整数倍であることを特徴とす
る多孔質層の製造方法。8. The method for producing a porous layer according to claim 7, wherein the different condition is a formation voltage in anodization, and the formation voltage in the second step is a formation voltage in the first step. The method for producing a porous layer is characterized by being approximately an integral multiple of.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001194859A JP3878439B2 (en) | 2001-06-27 | 2001-06-27 | Porous layer and device, and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001194859A JP3878439B2 (en) | 2001-06-27 | 2001-06-27 | Porous layer and device, and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003011099A true JP2003011099A (en) | 2003-01-15 |
JP3878439B2 JP3878439B2 (en) | 2007-02-07 |
Family
ID=19032920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001194859A Expired - Fee Related JP3878439B2 (en) | 2001-06-27 | 2001-06-27 | Porous layer and device, and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3878439B2 (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004231105A (en) * | 2003-01-31 | 2004-08-19 | Nissin Kogyo Co Ltd | Cup seal and hydraulic master cylinder |
JP2005307333A (en) * | 2003-08-11 | 2005-11-04 | Canon Inc | Structure, manufacturing method therefor and porous material |
JP2005307340A (en) * | 2004-03-23 | 2005-11-04 | Canon Inc | Process for producing structure, process for producing magnetic recording medium, and process for producing molded product |
JP2007247015A (en) * | 2006-03-17 | 2007-09-27 | Fujifilm Corp | Method for manufacturing fine structural body and fine structural body |
JP2009054980A (en) * | 2007-07-30 | 2009-03-12 | Taiyo Yuden Co Ltd | Capacitor element and method of manufacturing capacitor element |
JP2009088034A (en) * | 2007-09-27 | 2009-04-23 | Taiyo Yuden Co Ltd | Capacitor and its manufacturing method |
JP2009256778A (en) * | 2008-03-27 | 2009-11-05 | Aisin Seiki Co Ltd | Method for forming alumite film and alumite film |
US8027145B2 (en) | 2007-07-30 | 2011-09-27 | Taiyo Yuden Co., Ltd | Capacitor element and method of manufacturing capacitor element |
WO2012029570A1 (en) * | 2010-08-30 | 2012-03-08 | シャープ株式会社 | Method for forming anodized layer and mold production method |
WO2012054043A1 (en) * | 2010-10-21 | 2012-04-26 | Hewlett-Packard Development Company, L.P. | Nano-structure and method of making the same |
JP2012162769A (en) * | 2011-02-07 | 2012-08-30 | Kanagawa Acad Of Sci & Technol | Method for manufacturing anodized porous alumina and anodized porous alumina manufactured by the method |
US9076595B2 (en) | 2012-08-31 | 2015-07-07 | Taiyo Yuden Co., Ltd. | Capacitor |
US9359195B2 (en) | 2010-10-21 | 2016-06-07 | Hewlett-Packard Development Company, L.P. | Method of forming a nano-structure |
US9410260B2 (en) | 2010-10-21 | 2016-08-09 | Hewlett-Packard Development Company, L.P. | Method of forming a nano-structure |
US9751755B2 (en) | 2010-10-21 | 2017-09-05 | Hewlett-Packard Development Company, L.P. | Method of forming a micro-structure |
KR20190066004A (en) * | 2016-08-17 | 2019-06-12 | 씨러스 매터리얼즈 사이언스 리미티드 | A method for producing a thin functional coating on a light alloy |
US10927472B2 (en) | 2010-10-21 | 2021-02-23 | Hewlett-Packard Development Company, L.P. | Method of forming a micro-structure |
WO2022203249A1 (en) * | 2021-03-23 | 2022-09-29 | 삼성전자 주식회사 | Electronic device comprising metal housing |
WO2023008926A1 (en) * | 2021-07-28 | 2023-02-02 | 삼성전자 주식회사 | Method for manufacturing anodizable aluminum exterior material, and electronic device including same |
WO2023080746A1 (en) * | 2021-11-08 | 2023-05-11 | 삼성전자 주식회사 | Anodizable aluminum alloy sheet and method for producing same |
-
2001
- 2001-06-27 JP JP2001194859A patent/JP3878439B2/en not_active Expired - Fee Related
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004231105A (en) * | 2003-01-31 | 2004-08-19 | Nissin Kogyo Co Ltd | Cup seal and hydraulic master cylinder |
JP4603834B2 (en) * | 2003-08-11 | 2010-12-22 | キヤノン株式会社 | STRUCTURE, ITS MANUFACTURING METHOD, AND POROUS BODY |
JP2005307333A (en) * | 2003-08-11 | 2005-11-04 | Canon Inc | Structure, manufacturing method therefor and porous material |
JP2005307340A (en) * | 2004-03-23 | 2005-11-04 | Canon Inc | Process for producing structure, process for producing magnetic recording medium, and process for producing molded product |
JP2007247015A (en) * | 2006-03-17 | 2007-09-27 | Fujifilm Corp | Method for manufacturing fine structural body and fine structural body |
JP2009054980A (en) * | 2007-07-30 | 2009-03-12 | Taiyo Yuden Co Ltd | Capacitor element and method of manufacturing capacitor element |
US8027145B2 (en) | 2007-07-30 | 2011-09-27 | Taiyo Yuden Co., Ltd | Capacitor element and method of manufacturing capacitor element |
JP2009088034A (en) * | 2007-09-27 | 2009-04-23 | Taiyo Yuden Co Ltd | Capacitor and its manufacturing method |
US8555474B2 (en) | 2007-09-27 | 2013-10-15 | Taiyo Yuden Co., Ltd. | Method of manufacturing capacitor element |
US8023249B2 (en) | 2007-09-27 | 2011-09-20 | Taiyo Yuden Co., Ltd | Capacitor and method of manufacturing the same |
JP4493686B2 (en) * | 2007-09-27 | 2010-06-30 | 太陽誘電株式会社 | Capacitor and manufacturing method thereof |
JP2009256778A (en) * | 2008-03-27 | 2009-11-05 | Aisin Seiki Co Ltd | Method for forming alumite film and alumite film |
WO2012029570A1 (en) * | 2010-08-30 | 2012-03-08 | シャープ株式会社 | Method for forming anodized layer and mold production method |
US8999133B2 (en) | 2010-08-30 | 2015-04-07 | Sharp Kabushiki Kaisha | Method for forming anodized layer and mold production method |
WO2012054043A1 (en) * | 2010-10-21 | 2012-04-26 | Hewlett-Packard Development Company, L.P. | Nano-structure and method of making the same |
US10287697B2 (en) | 2010-10-21 | 2019-05-14 | Hewlett-Packard Development Company, L.P. | Nano-structure and method of making the same |
US10927472B2 (en) | 2010-10-21 | 2021-02-23 | Hewlett-Packard Development Company, L.P. | Method of forming a micro-structure |
US9359195B2 (en) | 2010-10-21 | 2016-06-07 | Hewlett-Packard Development Company, L.P. | Method of forming a nano-structure |
US9410260B2 (en) | 2010-10-21 | 2016-08-09 | Hewlett-Packard Development Company, L.P. | Method of forming a nano-structure |
US9611559B2 (en) | 2010-10-21 | 2017-04-04 | Hewlett-Packard Development Company, L.P. | Nano-structure and method of making the same |
US9751755B2 (en) | 2010-10-21 | 2017-09-05 | Hewlett-Packard Development Company, L.P. | Method of forming a micro-structure |
JP2012162769A (en) * | 2011-02-07 | 2012-08-30 | Kanagawa Acad Of Sci & Technol | Method for manufacturing anodized porous alumina and anodized porous alumina manufactured by the method |
US9076595B2 (en) | 2012-08-31 | 2015-07-07 | Taiyo Yuden Co., Ltd. | Capacitor |
US9230742B2 (en) | 2012-08-31 | 2016-01-05 | Taiyo Yuden Co., Ltd. | Capacitor |
KR20190066004A (en) * | 2016-08-17 | 2019-06-12 | 씨러스 매터리얼즈 사이언스 리미티드 | A method for producing a thin functional coating on a light alloy |
CN110114517A (en) * | 2016-08-17 | 2019-08-09 | 席勒斯材料科学有限公司 | The method of thin functional coating is generated on light-alloy |
JP2019525011A (en) * | 2016-08-17 | 2019-09-05 | シーラス マテリアルズ サイエンス リミティド | Method for producing thin functional coatings on light alloys |
JP2022105544A (en) * | 2016-08-17 | 2022-07-14 | シーラス マテリアルズ サイエンス リミティド | Method of generating thin functional coating on light alloy |
CN110114517B (en) * | 2016-08-17 | 2022-12-13 | 席勒斯材料科学有限公司 | Method for producing thin functional coatings on light alloys |
KR102502436B1 (en) * | 2016-08-17 | 2023-02-22 | 씨러스 매터리얼즈 사이언스 리미티드 | Method for producing thin functional coatings on light alloys |
JP7389847B2 (en) | 2016-08-17 | 2023-11-30 | シーラス マテリアルズ サイエンス リミティド | How to produce thin functional coatings on light alloys |
WO2022203249A1 (en) * | 2021-03-23 | 2022-09-29 | 삼성전자 주식회사 | Electronic device comprising metal housing |
WO2023008926A1 (en) * | 2021-07-28 | 2023-02-02 | 삼성전자 주식회사 | Method for manufacturing anodizable aluminum exterior material, and electronic device including same |
WO2023080746A1 (en) * | 2021-11-08 | 2023-05-11 | 삼성전자 주식회사 | Anodizable aluminum alloy sheet and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
JP3878439B2 (en) | 2007-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3878439B2 (en) | Porous layer and device, and manufacturing method thereof | |
JP4221389B2 (en) | Method of manufacturing field emission emitter electrode using self-assembly of carbon nanotube and field emission emitter electrode manufactured thereby | |
US7267859B1 (en) | Thick porous anodic alumina films and nanowire arrays grown on a solid substrate | |
JP2001162600A (en) | Structure with pore, manufacturing method of structure with pore and device using structure with the above pore | |
JP2000031462A (en) | Nano-structure and manufacture thereof, electron emission element and manufacture of carbon nano-tube device | |
JP4681939B2 (en) | Method for producing nanostructure | |
JP3729449B2 (en) | Structure and device having pores | |
JP4641442B2 (en) | Method for producing porous body | |
US7554255B2 (en) | Electric field emission device having a triode structure fabricated by using an anodic oxidation process and method for fabricating same | |
JP2005059135A (en) | Device using carbon nano-tube, and its manufacturing method | |
JP4097224B2 (en) | Nanostructure and electron-emitting device | |
JP3581289B2 (en) | Field emission electron source array and method of manufacturing the same | |
JP3805228B2 (en) | Method for manufacturing electron-emitting device | |
WO2005015596B1 (en) | Method for the localized growth of nanothreads or nanotubes | |
RU2489768C1 (en) | Method of producing porous layer of aluminium oxide on insulating substrate | |
JP3970528B2 (en) | Device using porous layer and manufacturing method thereof | |
JP4560356B2 (en) | Method for producing porous body and structure | |
JPH062167A (en) | Production of metallic body having fine pore and production of light emitting body for lamp | |
KR101024594B1 (en) | A method for fabricating metal nanopin array and an electron emission element using the nanopin array | |
KR20150057931A (en) | A method of manufacturing a template and a imprint device for the same | |
RU2678192C1 (en) | Method of manufacturing of a field emission element | |
JP2005052909A (en) | Method of manufacturing nanostructure | |
JP4371976B2 (en) | Field electron emission device | |
JP2003266400A (en) | Method of manufacturing silicon oxide nanostructure body | |
JP4411033B2 (en) | Structure and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050125 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050325 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050913 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051114 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061010 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061102 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091110 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101110 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111110 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111110 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121110 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121110 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131110 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |