JP2003007581A - Developing method and developer - Google Patents

Developing method and developer

Info

Publication number
JP2003007581A
JP2003007581A JP2001184580A JP2001184580A JP2003007581A JP 2003007581 A JP2003007581 A JP 2003007581A JP 2001184580 A JP2001184580 A JP 2001184580A JP 2001184580 A JP2001184580 A JP 2001184580A JP 2003007581 A JP2003007581 A JP 2003007581A
Authority
JP
Japan
Prior art keywords
developing
dropping
developing solution
flow rate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001184580A
Other languages
Japanese (ja)
Inventor
Rei Otsuka
玲 大塚
Yasuo Kidouchi
康夫 城戸内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001184580A priority Critical patent/JP2003007581A/en
Publication of JP2003007581A publication Critical patent/JP2003007581A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enhance in-plane uniformity even if the processing time of developing liquid is different from place to place. SOLUTION: The developer comprises a developing nozzle 2 moving while dripping developing liquid onto a substrate 1, and a means for providing a difference of flow rate such that the flow rate of the developing liquid dripping from the developing nozzle 2 onto the surface of the substrate 1 at the end of dripping is higher than that at the start of dripping. Consequently, the in- plane uniformity of line width in the substrate 1 is enhanced. Since a function for increasing the flow rate of developing liquid being ejected from the developing nozzle 2 in proportion to the ejection time is provided, inclination in the variation of line width can be suppressed in the advancing direction of the developing nozzle 2 even if a stationary phenomenon in the developing nozzle 2, where a difference of developing time is present between the starting point of development and the point where the developing liquid is placed lastly, is employed by increasing the flow rate at the point where the developing liquid is placed lastly thereby increasing the reaction rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、半導体分野、特
にフォトリソグラフィ技術の現像方法および現像装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the field of semiconductors, and more particularly to a developing method and a developing device for photolithography.

【0002】[0002]

【従来の技術】半導体業界では、微細加工にフォトリソ
グラフィ技術(以下、フォトリソと示す)を用いて安価
で大量に同じものを生産することができた。近年、薄膜
トランジスタを使用したアクティブマトリックス液晶表
示デバイスも同様な技術を用いて商品化されている。半
導体業界も液晶業界もコスト生産性から基板サイズを大
きくし、且つ安易な材料を使用して高品質な製品を生産
しようと日夜努力している。従来、大版基板でのフォト
リソ技術の現像方法は、スリットノズルにおける静止現
像を採用している。図3に従来の方法の概略図を示す。
2. Description of the Related Art In the semiconductor industry, photolithography technology (hereinafter referred to as photolithography) is used for microfabrication, and the same product can be produced inexpensively in large quantities. In recent years, active matrix liquid crystal display devices using thin film transistors have been commercialized using the same technology. Both the semiconductor industry and the liquid crystal industry are striving day and night to increase the substrate size in terms of cost productivity and to produce high quality products using easy materials. Conventionally, the development method of the photolithography technique on a large-sized substrate has adopted static development in a slit nozzle. FIG. 3 shows a schematic diagram of the conventional method.

【0003】11は、基板で、550×650mmサイ
ズのガラスを使用している。主面には、レジストを3%
以内の膜厚ばらつきで膜厚2μmを塗布している。12
は現像ノズルで、長さ550mmのノズル幅2mmの構
造のもので、ここから12l/minの2. 38%のT
MAH現像液を流す。13は基板チャックで、アルマイ
ト処理を行ったAlを材質として、基板を乗せる面に
は、溝があり、真空吸着で基板を固定させる機能があ
る。まず、基板チャック13に基板11が吸着され、現
像ノズル12の長さ方向に対して短辺を揃え、現像ノズ
ル12は、長辺方向に進行する。現像ノズル12が現像
液を滴下しながら基板11の上を移動するときは現像ノ
ズル12と基板11のギャップは2±0. 2mmにす
る。
Reference numeral 11 denotes a substrate, which is made of glass having a size of 550 × 650 mm. 3% resist on the main surface
A film thickness of 2 μm is applied within the film thickness variation. 12
Is a developing nozzle having a nozzle width of 2 mm and a length of 550 mm.
Flow MAH developer. A substrate chuck 13 is made of alumite-treated Al and has a groove on the surface on which the substrate is placed, and has a function of fixing the substrate by vacuum suction. First, the substrate 11 is attracted to the substrate chuck 13, the short sides are aligned with the length direction of the developing nozzle 12, and the developing nozzle 12 advances in the long side direction. When the developing nozzle 12 moves on the substrate 11 while dropping the developing solution, the gap between the developing nozzle 12 and the substrate 11 is set to 2 ± 0.2 mm.

【0004】このとき、現像方向によるレジストパター
ンの線幅は、図2の破線のようになる。図2の横軸には
基板の長辺方向に等間隔な位置を示し、Aのところから
現像ノズル12をスタートさせた。図2の縦軸は、露光
機でマスク5. 5μmパターンを形成したときの線幅変
動を示している。横軸はA〜Fの基板長辺方向の測定点
である。図2の破線では、0. 6μm/mの傾斜を持
ち、550×650mmのガラス基板では傾斜の最大と
最小の差として0. 35μmを有している。現状のXG
Aレベルの(100万画素)画素数であれば、現像ノズ
ル12による傾斜と元々持つ現状の露光技術の線幅ばら
つきとを累積してもまだ画像品質には問題がないが、今
後、UXGAやそれ以上の画素数を必要とするアレイ基
板の線幅ばらつきを抑えるものを提供する。
At this time, the line width of the resist pattern depending on the developing direction is as shown by the broken line in FIG . The abscissa of FIG. 2 shows positions at equal intervals in the long side direction of the substrate, and the developing nozzle 12 was started from the position A. The vertical axis of FIG. 2 shows the line width variation when a mask 5.5 μm pattern is formed by an exposure machine. The horizontal axis is the measurement points A to F in the long side direction of the substrate. The broken line in FIG. 2 has an inclination of 0.6 μm / m, and a glass substrate of 550 × 650 mm has a difference between the maximum and the minimum of 0.35 μm. Current XG
With the number of pixels of A level (1 million pixels), there is no problem in the image quality even if the inclination due to the developing nozzle 12 and the line width variation of the existing exposure technology that originally exists are accumulated, but in the future, UXGA and Provided is one that suppresses the line width variation of an array substrate that requires a larger number of pixels.

【0005】[0005]

【発明が解決しようとする課題】上記の従来の方法は、
基本的にスリットノズルにおける静止現像を採用して
0. 6μm/mの傾斜を持ち、550×650mmのガ
ラス基板では傾斜の最大と最小の差として0. 35μm
を有している。現状の露光技術の線幅ばらつきは、3σ
<0. 48μmである。これらのばらつきは、0. 6μ
mの面内均一性を持つことになるが、現状のXGAレベ
ルの(100万画素)画素数であれば(表示駆動方法に
も影響するが)、面内均一性が0. 75μm以下で画像
品質には問題がないことがわかっているので問題視され
ない。しかし、今後は、UXGAやそれ以上の画素数を
必要とするアレイ基板が要求されていく。そのときに、
さらなる微細加工への要求が増えて面内均一性のばらつ
きにも基板サイズ550×750mmに対して3σ<
0. 5μmにしなければならない。
The above-mentioned conventional method is
Basically, the static development in the slit nozzle is adopted, and the inclination is 0.6 μm / m, and the difference between the maximum and the minimum of the inclination is 0.35 μm in the glass substrate of 550 × 650 mm.
have. The line width variation of the current exposure technology is 3σ
<0.48 μm. These variations are 0.6μ
Although it has an in-plane uniformity of m, if the current number of pixels of the XGA level (1 million pixels) (which also affects the display driving method), the in-plane uniformity is 0.75 μm or less. Since it is known that there is no problem in quality, it is not a problem. However, in the future, an array substrate that requires UXGA or more pixels will be required. At that time
The demand for further microfabrication has increased, and 3σ <for a substrate size of 550 x 750 mm due to variations in in-plane uniformity.
It should be 0.5 μm.

【0006】そこで、基板サイズ550×750mmに
対して3σ<0. 6μmを3σ<0. 5μm以下にする
もので、現像装置の現像方式によるところが大きいが、
静止現像方式を使用して、基板サイズが550×750
mm以上になっても現像の持つ傾斜を0. 1μm/mに
して元々持つ現状の露光技術の線幅ばらつきを含んでも
基板全体としてのばらつき3σ<0. 5μmに制御でき
るようにする。
Therefore, for a substrate size of 550 × 750 mm, 3σ <0.6 μm is set to 3σ <0.5 μm or less, which largely depends on the developing system of the developing device.
The substrate size is 550 x 750 using the static development method.
Even if the width becomes more than 10 mm, the inclination of the development is set to 0.1 μm / m, and the variation of the entire substrate can be controlled to 3σ <0.5 μm even if the original line width variation of the existing exposure technology is included.

【0007】したがって、この発明の目的は、現像液の
処理している時間が場所によって違っても面内均一性を
向上させる現像方法および現像装置を提供することであ
る。
Therefore, an object of the present invention is to provide a developing method and a developing apparatus which improve the in-plane uniformity even when the processing time of the developing solution varies depending on the place.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
にこの発明の請求項1記載の現像方法は、現像液を基板
上に滴下しながら現像液の噴射位置を移動させ、前記基
板の表面全面に現像液を滴下するときに、前記基板の表
面に滴下し始める流量より滴下し終わる流量が大きくな
るように流量差を設ける。
In order to achieve the above-mentioned object, the developing method according to claim 1 of the present invention is such that the developing solution is dropped onto the substrate and the jetting position of the developing solution is moved to move the surface of the substrate. A flow rate difference is provided so that when the developer is dropped on the entire surface, the flow rate at which the dropping is completed is larger than the flow rate at which the developing solution starts to be dropped on the surface of the substrate.

【0009】このように、基板の表面全面に現像液を滴
下するときに、基板の表面に滴下し始める流量より滴下
し終わる流量が大きくなるように流量差を設けるので、
基板内の線幅の面内均一性が向上する。すなわち、噴射
される現像液の流量を噴出時間に比例して増やす機能を
有することにより、現像開始する所と現像液を最後に盛
る所の現像時間に差がある静止現像を採用しても、現像
液を最後に盛る所の流量を大きくして反応速度を上げる
ことで、現像液の噴射位置の進行方向の線幅変化の傾斜
を抑えることができる。
As described above, when the developing solution is dripped on the entire surface of the substrate, the flow rate difference is provided so that the flow rate at which the developing solution is dripped on the surface of the substrate is larger than the flow rate at which the developing solution is finished.
The in-plane uniformity of the line width within the substrate is improved. That is, even if the static development is adopted, which has a function of increasing the flow rate of the injected developing solution in proportion to the ejection time, there is a difference in the developing time between the place where the developing is started and the place where the developing solution is finally filled, By increasing the flow rate at the place where the developing solution is poured last to increase the reaction speed, it is possible to suppress the inclination of the line width change in the advancing direction of the spray position of the developing solution.

【0010】請求項2記載の現像方法は、請求項1記載
の現像方法において、滴下してから滴下し終わる間の現
像液の流量を、滴下し始めてから滴下し終わるまでの時
間に対する滴下し始めてから時間の比率を流量差に掛け
合わせた値を用いて算出する。このように、滴下してか
ら滴下し終わる間の現像液の流量を、滴下し始めてから
滴下し終わるまでの時間に対する滴下し始めてから時間
の比率を流量差に掛け合わせた値を用いて算出するの
で、現像液の流量は滴下時間に比例して大きくなる。
According to a second aspect of the present invention, in the developing method according to the first aspect, the flow rate of the developer between the dropping and the finishing of the dropping is changed with respect to the time from the beginning of the dropping to the end of the dropping. Is calculated using the value obtained by multiplying the flow rate difference by the time ratio. In this way, the flow rate of the developing solution between dropping and ending dropping is calculated using a value obtained by multiplying the flow rate difference by the ratio of the time from the beginning of dropping to the time until the end of dropping. Therefore, the flow rate of the developing solution increases in proportion to the dropping time.

【0011】請求項3記載の現像方法は、現像液を基板
上に滴下しながら現像液の噴射位置を移動させ、前記基
板の表面全面に現像液を滴下するときに、滴下し始める
時の現像液濃度より滴下し終わる時の現像液濃度が大き
くなるように差を設ける。
According to a third aspect of the present invention, the developing solution is dropped onto the substrate while the spraying position of the developing solution is moved to drop the developing solution onto the entire surface of the substrate. A difference is provided so that the developer concentration at the end of dropping is higher than the liquid concentration.

【0012】このように、基板の表面全面に現像液を滴
下するときに、滴下し始める時の現像液濃度より滴下し
終わる時の現像液濃度が大きくなるように差を設けるの
で、基板内の線幅の面内均一性が向上する。すなわち、
噴射される現像液の濃度を噴出時間に比例して増やす機
能を有することにより、現像開始する所と現像液を最後
に盛る所の現像時間に差がある静止現像を採用しても、
現像液を最後に盛る所の濃度を大きくして反応速度を上
げることで、現像液の噴射位置の進行方向の線幅変化の
傾斜を抑えることができる。
In this way, when the developing solution is dropped on the entire surface of the substrate, a difference is provided so that the developing solution concentration at the end of dropping is higher than the developing solution concentration at the beginning of dropping. The in-plane uniformity of the line width is improved. That is,
By having the function of increasing the concentration of the sprayed developer in proportion to the jetting time, even if static development is adopted in which there is a difference in the development time between the place where development is started and the place where the developer is put up at the end,
By increasing the concentration of the developing solution at the final place and increasing the reaction speed, it is possible to suppress the inclination of the line width change in the advancing direction of the spray position of the developing solution.

【0013】請求項4記載の現像方法は、請求項3記載
の現像方法において、基板の表面に滴下し始める現像液
の圧力と滴下し終わる現像液の圧力との間に圧力差を設
けることにより、現像液濃度を可変する。このように、
基板の表面に滴下し始める現像液の圧力と滴下し終わる
現像液の圧力との間に圧力差を設けることにより、現像
液濃度を可変するので、反応速度をコントロールするこ
とができる。
According to a fourth aspect of the present invention, in the developing method according to the third aspect, a pressure difference is provided between the pressure of the developing solution which begins to drop on the surface of the substrate and the pressure of the developing solution which finishes dropping. , Change the developer concentration. in this way,
By providing a pressure difference between the pressure of the developing solution which begins to drop on the surface of the substrate and the pressure of the developing solution which finishes dropping, the concentration of the developing solution can be varied, so that the reaction rate can be controlled.

【0014】請求項5記載の現像装置は、現像液を基板
上に滴下しながら移動する現像ノズルと、前記現像ノズ
ルにより基板の表面に滴下し始める流量より滴下し終わ
る流量が大きくなるように流量差を設ける手段を有す
る。
According to a fifth aspect of the present invention, in a developing device, a developing nozzle that moves while dropping a developing solution onto a substrate, and a flow rate such that a flow rate at which the developing solution finishes dropping is higher than a flow rate at which the developing nozzle starts dropping onto the surface of the substrate. It has a means to make a difference.

【0015】このように、現像液を基板上に滴下しなが
ら移動する現像ノズルと、現像ノズルにより基板の表面
に滴下し始める流量より滴下し終わる流量が大きくなる
ように流量差を設ける手段を有するので、基板内の線幅
の面内均一性が向上する。すなわち、現像ノズルから噴
射される現像液の流量を噴出時間に比例して増やす機能
を有することにより、現像開始する所と現像液を最後に
盛る所の現像時間に差がある現像ノズルにおける静止現
像を採用しても、現像液を最後に盛る所の流量を大きく
して反応速度を上げることで、現像ノズルの進行方向の
線幅変化の傾斜を抑えることができる。
As described above, there is provided a developing nozzle which moves while dropping the developing solution on the substrate, and a means for providing a flow rate difference so that the flow rate at which the developing solution finishes dropping is larger than the flow rate at which the developing nozzle starts dropping on the surface of the substrate. Therefore, the in-plane uniformity of the line width in the substrate is improved. That is, by having a function of increasing the flow rate of the developing solution jetted from the developing nozzle in proportion to the jetting time, there is a difference in the developing time between the place where the developing is started and the place where the developing solution is finally put up. Even if is adopted, the inclination of the line width change in the advancing direction of the developing nozzle can be suppressed by increasing the flow rate at the place where the developing solution is finally poured to increase the reaction speed.

【0016】請求項6記載の現像装置は、請求項5記載
の現像装置において、基板上に現像液を滴下し始める流
量を10〜15l/minにして、かつ、滴下し終わる
流量を前記滴下し始める流量より1〜5l/minの流
量差を設け、滴下してから滴下し終わる間の現像液の流
量を、滴下し始めてから滴下し終わるまでの時間に対す
る滴下し始めてから時間の比率を流量差に掛け合わせた
値を用いて算出する流量変化手段を現像液滴下配管に有
する。このように、基板上に現像液を滴下し始める流量
を10〜15l/minにして、かつ、滴下し終わる流
量を滴下し始める流量より1〜5l/minの流量差を
設けることで、現像ノズルの進行方向の線幅変化の傾斜
を0.1μm/m以下に抑えることができる。また、滴
下してから滴下し終わる間の現像液の流量を、滴下し始
めてから滴下し終わるまでの時間に対する滴下し始めて
から時間の比率を流量差に掛け合わせた値を用いて算出
する流量変化手段を現像液滴下配管に有するので、現像
液の流量は滴下時間に比例して大きくなる。
According to a sixth aspect of the present invention, in the developing apparatus according to the fifth aspect, the flow rate of starting the dropping of the developing solution onto the substrate is set to 10 to 15 l / min, and the flow rate of the dropping is finished. A flow rate difference of 1 to 5 l / min is provided from the starting flow rate, and the flow rate of the developer between the dropping and the finishing is defined as the ratio of the time from the beginning of dropping to the time of finishing the dropping from the beginning of dropping. A flow rate changing means for calculating using a value multiplied by In this way, the flow rate of starting the dropping of the developing solution on the substrate is set to 10 to 15 l / min, and a flow rate difference of 1 to 5 l / min is provided from the flow rate of starting the dropping of the developing solution. It is possible to suppress the slope of the change in line width in the traveling direction of 0.1 μm / m or less. Also, the flow rate change calculated from the flow rate of the developer between the time of dropping and the time of dropping is calculated by using the value obtained by multiplying the flow rate difference by the ratio of the time from the start of dropping to the time of finishing dropping. Since the means is provided in the pipe under the developing droplet, the flow rate of the developing solution increases in proportion to the dropping time.

【0017】請求項7記載の現像装置は、現像液を基板
上に滴下しながら移動する現像ノズルと、前記現像ノズ
ルにより基板の表面に滴下し始める時の現像液濃度より
滴下し終わる時の現像液濃度が大きくなるように差を設
ける手段を有する。このように、現像液を基板上に滴下
しながら移動する現像ノズルと、現像ノズルにより基板
の表面に滴下し始める時の現像液濃度より滴下し終わる
時の現像液濃度が大きくなるように差を設ける手段を有
するので、基板内の線幅の面内均一性が向上する。すな
わち、現像ノズルから噴射される現像液の濃度を噴出時
間に比例して増やす機能を有することにより、現像開始
する所と現像液を最後に盛る所の現像時間に差がある現
像ノズルにおける静止現像を採用しても、現像液を最後
に盛る所の濃度を大きくして反応速度を上げることで、
現像ノズルの進行方向の線幅変化の傾斜を抑えることが
できる。
According to a seventh aspect of the present invention, there is provided a developing device in which a developing solution is moved while dropping a developing solution on a substrate, and a developing solution is finished when the developing solution is dropped to a surface of a substrate by the developing nozzle. It has a means for providing a difference so as to increase the liquid concentration. In this way, there is a difference between the developing nozzle that moves while dropping the developing solution on the substrate and the developing solution concentration at the end of dropping that is larger than the developing solution concentration when the developing nozzle starts dropping on the surface of the substrate. Since the means for providing is provided, the in-plane uniformity of the line width in the substrate is improved. That is, by having a function of increasing the concentration of the developing solution jetted from the developing nozzle in proportion to the jetting time, there is a difference in the developing time between the place where the developing is started and the place where the developing solution is finally put up. Even if is adopted, by increasing the concentration of the place where the developer is poured at the end to increase the reaction speed,
It is possible to suppress the inclination of the line width change in the traveling direction of the developing nozzle.

【0018】請求項8記載の現像装置は、請求項7記載
の現像装置において、基板の表面に滴下し始める現像液
の圧力と滴下し終わる現像液の圧力との間に圧力差を設
けることにより、現像液濃度2.0%から2.5%まで
を10〜60secの範囲内で可変できる手段を現像液
滴下配管に有する。このように、基板の表面に滴下し始
める現像液の圧力と滴下し終わる現像液の圧力との間に
圧力差を設けることにより、現像液濃度2.0%から
2.5%までを10〜60secの範囲内で可変できる
手段を現像液滴下配管に有するので、現像ノズルの進行
方向の線幅変化の傾斜を0.1μm/m以下に抑えるこ
とができる。
The developing device according to an eighth aspect is the developing device according to the seventh aspect, wherein a pressure difference is provided between the pressure of the developing solution which begins to drop on the surface of the substrate and the pressure of the developing solution which finishes dropping. A means for changing the developer concentration from 2.0% to 2.5% within the range of 10 to 60 seconds is provided in the pipe under the developing droplet. In this way, by providing a pressure difference between the pressure of the developing solution which begins to be dropped on the surface of the substrate and the pressure of the developing solution which is finished to be dropped, the developing solution concentration of 10% to 2.5% is obtained. Since the developing liquid drop lower pipe has a variable means within the range of 60 sec, the inclination of the change in the line width in the advancing direction of the developing nozzle can be suppressed to 0.1 μm / m or less.

【0019】[0019]

【発明の実施の形態】この発明の第1の実施の形態を図
1および図2に基づいて説明する。図1はこの発明の実
施の形態の現像装置の概略図である。
BEST MODE FOR CARRYING OUT THE INVENTION A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic diagram of a developing device according to an embodiment of the present invention.

【0020】1は基板で、550×650mmサイズの
ガラスを使用している。主面には、レジストを3%以内
の膜厚ばらつきで膜厚2μmを塗布している。2は大面
積基板の現像装置における現像ノズルで、長さ550m
mのノズル幅2mmの構造のもので、ここから2. 38
%のTMAH現像液を流量10〜15l/minまで可
変に流す。また、現像ノズル2は2. 38%のTMAH
現像液を時間に関して比例的に10〜12l/minま
で変化できるケミカルポンプを有している配管になって
いる。3は基板チャックで、アルマイト処理を行ったA
lを材質として、基板を乗せる面には、溝があり、真空
吸着で基板を固定させる機能がある。
Reference numeral 1 is a substrate, and glass of 550 × 650 mm size is used. A resist having a film thickness of 2 μm is applied to the main surface with a film thickness variation of 3% or less. 2 is a developing nozzle in a developing device for a large-area substrate, which has a length of 550 m.
It has a nozzle width of 2 mm and a structure of 2 mm.
% TMAH developer is variably flown up to a flow rate of 10 to 15 l / min. Also, the developing nozzle 2 has 2.38% TMAH.
The pipe has a chemical pump that can change the developing solution proportionally with time to 10 to 12 l / min. 3 is a substrate chuck, which has been subjected to alumite treatment A
There is a groove on the surface on which the substrate is placed, which has a function of fixing the substrate by vacuum suction.

【0021】現像ノズル2は、現像液を基板1上に滴下
しながら移動する。また、現像ノズル2により基板1の
表面に滴下し始める流量より滴下し終わる流量が大きく
なるように流量差を設ける手段を有する。この手段によ
り基板上に現像液を滴下し始める流量を10〜15l/
minにして、かつ、滴下し終わる流量を前記滴下し始
める流量より1〜5l/minの流量差を設ける。ま
た、滴下してから滴下し終わる間の現像液の流量を、滴
下し始めてから滴下し終わるまでの時間に対する滴下し
始めてから時間の比率を流量差に掛け合わせた値を用い
て算出する流量変化手段を現像液滴下配管に有する。
The developing nozzle 2 moves while dropping the developing solution on the substrate 1. The developing nozzle 2 also has a means for providing a flow rate difference so that the flow rate at which the dropping is completed is larger than the flow rate at which the dropping is started on the surface of the substrate 1. By this means, the flow rate at which the developing solution starts to be dropped on the substrate is 10 to 15 l /
A flow rate difference of 1 to 5 l / min is set from the flow rate at which the dropping is completed and the flow rate at which the dropping is finished is made to be min. Also, the flow rate change calculated from the flow rate of the developer between the time of dropping and the time of dropping is calculated by using the value obtained by multiplying the flow rate difference by the ratio of the time from the start of dropping to the time of finishing dropping. Means are provided in the pipe under the developing liquid drop.

【0022】次に現像方法について説明する。まず、基
板チャック3に基板1が吸着され、現像ノズル12の長
さ方向に対して短辺を揃え、現像ノズル2は、長辺方向
のA〜Fに進行する。現像ノズル12が現像液を滴下し
ながら基板1の上を移動するときは現像ノズル2と基板
1のギャップは2±0. 2mmにする。現像ノズル2を
長辺方向に動かすときに、まず、10l/minで現像
液を噴出しながら、基板1の主面に当て毎分60mmの
速度で長辺方向に移動する。その際、現像液の流量を1
分後の12l/minに変化するように現像ポンプの押
し圧を変える。4は現像液の流れ(開始)、5は現像液
の流れ(終了)を示す。
Next, the developing method will be described. First, the substrate 1 is adsorbed to the substrate chuck 3, the short sides are aligned with the length direction of the developing nozzle 12, and the developing nozzle 2 advances to A to F in the long side direction. When the developing nozzle 12 moves on the substrate 1 while dropping the developing solution, the gap between the developing nozzle 2 and the substrate 1 is set to 2 ± 0.2 mm. When moving the developing nozzle 2 in the long side direction, first, while spraying the developing solution at 10 l / min, the developing nozzle 2 is applied to the main surface of the substrate 1 and moved in the long side direction at a speed of 60 mm per minute. At that time, the flow rate of the developer is 1
The pressing pressure of the developing pump is changed so as to change to 12 l / min after a minute. Reference numeral 4 indicates the flow of the developing solution (start), and 5 indicates the flow of the developing solution (end).

【0023】ここで、現像液とレジストの反応スピード
は下記のアレニウスの式で表される。
Here, the reaction speed between the developing solution and the resist is expressed by the following Arrhenius equation.

【0024】f(t)=K・exp(−kT)・[レジ
スト濃度]・[TMAH濃度] ここで、Tは温度のパラメータであり、現像液のTMA
H濃度とレジストの濃度により、決められることを表し
ているが、この現像液の濃度の所に、現像液の流量が関
数として挙げられる。流量が多くなると、基板主面のレ
ジスト表面に現像液が当たる単位時間の量が増えること
を意味しているので、流量が増えた所の反応速度が速く
なる。
F (t) = K · exp (−kT) · [resist concentration] · [TMAH concentration] where T is a temperature parameter and TMA of the developing solution.
Although it is shown that it is determined by the H concentration and the resist concentration, the flow rate of the developing solution can be mentioned as a function at the developing solution concentration. When the flow rate is increased, it means that the amount of the unit time in which the developing solution hits the resist surface of the main surface of the substrate is increased, so that the reaction rate is increased when the flow rate is increased.

【0025】現像方式のうち、スリットノズルを使用し
ての静止現像の欠点は、現像開始する所と現像液を最後
に盛る所の現像時間に差があることである。これの欠点
を克服させるために、現像液を最後に盛る所に、流量を
10l/minから12l/minに変化させて反応速
度を上げた。これにより、現像時間の差をカバーさせ
た。
Among the developing methods, the disadvantage of static development using a slit nozzle is that there is a difference in the development time between the place where development is started and the place where the developing solution is filled last. In order to overcome this drawback, the flow rate was changed from 10 l / min to 12 l / min at the last place of the developing solution to increase the reaction rate. This covered the difference in development time.

【0026】このように、現像ノズル12から噴射され
る現像液の流量を噴出時間に比例して増やす機能を有す
ることにより、図2の実線(実施例1)にあるような現
像ノズル12の進行方向に対して0. 1μm/m以下の
傾斜しか持たない。
As described above, by having the function of increasing the flow rate of the developing solution jetted from the developing nozzle 12 in proportion to the jetting time, the developing nozzle 12 progresses as shown by the solid line (Example 1) in FIG. It has an inclination of less than 0.1 μm / m with respect to the direction.

【0027】この機能によって、現像ノズル12におけ
る静止現像を採用しても現像ノズル12の進行方向の線
幅変化の傾斜を0. 1μm/m以下に抑えることがで
き、基板サイズが550×750mm以上になっても3
σ<0. 5μmに制御できる。本発明を用いて液晶ディ
スプレイのTFTアレイのフォトリソグラフィ工程に用
いることにより、UXGA以上の高品位な表示画面を製
造しても表示むらが存在しないことが可能になる。
With this function, even if the static development in the developing nozzle 12 is adopted, the inclination of the change in the line width in the traveling direction of the developing nozzle 12 can be suppressed to 0.1 μm / m or less, and the substrate size is 550 × 750 mm or more. Even if it becomes 3
It can be controlled to σ <0.5 μm. By using the present invention in a photolithography process of a TFT array of a liquid crystal display, it is possible to prevent display unevenness even when a high-quality display screen of UXGA or higher is manufactured.

【0028】この発明の第2の実施の形態について説明
する。
A second embodiment of the present invention will be described.

【0029】この現像装置は、現像液を基板上に滴下し
ながら移動する現像ノズルと、前記現像ノズルにより基
板の表面に滴下し始める時の現像液濃度より滴下し終わ
る時の現像液濃度が大きくなるように差を設ける手段を
有する。また、基板の表面に滴下し始める現像液の圧力
と滴下し終わる現像液の圧力との間に圧力差を設けるこ
とにより、現像液濃度2.0%から2.5%までを10
〜60secの範囲内で可変できる手段を現像液滴下配
管に有する。
This developing device has a developing nozzle which moves while dropping the developing solution on the substrate, and a developing solution concentration when the dropping is finished is larger than a developing solution concentration when the developing nozzle starts dropping on the surface of the substrate. A means for providing a difference is provided. Further, by providing a pressure difference between the pressure of the developing solution which starts dropping on the surface of the substrate and the pressure of the developing solution which finishes dropping, the concentration of the developing solution is adjusted from 2.0% to 2.5%.
The developing liquid drop lower pipe has means capable of varying within a range of -60 sec.

【0030】実施の形態2の現像装置の概略図は、実施
の形態1の図1とほぼ同じである。違う所は、2は現像
ノズルで、長さ550mmのノズル幅2mmの構造のも
ので、ここから10l/minの流量のTMAH現像液
を流す点である。また、現像ノズル2の配管には、TM
AH現像液を時間に関して濃度を2. 38%から2.5
0%まで変化できる調合セルを有している装置に繋がっ
ている。
The schematic diagram of the developing device of the second embodiment is almost the same as that of the first embodiment shown in FIG. The difference is that 2 is a developing nozzle having a nozzle width of 2 mm and a length of 550 mm, from which a TMAH developing solution at a flow rate of 10 l / min is flowed. In addition, TM is installed in the pipe of the developing nozzle 2.
AH developer at a concentration of 2.38% to 2.5 over time
It is connected to a device with a compounding cell that can be varied up to 0%.

【0031】実施の形態2は、スリットノズルを使用し
ての静止現像の欠点である現像開始する所と現像液を最
後に盛る所の現像時間に差があることを、実施の形態1
の流量を10l/minから12l/minに変化させ
るのではなく、現像液濃度を2. 38%から2. 50%
に変化させることにより克服することである。これは、
前記アレニウス式の反応速度をパラメータの現像液濃度
を直接変化させることによりコントロールすることで、
現像時間差による線幅変化を軽減させる。
In the second embodiment, there is a difference in the developing time between the place where the development is started and the place where the developing solution is finally filled, which is a drawback of the static development using the slit nozzle.
Instead of changing the flow rate from 10 l / min to 12 l / min, the developer concentration is changed from 2.38% to 2.50%.
It is to overcome by changing to. this is,
By controlling the reaction rate of the Arrhenius equation by directly changing the developer concentration of the parameter,
The line width change due to the development time difference is reduced.

【0032】このように、現像ノズル12から噴射され
る現像液の濃度を噴出時間に比例して増やす機能を有す
ることにより、図2の実線にあるような現像ノズル12
の進行方向に対して0. 1μm/m以下の傾斜しか持た
ないようにする。
As described above, by having the function of increasing the concentration of the developing solution jetted from the developing nozzle 12 in proportion to the jetting time, the developing nozzle 12 as shown by the solid line in FIG.
The inclination should be less than 0.1 μm / m with respect to the traveling direction of.

【0033】この機能によって、現像ノズル12におけ
る静止現像を採用しても現像ノズル12の進行方向の線
幅変化の傾斜を0. 1μm/m以下に抑えることがで
き、実施の形態1と同様の作用効果が得られる。
With this function, even if the static development in the developing nozzle 12 is adopted, the inclination of the change in the line width in the traveling direction of the developing nozzle 12 can be suppressed to 0.1 μm / m or less, which is the same as in the first embodiment. The effect is obtained.

【0034】なお、実施の形態1において、現像液の流
量を10l/minから12l/minに変化させてい
るが、現像液の流量を滴下開始時に10l/min〜1
5l/minの範囲内で、滴下終了時に滴下開始時と1
〜5l/minの差であれば同様な効果が得られる。ま
た、実施の形態2において、現像液濃度を2. 38〜
2. 50%に変化させているが、現像液濃度の範囲を
2. 00%〜2. 50%の範囲内で開始から終了まで変
化させても同様な効果が得られる。
Although the flow rate of the developing solution is changed from 10 l / min to 12 l / min in the first embodiment, the developing solution flow rate is 10 l / min to 1 at the start of dropping.
Within the range of 5 l / min, at the start of dropping and at 1
Similar effects can be obtained with a difference of up to 5 l / min. In the second embodiment, the developer concentration is set to 2.38 to
Although it is changed to 2.50%, the same effect can be obtained by changing the range of the developer concentration within the range of 2.00% to 2.50% from the start to the end.

【0035】また、この実施の形態では基板サイズを5
50×650mmで説明しているが、サイズが550×
650mm以上のガラス基板になっても現像液を使用す
る工程であれば同様な効果が得られる。
In this embodiment, the substrate size is 5
The size is 550x, although it is explained as 50x650mm.
Even if a glass substrate having a size of 650 mm or more is obtained, the same effect can be obtained as long as it is a step of using a developing solution.

【0036】[0036]

【発明の効果】この発明の請求項1記載の現像方法によ
れば、基板の表面全面に現像液を滴下するときに、基板
の表面に滴下し始める流量より滴下し終わる流量が大き
くなるように流量差を設けるので、基板内の線幅の面内
均一性が向上する。すなわち、噴射される現像液の流量
を噴出時間に比例して増やす機能を有することにより、
現像開始する所と現像液を最後に盛る所の現像時間に差
がある静止現像を採用しても、現像液を最後に盛る所の
流量を大きくして反応速度を上げることで、現像液の噴
射位置の進行方向の線幅変化の傾斜を抑えることができ
る。
According to the developing method of the first aspect of the present invention, when the developing solution is dropped onto the entire surface of the substrate, the flow rate at which the dropping is finished is made larger than the flow rate at which the developing solution is started to be dropped on the surface of the substrate. Since the flow rate difference is provided, the in-plane uniformity of the line width in the substrate is improved. That is, by having a function of increasing the flow rate of the developing solution in proportion to the ejection time,
Even if static development is used in which there is a difference in the development time between the place where development is started and the place where the developer is placed last, by increasing the flow rate at the place where the developer is placed last and increasing the reaction speed, It is possible to suppress the inclination of the line width change in the advancing direction of the injection position.

【0037】請求項2では、滴下してから滴下し終わる
間の現像液の流量を、滴下し始めてから滴下し終わるま
での時間に対する滴下し始めてから時間の比率を流量差
に掛け合わせた値を用いて算出するので、現像液の流量
は滴下時間に比例して大きくなる。
According to a second aspect of the present invention, the flow rate of the developing solution between dropping and ending dropping is a value obtained by multiplying the flow rate difference by the ratio of the time from the beginning of dropping to the end of dropping. Since it is calculated using the above, the flow rate of the developing solution increases in proportion to the dropping time.

【0038】この発明の請求項3記載の現像方法によれ
ば、基板の表面全面に現像液を滴下するときに、滴下し
始める時の現像液濃度より滴下し終わる時の現像液濃度
が大きくなるように差を設けるので、基板内の線幅の面
内均一性が向上する。すなわち、噴射される現像液の濃
度を噴出時間に比例して増やす機能を有することによ
り、現像開始する所と現像液を最後に盛る所の現像時間
に差がある静止現像を採用しても、現像液を最後に盛る
所の濃度を大きくして反応速度を上げることで、現像液
の噴射位置の進行方向の線幅変化の傾斜を抑えることが
できる。
According to the developing method of the third aspect of the present invention, when the developing solution is dropped on the entire surface of the substrate, the developing solution concentration at the end of dropping is higher than the developing solution concentration at the beginning of dropping. Since such a difference is provided, the in-plane uniformity of the line width within the substrate is improved. That is, even if static development is adopted, which has a function of increasing the concentration of the ejected developer in proportion to the ejection time, there is a difference in the development time between the place where the development is started and the place where the developer is finally filled, By increasing the concentration of the developing solution at the final place and increasing the reaction speed, it is possible to suppress the inclination of the line width change in the advancing direction of the spray position of the developing solution.

【0039】請求項4では、基板の表面に滴下し始める
現像液の圧力と滴下し終わる現像液の圧力との間に圧力
差を設けることにより、現像液濃度を可変するので、反
応速度をコントロールすることができる。
According to the present invention, the concentration of the developing solution can be varied by providing a pressure difference between the pressure of the developing solution which begins to drop on the surface of the substrate and the pressure of the developing solution which finishes dropping, so that the reaction rate is controlled. can do.

【0040】この発明の請求項5記載の現像装置によれ
ば、現像液を基板上に滴下しながら移動する現像ノズル
と、現像ノズルにより基板の表面に滴下し始める流量よ
り滴下し終わる流量が大きくなるように流量差を設ける
手段を有するので、基板内の線幅の面内均一性が向上す
る。すなわち、現像ノズルから噴射される現像液の流量
を噴出時間に比例して増やす機能を有することにより、
現像開始する所と現像液を最後に盛る所の現像時間に差
がある現像ノズルにおける静止現像を採用しても、現像
液を最後に盛る所の流量を大きくして反応速度を上げる
ことで、現像ノズルの進行方向の線幅変化の傾斜を抑え
ることができる。
According to the developing device of the fifth aspect of the present invention, the developing nozzle that moves while dropping the developing solution on the substrate and the flow rate at which the developing solution finishes dropping are larger than the flow rate at which the developing nozzle starts dropping on the surface of the substrate. As described above, since the means for providing the flow rate difference is provided, the in-plane uniformity of the line width in the substrate is improved. That is, by having a function of increasing the flow rate of the developing solution ejected from the developing nozzle in proportion to the ejection time,
Even if static development is used in the developing nozzle where there is a difference in the development time between the place where development is started and the place where the developing solution is put up at the end, by increasing the flow rate at the place where the developing solution is put up at the end and increasing the reaction speed, It is possible to suppress the inclination of the line width change in the traveling direction of the developing nozzle.

【0041】請求項6では、基板上に現像液を滴下し始
める流量を10〜15l/minにして、かつ、滴下し
終わる流量を滴下し始める流量より1〜5l/minの
流量差を設けることで、現像ノズルの進行方向の線幅変
化の傾斜を0.1μm/m以下に抑えることができる。
また、滴下してから滴下し終わる間の現像液の流量を、
滴下し始めてから滴下し終わるまでの時間に対する滴下
し始めてから時間の比率を流量差に掛け合わせた値を用
いて算出する流量変化手段を現像液滴下配管に有するの
で、現像液の流量は滴下時間に比例して大きくなる。
According to a sixth aspect of the present invention, the flow rate of starting the dropping of the developing solution on the substrate is set to 10 to 15 l / min, and the flow rate of ending the dropping is set to be 1 to 5 l / min from the flow rate of starting the dropping. Thus, the inclination of the change in the line width in the advancing direction of the developing nozzle can be suppressed to 0.1 μm / m or less.
In addition, the flow rate of the developer between the end of dropping and
Since there is a flow rate changing means in the developing liquid drop lower pipe that calculates using a value obtained by multiplying the flow rate difference by the ratio of the time from the start of dropping to the time from the start of dropping to the end of dropping, the flow rate of the developing solution is the dropping time. Increases in proportion to.

【0042】この発明の請求項7記載の現像装置によれ
ば、現像液を基板上に滴下しながら移動する現像ノズル
と、現像ノズルにより基板の表面に滴下し始める時の現
像液濃度より滴下し終わる時の現像液濃度が大きくなる
ように差を設ける手段を有するので、基板内の線幅の面
内均一性が向上する。すなわち、現像ノズルから噴射さ
れる現像液の濃度を噴出時間に比例して増やす機能を有
することにより、現像開始する所と現像液を最後に盛る
所の現像時間に差がある現像ノズルにおける静止現像を
採用しても、現像液を最後に盛る所の濃度を大きくして
反応速度を上げることで、現像ノズルの進行方向の線幅
変化の傾斜を抑えることができる。
According to the developing device of the seventh aspect of the present invention, the developing solution is dripped onto the substrate while the developing nozzle is moved and the concentration of the developing solution at the time when the developing nozzle starts to drip onto the surface of the substrate. Since the means for providing the difference is provided so as to increase the developer concentration at the end, the in-plane uniformity of the line width in the substrate is improved. That is, by having a function of increasing the concentration of the developing solution jetted from the developing nozzle in proportion to the jetting time, there is a difference in the developing time between the place where the developing is started and the place where the developing solution is finally put up. Even if is adopted, the inclination of the line width change in the advancing direction of the developing nozzle can be suppressed by increasing the concentration at the place where the developing solution is poured last and increasing the reaction speed.

【0043】請求項8では、基板の表面に滴下し始める
現像液の圧力と滴下し終わる現像液の圧力との間に圧力
差を設けることにより、現像液濃度2.0%から2.5
%までを10〜60secの範囲内で可変できる手段を
現像液滴下配管に有するので、現像ノズルの進行方向の
線幅変化の傾斜を0.1μm/m以下に抑えることがで
きる。
According to the eighth aspect of the present invention, by providing a pressure difference between the pressure of the developing solution which starts dropping on the surface of the substrate and the pressure of the developing solution which finishes dropping, the developing solution concentration is 2.0% to 2.5%.
%, The means for changing the value within the range of 10 to 60 seconds is provided in the pipe under the developing droplet, so that the inclination of the line width change in the developing nozzle advancing direction can be suppressed to 0.1 μm / m or less.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施の形態の現像装置の概略図FIG. 1 is a schematic diagram of a developing device according to an embodiment of the present invention.

【図2】基板の長辺方向位置と線幅変化の関係を表した
グラフ
FIG. 2 is a graph showing the relationship between the position along the long side of the substrate and the change in line width.

【図3】従来の現像装置の概略図FIG. 3 is a schematic view of a conventional developing device.

【符号の説明】[Explanation of symbols]

1 基板 2 現像ノズル 3 基板チャック 4,5 流量の流れ 11 基板 12 現像ノズル 13 基板チェック A〜F プロットした測定位置 1 substrate 2 developing nozzle 3 substrate chuck 4, 5 flow rate 11 board 12 Development nozzle 13 PCB check AF measurement position plotted

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 現像液を基板上に滴下しながら現像液の
噴射位置を移動させ、前記基板の表面全面に現像液を滴
下するときに、前記基板の表面に滴下し始める流量より
滴下し終わる流量が大きくなるように流量差を設けるこ
と特徴とする現像方法。
1. When a developing solution is dropped onto a substrate while moving a spraying position of the developing solution, and when the developing solution is dropped onto the entire surface of the substrate, the dropping is finished from a flow rate at which the developing solution starts to be dropped onto the surface of the substrate. A developing method, wherein a flow rate difference is provided so that the flow rate becomes large.
【請求項2】 滴下してから滴下し終わる間の現像液の
流量を、滴下し始めてから滴下し終わるまでの時間に対
する滴下し始めてから時間の比率を流量差に掛け合わせ
た値を用いて算出する請求項1記載の現像方法。
2. The flow rate of the developing solution between dropping and ending dropping is calculated using a value obtained by multiplying the flow rate difference by the ratio of the time from the beginning of dropping to the time of finishing dropping. The developing method according to claim 1.
【請求項3】 現像液を基板上に滴下しながら現像液の
噴射位置を移動させ、前記基板の表面全面に現像液を滴
下するときに、滴下し始める時の現像液濃度より滴下し
終わる時の現像液濃度が大きくなるように差を設けるこ
とを特徴とする現像方法。
3. When dropping the developing solution onto the substrate while moving the spraying position of the developing solution and dropping the developing solution onto the entire surface of the substrate, when the dropping is completed from the concentration of the developing solution at the beginning of dropping. The developing method characterized in that a difference is provided so that the developer concentration of (1) becomes large.
【請求項4】 基板の表面に滴下し始める現像液の圧力
と滴下し終わる現像液の圧力との間に圧力差を設けるこ
とにより、現像液濃度を可変する請求項3記載の現像方
法。
4. The developing method according to claim 3, wherein the concentration of the developing solution is varied by providing a pressure difference between the pressure of the developing solution starting to drop on the surface of the substrate and the pressure of the developing solution ending to drop.
【請求項5】 現像液を基板上に滴下しながら移動する
現像ノズルと、前記現像ノズルにより基板の表面に滴下
し始める流量より滴下し終わる流量が大きくなるように
流量差を設ける手段を有すること特徴とする現像装置。
5. A developing nozzle which moves while dropping a developing solution on a substrate, and a means for providing a flow rate difference so that a flow rate at which the developing solution finishes dropping is larger than a flow rate at which the developing nozzle starts dropping on the surface of the substrate. Characteristic developing device.
【請求項6】 基板上に現像液を滴下し始める流量を1
0〜15l/minにして、かつ、滴下し終わる流量を
前記滴下し始める流量より1〜5l/minの流量差を
設け、滴下してから滴下し終わるまでの現像液の流量
を、滴下し始めてから滴下し終わるまでの時間に対する
滴下し始めてから時間の比率を流量差に掛け合わせた値
を用いて算出する流量変化手段を現像液滴下配管に有す
る請求項5記載の現像装置。
6. A flow rate of 1 to start dropping a developing solution onto a substrate.
The flow rate of the developer is set to 0 to 15 l / min, and a flow rate of the developing solution from the start of dropping is set to be 1 to 5 l / min from the flow rate of starting the dropping. 6. The developing device according to claim 5, further comprising flow rate changing means in the developing liquid drop lower pipe for calculating using a value obtained by multiplying a flow rate difference by a ratio of time from the start of dropping to the time from the end of dropping to dropping.
【請求項7】 現像液を基板上に滴下しながら移動する
現像ノズルと、前記現像ノズルにより基板の表面に滴下
し始める時の現像液濃度より滴下し終わる時の現像液濃
度が大きくなるように差を設ける手段を有することを特
徴とする現像装置。
7. A developing nozzle which moves while dropping a developing solution onto a substrate, and a developing solution concentration at the end of dropping is higher than a developing solution concentration at which the developing nozzle starts dropping onto the surface of the substrate. A developing device having means for providing a difference.
【請求項8】 基板の表面に滴下し始める現像液の圧力
と滴下し終わる現像液の圧力との間に圧力差を設けるこ
とにより、現像液濃度2.0%から2.5%までを10
〜60secの範囲内で可変できる手段を現像液滴下配
管に有する請求項7記載の現像装置。
8. A developer concentration of 2.0% to 2.5% is adjusted to 10% by providing a pressure difference between the pressure of the developing solution which starts dropping on the surface of the substrate and the pressure of the developing solution which finishes dropping.
8. The developing device according to claim 7, wherein the developing liquid drop lowering pipe is provided with a means that can be varied within a range of from about 60 seconds.
JP2001184580A 2001-06-19 2001-06-19 Developing method and developer Pending JP2003007581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001184580A JP2003007581A (en) 2001-06-19 2001-06-19 Developing method and developer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001184580A JP2003007581A (en) 2001-06-19 2001-06-19 Developing method and developer

Publications (1)

Publication Number Publication Date
JP2003007581A true JP2003007581A (en) 2003-01-10

Family

ID=19024318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001184580A Pending JP2003007581A (en) 2001-06-19 2001-06-19 Developing method and developer

Country Status (1)

Country Link
JP (1) JP2003007581A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7094522B2 (en) 2002-08-30 2006-08-22 Kabushiki Kaisha Toshiba Developing method, substrate treating method, and substrate treating apparatus
JP2008042187A (en) * 2006-07-18 2008-02-21 Asml Netherlands Bv Imprint lithography
CN105549345A (en) * 2016-01-22 2016-05-04 京东方科技集团股份有限公司 Spray control method, device thereof and spray system
CN105954983A (en) * 2016-07-18 2016-09-21 京东方科技集团股份有限公司 Developing method and developing system
CN108469718A (en) * 2018-04-20 2018-08-31 无锡中微掩模电子有限公司 A kind of developing method and device of mask

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7094522B2 (en) 2002-08-30 2006-08-22 Kabushiki Kaisha Toshiba Developing method, substrate treating method, and substrate treating apparatus
US7390365B2 (en) 2002-08-30 2008-06-24 Kabushiki Kaisha Toshiba Developing method, substrate treating method, and substrate treating apparatus
JP2008042187A (en) * 2006-07-18 2008-02-21 Asml Netherlands Bv Imprint lithography
JP4654224B2 (en) * 2006-07-18 2011-03-16 エーエスエムエル ネザーランズ ビー.ブイ. Imprint lithography
US8707890B2 (en) 2006-07-18 2014-04-29 Asml Netherlands B.V. Imprint lithography
US9662678B2 (en) 2006-07-18 2017-05-30 Asml Netherlands B.V. Imprint lithography
CN105549345A (en) * 2016-01-22 2016-05-04 京东方科技集团股份有限公司 Spray control method, device thereof and spray system
CN105954983A (en) * 2016-07-18 2016-09-21 京东方科技集团股份有限公司 Developing method and developing system
CN108469718A (en) * 2018-04-20 2018-08-31 无锡中微掩模电子有限公司 A kind of developing method and device of mask

Similar Documents

Publication Publication Date Title
JP3678974B2 (en) Manufacturing method of liquid crystal display device
US7498119B2 (en) Process for forming a feature by undercutting a printed mask
KR20050101154A (en) Film forming method, pattern forming method and manufacturing method of semiconductor device
JP2008191636A (en) Photosensitive organic material, method for applying the same, method for forming organic film pattern using this and display device with this organic film
JPH1099764A (en) Coating applicator and method therefor
KR101222958B1 (en) A dropping apparatus of liquid crystal for a liquid crystal display device
JP2001100426A (en) Resist treating device and treating method
JP2003007581A (en) Developing method and developer
JP5127127B2 (en) Coating method
JP2005329305A (en) Sheet type coating method, sheet type coating apparatus, coated substrate and method of manufacturing sheet type coated member
JPH02220428A (en) Coating with photoresist and device therefor
KR20080109650A (en) Method for manufacturing mask blank and mehtod for manufacturing photomask
JP2004358311A (en) Slit coat method
KR20080100776A (en) Method of manufacturing a mask blank and method of manufacturing a photomask
KR100839192B1 (en) Chemical liquid injection nozzle, and apparatus and method for coating photoresist using the same
US20170276992A1 (en) Display apparatus, and method of forming post spacer in display apparatus
JP2003280014A (en) Liquid crystal dispensing apparatus with nozzle protecting device
JP2004313874A (en) Coating application head
JP2004050025A (en) Die head for coating
KR100739305B1 (en) Coating film forming method
KR20060006540A (en) Apparatus for coating photoresist and coating method for the same
JPH11179262A (en) Liquid chemical coating method and device therefor
JP2000157907A (en) Sheet coating method and sheet coating device and production of color filter
KR100271757B1 (en) Etching method
JP2003200104A (en) Coating method