JP2003002737A - Ito sintered compact, production method therefor and ito sputtering target using the sintered compact - Google Patents

Ito sintered compact, production method therefor and ito sputtering target using the sintered compact

Info

Publication number
JP2003002737A
JP2003002737A JP2001189591A JP2001189591A JP2003002737A JP 2003002737 A JP2003002737 A JP 2003002737A JP 2001189591 A JP2001189591 A JP 2001189591A JP 2001189591 A JP2001189591 A JP 2001189591A JP 2003002737 A JP2003002737 A JP 2003002737A
Authority
JP
Japan
Prior art keywords
sintered body
ito
less
sintering
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001189591A
Other languages
Japanese (ja)
Other versions
JP3988411B2 (en
Inventor
Itaru Nanjo
至 南條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2001189591A priority Critical patent/JP3988411B2/en
Publication of JP2003002737A publication Critical patent/JP2003002737A/en
Application granted granted Critical
Publication of JP3988411B2 publication Critical patent/JP3988411B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ITO(indium-tin-oxide) sintered compact which is widely used as a transparent electrode of a display device represented by a liquid crystal display, a touch panel, an EL(electroluminesence) display or the like, or as the material for a transparent electrode for a solar battery, a production method therefor, and an ITO sputtering target using the sintered compact. SOLUTION: The ITO sintered compact substantially consists of indium oxide and tin oxide, where the content of tin oxide is <=35 wt.%. Its sintered density is >=7.10g/cm<3> , and the difference in the maximum density in the plane direction of the sintered compact is <=0.03g/cm<3> , and further, the average number of pores is <=800 pieces/mm<2> .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ITO焼結体とそ
の製造方法、及びそれを用いたITOスパッタリングタ
ーゲットに関し、更に詳しくは、スパッタリングの際、
ノジュールの発生が抑制され、かつ成膜速度が変化しな
いITOターゲットとして使用できるばかりでなく、液
晶ディスプレー、タッチパネル、ELディスプレー等で
代表される表示用デバイスの透明電極や、あるいは太陽
電池用透明電極の材料として広範にわたって使用できる
ITO焼結体とその製造方法、さらにはそれを用いたI
TOスパッタリングターゲットに関する。
TECHNICAL FIELD The present invention relates to an ITO sintered body, a method for producing the same, and an ITO sputtering target using the same, and more specifically, during sputtering,
Not only can it be used as an ITO target in which the generation of nodules is suppressed and the film formation rate does not change, but it can also be used as a transparent electrode for display devices typified by liquid crystal displays, touch panels, EL displays, or transparent electrodes for solar cells. An ITO sintered body that can be widely used as a material, a method for producing the same, and I using the same
It relates to a TO sputtering target.

【0002】[0002]

【従来の技術】透明電極用のITO(Indium t
in oxide)薄膜を形成する方法には、スプレー
法、真空蒸着法、イオンプレーティング法、スパッタリ
ング法などが知られているが、多くの場合、スパッタリ
ング法が採用されている。スパッタリング法は、一般
に、約10Pa以下のアルゴンガス圧下で、基板を陽
極、ターゲットを陰極とし、これらの間にグロー放電を
起こしてアルゴンプラズマを発生させる。このプラズマ
中のアルゴン陽イオンを陰極のターゲットに衝突させて
ターゲット成分の粒子を弾き飛ばし、この粒子を基板上
に堆積させて成膜するというものである。
2. Description of the Related Art ITO (Indium tantalum) for transparent electrodes
As a method for forming an in oxide thin film, a spray method, a vacuum deposition method, an ion plating method, a sputtering method and the like are known, but in many cases, the sputtering method is adopted. In the sputtering method, generally, under an argon gas pressure of about 10 Pa or less, a substrate is used as an anode and a target is used as a cathode, and a glow discharge is generated between them to generate argon plasma. The argon cations in this plasma are made to collide with the target of the cathode to repel particles of the target component, and these particles are deposited on the substrate to form a film.

【0003】スパッタリング法は、アルゴンプラズマの
発生方法で分類され、高周波プラズマを用いるものは高
周波スパッタリング法、直流プラズマを用いるものは直
流スパッタリング法という。また、ターゲットの裏側に
マグネットを配置してアルゴンプラズマをターゲット直
上に集中させ、アルゴンイオンの衝突効率を上げて低ガ
ス圧でも成膜可能としたものをマグネトロンスパッタ法
という。
Sputtering methods are classified according to the method of generating argon plasma. A method using high frequency plasma is called a high frequency sputtering method, and a method using direct current plasma is called a direct current sputtering method. In addition, a magnet is placed on the back side of the target to concentrate the argon plasma directly on the target to increase the collision efficiency of argon ions and to form a film even at a low gas pressure, which is called a magnetron sputtering method.

【0004】通常、ターゲットとしてITO焼結体が用
いられ、粉末焼結法、即ち実質的にインジウム酸化物や
スズ酸化物を所望の組成に配合し、加圧成形した後、1
400℃以上の温度で焼結する方法により製造されてい
る。従来、酸化スズ(SnO)が10重量%程度含ま
れるITOスパッタリングターゲット(以下、単にIT
Oターゲットということがある)は、密度が7.0g/
cm未満の焼結体を加工して製造されているが、最
近、成膜性能を向上させるために、より高密度なITO
焼結体の開発が検討されている。
Usually, an ITO sintered body is used as a target, and a powder sintering method, that is, substantially indium oxide or tin oxide is compounded in a desired composition and pressure-molded, and then 1
It is manufactured by a method of sintering at a temperature of 400 ° C. or higher. Conventionally, an ITO sputtering target containing tin oxide (SnO 2 ) of about 10% by weight (hereinafter, simply referred to as IT
(Sometimes called O target) has a density of 7.0 g /
It is manufactured by processing a sintered body of less than cm 3, but recently, in order to improve the film forming performance, a higher density ITO is used.
Development of a sintered body is under consideration.

【0005】例えば、特開2000−144393号公
報には、密度7.02g/cm以上(相対密度で98
%相当以上)で、密度のばらつきが±1%程度であるI
TO焼結体の製造方法が提案されている。このITO焼
結体でターゲットを製造し、スパッタリングに用いれ
ば、初期段階は良好に成膜できるが、末期に近づくに従
って、ターゲット表面にノジュールと呼ばれる黒化物が
発生し、異常放電等を惹起し、性能(スパッタレート)
が低下する。この原因は、焼結体の空孔分布が制御され
ていないためであって、長時間スパッリングした場合、
その影響を無視し得ないことを意味している。
For example, in Japanese Patent Laid-Open No. 2000-144393, a density of 7.02 g / cm 3 or more (relative density of 98
% Or more) and the variation in density is about ± 1% I
A method for manufacturing a TO sintered body has been proposed. If a target is manufactured from this ITO sintered body and used for sputtering, a good film can be formed in the initial stage, but as it approaches the end stage, a black matter called nodule is generated on the target surface, causing abnormal discharge and the like, Performance (sputter rate)
Is reduced. This is because the pore distribution of the sintered body is not controlled, and when sparging for a long time,
It means that the influence cannot be ignored.

【0006】また、ターゲットの表面粗さを均一に制御
する方法が知られているが、これによればスパッタリン
グ初期段階では異常放電が少なく安定した成膜速度が達
成できるものの、中期から後期の段階になると新生面が
現れ、ターゲット表面にノジュールが発生し、異常放電
が起こって、最後まで安定しない。更に、特開2000
−203945号公報には、成形体の側面、上面及び下
面に発熱体を設けた焼成炉を用いて、ITOターゲット
を製造する方法が提案されている。この方法によれば、
成形体を均一に加熱でき、焼成雰囲気を制御しやすいと
いう利点はあるが、成形体セッターを含む炉下部と、補
助ヒーターを含む炉上部とを分割せねばならず、この結
果、装置が複雑化し生産性が低下するなどの問題が懸念
される。
There is also known a method of uniformly controlling the surface roughness of the target. According to this method, although a stable film formation rate can be achieved with little abnormal discharge at the initial stage of sputtering, a stage from the middle stage to the latter stage can be achieved. Then, a new surface appears, nodules are generated on the target surface, abnormal discharge occurs, and it is not stable until the end. Furthermore, JP 2000
JP-A-203945 proposes a method of manufacturing an ITO target by using a firing furnace in which heating elements are provided on the side surface, the upper surface and the lower surface of a molded body. According to this method
Although there is an advantage that the molded body can be uniformly heated and the firing atmosphere can be easily controlled, the furnace lower part including the molded body setter and the furnace upper part including the auxiliary heater must be divided, resulting in a complicated apparatus. There is concern about problems such as reduced productivity.

【0007】このような状況にあって、大型または厚肉
のITOターゲットを用いたスパッタリングにおいて、
ノジュールの発生を抑制し、スパッタリング初期から末
期まで成膜速度を低下させない、ITOターゲット用の
高密度なITO焼結体の開発が切望されていた。
Under these circumstances, in sputtering using a large or thick ITO target,
It has been earnestly desired to develop a high density ITO sintered body for an ITO target that suppresses the generation of nodules and does not reduce the film formation rate from the initial stage to the final stage of sputtering.

【0008】[0008]

【発明が解決しようとする課題】本発明の課題は、前述
した従来技術の問題に鑑み、スパッタリングの際、ノジ
ュールの発生が抑制され、かつ成膜速度が変化しないI
TOターゲットとして使用できるばかりでなく、液晶デ
ィスプレー、タッチパネル、ELディスプレー等で代表
される表示用デバイスの透明電極や、あるいは太陽電池
用透明電極の材料として広範にわたって使用できるIT
O焼結体とその製造方法、さらには、それを用いたIT
Oスパッタリングターゲットを提供することにある。
SUMMARY OF THE INVENTION In view of the above-mentioned problems of the prior art, the object of the present invention is to suppress the generation of nodules during sputtering and to prevent the film formation rate from changing.
Not only can it be used as a TO target, but it can also be widely used as a transparent electrode for display devices such as liquid crystal displays, touch panels, and EL displays, or as a material for transparent electrodes for solar cells.
O sintered body and its manufacturing method, and IT using it
An object is to provide an O sputtering target.

【0009】[0009]

【課題を解決するための手段】本発明者は、上記課題を
解決するために鋭意研究を重ねた結果、実質的に酸化イ
ンジウム及び酸化スズからなり、かつ酸化スズの含有量
が35重量%以下である焼結体において、焼結密度、該
焼結体の平面方向における最大密度差、および平均空孔
数を特定の数値範囲にすれば、スパッタリングの際にノ
ジュールが発生しにくく、成膜速度が変化しにくいIT
O焼結体が得られること、さらには、上記ITO焼結体
の原料粉末を混合、成形した後、得られた成形体を炉床
板のセッター上に敷き粉を介して載置し、酸素雰囲気下
に焼結する方法において、該成形体の下面と炉床板との
間及び該成形体の上面と天井板との間に、酸素ガスが流
通するに十分な間隔を設けた上で、所定の温度で、該成
形体の表面に酸素ガスを流通させることにより該炉内の
酸素雰囲気を置換しながら、所定の焼結温度で一定時間
の間保持し、焼結すれば、上記ITO焼結体が得られる
ことを見出し、本発明を完成させるに至った。
As a result of intensive studies to solve the above-mentioned problems, the present inventor has substantially made up of indium oxide and tin oxide and has a tin oxide content of 35% by weight or less. In the sintered body which is, if the sintered density, the maximum density difference in the plane direction of the sintered body, and the average number of holes are within a specific numerical range, nodules are less likely to occur during sputtering, and the deposition rate IT that is difficult to change
O sintered body is obtained, and further, after the raw material powder of the ITO sintered body is mixed and molded, the obtained molded body is placed on the setter of the hearth plate via spread powder, and oxygen atmosphere is set. In the method of sintering below, after providing a sufficient distance for oxygen gas to flow between the lower surface of the molded body and the hearth plate and between the upper surface of the molded body and the ceiling plate, When the oxygen atmosphere in the furnace is replaced by flowing oxygen gas over the surface of the molded body at a temperature, the ITO sintered body is held at a predetermined sintering temperature for a certain period of time and sintered. The inventors have found that the following can be obtained, and have completed the present invention.

【0010】即ち、本発明の第1の発明によれば、実質
的に酸化インジウム及び酸化スズからなり、かつ酸化ス
ズの含有量が35重量%以下である焼結体であって、焼
結密度が7.10g/cm以上で、かつ該焼結体の平
面方向における最大密度差が0.03g/cm以下で
あり、更に平均空孔数が800個/mm以下であるこ
とを特徴とするITO焼結体が提供される。
That is, according to the first aspect of the present invention, there is provided a sintered body which is substantially composed of indium oxide and tin oxide and has a tin oxide content of 35% by weight or less. Is 7.10 g / cm 3 or more, the maximum density difference in the plane direction of the sintered body is 0.03 g / cm 3 or less, and the average number of holes is 800 holes / mm 2 or less. An ITO sintered body is provided.

【0011】また、本発明の第2の発明によれば、第1
の発明において、焼結密度が7.13g/cm以上で
あることを特徴とするITO焼結体が提供される。
According to the second aspect of the present invention, the first aspect
In the invention, there is provided an ITO sintered body having a sintered density of 7.13 g / cm 3 or more.

【0012】また、本発明の第3の発明によれば、第1
又は2の発明において、平均空孔数が500個/mm
以下であることを特徴とするITO焼結体が提供され
る。
According to the third aspect of the present invention, the first aspect
Or the invention of 2, the average number of holes is 500 / mm 2
An ITO sintered body is provided, which is characterized by:

【0013】また、本発明の第4の発明によれば、第1
〜3の発明のいずれかにおいて、平均空孔数が200個
/mm以下であることを特徴とするITO焼結体が提
供される。
According to a fourth aspect of the present invention, the first aspect
1 to 3, an ITO sintered body is provided, which has an average number of holes of 200 / mm 2 or less.

【0014】更に、本発明の第5の発明によれば、第1
〜4の発明のいずれかにおいて、平均空孔径が2μm以
下であることを特徴とするITO焼結体が提供される。
Further, according to the fifth aspect of the present invention, the first aspect
1 to 4, an ITO sintered body is provided, which has an average pore diameter of 2 μm or less.

【0015】一方、本発明の第6の発明によれば、第1
〜5の発明のいずれかにおいて、実質的に酸化インジウ
ム及び酸化スズからなる原料粉末を混合、成形した後、
得られた成形体を炉床板のセッター上に敷き粉を介して
載置し、酸素雰囲気下に焼結する方法において、該成形
体の下面と炉床板との間及び該成形体の上面と天井板と
の間に、酸素ガスが流通するに十分な間隔を設けた上
で、1000℃以上の温度で、該成形体の表面に酸素ガ
スを流通させることにより該炉内の酸素雰囲気を置換し
ながら、1400℃以上の焼結温度に保持し、焼結する
ことを特徴とするITO焼結体の製造方法が提供され
る。
On the other hand, according to the sixth aspect of the present invention, the first aspect
In any one of the inventions 5 to 5, after mixing and molding a raw material powder consisting essentially of indium oxide and tin oxide,
The obtained molded body is placed on the setter of the hearth plate through the spread powder, and in a method of sintering in an oxygen atmosphere, between the lower surface of the molded body and the hearth plate, and the upper surface and the ceiling of the molded body. The oxygen atmosphere in the furnace is replaced by allowing the oxygen gas to flow through the plate and then passing the oxygen gas over the surface of the molded body at a temperature of 1000 ° C. or higher. However, there is provided a method for manufacturing an ITO sintered body, which is characterized by holding at a sintering temperature of 1400 ° C. or higher and sintering.

【0016】また、本発明の第7の発明によれば、第6
の発明において、酸素ガスの流通量が30〜150cm
/分の流速であることを特徴とするITO焼結体の製造
方法が提供される。
According to the seventh aspect of the present invention, the sixth aspect
In the invention, the flow rate of oxygen gas is 30 to 150 cm.
There is provided a method for manufacturing an ITO sintered body, characterized in that the flow rate is / min.

【0017】更に、本発明の第8の発明によれば、第6
の発明において、焼結が1時間以上行われることを特徴
とするITO焼結体の製造方法が提供される。
Further, according to the eighth aspect of the present invention, the sixth aspect
In the invention, there is provided a method for manufacturing an ITO sintered body, wherein the sintering is performed for 1 hour or more.

【0018】また、本発明の第9の発明によれば、第6
〜8の発明のいずれかにおいて、焼結した後、冷却前あ
るいは冷却後に、該焼結体を再び所定の焼結温度に加熱
し、酸素ガスの流通を止めた状態で30分以上保持する
ことを特徴とするITO焼結体の製造方法が提供され
る。
According to the ninth aspect of the present invention, the sixth aspect
In any one of the inventions 1 to 8 above, after sintering, before or after cooling, the sintered body is heated again to a predetermined sintering temperature and kept for 30 minutes or more in a state where the flow of oxygen gas is stopped. A method for manufacturing an ITO sintered body is provided.

【0019】一方、本発明の第10の発明によれば、第
1〜5の発明のいずれかに係る焼結体を用いてなるIT
Oスパッタリングターゲットが提供される。
On the other hand, according to the tenth invention of the present invention, an IT using the sintered body according to any one of the first to fifth inventions.
An O sputtering target is provided.

【0020】[0020]

【発明の実施の形態】以下、本発明のITO焼結体とそ
の製造方法などについて詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The ITO sintered body of the present invention and the method for producing the same will now be described in detail.

【0021】1.ITO焼結体 本発明のITO焼結体は、実質的に酸化インジウムと酸
化スズとからなるが、その際、酸化スズ成分の含有量は
35重量%以下であって、更に該焼結体の焼結密度、平
面方向における最大密度差は、それぞれ、7.10g/
cm以上、0.03g/cm以下、かつ平均空孔数
は800個/mm以下という特定の数値範囲を有する
ことが必要である。このような焼結体は、一般に硬い平
板状を呈していることから、タイルと称されることがあ
る。
1. ITO Sintered Body The ITO sintered body of the present invention consists essentially of indium oxide and tin oxide, in which case the content of tin oxide component is 35% by weight or less, and The sintered density and the maximum density difference in the plane direction are 7.10 g /
It is necessary to have a specific numerical range of not less than cm 3 and not more than 0.03 g / cm 3 , and the average number of holes is not more than 800 holes / mm 2 . Such a sintered body is generally called a tile because it has a hard plate shape.

【0022】本発明のITO焼結体の組成では、上述し
たように、酸化スズの含有量を35重量%以下とする。
酸化スズの含有量が35重量%を超えると、焼結密度に
弊害があり、所望のITO透明導電膜を安定して得るこ
とができない。なお、焼結体には、本発明の目的を損な
わない範囲内で、酸化インジウム及び酸化スズ以外の成
分、例えば酸化タングステン、酸化モリブデン、酸化セ
リウム、酸化チタンなどが添加されてもよい。
In the composition of the ITO sintered body of the present invention, the tin oxide content is 35% by weight or less, as described above.
When the content of tin oxide exceeds 35% by weight, the sintered density is adversely affected, and the desired ITO transparent conductive film cannot be stably obtained. In addition, components other than indium oxide and tin oxide, such as tungsten oxide, molybdenum oxide, cerium oxide, and titanium oxide, may be added to the sintered body within a range that does not impair the object of the present invention.

【0023】また、上述したように、焼結密度が7.1
0g/cm以上で、かつ該焼結体の平面方向における
最大密度差が0.03g/cm以下であり、更に平均
空孔数が800個/mm以下でなければならない。焼
結密度は、水を用いたアルキメデス法によって測定した
数値である。
Further, as described above, the sintered density is 7.1.
It should be 0 g / cm 3 or more, the maximum density difference in the plane direction of the sintered body should be 0.03 g / cm 3 or less, and the average number of holes should be 800 holes / mm 2 or less. The sintered density is a numerical value measured by the Archimedes method using water.

【0024】焼結密度は、任意の箇所で測定した最小値
が7.10〜7.20g/cm、好ましくは7.13
〜7.17g/cmである。7.10g/cm未満
では、大面積のITO透明導電膜を均一に形成すること
ができず、7.20g/cm を超える密度は現実的で
はない。焼結体の密度は、平面方向にわたって一様でな
ければならず、その最大密度差、即ち焼結密度の最大値
と最小値との差は0.03g/cm以下とする。
The sintered density is the minimum value measured at any place.
Is 7.10 to 7.20 g / cmThree, Preferably 7.13
~ 7.17g / cmThreeIs. 7.10 g / cmThreeLess than
Then, uniformly form a large area ITO transparent conductive film.
Not possible, 7.20 g / cm ThreeDensity above is realistic
There is no. The density of the sintered body is not uniform across the plane.
The maximum density difference, that is, the maximum value of the sintered density
And the difference between the minimum value is 0.03g / cmThreeBelow.

【0025】平均空孔数は、走査型電子顕微鏡(SE
M)によって焼結体を観察し、この任意の面で測定した
値の平均であり、これを800個/mm以下、好まし
くは500個/mm以下、更に好ましくは200個/
mm以下とする必要がある。平均空孔数が800個/
mmを超えると、ノジュールが発生しやすくなる。ま
た、スパッタリング末期まで安定した成膜速度を持続さ
せるためには、厚み方向の平均空孔数のばらつきを小さ
くすることが望ましい。なお、空孔径は、平均で5μm
以下、好ましくは2μm以下にすることにより、空孔近
傍でガス成分が吸着し酸素量が変化しても、その影響を
最小限に止めることができる。上記の焼結密度と平均空
孔数には密接な関係があり、いずれか一方が前記の範囲
を外れても、高性能なITOスパッタリングターゲット
を得ることができない。
The average number of holes is determined by scanning electron microscope (SE
M) is the average of the values measured on this arbitrary surface by observing the sintered body, which is 800 pieces / mm 2 or less, preferably 500 pieces / mm 2 or less, and more preferably 200 pieces / mm 2 or less.
It is necessary to set it to mm 2 or less. Average number of holes is 800 /
If it exceeds mm 2 , nodules are likely to occur. Further, in order to maintain a stable deposition rate until the end of sputtering, it is desirable to reduce the variation in the average number of holes in the thickness direction. The average pore size is 5 μm
By making the thickness below preferably 2 μm or less, even if a gas component is adsorbed in the vicinity of the pores and the amount of oxygen changes, the influence can be minimized. There is a close relationship between the above-mentioned sintered density and the average number of pores, and even if either of them exceeds the above range, a high-performance ITO sputtering target cannot be obtained.

【0026】2.ITO焼結体の製造方法 本発明のITO焼結体を製造する工程は、原料粉末から
成形体を形成する工程と、該成形体を炉に入れて焼結さ
せる工程に大別できる。原料粉末から成形体を形成する
工程では、実質的に酸化インジウム及び酸化スズからな
る原料粉末を混合し、これを成形する。続く焼結工程
は、こうして得られた成形体を、炉内の炉床板、セッタ
ー上に敷き粉を介して載置する工程、及び酸素雰囲気下
に焼結する工程に分かれる。
2. Method of Manufacturing ITO Sintered Body The step of manufacturing the ITO sintered body of the present invention can be roughly divided into a step of forming a compact from a raw material powder and a step of sintering the compact in a furnace. In the step of forming a compact from the raw material powders, the raw material powders consisting essentially of indium oxide and tin oxide are mixed and shaped. The subsequent sintering step is divided into a step of placing the molded body thus obtained on a hearth plate in a furnace and a setter via spread powder, and a step of sintering in an oxygen atmosphere.

【0027】原料粉末である酸化インジウムと酸化スズ
は、所望の重量比、例えば、65〜97:3〜35、好
ましくは80〜95:5〜20の割合で混合する。酸化
インジウムとしては、平均粒径が0.5μm以下、好ま
しくは0.4μm以下(粒度分布は、粒径0.1〜0.
8μmの粒子が85重量%以上、更に好ましくは、95
%以上を占める)の粉末を用いる。また、酸化スズとし
ては、平均粒径が2.5μm以下、好ましくは2.0μ
m以下(粒度分布は、粒径7.0μm以上の粉末が10
重量%以下、好ましくは3重量%以下を占める)の粉末
を用いる。原料粉末は、公知の装置を用いて混合、撹拌
でき、バインダーとしてポリビニルアルコール(PV
A)などを添加して造粒した後、10〜100μm、好
ましくは30〜50μmの範囲に整えればよい。こうし
て得た顆粒は、例えば1000kg/cm以上で加圧
成形して成形体とする。
The raw material powders, indium oxide and tin oxide, are mixed in a desired weight ratio, for example, 65-97: 3-35, preferably 80-95: 5-20. The average particle size of indium oxide is 0.5 μm or less, preferably 0.4 μm or less (the particle size distribution is 0.1 to 0.
8 μm particles are 85% by weight or more, more preferably 95
% Or more) is used. The tin oxide has an average particle size of 2.5 μm or less, preferably 2.0 μm.
m or less (The particle size distribution is 10 for powders with a particle size of 7.0 μm or more.
% Or less, preferably 3% by weight or less). The raw material powders can be mixed and stirred using a known device, and polyvinyl alcohol (PV
After adding A) or the like and granulating, it may be adjusted to a range of 10 to 100 μm, preferably 30 to 50 μm. The granules thus obtained are pressure-molded, for example, at 1000 kg / cm 2 or more to obtain a molded body.

【0028】本発明の焼結工程においては、予め、該成
形体の下面と炉床板との間及び該成形体の上面と天井板
との間に、酸素ガスが流通するに十分な間隔を設けてお
き、次いで、1000℃以上の温度で、該成形体の表面
に酸素ガスを流通させることにより該炉内の酸素雰囲気
を置換しながら、1400℃以上の焼結温度に保持し、
焼結させる。温度が1000℃に達しないうちは、雰囲
気は酸素雰囲気でも大気雰囲気であっても構わない。
In the sintering step of the present invention, a space sufficient for oxygen gas to flow is previously provided between the lower surface of the molded body and the hearth plate and between the upper surface of the molded body and the ceiling plate. Then, at a temperature of 1000 ° C. or higher, while maintaining the sintering temperature of 1400 ° C. or higher while flowing the oxygen gas in the surface of the molded body to replace the oxygen atmosphere in the furnace,
Sinter. The atmosphere may be an oxygen atmosphere or an air atmosphere as long as the temperature does not reach 1000 ° C.

【0029】本発明で使用する焼結炉の内部構造と、こ
れに成形体を設置する態様を図1によって説明する。炉
の種類は特に限定されないが、通常、加熱雰囲気を制御
しやすい電気炉が採用される。炉の上部、下部には炉床
板1、天井板2が配置され、該炉床板1にはセッター
3、敷き粉4を介して成形体5が載るように構成されて
いる。
The internal structure of the sintering furnace used in the present invention and the manner in which the compact is installed will be described with reference to FIG. The type of furnace is not particularly limited, but an electric furnace that can easily control the heating atmosphere is usually used. A hearth plate 1 and a ceiling plate 2 are arranged on the upper and lower parts of the furnace, and a molded body 5 is mounted on the hearth plate 1 via a setter 3 and spread powder 4.

【0030】本発明では、該成形体の下面と炉床板との
間(h1)及び該成形体の上面と天井板との間(h2)
に、酸素ガスが流通するに十分な間隔を空けることが重
要である。この間隔は炉の大きさによっても異なるが、
通常は5〜30mm、好ましくは7〜20mmとする。
成形体の下面と炉床板との間は、セッターの厚さと敷き
粉の厚さで間隔を調節する。セッターの厚さは5〜20
mmの範囲とするのが好ましい。なお、セッターの巾は
10〜50mmが好ましく、隣り合うセッターの間隔は
30mm以下、好ましくは10〜20mmとする。敷き
粉は、特に限定されないが、成形体がセッターに融着す
るのを防ぐ材料であって、焼結温度でも溶融しないもの
が好ましく、無機物質、例えば酸化スズ粉末などが使用
される。敷き粉は、微細な粉末状態のままセッター上へ
均等に分散させるか、又は均一な厚みに成形したシート
を用い、1〜10mmの厚さとするのが好ましい。セッ
ター、敷き粉のいずれかによって上記の間隔に合わせれ
ばよいが、セッターによる方が容易、かつ確実であろ
う。
In the present invention, between the lower surface of the molded body and the hearth plate (h1) and between the upper surface of the molded body and the ceiling plate (h2).
In addition, it is important to provide a sufficient space for oxygen gas to flow. This interval depends on the size of the furnace,
It is usually 5 to 30 mm, preferably 7 to 20 mm.
The space between the lower surface of the compact and the hearth plate is adjusted by the thickness of the setter and the thickness of the spread powder. The thickness of the setter is 5 to 20
The range of mm is preferable. The width of the setter is preferably 10 to 50 mm, and the interval between adjacent setters is 30 mm or less, preferably 10 to 20 mm. The spread powder is not particularly limited, but is preferably a material that prevents the molded body from being fused to the setter and does not melt even at the sintering temperature, and an inorganic substance such as tin oxide powder is used. As the spread powder, it is preferable that the spread powder is evenly dispersed on the setter in a fine powder state, or a sheet formed into a uniform thickness is used and has a thickness of 1 to 10 mm. The above interval may be adjusted by either a setter or a spreader, but it may be easier and more reliable with a setter.

【0031】成形体を炉内に設置する際に、セッターと
敷き粉の合計厚みを5〜30mmとし、また、成形体の
上側の表面と天井板の上部においても5〜30mmの間
隔に設定する主な理由は、成形体へ十分に酸素の流れを
取り込むためである。厚みが5mm未満では、成形体の
表面に酸素ガスが均等に流れにくく、密度むらが生じ、
また、成形体が炉床や天井板と接近しすぎても、成形体
内の外周部と中央部で加熱むらが発生しやすい。逆に、
成形体の表面から30mmを超えると、炉内に成形体を
設置する空間に無駄ができ、酸素も多量に消費するので
経済的ではない。
When the molded body is installed in the furnace, the total thickness of the setter and the spread powder is set to 5 to 30 mm, and the distance between the upper surface of the molded body and the upper portion of the ceiling plate is set to 5 to 30 mm. The main reason is that a sufficient flow of oxygen is taken into the molded body. If the thickness is less than 5 mm, it is difficult for oxygen gas to flow evenly on the surface of the molded product, resulting in uneven density.
Further, even if the molded body comes too close to the hearth and ceiling plate, uneven heating easily occurs at the outer peripheral portion and the central portion of the molded body. vice versa,
If it exceeds 30 mm from the surface of the molded body, the space for installing the molded body in the furnace can be wasted and a large amount of oxygen is consumed, which is not economical.

【0032】炉内の温度を上げ、1000℃になったと
ころで、常圧において、成形体の上部及び下部の表面に
酸素ガスの流通を開始し、炉内の酸素雰囲気を置換させ
つつ、1400℃を超えたら、焼結温度で1時間以上、
好ましくは5時間以上、更に好ましくは10時間以上保
持する。その後、酸素ガスの流通を実質的に止めて、3
0分間以上、焼結温度に保持してから、最後に冷却す
る。このように本発明の焼結工程は、予備焼結工程、本
焼結工程、及び冷却工程からなり、必要により、更に再
焼結工程を付加してもよい。
When the temperature in the furnace is raised to 1000 ° C., oxygen gas is started to flow to the upper and lower surfaces of the molded body under normal pressure to replace the oxygen atmosphere in the furnace at 1400 ° C. If more than 1 hour, the sintering temperature will be more than 1 hour,
It is preferably maintained for 5 hours or longer, more preferably 10 hours or longer. Then, the flow of oxygen gas is substantially stopped and 3
Hold at sintering temperature for 0 minutes or more, and finally cool. As described above, the sintering process of the present invention includes the preliminary sintering process, the main sintering process, and the cooling process, and if necessary, a re-sintering process may be added.

【0033】本焼結工程は、1400℃以上において、
酸素ガスを成形体の上部及び下部の表面に流通させて、
焼結温度で1時間以上保持する工程であるが、焼結温度
を1450〜1550℃に設定するのであれば、保持時
間は5〜20時間を目安とすればよい。焼結工程中、成
形体内部は、温度のばらつきを±20℃以下に抑えるた
めに、成形体の表面で温度ばらつきが±10℃以下とな
るように注意する。上記のように、成形体上面から天井
板、炉床から成形体下面の間隔を5〜30mm、好まし
くは7〜20mmに調整したが、これは温度の安定化に
も効果がある。
In the main sintering step, at 1400 ° C. or higher,
Oxygen gas is circulated to the upper and lower surfaces of the molded body,
Although this is a step of holding the sintering temperature for 1 hour or more, if the sintering temperature is set to 1450 to 1550 ° C., the holding time may be set to 5 to 20 hours as a guide. During the sintering process, care should be taken to keep the temperature variation within ± 10 ° C or less on the surface of the compact in order to suppress temperature variation within ± 20 ° C or less. As described above, the distance from the upper surface of the molded body to the ceiling plate and the distance from the hearth to the lower surface of the molded body are adjusted to 5 to 30 mm, preferably 7 to 20 mm, but this is also effective for stabilizing the temperature.

【0034】酸素ガスは、30〜150cm/分で流通
させるのが好ましい。流通量が小さすぎると、成形体の
表面から酸化スズが蒸発しやすくなり、密度を上げ難く
なるばかりか、組成ずれを起こしやすくなる。また、流
通量が多すぎると、酸素気流によって焼結体の表面が過
冷却され、温度むら、密度むらが生じて、焼結体の反り
量が増大してしまう。流通時間は、小型の焼結体であれ
ば30分未満でもよいが、近年、特に大型化しているI
TOターゲット、例えば、焼結体サイズが300mm×
300mm×6mm程度、特に400mm×500mm
×10mm程度と、ターゲットが大型で厚くなるほど、
全体の温度分布が制御しにくくなるので、好ましくは6
0分間以上かけ保持させる。これにより、平面方向、厚
み方向がおおむね均一に加熱され、焼結密度や平均空孔
数がばらつくのを大幅に低減でき、更には焼結収縮時、
加熱が不均一になって発生した反りも、焼結体の自重に
よって軽減される。
Oxygen gas is preferably passed at 30 to 150 cm / min. If the flow rate is too small, tin oxide is likely to evaporate from the surface of the molded body, making it difficult to increase the density and causing a composition shift. On the other hand, if the flow rate is too large, the surface of the sintered body is supercooled by the oxygen stream, resulting in uneven temperature and uneven density, and the warp amount of the sintered body increases. The distribution time may be less than 30 minutes if it is a small sintered body, but in recent years, it has become particularly large.
TO target, for example, sintered body size is 300 mm ×
About 300 mm x 6 mm, especially 400 mm x 500 mm
× 10 mm, the larger the target and the thicker it is,
Since it is difficult to control the entire temperature distribution, it is preferably 6
Hold for 0 minutes or more. As a result, the plane direction and the thickness direction are heated almost uniformly, and it is possible to greatly reduce the variations in the sintering density and the average number of pores.
The warp caused by uneven heating is also reduced by the weight of the sintered body.

【0035】本焼結工程の後、実質的に酸素ガスの流通
を止めて、冷却工程に移る。再焼結工程は、冷却工程を
終えてから、再度、焼結温度にして焼結体を加熱する工
程である。本焼成工程と同様に、30分間以上保持すれ
ばよい。焼結温度を1450〜1550℃とすれば、保
持時間は30分〜2時間を目安とする。この工程を付加
することにより、炉内全体の温度が均一になり、結果的
に焼結体の均熱性が向上し、結晶の平均粒径、焼結体の
平均空孔径や平均空孔数を一定の範囲内に制御できる。
再焼結工程は、冷却工程の後にしてもよい。
After the main sintering step, the flow of oxygen gas is substantially stopped and the cooling step is started. The re-sintering step is a step of heating the sintered body to the sintering temperature again after finishing the cooling step. As in the main firing step, it may be held for 30 minutes or longer. When the sintering temperature is set to 1450 to 1550 ° C., the holding time is set to 30 minutes to 2 hours as a guide. By adding this step, the temperature in the entire furnace becomes uniform, and as a result, the heat uniformity of the sintered body is improved, and the average grain size of the crystal, the average pore diameter of the sintered body, and the average number of pores are increased. It can be controlled within a certain range.
The re-sintering step may be performed after the cooling step.

【0036】3.ITOスパッタリングターゲット 上記の方法で製造されたITO焼結体は、平面研削等に
より加工し、所定の寸法にしてから、バッキングプレー
トに貼り付けることにより、本発明のITOスパッタリ
ングターゲットとすることができる。必要により数枚の
タイルを分割形状にならべてもよい。
3. ITO Sputtering Target The ITO sintered body manufactured by the above method is processed into a predetermined size by surface grinding or the like, and then attached to a backing plate to obtain the ITO sputtering target of the present invention. If necessary, several tiles may be arranged in a divided shape.

【0037】このITOスパッタリングターゲットは、
タイル内が7.10g/cm以上(相対密度で約99
%)の焼結密度を有し、焼結体内部の平均空孔数が80
0個/mm以下に制御されているので、ノジュールを
効果的に抑制できる。つまり、焼結密度が高く、平均空
孔数が少ない焼結体を採用することで、スパッタリング
が進み、一定のエロージョン深さに達しても、異常放電
回数を急激に増加させないので、成膜する際にパワーを
上げたり、ターゲットの表面をクリーニングする等の処
理が不用である。焼結体は、表面部よりも内部の方で空
孔数が増加しやすいとされているが、最もエロージョン
が深い厚み付近になっても安定してスパッタリングする
には、特に密度が7.10g/cm以上で、厚み方向
の中央部付近の平均空孔数が、500個/mm以下で
あるターゲットを採用すればよい。
This ITO sputtering target is
7.10 g / cm 3 or more in the tile (about 99 in relative density)
%) And the average number of holes inside the sintered body is 80
Since the number is controlled to 0 / mm 2 or less, nodules can be effectively suppressed. That is, by adopting a sintered body having a high sintering density and a small average number of holes, even if the sputtering progresses and reaches a certain erosion depth, the number of abnormal discharges does not sharply increase, and thus a film is formed. At this time, it is not necessary to increase the power or clean the surface of the target. It is said that the number of vacancies in the sintered body is more likely to increase in the inside than in the surface portion. However, in order to stably sputter even when the erosion is near the deepest thickness, the density is particularly 7.10 g. / Cm 3 or more, and the average number of holes near the central portion in the thickness direction may be 500 / mm 2 or less.

【0038】[0038]

【実施例】以下、実施例に基づき本発明を具体的に説明
するが、本発明はこれら実施例により何ら限定されるも
のではない。
EXAMPLES The present invention will be specifically described below based on examples, but the present invention is not limited to these examples.

【0039】(実施例1)酸化インジウム粉体90重量
%と、酸化スズ粉体10重量%とを混合し、これに成形
用バインダーとしてPVAを1重量%添加し、造粒し
た。酸化インジウム粉体の平均粒径は0.35μm(粒
度分布は0.1μm未満が0.2%、0.8μmを超え
る粉体が4.5%、即ち、0.1〜0.8μmが95.
3%を占める)であり、酸化スズ粉体の平均粒径は1.
9μm(粒度分布は7.0μm以上が2.2%を占め
る)であった。造粒後、30〜50μmに整えた顆粒を
用いて、常温において2000kg/cmの圧力で、
400mm×500mm×10mmに成形した。炉床板
のセッター上に、仮焼した酸化スズの敷き粉を介して成
形体を載置し、炉床板から成形体下面までの高さを7m
mに調整し、成形体上面から天井板までの距離も7mm
とした。これを昇温し、1000℃に達したら、酸素ガ
スを成形体表面に120cm/分の流速で流しながら、
1500℃にて10時間保持して焼結した。酸素流速は
成形体を設置する時に調整し、一定流量で流しつづけ
た。この後、酸素ガスの流れを止めた状態で1時間保持
し、自然放冷した。酸素ガスを流した状態で温度を測定
すると、成形体表面付近で、温度は±4℃ばらついてい
た。また、酸素ガスの流れを止めた状態では、最終的な
温度ばらつきは±1.5℃以内であった。タイルの反り
量を測定すると0.3mmであった。タイル全体の寸法
及び重量から計算した密度は、7.13g/cmであ
り、約30mm角に切断した試験片の密度を、水を用い
たアルキメデス法にて測定すると、平均7.153g/
cm、最小7.145g/cm、最大7.162g
/cmであった。また、密度が7.15g/cm
箇所を、厚み方向にて鏡面研磨後、エッチングし、組織
をSEMで観察した。タイル表面付近における空孔数
は、平均63個/mmであり、中央部付近で平均97
個/mmであった。また、平均粒径は約3.8μm、
平均空孔径は1.5μmであった。これらの結果は表1
に示した。
(Example 1) 90% by weight of indium oxide powder and 10% by weight of tin oxide powder were mixed, and 1% by weight of PVA as a binder for molding was added thereto and granulated. The average particle size of the indium oxide powder is 0.35 μm (the particle size distribution is 0.2% below 0.1 μm, 4.5% above 0.8 μm, that is, 0.1 to 0.8 μm is 95%). .
3%), and the average particle size of the tin oxide powder is 1.
The particle size was 9 μm (the particle size distribution was 7.0 μm or more occupying 2.2%). After granulation, using granules adjusted to 30 to 50 μm, at a pressure of 2000 kg / cm 2 at room temperature,
It was molded into 400 mm × 500 mm × 10 mm. The molded body is placed on the setter of the hearth plate through the spread powder of tin oxide that has been calcined, and the height from the hearth plate to the lower surface of the molded body is 7 m.
Adjusted to m, the distance from the top of the molded body to the ceiling plate is 7 mm
And When the temperature is raised to 1000 ° C., oxygen gas is flown over the surface of the molded body at a flow rate of 120 cm / min,
It hold | maintained at 1500 degreeC for 10 hours, and sintered. The oxygen flow rate was adjusted when the molded body was installed, and the oxygen flow rate was kept constant. After that, the flow of oxygen gas was stopped for 1 hour, and the mixture was naturally cooled. When the temperature was measured while oxygen gas was flowing, the temperature fluctuated ± 4 ° C near the surface of the molded body. Further, when the flow of oxygen gas was stopped, the final temperature variation was within ± 1.5 ° C. The amount of warp of the tile was measured and found to be 0.3 mm. The density calculated from the size and weight of the entire tile is 7.13 g / cm 3 , and when the density of the test piece cut into about 30 mm square is measured by the Archimedes method using water, the average is 7.153 g / cm 3.
cm 3 , minimum 7.145 g / cm 3 , maximum 7.162 g
It was / cm 3. Further, a portion having a density of 7.15 g / cm 3 was mirror-polished in the thickness direction and then etched, and the structure was observed by SEM. The average number of holes in the vicinity of the tile surface is 63 / mm 2 , and the average number of holes in the vicinity of the center is 97.
The number of pieces / mm 2 . Also, the average particle size is about 3.8 μm,
The average pore diameter was 1.5 μm. These results are shown in Table 1.
It was shown to.

【0040】(実施例2〜8)実施例1と同様にして、
成形体上面から天井板までの距離は変えずに、炉床から
成形体下面までの距離、酸素の流速、保持時間のいずれ
かを変化させて、焼結し、ITO焼結体を製造した。得
られた焼結体を約30mm角のサイズに切断し、それぞ
れの試験片で焼結密度を測定した。また、タイルを鏡面
研磨し、更にエッチング処理を施したのち、SEMによ
り組織観察して空孔数を測定し、平均空孔数を求めた。
結果は表1に示した。
(Examples 2-8) In the same manner as in Example 1,
An ITO sintered body was manufactured by changing the distance from the hearth to the lower surface of the molded body, the flow rate of oxygen, or the holding time without changing the distance from the upper surface of the molded body to the ceiling plate. The obtained sintered body was cut into a size of about 30 mm square, and the sintered density of each test piece was measured. After the tile was mirror-polished and further subjected to etching treatment, the structure was observed by SEM to measure the number of holes, and the average number of holes was determined.
The results are shown in Table 1.

【0041】(比較例1、2)実施例1と同様にして、
成形体上面から天井板までの距離は変えずに、炉床から
成形体下面までの距離、酸素の流速、保持時間を変化さ
せて焼結し、ITO焼結体を製造した。得られた焼結体
を約30mm角のサイズに切断し、それぞれの試験片で
焼結密度を測定した。また、タイルを鏡面研磨し、更に
エッチング処理を施したのち、SEMにより組織観察し
て空孔数を測定し、平均空孔数を求めた。また、平均粒
径、平均空孔径を測定した。結果は表1に併記した。
Comparative Examples 1 and 2 In the same manner as in Example 1,
The ITO sintered body was manufactured by changing the distance from the hearth to the lower surface of the molded body, changing the flow rate of oxygen, and the holding time without changing the distance from the upper surface of the molded body to the ceiling plate. The obtained sintered body was cut into a size of about 30 mm square, and the sintered density of each test piece was measured. After the tile was mirror-polished and further subjected to etching treatment, the structure was observed by SEM to measure the number of holes, and the average number of holes was determined. Moreover, the average particle diameter and the average pore diameter were measured. The results are also shown in Table 1.

【0042】[0042]

【表1】 [Table 1]

【0043】(実施例9)実施例1に示した原料粉末の
組成を、酸化インジウム粉体80重量%と、酸化スズ粉
体20重量%に代えて、同様に造粒した。酸化インジウ
ム粉体は、平均粒径が0.35μm(粒度分布は0.1
μm未満が0.3%、0.8μmを超える粉体が4.6
%、即ち、0.1〜0.8μmが95.1%を占め
る)、酸化スズ粉体は、平均粒径が1.9μm(粒度分
布は7.0μm以上が2.2%を占める)の粉体を用い
た。造粒後、実施例1と同様にして、400mm×50
0mm×10mmに成形し、焼結後、得られたタイルの
反り量は0.2mmであった。タイル全体の密度は、平
均7.175g/cm、最小7.165g/cm
最大7.187g/cmであった。また、密度7.1
7g/cmの箇所において、厚み方向の空孔分布をS
EMにて観察した。表面付近の空孔数は、平均110個
/mm、厚み方向での中央部付近で平均120個/m
であった。平均粒径は2.7μmで、平均空孔径は
1.4μmであった。
(Example 9) The composition of the raw material powder shown in Example 1 was changed to 80% by weight of indium oxide powder and 20% by weight of tin oxide powder, and the same granulation was carried out. The indium oxide powder has an average particle size of 0.35 μm (particle size distribution is 0.1
0.3% is less than μm, 4.6 is more than 0.8 μm.
%, That is, 0.1 to 0.8 μm accounts for 95.1%), and the tin oxide powder has an average particle size of 1.9 μm (particle size distribution of 7.0 μm or more accounts for 2.2%). Powder was used. After granulation, in the same manner as in Example 1, 400 mm x 50
After being molded into 0 mm × 10 mm and sintered, the amount of warpage of the obtained tile was 0.2 mm. Density of the whole tile, average 7.175g / cm 3, the minimum 7.165g / cm 3,
The maximum was 7.187 g / cm 3 . Also, the density is 7.1
At the location of 7 g / cm 3, the pore distribution in the thickness direction is S
It was observed by EM. The number of holes near the surface is 110 / mm 2 on average, and 120 / m on average near the center in the thickness direction.
It was m 2 . The average particle diameter was 2.7 μm and the average pore diameter was 1.4 μm.

【0044】(実施例10)実施例1に示した原料粉末
の組成を、酸化インジウム粉体95重量%と、酸化スズ
粉体5重量%に代えて、同様に造粒した。酸化インジウ
ム粉体は、平均粒径が0.34μm(粒度分布は0.1
μm未満が0.3%、0.8μmを超える粉体が4.2
%、即ち、0.1〜0.8μmが95.5%を占め
る)、酸化スズ粉体は、平均粒径が1.9μm(粒度分
布は7.0μm以上が2.2%を占める)の粉体を用い
た。造粒後、実施例1と同様にして、400mm×50
0mm×10mmに成形し、焼結後、得られたタイルの
反り量は0.3mmであった。タイル全体の密度は、平
均7.14g/cm、最小7.131g/cm、最
大7.147g/cmであった。また、密度7.13
g/cmの箇所において、厚み方向の空孔分布をSE
Mにて観察すると、表面付近の空孔数は、平均53個/
mm、厚み方向での中央部付近で平均390個/mm
であった。焼結体の平均粒径は7.8μmで、平均空
孔径は2.1μmであった。
(Example 10) The composition of the raw material powder shown in Example 1 was changed to 95% by weight of indium oxide powder and 5% by weight of tin oxide powder, and the same granulation was performed. The indium oxide powder has an average particle size of 0.34 μm (particle size distribution of 0.1
0.3% is less than μm, 4.2 is more than 0.8 μm
%, That is, 0.1-0.8 μm accounts for 95.5%), and the tin oxide powder has an average particle size of 1.9 μm (particle size distribution of 7.0% or more accounts for 2.2%). Powder was used. After granulation, in the same manner as in Example 1, 400 mm x 50
After being molded into 0 mm × 10 mm and sintered, the amount of warpage of the obtained tile was 0.3 mm. Density of the whole tile, average 7.14 g / cm 3, the minimum 7.131g / cm 3, and a maximum 7.147g / cm 3. Also, the density is 7.13
At the g / cm 3 point, the hole direction distribution in the thickness direction is SE
When observed with M, the average number of holes near the surface is 53 /
mm 2 , average 390 pieces / mm near the center in the thickness direction
It was 2 . The average particle size of the sintered body was 7.8 μm, and the average pore size was 2.1 μm.

【0045】(実施例11)実施例1に示した原料粉末
の組成を、酸化インジウム粉体69重量%と、酸化スズ
粉体31重量%に代えて、同様に造粒した。酸化インジ
ウム粉体は、平均粒径が0.34μm(粒度分布は0.
1μm未満が0.3%、0.8μmを超える粉体が4.
2%、即ち、0.1〜0.8μmが95.5%を占め
る)、酸化スズ粉体は、平均粒径が1.9μm(粒度分
布は7.0μm以上が2.2%を占める)の粉体を用い
た。造粒後、実施例1と同様にして、400mm×50
0mm×10mmに成形し、焼結後、得られたタイルの
反り量は0.3mmであった。タイル全体の密度は、平
均7.17g/cm、最小7.162g/cm、最
大7.183g/cmであった。また、密度7.17
g/cmの箇所において、厚み方向の空孔分布をSE
Mにて観察すると、表面付近の空孔数は、平均160個
/mm、厚み方向での中央部付近で平均190個/m
であった。平均粒径は2.1μmで、平均空孔径は
1.2μmであった。
(Example 11) The composition of the raw material powder shown in Example 1 was changed to 69% by weight of indium oxide powder and 31% by weight of tin oxide powder, and the same granulation was performed. The indium oxide powder has an average particle size of 0.34 μm (particle size distribution of 0.
0.3% is less than 1 μm, and 4 is more than 0.8 μm.
2%, that is, 0.1-0.8 μm accounts for 95.5%), and tin oxide powder has an average particle size of 1.9 μm (particle size distribution of 7.0 μm or more accounts for 2.2%). Was used. After granulation, in the same manner as in Example 1, 400 mm x 50
After being molded into 0 mm × 10 mm and sintered, the amount of warpage of the obtained tile was 0.3 mm. Density of the whole tile, average 7.17 g / cm 3, the minimum 7.162g / cm 3, and a maximum 7.183g / cm 3. Also, the density is 7.17.
At the g / cm 3 point, the hole direction distribution in the thickness direction is SE
When observed with M, the number of holes near the surface is 160 / mm 2 on average, and 190 / m on average near the center in the thickness direction.
It was m 2 . The average particle diameter was 2.1 μm and the average pore diameter was 1.2 μm.

【0046】(実施例12)実施例1に示した原料粉末
の組成を、酸化インジウム粉体97重量%と、酸化スズ
粉体3重量%に代えて、同様に造粒した。酸化インジウ
ム粉体は、平均粒径が0.34μm(粒度分布は0.1
μm未満が0.3%、0.8μmを超える粉体が4.2
%、即ち、0.1〜0.8μmが95.5%を占め
る)、酸化スズ粉体は、平均粒径が1.9μm(粒度分
布は7.0μm以上が2.2%を占める)の粉体を用い
た。造粒後、実施例1と同様にして、400mm×50
0mm×10mmに成形し、焼結後、得られたタイルの
反り量は0.2mmであった。タイル全体の密度は、平
均7.11g/cm、最小7.104g/cm、最
大7.114g/cmであった。また、密度7.11
g/cmの箇所において、厚み方向の空孔分布をSE
Mにて観察すると、表面付近の空孔数は、平均290個
/mm、厚み方向での中央部付近で平均160個/m
であった。焼結体の平均粒径は8.1μmで、平均
空孔径は2.0μmであった。
(Example 12) The composition of the raw material powder shown in Example 1 was replaced with 97% by weight of indium oxide powder and 3% by weight of tin oxide powder, and the same granulation was carried out. The indium oxide powder has an average particle size of 0.34 μm (particle size distribution of 0.1
0.3% is less than μm, 4.2 is more than 0.8 μm
%, That is, 0.1-0.8 μm accounts for 95.5%), and the tin oxide powder has an average particle size of 1.9 μm (particle size distribution of 7.0% or more accounts for 2.2%). Powder was used. After granulation, in the same manner as in Example 1, 400 mm x 50
After being molded into 0 mm × 10 mm and sintered, the amount of warpage of the obtained tile was 0.2 mm. Density of the whole tile, average 7.11 g / cm 3, the minimum 7.104g / cm 3, and a maximum 7.114g / cm 3. Also, the density is 7.11
At the g / cm 3 point, the hole direction distribution in the thickness direction is SE
When observed under M, the number of holes near the surface is 290 / mm 2 on average, and 160 / m on average near the center in the thickness direction.
It was m 2 . The average particle size of the sintered body was 8.1 μm and the average pore size was 2.0 μm.

【0047】(実施例13)実施例1で得たITO焼結
体(タイル)をバッキングプレートに接合して、ITO
スパッタリングターゲットを製造した。これをスパッタ
リング装置に設置し、2.5W/cmのパワー、積算
電力で400kWhのDCスパッタを印加し、スパッタ
リングした。成膜開始から200kWh程度までは、ほ
とんど異常放電は発生せず、200kWhを超えると、
わずかながら異常放電回数が増加した。また、スパッタ
リング後、表面エロージョン部ではノジュールがほとん
どなく、エロージョン部の周辺付近でわずかなノジュー
ルが観察された。
(Example 13) The ITO sintered body (tile) obtained in Example 1 was bonded to a backing plate to form ITO.
A sputtering target was manufactured. This was installed in a sputtering device, and DC sputtering of 400 kWh was applied at a power of 2.5 W / cm 2 and an integrated power to perform sputtering. Almost no abnormal discharge occurs from the start of film formation to about 200 kWh, and when it exceeds 200 kWh,
The number of abnormal discharges increased slightly. Further, after sputtering, there were almost no nodules in the surface erosion part, and slight nodules were observed near the periphery of the erosion part.

【0048】(比較例3)比較例1で得たITO焼結体
(タイル)をバッキングプレートに接合して、ITOス
パッタリングターゲットを製造した。これを実施例11
と同じスパッタリング装置に設置し、2.5W/cm
のパワー、積算電力で400kWhのDCスパッタを印
加しスパッタリングした。200kWhになる前から、
徐々に異常放電が発生し、200kWhを超えると、異
常放電回数が増加した。また、スパッタリング後、表面
エロージョン部、エロージョン部の周辺付近で、ノジュ
ールが目だった。
(Comparative Example 3) The ITO sintered body (tile) obtained in Comparative Example 1 was bonded to a backing plate to manufacture an ITO sputtering target. Example 11
Installed in the same sputtering equipment as above, 2.5 W / cm 2
DC sputtering of 400 kWh was applied with the power of 1. Even before it reached 200 kWh
Abnormal discharge gradually occurred, and when it exceeded 200 kWh, the number of abnormal discharges increased. Further, after sputtering, nodules were noticeable near the surface erosion part and the periphery of the erosion part.

【0049】[0049]

【発明の効果】本発明では、実質的に酸化インジウム及
び酸化スズからなり、かつ酸化スズの含有量が35重量
%以下の焼結体において、従来よりも、その焼結密度を
高め、平面方向における最大密度差を小さくし、平均空
孔数を少なくしたため、スパッタリングの際にノジュー
ルが発生しにくく、成膜速度が低下しないITOスパッ
タリングターゲットが提供できる。こうして性能の良い
ITOスパッタリングターゲットを安定的に供給しうる
ことから、その工業的価値は極めて大きい。
According to the present invention, in a sintered body which is substantially composed of indium oxide and tin oxide and has a tin oxide content of 35% by weight or less, the sintered density thereof is increased more than ever before and the plane direction Since the maximum density difference in 1 is reduced and the average number of holes is reduced, it is possible to provide an ITO sputtering target in which nodules are less likely to occur during sputtering and the deposition rate does not decrease. Since the ITO sputtering target with good performance can be stably supplied in this way, its industrial value is extremely large.

【0050】[0050]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で使用する焼結炉の縦断面図であり、セ
ッター上に敷き粉を介して成形体が載置された状態を示
している。
FIG. 1 is a vertical cross-sectional view of a sintering furnace used in the present invention, showing a state in which a molded body is placed on a setter via spread powder.

【0051】[0051]

【符号の説明】[Explanation of symbols]

1 炉床 2 天井板 3 セッター 4 敷き粉 5 成形体 h1 (炉床−成形体の距離) h2 (天井−成形体の距離) 1 hearth 2 ceiling board 3 setters 4 bedding 5 molded body h1 (distance between hearth and molded body) h2 (Ceiling-molded body distance)

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 実質的に酸化インジウム及び酸化スズか
らなり、かつ酸化スズの含有量が35重量%以下である
焼結体であって、焼結密度が7.10g/cm以上
で、かつ該焼結体の平面方向における最大密度差が0.
03g/cm以下であり、更に平均空孔数が800個
/mm以下であることを特徴とするITO焼結体。
1. A sintered body consisting essentially of indium oxide and tin oxide and having a tin oxide content of 35% by weight or less, and a sintering density of 7.10 g / cm 3 or more, and The maximum density difference in the plane direction of the sintered body is 0.
It is 03 g / cm 3 or less, and the average number of pores is 800 holes / mm 2 or less.
【請求項2】 焼結密度が7.13g/cm以上であ
ることを特徴とする請求項1に記載のITO焼結体。
2. The ITO sintered body according to claim 1, which has a sintered density of 7.13 g / cm 3 or more.
【請求項3】 平均空孔数が500個/mm以下であ
ることを特徴とする請求項1又は2に記載のITO焼結
体。
3. The ITO sintered body according to claim 1 or 2, wherein the average number of holes is 500 / mm 2 or less.
【請求項4】 平均空孔数が200個/mm以下であ
ることを特徴とする請求項1〜3のいずれかに記載のI
TO焼結体。
4. The I according to claim 1, wherein the average number of holes is 200 / mm 2 or less.
TO sintered body.
【請求項5】 平均空孔径が2μm以下であることを特
徴とする請求項1〜4のいずれかに記載のITO焼結
体。
5. The ITO sintered body according to claim 1, wherein the average pore diameter is 2 μm or less.
【請求項6】 実質的に酸化インジウム及び酸化スズか
らなる原料粉末を混合、成形した後、得られた成形体を
炉床板のセッター上に敷き粉を介して載置し、酸素雰囲
気下に焼結する方法において、該成形体の下面と炉床板
との間及び該成形体の上面と天井板との間に、酸素ガス
が流通するに十分な間隔を設けた上で、1000℃以上
の温度で、該成形体の表面に酸素ガスを流通させること
により該炉内の酸素雰囲気を置換しながら、1400℃
以上の焼結温度に保持し、焼結することを特徴とする請
求項1〜5のいずれかに記載のITO焼結体の製造方
法。
6. A raw material powder consisting essentially of indium oxide and tin oxide is mixed and molded, and then the obtained molded body is placed on a setter of a hearth plate via spread powder and baked in an oxygen atmosphere. In the method of binding, a temperature of 1000 ° C. or higher is provided between the lower surface of the molded body and the hearth plate and between the upper surface of the molded body and the ceiling plate with a sufficient distance for oxygen gas to flow. At 1400 ° C., while substituting the oxygen atmosphere in the furnace by circulating oxygen gas on the surface of the molded body,
The method for producing an ITO sintered body according to any one of claims 1 to 5, wherein the sintering is performed while maintaining the above sintering temperature.
【請求項7】 酸素ガスの流通量が30〜150cm/
分の流速であることを特徴とする請求項6に記載のIT
O焼結体の製造方法。
7. The flow rate of oxygen gas is 30 to 150 cm /
IT according to claim 6, characterized in that it has a flow rate of a minute.
O Sintered body manufacturing method.
【請求項8】 焼結が1時間以上行われることを特徴と
する請求項6に記載のITO焼結体の製造方法。
8. The method for producing an ITO sintered body according to claim 6, wherein the sintering is performed for 1 hour or more.
【請求項9】 焼結した後、冷却前あるいは冷却後に、
該焼結体を再び所定の焼結温度に加熱し、酸素ガスの流
通を止めた状態で30分以上保持することを特徴とする
請求項6〜8のいずれかに記載のITO焼結体の製造方
法。
9. After sintering, before or after cooling,
The ITO sintered body according to any one of claims 6 to 8, wherein the sintered body is heated again to a predetermined sintering temperature and held for 30 minutes or more in a state where the flow of oxygen gas is stopped. Production method.
【請求項10】 請求項1〜5のいずれかに記載の焼結
体を用いてなるITOスパッタリングターゲット。
10. An ITO sputtering target using the sintered body according to claim 1.
JP2001189591A 2001-06-22 2001-06-22 ITO sintered body, method for producing the same, and ITO sputtering target using the same Expired - Lifetime JP3988411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001189591A JP3988411B2 (en) 2001-06-22 2001-06-22 ITO sintered body, method for producing the same, and ITO sputtering target using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001189591A JP3988411B2 (en) 2001-06-22 2001-06-22 ITO sintered body, method for producing the same, and ITO sputtering target using the same

Publications (2)

Publication Number Publication Date
JP2003002737A true JP2003002737A (en) 2003-01-08
JP3988411B2 JP3988411B2 (en) 2007-10-10

Family

ID=19028487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001189591A Expired - Lifetime JP3988411B2 (en) 2001-06-22 2001-06-22 ITO sintered body, method for producing the same, and ITO sputtering target using the same

Country Status (1)

Country Link
JP (1) JP3988411B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241595A (en) * 2005-02-01 2006-09-14 Tosoh Corp Sinter, sputtering target and molding die, and production process of sintered compact
WO2007077781A1 (en) * 2005-12-28 2007-07-12 Mitsui Mining & Smelting Co., Ltd. Indium oxide powder
JP2010255022A (en) * 2009-04-22 2010-11-11 Sumitomo Metal Mining Co Ltd Ito sputtering target, and method for producing the same
JP2011000848A (en) * 2009-06-22 2011-01-06 Solar Applied Materials Technology Corp Die for slip cast molding, using method thereof, and related application
JPWO2010070832A1 (en) * 2008-12-15 2012-05-24 出光興産株式会社 Composite oxide sintered body and sputtering target comprising the same
JP2013119628A (en) * 2011-12-06 2013-06-17 Jx Nippon Mining & Metals Corp Ito sputtering target and method for production thereof
JP2014129231A (en) * 2005-02-01 2014-07-10 Tosoh Corp Sintered compact and sputtering target
CN115677361A (en) * 2022-10-11 2023-02-03 广西晶联光电材料有限责任公司 Normal-pressure sintering method of ITO target material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180093140A (en) 2014-11-07 2018-08-20 제이엑스금속주식회사 Ito sputtering target and method for manufacturing same, ito transparent electroconductive film, and method for manufacturing ito transparent electroconductive film

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241595A (en) * 2005-02-01 2006-09-14 Tosoh Corp Sinter, sputtering target and molding die, and production process of sintered compact
JP2014129231A (en) * 2005-02-01 2014-07-10 Tosoh Corp Sintered compact and sputtering target
US9920420B2 (en) 2005-02-01 2018-03-20 Tosoh Corporation Sintered body, sputtering target and molding die, and process for producing sintered body employing the same
WO2007077781A1 (en) * 2005-12-28 2007-07-12 Mitsui Mining & Smelting Co., Ltd. Indium oxide powder
JP5008142B2 (en) * 2005-12-28 2012-08-22 三井金属鉱業株式会社 Indium oxide powder
JPWO2010070832A1 (en) * 2008-12-15 2012-05-24 出光興産株式会社 Composite oxide sintered body and sputtering target comprising the same
JP2010255022A (en) * 2009-04-22 2010-11-11 Sumitomo Metal Mining Co Ltd Ito sputtering target, and method for producing the same
JP2011000848A (en) * 2009-06-22 2011-01-06 Solar Applied Materials Technology Corp Die for slip cast molding, using method thereof, and related application
JP2013119628A (en) * 2011-12-06 2013-06-17 Jx Nippon Mining & Metals Corp Ito sputtering target and method for production thereof
CN115677361A (en) * 2022-10-11 2023-02-03 广西晶联光电材料有限责任公司 Normal-pressure sintering method of ITO target material
CN115677361B (en) * 2022-10-11 2023-08-11 广西晶联光电材料有限责任公司 Normal-pressure sintering method of ITO target

Also Published As

Publication number Publication date
JP3988411B2 (en) 2007-10-10

Similar Documents

Publication Publication Date Title
KR101956506B1 (en) Indium zinc oxide (izo) based sputtering target, and method for producing same
JP4934110B2 (en) Sputtering target, transparent conductive film and method for producing them
KR101211747B1 (en) Oxide material and sputtering target
JP4885274B2 (en) Amorphous composite oxide film, crystalline composite oxide film, method for producing amorphous composite oxide film, and method for producing crystalline composite oxide film
JPH10306367A (en) Zno-ga2o3 sintered body for sputtering target and its production
JPWO2009011232A1 (en) Composite oxide sintered body, method for producing amorphous composite oxide film, amorphous composite oxide film, method for producing crystalline composite oxide film, and crystalline composite oxide film
TWI608112B (en) ITO sputtering target and its manufacturing method
JP3988411B2 (en) ITO sintered body, method for producing the same, and ITO sputtering target using the same
TWI452027B (en) Zinc oxide sintered tablet and manufacturing method thereof
WO2010125801A1 (en) Sintered body for zno-ga2o3 sputtering target and method for producing same
JP2007084881A (en) Tablet of oxide sintered body for vapor deposition, and transparent oxide conductive film
JP2002275623A (en) Sintered compact target for depositing transparent electrically conductive thin film, production method therefor and transparent electrically conductive thin film obtained therefrom
JP2002256424A (en) Sintered target for manufacturing transparent electroconductive film, and manufacturing method therefor
JP2002302762A (en) Ito sputtering target
JP7158102B2 (en) ITO sputtering target, manufacturing method thereof, ITO transparent conductive film, and manufacturing method of ITO transparent conductive film
JP2003055049A (en) Indium oxide sintered compact, production method therefor and sputtering target using the same
JP4991096B2 (en) MgO vapor deposition material
JP4794757B2 (en) Sputtering target for forming a transparent electrode film
JP2005320192A (en) Oxide sintered compact, spattering target, and transparent conductive thin film
JP6343695B2 (en) Indium oxide-zinc oxide (IZO) sputtering target and method for producing the same
JPH10297963A (en) Zno-ga2o3-based sintered compact for sputtering target and production of the sintered compact
JP2000178725A (en) Zinc oxide sintered body target
JP2001072470A (en) Production of ito sintered compact
JP2005298306A (en) Oxide sintered compact, sputtering target and transparent electrically conductive thin film
JP2001271160A (en) High density ito sintered sputtering target, and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3988411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term