JP2003001471A - Laser beam machine - Google Patents

Laser beam machine

Info

Publication number
JP2003001471A
JP2003001471A JP2001187573A JP2001187573A JP2003001471A JP 2003001471 A JP2003001471 A JP 2003001471A JP 2001187573 A JP2001187573 A JP 2001187573A JP 2001187573 A JP2001187573 A JP 2001187573A JP 2003001471 A JP2003001471 A JP 2003001471A
Authority
JP
Japan
Prior art keywords
light
laser beam
laser
core
light intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001187573A
Other languages
Japanese (ja)
Inventor
Yuji Matsumoto
有史 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HYPER PHOTON SYSTENS Inc
Original Assignee
HYPER PHOTON SYSTENS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HYPER PHOTON SYSTENS Inc filed Critical HYPER PHOTON SYSTENS Inc
Priority to JP2001187573A priority Critical patent/JP2003001471A/en
Publication of JP2003001471A publication Critical patent/JP2003001471A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a laser beam machine which machines a metallic sheet to the smooth peripheral edge of a machined section with high accuracy and to provide a light intensity distribution uniformizing element which is high in accuracy and is simple. SOLUTION: This laser beam machine includes a laser beam source 1, the light intensity distribution uniformizing means 2 and optical means 3. The optical means deflects the laser beam L1 emitted from the laser beam source and focuses the laser beam at the prescribed position of a workplace 10. The laser beam machines the workpiece. Therefore, the refractive index of the core of the light intensity distribution uniformizing element is uniform. Accordingly, the accuracy is high and the circumferential edge of the machined section is smooth.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はレーザ加工機に関し、な
かでも金属板又は高分子樹脂板を切断、穿孔、彫刻等の
加工をするレーザ加工機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser beam machine, and more particularly, to a laser beam machine for cutting, punching, engraving, etc. a metal plate or a polymer resin plate.

【0002】[0002]

【従来の技術】近年、金属板を加工してステンシルメタ
ルマスクを製造する時レーザを用いて円孔を穿つことが
行われている。レーザ光を一定の径のビームに絞り、所
定の直径の円形に焼断することにより、容易に穿孔する
ことができる。しかしながら、得られる孔の真円度は低
く、又孔の周縁は滑らかに得られなかった。そのために
レーザ光を光軸を中心に回転させる機構を設け、孔の真
円度又は円滑さを向上させることが行われているが未だ
充分ではなく、且つ微小孔の形成には不充分である。
2. Description of the Related Art In recent years, a laser is used to form a circular hole when a stencil metal mask is manufactured by processing a metal plate. It is possible to easily perforate the laser beam by narrowing it into a beam having a constant diameter and burning it into a circular shape having a predetermined diameter. However, the roundness of the obtained hole was low, and the peripheral edge of the hole was not obtained smoothly. Therefore, a mechanism for rotating the laser beam around the optical axis is provided to improve the roundness or smoothness of the hole, but it is not sufficient yet, and it is not sufficient for the formation of the minute hole. .

【0003】本願発明者は特許願2001ー12521
4において、レーザ光源と、光学手段と、回転手段とを
具備し、光学手段はレーザ光源から射出されたレーザ光
を偏向して被加工物の所定の位置に合焦させ、回転手段
は光学手段を回転し、偏向可能な反射鏡を偏向すること
によりレーザ光が可変の直径を有する円孔を穿つ技術を
開示した。その結果、従来より真円度が高く且つ周縁が
円滑な円孔を穿つことが可能になった。
The inventor of the present application has filed a patent application 2001-12521.
4, a laser light source, an optical means, and a rotating means are provided, the optical means deflects the laser light emitted from the laser light source to focus it on a predetermined position of the workpiece, and the rotating means is the optical means. A technique has been disclosed in which a laser beam perforates a circular hole having a variable diameter by rotating a laser beam and deflecting a deflectable reflecting mirror. As a result, it has become possible to form a circular hole having a higher roundness and a smoother peripheral edge than ever before.

【0004】[0004]

【発明が解決しようとする課題】しかしながら前記の開
示されたレーザ加工機で穿たれ、メタル板に形成された
円孔の真円度及び周縁の円滑さは未だ不十分であるとい
う問題が残った。この課題を解決するため鋭意研究した
ところ、レーザ光の強度分布の均一性が向上すると円孔
の真円度及び周縁の円滑さが向上することが判明した。
レーザ光の強度分布の均一化は、ビームホモジェナイザ
と呼ばれる二次元マイクロレンズアレイを使用すれば可
能であるが、高価であり且つ大型なので実用できない。
又光束の一部をアパチャで切り取るのは光量の大きな損
失を招き実用的でないという問題があった。
However, there remains a problem that the roundness and the smoothness of the peripheral edge of the circular hole formed in the metal plate by the above disclosed laser beam machine are still insufficient. . As a result of intensive research to solve this problem, it was found that if the uniformity of the intensity distribution of the laser light is improved, the roundness of the circular hole and the smoothness of the peripheral edge are improved.
The homogenization of the intensity distribution of the laser light can be achieved by using a two-dimensional microlens array called a beam homogenizer, but it is expensive and large in size and cannot be practically used.
Further, there is a problem that it is not practical to cut off a part of the light flux with an aperture because it causes a large loss of the light amount.

【0005】本発明は上記の課題に鑑み、容易にレーザ
光の強度分布を均一にする光強度均一化素子を提供し、
かつこれを使用し、精度が高く加工部の周縁が円滑に金
属板を加工するレーザ加工機を提供することを目的とす
る。
In view of the above problems, the present invention provides a light intensity homogenizing element that easily homogenizes the intensity distribution of laser light,
Further, it is an object of the present invention to provide a laser processing machine which uses this and has a high accuracy and which smoothly processes a metal plate at the periphery of a processed portion.

【0006】[0006]

【課題を解決するための手段】本発明は、レーザ光源
と、光強度均一化手段と、光学手段とを具備し、前記光
強度均一化手段は、前記レーザ光源が放射するレーザ光
の光束の断面の光強度を均一化し、前記光学手段は、前
記レーザ光を被加工物上に合焦させて前記被加工物を加
工することを特徴とするレーザ加工機を構成した。
The present invention comprises a laser light source, a light intensity equalizing means, and an optical means, wherein the light intensity equalizing means emits a light beam of a laser beam emitted by the laser light source. The laser processing machine is characterized in that the light intensity of the cross section is made uniform, and the optical means focuses the laser light on the workpiece to process the workpiece.

【0007】更に、前記光強度均一化手段は、コアと、
前記コアの外周を被覆するクラッドとから構成される光
ファイバであって、前記コアの屈折率はすくなくも断面
方向に一定であり、一端より入射した光の強度分布を均
一にして他端より出射することを特徴とする請求項1に
記載されたレーザ加工機を構成した。
Further, the light intensity equalizing means includes a core,
An optical fiber composed of a clad covering the outer circumference of the core, wherein the refractive index of the core is at least constant in the cross-sectional direction, and the intensity distribution of the light incident from one end is made uniform and the light is emitted from the other end. The laser processing machine according to claim 1 is configured.

【0008】更に、コアと、前記コアの外周を被覆する
クラッドとから構成される光ファイバであって、前記コ
アの屈折率はすくなくも断面方向に一定であり、一端よ
り入射した光の強度分布を均一にして他端より出射する
ことを特徴とする光強度均一化素子を構成した。
Further, in an optical fiber composed of a core and a clad covering the outer periphery of the core, the refractive index of the core is at least constant in the cross-sectional direction, and the intensity distribution of light incident from one end is Is uniformized and emitted from the other end.

【0009】[0009]

【作用】請求項1に記載の発明では、レーザ光は光束の
断面の光強度を均一化され、反射鏡により偏向角を可変
に偏向されてた後被加工物の一点に合焦し、被加工物を
加工する。請求項2に記載の発明では、前記光強度均一
化手段は、コアと、前記コアの外周を被覆するクラッド
とから構成される光ファイバであって、前記コアの屈折
率はすくなくも断面方向に一定であり、一端より入射し
た光の強度分布を均一にして他端より出射する。請求項
3に記載の発明では、前記コアの屈折率はすくなくも断
面方向に一定である。
According to the invention described in claim 1, the light intensity of the cross section of the light flux of the laser light is made uniform, and the laser light is focused on one point of the workpiece after being deflected by the reflecting mirror in a variable deflection angle. Process the work piece. In the invention according to claim 2, the light intensity equalizing means is an optical fiber including a core and a clad covering the outer periphery of the core, and the refractive index of the core is at least in the cross-sectional direction. It is constant, and the intensity distribution of the light incident from one end is made uniform and the light is emitted from the other end. In the invention according to claim 3, the refractive index of the core is constant at least in the cross-sectional direction.

【0010】本発明の一実施例に係るレーザ加工機を図
1により説明する。図1はレーザ加工機の概念図であ
る。レーザ1はNd:YAGレーザであり、レーザ光L1の波
長は1060nm、出力強度は5ワットである。素子2
はレーザ1から出射されたレーザ光の光束の強度分布を
均一にする光学素子である。光学系3は反射鏡4、反射
鏡5、反射鏡6、反射鏡7及びレンズ8から構成されて
いる。光学系3を支持する光学系回転支持台9の回転軸
9aは、レンズ8の軸8aと一致している。被加工物1
0は厚さ0.02〜1.0mmのステンレス板である。
A laser beam machine according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a conceptual diagram of a laser processing machine. The laser 1 is an Nd: YAG laser, and the laser beam L1 has a wavelength of 1060 nm and an output intensity of 5 watts. Element 2
Is an optical element that makes the intensity distribution of the luminous flux of the laser light emitted from the laser 1 uniform. The optical system 3 includes a reflecting mirror 4, a reflecting mirror 5, a reflecting mirror 6, a reflecting mirror 7 and a lens 8. The rotation axis 9a of the optical system rotation support 9 that supports the optical system 3 coincides with the axis 8a of the lens 8. Workpiece 1
0 is a stainless plate having a thickness of 0.02 to 1.0 mm.

【0011】素子2を図2により説明する。図2は素子
の概念図である。素子2は直径200μmの合成石英の
コア2aを厚さ20μmのフッ素ドープの合成石英のク
ラッド2bで被覆した長さ1mの石英系ステップ型光フ
ァイバである。クラッド2bの外側は更に厚さ50μm
の光を透過しない有機質の被覆層2cで被覆されてい
る。素子2の両端はそれぞれ平面の入射端2dと出射端
2eとなっている。コア2aの屈折率n0 は全断面にわ
たり均一である。屈折率n0 及びクラッド2bの屈折率
n1 はそれぞれ、n0 =1.46、n1 =1.44であ
る。
The element 2 will be described with reference to FIG. FIG. 2 is a conceptual diagram of the element. The element 2 is a silica-based step-type optical fiber having a length of 1 m in which a synthetic silica core 2a having a diameter of 200 μm is covered with a fluorine-doped synthetic silica clad 2b having a thickness of 20 μm. The outside of the clad 2b has a thickness of 50 μm.
Is covered with an organic coating layer 2c that does not transmit the light. Both ends of the element 2 are respectively a plane incidence end 2d and a plane emission end 2e. The refractive index n0 of the core 2a is uniform over the entire cross section. The refractive index n0 and the refractive index n1 of the cladding 2b are n0 = 1.46 and n1 = 1.44, respectively.

【0012】図3は素子2の断面の屈折率分布を、それ
ぞれ縦軸に屈折率、横軸に断面方向の距離として示す図
である。素子2の断面の屈折率分布は、図3に示すよう
に両側にクラッド2bの低屈折率部分の間にコア2aの
高屈折率部分が垂直に立ち上がり、その高屈折率部分が
水平の線を描いている。いわゆるトップハット型をなし
ている。
FIG. 3 is a diagram showing the refractive index distribution in the cross section of the element 2, with the vertical axis representing the refractive index and the horizontal axis representing the distance in the cross sectional direction. As shown in FIG. 3, the refractive index distribution of the cross section of the element 2 is such that the high refractive index portion of the core 2a rises vertically between the low refractive index portions of the clad 2b on both sides and the high refractive index portion has a horizontal line. I am drawing. It is a so-called top hat type.

【0013】次に光の強度の分布について説明する。図
4及び図5はレーザ光の光束の断面の光強度の分布を示
す図である。レーザ1から出射されたレーザ光L1の光
束の断面の光強度は図4に示すように、中心部の光強度
が最も大きく、周辺部の光強度が最も小さい。レーザの
種類によっては図4に示すような中心部の光強度が最も
大いものの他、図5に示すように、中央部に複数の極大
値を有するものもある。いずれにせよ光強度が一定のも
のはない。
Next, the distribution of light intensity will be described. 4 and 5 are views showing the distribution of the light intensity in the cross section of the light flux of the laser light. As shown in FIG. 4, the light intensity of the cross section of the light flux of the laser light L1 emitted from the laser 1 has the highest light intensity in the central portion and the lowest light intensity in the peripheral portion. Depending on the type of laser, in addition to the highest light intensity in the central portion as shown in FIG. 4, there are also lasers having a plurality of maximum values in the central portion as shown in FIG. In any case, there is no constant light intensity.

【0014】図6は素子から出射されたレーザ光のレー
ザ光の光束の断面の光強度の分布を示す図である。素子
2から出射されたレーザ光の光束の断面の光強度は図6
に示すように全断面にわたり、即ちコア2aとクラッド
2bとの境界から中心部を経て他の境界まで一定であ
る。
FIG. 6 is a diagram showing the distribution of the light intensity in the cross section of the light flux of the laser light emitted from the device. The light intensity of the cross section of the light flux of the laser light emitted from the element 2 is shown in FIG.
As shown in (3), it is constant over the entire cross section, that is, from the boundary between the core 2a and the clad 2b to the other boundary through the central portion.

【0015】上述した光強度の分布の測定はいわゆるピ
ンホールスキャン法により行った。即ち、レーザ光に対
して直角な断面方向にピンホールを移動させ、ピンホー
ルを通過する光の強度を光検知器で測る方法によった。
The above-mentioned measurement of the light intensity distribution was performed by the so-called pinhole scan method. That is, the pinhole was moved in a cross-sectional direction perpendicular to the laser light, and the intensity of light passing through the pinhole was measured by a photodetector.

【0016】比較の為に、他の素子について測定を行っ
た。他の素子は直径10μmの、酸化ゲルマニウムの含
量が中心部に多く、順次周辺部に向かい減少するように
ドープされたガラス質の酸化珪素(GeO2 −SiO2
)のコアを、厚さ1μmの純粋のガラス質の酸化珪素
(SiO2 )のクラッドで被覆した長さ1mのファイバ
状の形状をなしている石英系光ファイバである。コアの
中心部の屈折率は 1.4650、及びクラッドの屈折
率 は1.4580である。
For comparison, measurements were made on other devices. The other element is a glassy silicon oxide (GeO2 --SiO2) having a diameter of 10 .mu.m, which has a large content of germanium oxide in the central portion and is gradually decreased toward the peripheral portion.
2) is a silica-based optical fiber having a fiber-like shape with a length of 1 m in which a core of 1) is coated with a clad of pure glassy silicon oxide (SiO2) having a thickness of 1 μm. The core has a refractive index of 1.4650 and the cladding has a refractive index of 1.4580.

【0017】図7は素子の断面の屈折率分布を示す図で
ある。他の素子の断面の屈折率分布は、図7に示すよう
に両側にクラッドの低屈折率部分があり、それより中央
部に向かって屈折率は増大し、コアの中心部に屈折率の
最大値の部分がある。いわゆる正規分布曲線に近い分布
をしている。
FIG. 7 is a diagram showing the refractive index distribution in the cross section of the device. As shown in Fig. 7, the refractive index distribution in the cross section of the other element has the low refractive index portions of the clad on both sides, and the refractive index increases toward the central part from that, and the maximum refractive index is present in the central part of the core. There is a value part. The distribution is close to the so-called normal distribution curve.

【0018】図8は素子から出射されたレーザ光の光束
の断面の光強度の分布を示す図である。他の素子から出
射されたレーザ光の光束の断面の光強度は図8に示すよ
うに、コアとクラッドとの境界でから中心部に向かい徐
々に増大し、中心部において最大になり、他の周辺部に
向かい徐々に減少する。いわゆる正規分布曲線に近い曲
線を描く。
FIG. 8 is a diagram showing the distribution of the light intensity in the cross section of the luminous flux of the laser light emitted from the element. As shown in FIG. 8, the light intensity of the cross section of the laser beam emitted from the other element gradually increases from the boundary between the core and the clad toward the central portion, and reaches the maximum at the central portion. It gradually decreases toward the periphery. Draw a curve close to the so-called normal distribution curve.

【0019】次に動作について説明する。レーザ1から
出射したレーザ光L1は図示しない入射レンズを介して
素子2の入射端2dより入射し、光束の強度分布が均一
にされ、出射端2eより出射する。次いで、光学系3に
入射し、順次反射鏡4、反射鏡5、反射鏡6、反射鏡7
により反射され、レンズ8により直径0.1μmに絞ら
れ、被加工物10上に合焦する。合焦する点11はレン
ズ8の軸8aを外れた位置にある。光学系回転支持台9
が回転すると、光学系3は回転軸9a、即ち軸8aを中
心に回転する。点11はレーザ光L1の照射により焼断
され、光学系3の回転に伴い移動する。光学系3が一回
転すると、点11の軌跡は軸8aを中心とした円を描
き、被加工物10に円孔12が穿鑿される。得られた円
孔12の直径は10〜100μmの範囲である。穿鑿さ
れた円孔12の真円度は1μm程度、周縁部は充分に平
滑である。
Next, the operation will be described. The laser light L1 emitted from the laser 1 is incident from the incident end 2d of the element 2 through an incident lens (not shown), the intensity distribution of the light flux is made uniform, and the laser light L1 is emitted from the emission end 2e. Then, the light enters the optical system 3, and the reflecting mirror 4, the reflecting mirror 5, the reflecting mirror 6, and the reflecting mirror 7 are sequentially arranged.
And is focused by the lens 8 to have a diameter of 0.1 μm. The focus point 11 is located off the axis 8a of the lens 8. Optical system rotation support 9
When is rotated, the optical system 3 rotates about the rotation axis 9a, that is, the axis 8a. The point 11 is burnt out by the irradiation of the laser beam L1 and moves as the optical system 3 rotates. When the optical system 3 makes one rotation, the locus of the point 11 draws a circle around the axis 8a, and a circular hole 12 is drilled in the workpiece 10. The diameter of the obtained circular hole 12 is in the range of 10 to 100 μm. The roundness of the perforated circular hole 12 is about 1 μm, and the peripheral portion is sufficiently smooth.

【0020】比較の為に、素子2に代え前記した他の素
子を使用して上記作業を行ったところ、穿鑿された円孔
の周縁部の平滑さは劣悪であり、本実施例に及ばなかっ
た。
For comparison, when the above-mentioned work was carried out by using the above-mentioned other element instead of the element 2, the smoothness of the peripheral portion of the perforated circular hole was inferior, which is not the same as this example. It was

【0021】他の実施態様として、素子2に代え、コア
及びクラッドが酸化ナトリウムー酸化硼素ー酸化珪素
(Na2 O−B2 O3 −SiO2 )の多成分系ステップ
型光ファイバを素子として使用し、良好な結果を得るこ
とができた。
In another embodiment, the element 2 is replaced by a multi-component step type optical fiber whose core and clad are sodium oxide-boron oxide-silicon oxide (Na2 O-B2 O3-SiO2). I was able to get the result.

【0022】[0022]

【発明の効果】本発明により、容易にレーザ光の強度分
布を均一にする光強度均一化素子が提供され、かつこれ
を使用し、精度が高く加工部の周縁が円滑に金属板を加
工するレーザ加工機が提供される。
According to the present invention, there is provided a light intensity homogenizing element for easily homogenizing the intensity distribution of laser light, and by using the light intensity homogenizing element, a metal plate is machined with high accuracy and the periphery of the machined portion is smooth. A laser processing machine is provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るレーザ加工機の概念図
である。
FIG. 1 is a conceptual diagram of a laser processing machine according to an embodiment of the present invention.

【図2】本発明の一実施例に係る光強度分布均一化素子
の断面の概念図である。
FIG. 2 is a conceptual diagram of a cross section of a light intensity distribution uniformizing device according to an embodiment of the present invention.

【図3】本発明の一実施例に係る光強度分布均一化素子
の断面の屈折率分布の概念図である。
FIG. 3 is a conceptual diagram of a refractive index distribution in a cross section of a light intensity distribution uniformizing device according to an embodiment of the present invention.

【図4】本発明の一実施例に係るレーザの光束の断面の
光強度分布の概念図である。
FIG. 4 is a conceptual diagram of a light intensity distribution of a cross section of a light flux of a laser according to an embodiment of the present invention.

【図5】レーザの断面の光強度分布の概念図である。FIG. 5 is a conceptual diagram of a light intensity distribution on a cross section of a laser.

【図6】本発明の一実施例に係る光強度分布均一化素子
から出射された光束の断面の光強度分布の概念図であ
る。
FIG. 6 is a conceptual diagram of a light intensity distribution of a cross section of a light beam emitted from a light intensity distribution uniformizing device according to an embodiment of the present invention.

【図7】レーザの光束の断面の光強度分布の概念図であ
る。
FIG. 7 is a conceptual diagram of a light intensity distribution of a cross section of a laser light beam.

【図8】レーザの光束の断面の光強度分布の概念図であ
る。
FIG. 8 is a conceptual diagram of a light intensity distribution of a cross section of a laser light beam.

【符号の説明】 1・・・レーザ、2・・・素子、3・・・光学系、4、
5、6、7・・・反射鏡、8・・・レンズ、10・・・
被加工物、11・・・円孔、L1・・・レーザ光
[Explanation of reference numerals] 1 ... laser, 2 ... element, 3 ... optical system, 4,
5, 6, 7 ... Reflecting mirror, 8 ... Lens, 10 ...
Workpiece, 11 ... Circular hole, L1 ... Laser light

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】レーザ光源と、光強度均一化手段と、光学
手段とを具備し、前記光強度均一化手段は、前記レーザ
光源が放射するレーザ光の光束の断面の光強度を均一化
し、前記光学手段は、前記レーザ光を被加工物上に合焦
させて前記被加工物を加工することを特徴とするレーザ
加工機。
1. A laser light source, a light intensity homogenizing means, and an optical means are provided, and the light intensity homogenizing means homogenizes the light intensity of the cross section of the light flux of the laser light emitted from the laser light source, The laser processing machine is characterized in that the optical means focuses the laser light on a workpiece to process the workpiece.
【請求項2】前記光強度均一化手段は、コアと、前記コ
アの外周を被覆するクラッドとから構成される光ファイ
バであって、前記コアの屈折率はすくなくも断面方向に
一定であり、一端より入射した光の強度分布を均一にし
て他端より出射することを特徴とする請求項1に記載さ
れたレーザ加工機。
2. The light intensity homogenizing means is an optical fiber comprising a core and a clad covering the outer periphery of the core, and the refractive index of the core is constant at least in the cross-sectional direction, The laser beam machine according to claim 1, wherein the intensity distribution of the light incident from one end is made uniform and the light is emitted from the other end.
【請求項3】コアと、前記コアの外周を被覆するクラッ
ドとから構成される光ファイバであって、前記コアの屈
折率はすくなくも断面方向に一定であり、一端より入射
した光の強度分布を均一にして他端より出射することを
特徴とする光強度均一化素子。
3. An optical fiber comprising a core and a clad covering the outer circumference of the core, wherein the refractive index of the core is at least constant in the cross-sectional direction, and the intensity distribution of light incident from one end Is uniformized and emitted from the other end.
JP2001187573A 2001-06-21 2001-06-21 Laser beam machine Pending JP2003001471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001187573A JP2003001471A (en) 2001-06-21 2001-06-21 Laser beam machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001187573A JP2003001471A (en) 2001-06-21 2001-06-21 Laser beam machine

Publications (1)

Publication Number Publication Date
JP2003001471A true JP2003001471A (en) 2003-01-08

Family

ID=19026845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001187573A Pending JP2003001471A (en) 2001-06-21 2001-06-21 Laser beam machine

Country Status (1)

Country Link
JP (1) JP2003001471A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128987A (en) * 2006-11-24 2008-06-05 Mitsubishi Electric Corp Beam profile measuring device and laser processing system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128987A (en) * 2006-11-24 2008-06-05 Mitsubishi Electric Corp Beam profile measuring device and laser processing system
JP4680871B2 (en) * 2006-11-24 2011-05-11 三菱電機株式会社 Beam profile measuring apparatus and laser processing apparatus

Similar Documents

Publication Publication Date Title
US5609780A (en) Laser system
US6534741B2 (en) Method of making an optical fiber
KR20010034366A (en) Laser marking method and apparatus, and marked member
JPH0643336A (en) Micro-lens for coupling optical fiber to elliptic light beam
JP2004295066A (en) Method for manufacturing optical waveguide
JP2003001471A (en) Laser beam machine
KR101733434B1 (en) Method for cutting substrate using spherical aberration
JP5021277B2 (en) Laser processing equipment
US8585390B2 (en) Mold making system and mold making method
JP4453112B2 (en) Laser processing method
JP3818580B2 (en) Laser processing method
JP2003088966A5 (en) Laser marking apparatus and two-dimensional code printing method
KR20220003217A (en) Device to extend the depth of focus for optical imaging device
JP4818958B2 (en) Beam irradiation apparatus and beam irradiation method
JP2002023099A (en) Laser beam machining device and laser beam machining method
JP2748853B2 (en) Beam expander, optical system and laser processing device
JPH0475794A (en) Optical fiber for stabilizing output beam mode in laser beam machine
CN112355484A (en) Surface periodic conical microstructure processing method based on Gaussian beam focusing direct writing
JP2000176669A (en) Laser beam cutting device
JP4155640B2 (en) Laser spot adjusting apparatus and method
RU2778397C1 (en) Device for manufacturing a groove and method for manufacturing a groove
JP3950129B2 (en) Laser heating device
CN115846900A (en) Optical path system, cutting head and device for generating a high-power laser beam
JPH10197709A (en) Binary optics and laser working device using the same
KR100296386B1 (en) Method and apparatus for transforming laser beam profile and method for processing optical fiber grating