JP2003001269A - Equipment for treatment of waste water containing gallium - Google Patents

Equipment for treatment of waste water containing gallium

Info

Publication number
JP2003001269A
JP2003001269A JP2001185364A JP2001185364A JP2003001269A JP 2003001269 A JP2003001269 A JP 2003001269A JP 2001185364 A JP2001185364 A JP 2001185364A JP 2001185364 A JP2001185364 A JP 2001185364A JP 2003001269 A JP2003001269 A JP 2003001269A
Authority
JP
Japan
Prior art keywords
gallium
arsenic
hydroxide
water
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001185364A
Other languages
Japanese (ja)
Other versions
JP4973901B2 (en
Inventor
Akira Matsumoto
章 松本
Kazuki Hayashi
一樹 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001185364A priority Critical patent/JP4973901B2/en
Publication of JP2003001269A publication Critical patent/JP2003001269A/en
Application granted granted Critical
Publication of JP4973901B2 publication Critical patent/JP4973901B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide equipment for the treatment of waste water containing gallium which treats waste water containing gallium discharged from manufacturing factories of compound semiconductor wafers, manufacturing factories of devices or the like and with which gallium being a rate and valuable metal can be efficiently collected and, coexistent arsenic can be removed without producing aggregated sludge containing iron. SOLUTION: The equipment for the treatment of waste water containing gallium is equipped with a hydroxide producing means to convert gallium in the waste water containing gallium into hydroxides, a solid liquid separating means where the water containing hydroxides is sent from the hydroxide producing means and separated into hydroxides and the treated water, and a membrane separating means where the treated water from the solid liquid separating means is introduced and separated into concentrated water and permeated water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガリウム含有廃水
の処理装置に関する。さらに詳しくは、本発明は、化合
物半導体のウエハー製造工場、デバイス製造工場等から
排出されるガリウム含有廃水を処理して、特に希少かつ
有価金属であるガリウムを効率的に回収することができ
るガリウム含有廃水の処理装置に関する。
TECHNICAL FIELD The present invention relates to a treatment device for wastewater containing gallium. More specifically, the present invention treats gallium-containing wastewater discharged from a compound semiconductor wafer manufacturing plant, a device manufacturing plant or the like to efficiently recover gallium, which is a rare and valuable metal. The present invention relates to a wastewater treatment device.

【0002】[0002]

【従来の技術】III−V族化合物半導体は、周期表のア
ルミニウム、ガリウム、インジウム等のIII族の元素
と、リン、ヒ素、アンチモン等のV族の元素を組み合わ
せたもので、GaAs、GaAsP、GaP、GaN、
GaAlAs、InGaAs、InGaP、InP等が
化合物半導体として知られている。これらの化合物半導
体を用いると、レーザー発光や、シリコン基板より高速
で動く電子を発生させることが可能となり、半導体レー
ザー、受光素子、マイクロ波半導体、高速デジタルIC
等の製造が可能となる。しかし、これらの金属元素のう
ち、ガリウムはシリコンに比べて地球上にごくわずかし
か存在せず、高価かつ希少な金属であり、原料の入手過
程や、結晶精製過程のコストを考えると、シリコンに比
べて割高である。従って、ウエハー製造メーカーやデバ
イス製造メーカーでは、ガリウムを回収することが行わ
れている。ガリウムは、ウエハー製造メーカーであれ
ば、インゴットからウエハーを切り出すスライシング工
程や、ウエハー表面の研磨を行うラッピング工程、ポリ
ッシング工程から研削屑として排出されたり、あるい
は、ウエハーの硝酸、塩酸、硫酸、リン酸等の酸又はア
ンモニア水等のアルカリによる洗浄に際して、洗浄後の
濃厚排液や、水洗後の希薄排液中にイオン状で含有され
て排出される。また、デバイス製造メーカーにおいて
も、スライシング工程やウエハー上のチップを切り出す
ダイシング工程から研削屑として排出されたり、あるい
は、ウエハー製造メーカーと同様に、酸・アルカリ洗浄
液の濃厚排液、希薄排液中にイオン状で含有されて排出
される。従来、ガリウムの回収手段として、研削屑の場
合は膜分離手段で回収したり、イオン状の場合はキレー
ト樹脂により吸着し、その後脱離液中のガリウムを水酸
化物として回収することが行われている。これらのガリ
ウムを含む化合物半導体の代表例としてヒ化ガリウム
(GaAs)が挙げられるが、ヒ素が含まれるためにガ
リウムの回収と同時にヒ素を処理することが必須となっ
ている。上記の従来技術におけるガリウムの回収は、キ
レート樹脂によるところが大きく、空間速度、pHや、
鉄、アルミニウム、インジウム、カルシウム、マグネシ
ウム等の共存金属イオン等により、吸着量及び吸着剤の
寿命が大きく変動し、不経済となっていた。また、ヒ素
の処理については、鉄塩を用いる共沈が主流で、ヒ素濃
度に対して10重量倍以上の鉄塩を必要とするために大
量の汚泥が発生し、産業廃棄物として処理されている。
また、吸着剤の使用も提案されているが、極めて低濃度
のヒ素を処理する場合を除いて、吸着剤の再生サイクル
が短く、不経済となっていた。
2. Description of the Related Art A III-V group compound semiconductor is a combination of a Group III element such as aluminum, gallium, and indium in the periodic table with a Group V element such as phosphorus, arsenic, and antimony. GaAs, GaAsP, GaP, GaN,
GaAlAs, InGaAs, InGaP, InP and the like are known as compound semiconductors. The use of these compound semiconductors makes it possible to emit laser light and generate electrons that move faster than a silicon substrate, and thus semiconductor lasers, light receiving elements, microwave semiconductors, high-speed digital ICs.
Etc. can be manufactured. However, of these metal elements, gallium is an expensive and rare metal, as it exists in the earth in a very small amount compared to silicon, and considering the cost of the raw material acquisition process and the crystal refining process, It is relatively expensive. Therefore, wafer manufacturers and device manufacturers are collecting gallium. In the case of a wafer manufacturer, gallium is discharged as grinding debris from a slicing process for cutting a wafer from an ingot, a lapping process for polishing the wafer surface, a polishing process, or nitric acid, hydrochloric acid, sulfuric acid, or phosphoric acid on the wafer. In the case of washing with an acid such as or an alkali such as ammonia water, it is contained and discharged in an ionic state in a concentrated drainage liquid after washing or a diluted drainage liquid after washing with water. In addition, even in device manufacturers, it is discharged as grinding dust from the slicing process or the dicing process of cutting out chips on the wafer, or, like the wafer manufacturer, in concentrated or diluted waste of acid / alkali cleaning solution. It is contained and discharged in ionic form. Conventionally, as a means for recovering gallium, in the case of grinding dust, it is recovered by a membrane separating means, or in the case of an ionic state, it is adsorbed by a chelate resin, and then gallium in the desorbed liquid is recovered as a hydroxide. ing. Although gallium arsenide (GaAs) is a typical example of such a compound semiconductor containing gallium, since arsenic is contained, it is essential to treat arsenic at the same time as recovery of gallium. The recovery of gallium in the above-mentioned prior art is largely due to the chelate resin, space velocity, pH and
Due to coexisting metal ions such as iron, aluminum, indium, calcium, magnesium, etc., the amount of adsorption and the life of the adsorbent fluctuate greatly, which is uneconomical. Regarding arsenic treatment, coprecipitation using iron salt is the mainstream, and a large amount of sludge is generated because it requires 10 times or more the weight of iron salt relative to the arsenic concentration, and it is treated as industrial waste. There is.
Although the use of an adsorbent has also been proposed, the regeneration cycle of the adsorbent is short and uneconomical except when treating an extremely low concentration of arsenic.

【0003】[0003]

【発明が解決しようとする課題】本発明は、化合物半導
体のウエハー製造工場、デバイス製造工場等から排出さ
れるガリウム含有廃水を処理して、特に希少かつ有価金
属であるガリウムを効率的に回収することができ、同時
に共存するヒ素を、鉄を含んだ凝集汚泥を発生すること
なく除去し得るガリウム含有廃水の処理装置を提供する
ことを目的としてなされたものである。
DISCLOSURE OF THE INVENTION The present invention treats gallium-containing wastewater discharged from a compound semiconductor wafer manufacturing factory, a device manufacturing factory or the like to efficiently recover gallium which is a rare and valuable metal. It is an object of the present invention to provide a treatment device for gallium-containing wastewater capable of removing coexisting arsenic at the same time without generating coagulated sludge containing iron.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく鋭意研究を重ねた結果、ガリウム含有廃
水中のガリウムを水酸化物とし、固液分離手段により水
酸化物を高濃縮し、共存金属が減少した処理水中の残存
ガリウムとヒ素を、さらに膜分離手段を用いて濃縮する
ことにより、ガリウム含有廃水からガリウムを余すこと
なく効率よく回収すると同時に、鉄を含んだ凝集汚泥を
発生することなく、処理水中のヒ素濃度を環境基準、排
出基準以下にし得ることを見いだし、この知見に基づい
て本発明を完成するに至った。すなわち、本発明は、
(1)ガリウム含有廃水中のガリウムを水酸化物とする
水酸化物生成手段と、水酸化物生成手段からの水酸化物
含有水が導入されて水酸化物と処理水に分離する固液分
離手段と、固液分離手段の処理水が導入されて濃縮水と
透過水に分離する膜分離手段とを有することを特徴とす
るガリウム含有廃水の処理装置、(2)固液分離手段
が、セラミック膜分離手段である第1項記載のガリウム
含有廃水の処理装置、(3)膜分離手段の後段にガリウ
ムを吸着除去するガリウム吸着手段を有する第1項記載
のガリウム含有廃水の処理装置、及び、(4)膜分離手
段の後段にヒ素を吸着除去するヒ素吸着手段を有する第
1項記載のガリウム含有廃水の処理装置、を提供するも
のである。
As a result of intensive studies to solve the above problems, the inventors of the present invention have found that gallium in gallium-containing wastewater is made into hydroxide, and solid-liquid separation means is used to form hydroxide. Residual gallium and arsenic in the treated water with high concentration and reduced coexisting metals are further concentrated by using a membrane separation means to efficiently recover gallium from the gallium-containing wastewater, and at the same time, agglomerate containing iron. It has been found that the arsenic concentration in the treated water can be made equal to or lower than the environmental standard and the emission standard without generating sludge, and the present invention has been completed based on this finding. That is, the present invention is
(1) Hydroxide generating means for converting gallium in the gallium-containing wastewater into hydroxide, and solid-liquid separation in which hydroxide-containing water from the hydroxide generating means is introduced to separate into hydroxide and treated water. Means and a membrane separation means for introducing the treated water of the solid-liquid separation means to separate into concentrated water and permeated water, (2) solid-liquid separation means is a ceramic The treatment device for gallium-containing waste water according to claim 1, which is a membrane separation device, (3) The treatment device for gallium-containing waste water according to claim 1, further comprising gallium adsorption means for adsorbing and removing gallium at a stage subsequent to the membrane separation means, and (4) The present invention provides the apparatus for treating gallium-containing wastewater according to item 1, which has an arsenic adsorbing means for adsorbing and removing arsenic after the membrane separating means.

【0005】[0005]

【発明の実施の形態】図1は、本発明のガリウム含有廃
水の処理装置の一態様の系統図である。本態様の装置に
おいては、水酸化物生成手段、固液分離手段及び膜分離
手段に加えて、ガリウム吸着手段、ヒ素吸着手段及び濃
縮手段が備えられている。本態様の装置においては、水
酸化物生成手段は反応槽1、固液分離手段は循環槽2と
膜分離装置3、膜分離手段は循環槽4と膜分離装置5、
ガリウム吸着手段はガリウム吸着塔6、ヒ素吸着手段は
ヒ素吸着塔7、濃縮手段は濃縮設備8からなる。本発明
装置において、ガリウム含有廃水中のガリウムを水酸化
物とする水酸化物生成手段においては、ガリウム含有廃
水のpHを調整する。ガリウムは、pH3〜9の範囲で水不
溶性の水酸化物を生成する。従って、酸を含む洗浄排水
の場合は、水酸化ナトリウム、消石灰等のアルカリを添
加し、アルカリを含む廃水の場合は、塩酸、硫酸等の酸
を添加してpHを調整する。ガリウム含有廃水のpHが3〜
5となるように調整することが好ましい。ガリウム含有
廃水のpH調整により、ガリウムや廃水中に共存する他の
金属の水酸化物が生成し、ヒ素が共沈により除去され
る。水中のヒ素は、亜ヒ酸(H3AsO3)又はヒ酸(H
3AsO4)の形態で存在する。亜ヒ酸は水酸化物と共沈
しにくいので、あらかじめ次亜塩素酸塩等の酸化剤を用
いて酸化し、ヒ酸としておくことが好ましい。As(II
I)200mg/Lを含有する廃水は、pH5〜7において、
190〜200mg/Lの有効塩素で酸化することができ
る。なお、酸化還元電位を400mV以上にすることが好
ましい。また、生成した水酸化物をさらにフロック化す
るために、高分子凝集剤を添加することができる。図1
においては、反応槽を1基として示しているが、酸化剤
の添加、pH調整、高分子凝集剤の添加を各槽に分けて行
うこともできる。連続処理の点からは、酸化剤の添加、
pH調整、高分子凝集剤の添加を各槽に分けて行うことが
好ましい。なお、ガリウム含有廃水のガリウム濃度が低
い等の理由により、水酸化物の生成量が少なくなるよう
な場合は、共沈除去されるヒ素の量も少なくなってしま
うため、ガリウム含有廃水が含有するヒ素と同当量程度
の鉄塩を添加してもよい。
1 is a system diagram of an embodiment of a treatment apparatus for wastewater containing gallium according to the present invention. The apparatus according to this aspect includes a gallium adsorbing means, an arsenic adsorbing means, and a concentrating means in addition to the hydroxide producing means, the solid-liquid separating means and the membrane separating means. In the apparatus of this embodiment, the hydroxide producing means is the reaction tank 1, the solid-liquid separating means is the circulating tank 2 and the membrane separating device 3, and the membrane separating means is the circulating tank 4 and the membrane separating device 5.
The gallium adsorption means comprises a gallium adsorption tower 6, the arsenic adsorption means comprises an arsenic adsorption tower 7, and the concentration means comprises a concentration equipment 8. In the apparatus of the present invention, the pH of the gallium-containing wastewater is adjusted in the hydroxide generating means that uses gallium in the gallium-containing wastewater as a hydroxide. Gallium produces water-insoluble hydroxide in the pH range of 3-9. Therefore, in the case of washing wastewater containing acid, alkali such as sodium hydroxide or slaked lime is added, and in the case of wastewater containing alkali, acid such as hydrochloric acid or sulfuric acid is added to adjust the pH. PH of gallium-containing wastewater is 3 ~
It is preferable to adjust so as to be 5. By adjusting the pH of the gallium-containing wastewater, hydroxides of gallium and other metals that coexist in the wastewater are produced, and arsenic is removed by coprecipitation. Arsenic in water is arsenous acid (H 3 AsO 3 ) or arsenic acid (H
3 AsO 4 ). Since arsenous acid does not easily coprecipitate with hydroxide, it is preferable to oxidize it beforehand with an oxidizing agent such as hypochlorite to prepare arsenic acid. As (II
I) Wastewater containing 200 mg / L, at pH 5-7,
It can be oxidized with 190 to 200 mg / L of available chlorine. The redox potential is preferably 400 mV or higher. Further, a polymer flocculant can be added in order to further flocculate the generated hydroxide. Figure 1
In the above, one reaction tank is shown, but addition of an oxidizing agent, pH adjustment, and addition of a polymer flocculant can be performed separately for each tank. From the viewpoint of continuous treatment, addition of oxidizer,
It is preferable that the pH adjustment and the addition of the polymer flocculant are separately performed in each tank. In addition, when the production amount of hydroxide is reduced due to the low gallium concentration of gallium-containing wastewater, the amount of arsenic removed by coprecipitation is also reduced, and therefore gallium-containing wastewater contains it. An iron salt in the same amount as arsenic may be added.

【0006】本発明装置において、水酸化物生成手段か
らの水酸化物含有水が導入されて、水酸化物と処理水に
分離する固液分離手段に特に制限はなく、例えば、膜分
離装置、沈殿槽等を挙げることができる。これらの中
で、膜分離装置は、水酸化物を高濃縮することができる
ので好ましい。膜分離装置に用いる膜に特に制限はない
が、セラミック膜を好適に用いることができる。セラミ
ック膜としては、例えば、酸化アルミナを焼結したモノ
リス型のセラミック膜や、窒化珪素を焼結し、球状のα
型結晶をなくし主として柱形のβ型結晶からなる単層ハ
ニカム構造のセラミック膜等を挙げることができる。こ
れらの中で、主として柱形のβ型窒化珪素結晶からなる
単層ハニカム構造のセラミック膜を特に好適に用いるこ
とができる。この構造の膜は、モノリス型の従来のセラ
ミック膜に比べ、気孔率が大きく取れることも相まっ
て、低流速でも高フラックスが得られる。孔径が0.0
02〜0.5μmの限外ろ過膜又は精密ろ過膜級の膜を
使用することが好ましい。膜分離装置による濃縮の程度
に特に制限はないが、濃縮水中の懸濁物質の濃度が5〜
50重量%となるように濃縮することが好ましい。ま
た、処理条件としては、0.01〜0.5Mpaの圧力で、
循環槽へ濃縮水を循環するクロスフローによる回分式又
は半回分式による濃縮方法が好ましい。膜分離装置を用
いる濃縮により、水酸化物中のガリウム濃度が上昇し、
精錬所などの回収先でのガリウム精製を効率よく行うこ
とができ、また、リサイクルの際の輸送コストを低減す
ることができる。なお、図1には示していないが、この
水酸化物をさらに高濃縮するために、蒸発、乾燥等の処
理を行うこともできる。さらに、ガリウムを酸又はアル
カリを用いて溶解させたのち、蒸発、乾燥、膜等により
濃縮して濃度を高めてリサイクルすることができる。ま
た、図示はないが、回収した水酸化物を反応槽に返送し
て、ガリウム含有廃水と混合し、再度濃縮するようにし
ても良い。
In the apparatus of the present invention, the solid-liquid separation means for introducing the hydroxide-containing water from the hydroxide generation means to separate into hydroxide and treated water is not particularly limited. A precipitation tank and the like can be mentioned. Among these, the membrane separator is preferable because it can highly concentrate the hydroxide. The membrane used in the membrane separation device is not particularly limited, but a ceramic membrane can be preferably used. As the ceramic film, for example, a monolithic ceramic film obtained by sintering alumina oxide or a spherical α-shaped film obtained by sintering silicon nitride is used.
A ceramic film having a single-layer honeycomb structure, which is formed of a pillar-shaped β-type crystal without the type crystal, may be used. Among these, a ceramic film having a single-layer honeycomb structure composed mainly of columnar β-type silicon nitride crystals can be particularly preferably used. The membrane having this structure has a large porosity as compared with the conventional monolithic ceramic membrane, and thus, a high flux can be obtained even at a low flow velocity. Pore size is 0.0
It is preferable to use an ultrafiltration membrane or a microfiltration membrane grade of 02 to 0.5 μm. The degree of concentration by the membrane separator is not particularly limited, but the concentration of the suspended substance in the concentrated water is 5 to 5.
It is preferable to concentrate so as to be 50% by weight. In addition, as the processing conditions, a pressure of 0.01 to 0.5 Mpa,
A batch-type or semi-batch type concentration method using a cross flow in which concentrated water is circulated to a circulation tank is preferable. Concentration using a membrane separator increases the gallium concentration in the hydroxide,
It is possible to efficiently purify gallium at a recovery destination such as a smelter and to reduce the transportation cost at the time of recycling. Although not shown in FIG. 1, in order to further highly concentrate this hydroxide, a treatment such as evaporation and drying can be performed. Further, gallium can be dissolved using an acid or an alkali, and then evaporated, dried, concentrated by a film or the like to increase the concentration and recycled. Although not shown, the recovered hydroxide may be returned to the reaction tank, mixed with the gallium-containing wastewater, and concentrated again.

【0007】本発明装置は、固液分離手段の処理水が導
入されて、濃縮水と透過水に分離する膜分離手段を有す
る。膜分離手段を設けることにより、残存するガリウ
ム、ヒ素等のイオンと同時に、酸、アルカリや、洗浄工
程で使用された界面活性剤も濃縮、除去し、後段のガリ
ウム吸着手段及びヒ素吸着手段に与える影響を軽減する
ことができる。膜分離手段に用いる膜に特に制限はない
が、耐酸性を有する逆浸透膜又はナノフィルトレーショ
ン膜であることが好ましく、2価以上のイオンは濃縮す
るが、ナトリウムイオン、塩化物イオン等の1価イオン
は通過させるナノフィルトレーション膜であることが特
に好ましい。膜分離装置の膜型式に特に制限はなく、例
えば、スパイラル、平膜、チューブラー、中空糸等を挙
げることができる。膜分離装置の運転圧力は0.7〜5.
5MPaであることが好ましく、濃縮倍率は、pHやスケー
ル成分であるシリカイオン、カルシウムイオンの量にも
よるが、おおよそ3〜10倍濃縮とすることが好まし
い。膜分離装置の運転方法は、循環槽へ濃縮水を循環す
るクロスフローによる回分式又は半回分式による濃縮方
法が好ましい。この濃縮水は、そのまま回収することが
でき、あるいは、反応槽に返送してガリウム含有廃水と
混合して処理することもできるが、図1に示されるよう
に濃縮設備に導入し、再度濃縮してガリウムイオンを回
収することが好ましい。
The apparatus of the present invention has a membrane separating means into which the treated water of the solid-liquid separating means is introduced to separate it into concentrated water and permeated water. By providing the membrane separating means, the residual ions such as gallium and arsenic, as well as the acid, alkali, and the surfactant used in the washing step are concentrated and removed, and are provided to the gallium adsorbing means and the arsenic adsorbing means in the subsequent stage. The impact can be reduced. The membrane used for the membrane separation means is not particularly limited, but a reverse osmosis membrane or nanofiltration membrane having acid resistance is preferable, and divalent or higher valent ions are concentrated, but sodium ions, chloride ions, etc. A nanofiltration membrane that allows monovalent ions to pass through is particularly preferable. The membrane type of the membrane separation device is not particularly limited, and examples thereof include spiral, flat membrane, tubular, and hollow fiber. The operating pressure of the membrane separator is 0.7-5.
The concentration ratio is preferably 5 MPa, and the concentration ratio is preferably about 3 to 10 times, although it depends on pH and the amount of silica ions and calcium ions as scale components. The operation method of the membrane separation device is preferably a batch type or semi-batch type concentration method by a cross flow in which concentrated water is circulated in a circulation tank. This concentrated water can be recovered as it is, or can be returned to the reaction tank and mixed with the gallium-containing wastewater for treatment, but as shown in FIG. It is preferable to recover gallium ions.

【0008】本発明装置においては、膜分離手段の後段
に、膜分離手段の透過水中に残存するガリウムを吸着除
去するガリウム吸着手段を設けることが好ましい。ガリ
ウム吸着手段としては、例えば、キレート樹脂を充填し
たガリウム吸着塔等を挙げることができる。キレート樹
脂としては、例えば、イミノジ酢酸型、リン酸型、アミ
ノメチルリン酸型、ポリアミン型、アミノカルボン酸型
樹脂等を挙げることができる。これらの中で、リン酸型
樹脂は、ガリウムの吸着量が大きく、ガリウムに対する
選択性に優れているので、特に好適に用いることができ
る。ガリウム吸着塔に通水する処理水は、pH1〜2.5
に調整し、空間速度10h-1以下で通水することが好ま
しく、0.5〜5h-1で通水することがより好ましい。
ガリウムは両性であり、酸、アルカリのいずれの薬液に
も溶解するので、キレート樹脂に吸着したガリウムは、
塩酸、硫酸、硝酸等の酸又は水酸化ナトリウム等のアル
カリを用いて脱離することができるが、塩酸又は硫酸は
脱離率が高いので特に好適に用いることができる。塩酸
を用いて脱離するとき、その濃度は1〜6モル/Lであ
ることが好ましく、2〜3モル/Lであることがより好
ましい。硫酸を用いて脱離するとき、その濃度は0.5
〜3モル/Lであることが好ましく、1.5〜2モル/
Lであることがより好ましい。脱離に用いる液のpHは、
吸着時の通水pHよりも低pHとする。
In the apparatus of the present invention, it is preferable that a gallium adsorbing means for adsorbing and removing gallium remaining in the permeated water of the membrane separating means is provided after the membrane separating means. Examples of the gallium adsorption means include a gallium adsorption tower filled with a chelate resin. Examples of the chelate resin include iminodiacetic acid type, phosphoric acid type, aminomethylphosphoric acid type, polyamine type, aminocarboxylic acid type resins and the like. Among them, the phosphoric acid type resin can be particularly preferably used because it has a large amount of adsorbed gallium and has excellent selectivity for gallium. Treated water passing through the gallium adsorption tower has a pH of 1 to 2.5.
It is preferable that water is passed through at a space velocity of 10 h -1 or less, and more preferably 0.5-5 h -1 .
Since gallium is amphoteric and dissolves in both acid and alkali chemicals, gallium adsorbed on the chelate resin is
It can be desorbed using an acid such as hydrochloric acid, sulfuric acid, nitric acid or an alkali such as sodium hydroxide, but hydrochloric acid or sulfuric acid is particularly preferably used because of its high desorption rate. When desorbing with hydrochloric acid, the concentration is preferably 1 to 6 mol / L, more preferably 2 to 3 mol / L. When desorbing with sulfuric acid, its concentration is 0.5
Is preferably 3 to 3 mol / L, and is preferably 1.5 to 2 mol / L.
It is more preferably L. The pH of the liquid used for desorption is
The pH should be lower than the pH of water flow during adsorption.

【0009】本発明装置においては、共沈等により除去
されなかったヒ素を吸着除去するヒ素吸着手段を設ける
ことが好ましい。ヒ素吸着手段に用いる吸着剤として
は、例えば、イオン交換樹脂、キレート樹脂、ヒ素選択
性吸着樹脂等を挙げることができる。これらの中で、ジ
ルコニウムを母体とするヒ素選択性吸着樹脂や、含水酸
化セリウムの粉体を高分子化合物に担持させたヒ素選択
性吸着樹脂を好適に使用することができる。ヒ素選択性
吸着樹脂を充填したヒ素吸着塔への通水は、pH5〜8、
空間速度5〜10h-1で行うことが好ましい。ヒ素選択
性吸着樹脂の再生廃液は、水酸化物生成手段に返送する
のが好ましい。ヒ素吸着手段を通過することにより、処
理水は、排出基準、環境基準を満足する。なお、ガリウ
ム吸着手段とヒ素吸着手段はどちらが先にあっても良
い。本発明装置においては、濃縮手段を設け、膜分離手
段の濃縮水及びガリウム吸着塔の脱離液中に含まれるガ
リウムを濃縮、回収することが好ましい。濃縮設備の形
式に特に制限はなく、例えば、キレート樹脂を充填した
吸着手段、逆浸透膜、ナノフィルトレーション膜等を備
えた膜分離手段、蒸発や乾燥機等を挙げることができ
る。キレート樹脂を用いる場合は、ガリウム吸着手段と
ほぼ同様な処理を施し、吸着手段に通水する。逆浸透
膜、ナノフィルトレーション膜の場合は、硫酸、塩酸等
を用いた脱離液が低pHであることから、pH1前後に耐え
られる耐酸性の膜を使用することが好ましい。なお、図
示しないが、ヒ素再生廃液を濃縮設備に導入して、ガリ
ウムとともに濃縮することもできる。濃縮設備におい
て、手段にもよるが10倍以上に濃縮することが可能で
ある。本発明装置において、ヒ素吸着手段から流出する
処理水は、中和処理設備、水回収設備等を設け、さらに
適切な処理を施すことが好ましい。本発明装置によれ
ば、ガリウム含有廃水からガリウムを余すことなく、効
率よく回収すると同時に、ガリウム及びその他の共存す
る金属の水酸化物化の力を利用してヒ素を共沈し、鉄を
含んだ凝集汚泥を発生しないいわゆるゼロディスチャー
ジを達成することができるので、地球環境保全上極めて
有用である。
In the apparatus of the present invention, it is preferable to provide an arsenic adsorbing means for adsorbing and removing arsenic which has not been removed by coprecipitation or the like. Examples of the adsorbent used in the arsenic adsorption means include an ion exchange resin, a chelate resin, and an arsenic-selective adsorption resin. Among these, an arsenic-selective adsorption resin having zirconium as a matrix and an arsenic-selective adsorption resin in which a powder of cerium oxide hydroxide is supported on a polymer compound can be preferably used. Water flow to the arsenic adsorption tower filled with arsenic selective adsorption resin is pH 5-8,
The space velocity is preferably 5 to 10 h −1 . The recycled waste liquid of the arsenic-selective adsorption resin is preferably returned to the hydroxide generating means. By passing through the arsenic adsorption means, the treated water satisfies the discharge standard and the environmental standard. Either the gallium adsorption means or the arsenic adsorption means may come first. In the device of the present invention, it is preferable to provide a concentrating means to concentrate and recover the concentrated water of the membrane separating means and the gallium contained in the desorbed liquid of the gallium adsorption tower. The form of the concentration equipment is not particularly limited, and examples thereof include an adsorption means filled with a chelate resin, a membrane separation means equipped with a reverse osmosis membrane, a nanofiltration membrane and the like, an evaporator and a dryer. When a chelate resin is used, a treatment similar to that of the gallium adsorbing means is performed and water is passed through the adsorbing means. In the case of a reverse osmosis membrane or a nanofiltration membrane, it is preferable to use an acid resistant membrane that can withstand around pH 1 because the desorbed solution using sulfuric acid, hydrochloric acid, etc. has a low pH. Although not shown, the arsenic regeneration waste liquid may be introduced into a concentrating facility and concentrated together with gallium. Depending on the means, it is possible to concentrate 10 times or more in the concentration equipment. In the device of the present invention, it is preferable that the treated water flowing out from the arsenic adsorbing means is further provided with a neutralization treatment facility, a water recovery facility, etc., and further subjected to an appropriate treatment. According to the device of the present invention, gallium is efficiently recovered without being left over from the gallium-containing wastewater, and at the same time, arsenic is co-precipitated by utilizing the hydroxide-forming power of gallium and other coexisting metals to contain iron. Since it is possible to achieve a so-called zero discharge that does not generate coagulated sludge, it is extremely useful for global environmental protection.

【0010】[0010]

【発明の効果】本発明のガリウム含有廃水の処理装置に
よれば、ガリウム含有廃水そのものを最初に処理してガ
リウムを水酸化物として回収するとともに、ヒ素を共沈
により除去し、さらにガリウムの水酸化物を高濃縮し、
共存金属が減少した処理水中の残存ガリウムとヒ素を膜
濃縮するので、ガリウム及びヒ素の吸着量、吸着剤再生
サイクルを大幅に延ばすことが可能である。
According to the treatment apparatus for gallium-containing wastewater of the present invention, the gallium-containing wastewater itself is first treated to recover gallium as a hydroxide, and arsenic is removed by coprecipitation. Highly concentrated oxide,
Since the residual gallium and arsenic in the treated water in which the coexisting metals are reduced are concentrated, the amount of gallium and arsenic adsorbed and the adsorbent regeneration cycle can be significantly extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明のガリウム含有廃水の処理装置
の一態様の系統図である。
FIG. 1 is a system diagram of an embodiment of a treatment device for gallium-containing wastewater according to the present invention.

【符号の説明】[Explanation of symbols]

1 反応槽 2 循環槽 3 膜分離装置 4 循環槽 5 膜分離装置 6 ガリウム吸着塔 7 ヒ素吸着塔 8 濃縮設備 1 reaction tank 2 circulation tanks 3 Membrane separation device 4 circulation tanks 5 Membrane separation device 6 gallium adsorption tower 7 Arsenic adsorption tower 8 Concentration equipment

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/44 C02F 1/44 E Fターム(参考) 4D006 GA03 GA04 GA06 GA07 HA01 HA21 HA41 HA61 KA72 KB12 KB20 KD03 MB19 MC03 PA01 PA03 PB08 PB23 PB27 PC01 4D024 AA04 AB17 BA18 BC02 CA01 DA08 DB05 DB06 DB07 DB20 4D038 AA08 AB70 AB79 BA04 BB06 BB13 BB17 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C02F 1/44 C02F 1/44 EF term (reference) 4D006 GA03 GA04 GA06 GA07 HA01 HA21 HA41 HA61 KA72 KB12 KB20 KD03 MB19 MC03 PA01 PA03 PB08 PB23 PB27 PC01 4D024 AA04 AB17 BA18 BC02 CA01 DA08 DB05 DB06 DB07 DB20 4D038 AA08 AB70 AB79 BA04 BB06 BB13 BB17

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ガリウム含有廃水中のガリウムを水酸化物
とする水酸化物生成手段と、水酸化物生成手段からの水
酸化物含有水が導入されて水酸化物と処理水に分離する
固液分離手段と、固液分離手段の処理水が導入されて濃
縮水と透過水に分離する膜分離手段とを有することを特
徴とするガリウム含有廃水の処理装置。
1. A hydroxide generating means for converting gallium in a gallium-containing waste water into a hydroxide, and a hydroxide-containing water from the hydroxide generating means is introduced to separate into hydroxide and treated water. A treatment device for gallium-containing wastewater, comprising: a liquid separation means; and a membrane separation means for introducing the treated water of the solid-liquid separation means to separate into concentrated water and permeated water.
【請求項2】固液分離手段が、セラミック膜分離手段で
ある請求項1記載のガリウム含有廃水の処理装置。
2. The apparatus for treating gallium-containing wastewater according to claim 1, wherein the solid-liquid separation means is a ceramic membrane separation means.
【請求項3】膜分離手段の後段にガリウムを吸着除去す
るガリウム吸着手段を有する請求項1記載のガリウム含
有廃水の処理装置。
3. The apparatus for treating gallium-containing wastewater according to claim 1, further comprising gallium adsorbing means for adsorbing and removing gallium after the membrane separating means.
【請求項4】膜分離手段の後段にヒ素を吸着除去するヒ
素吸着手段を有する請求項1記載のガリウム含有廃水の
処理装置。
4. The apparatus for treating gallium-containing wastewater according to claim 1, further comprising arsenic adsorbing means for adsorbing and removing arsenic after the membrane separating means.
JP2001185364A 2001-06-19 2001-06-19 Method for treating gallium-containing wastewater Expired - Fee Related JP4973901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001185364A JP4973901B2 (en) 2001-06-19 2001-06-19 Method for treating gallium-containing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001185364A JP4973901B2 (en) 2001-06-19 2001-06-19 Method for treating gallium-containing wastewater

Publications (2)

Publication Number Publication Date
JP2003001269A true JP2003001269A (en) 2003-01-07
JP4973901B2 JP4973901B2 (en) 2012-07-11

Family

ID=19024960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001185364A Expired - Fee Related JP4973901B2 (en) 2001-06-19 2001-06-19 Method for treating gallium-containing wastewater

Country Status (1)

Country Link
JP (1) JP4973901B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019141800A (en) * 2018-02-22 2019-08-29 オルガノ株式会社 Method and apparatus for producing chelate resin, and method for purifying liquid to be treated

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62294491A (en) * 1986-06-11 1987-12-21 Hitachi Plant Eng & Constr Co Ltd Treatment of waste water incorporating gallium and arsenic
JPH01249187A (en) * 1988-03-30 1989-10-04 Hitachi Plant Eng & Constr Co Ltd Method for purifying waste containing gallium and arsenic
JPH04293587A (en) * 1991-03-25 1992-10-19 Asahi Chem Ind Co Ltd Treatment of waste ga-as grinding water
JPH04349990A (en) * 1991-05-28 1992-12-04 Kawasaki Steel Corp Processing of waste liquid containing high concentration of metal ion
JPH09117771A (en) * 1995-10-26 1997-05-06 Kurita Water Ind Ltd Device for treating waste water from stack gas desulfurization process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62294491A (en) * 1986-06-11 1987-12-21 Hitachi Plant Eng & Constr Co Ltd Treatment of waste water incorporating gallium and arsenic
JPH01249187A (en) * 1988-03-30 1989-10-04 Hitachi Plant Eng & Constr Co Ltd Method for purifying waste containing gallium and arsenic
JPH04293587A (en) * 1991-03-25 1992-10-19 Asahi Chem Ind Co Ltd Treatment of waste ga-as grinding water
JPH04349990A (en) * 1991-05-28 1992-12-04 Kawasaki Steel Corp Processing of waste liquid containing high concentration of metal ion
JPH09117771A (en) * 1995-10-26 1997-05-06 Kurita Water Ind Ltd Device for treating waste water from stack gas desulfurization process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019141800A (en) * 2018-02-22 2019-08-29 オルガノ株式会社 Method and apparatus for producing chelate resin, and method for purifying liquid to be treated
JP7137318B2 (en) 2018-02-22 2022-09-14 オルガノ株式会社 Method for purifying liquid to be treated

Also Published As

Publication number Publication date
JP4973901B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
JP2010082546A (en) Water treatment apparatus and method
JP3871749B2 (en) Treatment method of flue gas desulfurization waste water
JP4973901B2 (en) Method for treating gallium-containing wastewater
JP4973902B2 (en) Method for treating gallium-containing wastewater and apparatus used in the method
JP4618073B2 (en) Method and apparatus for recovering water from CMP wastewater containing high TOC
JP2007244930A (en) Treatment method and treatment apparatus for organic substance-containing waste water
JP3861283B2 (en) Method for treating gallium-containing wastewater
JP4900635B2 (en) Gallium-containing wastewater treatment apparatus and gallium-containing wastewater treatment method
JP2003001275A (en) Equipment for treatment of waste water containing gallium-arsenic
JP4161389B2 (en) Polishing wastewater treatment method and apparatus
JP2003001268A (en) Equipment for treatment of waste water containing gallium
JP2010046562A (en) Resource recovery type water treatment method and system
JP2003001246A (en) Equipment for treatment of waste water containing gallium
JP3203745B2 (en) Fluorine-containing water treatment method
JP2003001271A (en) Equipment for treatment of waste water containing gallium
JP3622407B2 (en) Water treatment method
JP4021688B2 (en) Method and apparatus for treatment of wastewater containing fluorine and silicon
JP2003001254A (en) Equipment for treatment of waste water containing gallium fine particle
JP3826497B2 (en) Pure water production method
US5972073A (en) Recovery of the components of group III-V material aqueous wastes
JPH11347569A (en) Polishing waste water treatment method
JP2004358316A (en) Method of treating fluorine-containing water, and device therefor
JP2003164863A (en) Device for treating waste water containing gallium
JP3912086B2 (en) Arsenic-containing wastewater treatment equipment
JP2003181205A (en) Apparatus for treating waste gallium-polishing water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120315

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees