JP2002536835A - Solar cell manufacturing method - Google Patents

Solar cell manufacturing method

Info

Publication number
JP2002536835A
JP2002536835A JP2000597846A JP2000597846A JP2002536835A JP 2002536835 A JP2002536835 A JP 2002536835A JP 2000597846 A JP2000597846 A JP 2000597846A JP 2000597846 A JP2000597846 A JP 2000597846A JP 2002536835 A JP2002536835 A JP 2002536835A
Authority
JP
Japan
Prior art keywords
film
plasma
coating
thickness
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000597846A
Other languages
Japanese (ja)
Inventor
クローネ,クラウス・ペーター
Original Assignee
アグフア−ゲヴエルト,ナームローゼ・フエンノートシヤツプ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アグフア−ゲヴエルト,ナームローゼ・フエンノートシヤツプ filed Critical アグフア−ゲヴエルト,ナームローゼ・フエンノートシヤツプ
Publication of JP2002536835A publication Critical patent/JP2002536835A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1836Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising a growth substrate not being an AIIBVI compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03925Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIIBVI compound materials, e.g. CdTe, CdS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

(57)【要約】 有機ポリマー担体材料を少なくとも1つのフイルムでコーティングし、そしてこのようにコーティングされた材料を調質する方法であって、担体材料は少なくとも60μmの厚さを有しそして少なくとも90℃のガラス転移温度を有するポリマー材料からなり、適用されたフイルムは最大30μmの厚さを有し、コーティングはガラス転移温度より低い温度で行われ、そして調質は少なくとも250℃の温度でプラズマによって行われる方法。   (57) [Summary] A method of coating an organic polymeric carrier material with at least one film and tempering the material so coated, wherein the carrier material has a thickness of at least 60 μm and has a glass transition temperature of at least 90 ° C. A method wherein the applied film has a thickness of up to 30 μm, the coating is performed at a temperature below the glass transition temperature, and the tempering is performed by plasma at a temperature of at least 250 ° C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の分野】FIELD OF THE INVENTION

本発明は、薄膜太陽電池(thin−film solar cells)、
例えばCdTe太陽電池(CdTe=テルル化カドミウム)の経済的に改良され
た製造方法に関する。以下においてCdTeは単にすべての薄膜太陽電池の一例
として取扱う。
The present invention relates to thin-film solar cells,
For example, it relates to an economically improved method for producing CdTe solar cells (CdTe = cadmium telluride). In the following, CdTe is treated merely as an example of all thin-film solar cells.

【0002】 CdTe太陽電池及びCdTe/CdS太陽電池は、普通は十分な効率を保証
するための最低575℃での熱処理を含んでなる種々の方法(米国特許第530
4499号)に従って製造することができる。これらの温度は担体として高価な
タイプのガラスの使用しか許容しない。担体としてのガラスは、どのコーティン
グ方法が選ばれるかに関係なく、CdTeによるコーティングをガラスシート上
に不連続的にしか行うことができないという欠点を有する。
[0002] CdTe solar cells and CdTe / CdS solar cells are usually manufactured by various methods comprising heat treatment at a minimum of 575 ° C. to guarantee sufficient efficiency (US Pat. No. 530
No. 4499). These temperatures only allow the use of expensive types of glass as a carrier. Glass as a carrier has the disadvantage that the coating with CdTe can only be performed discontinuously on the glass sheet, irrespective of which coating method is chosen.

【0003】 米国特許第5304449号はコーティング温度が480〜520℃にしかな
らず、かくして安価なタイプのガラス(「窓用ガラス」)の使用を可能とする方
法を記載している。
[0003] US Pat. No. 5,304,449 describes a method in which the coating temperature is only 480-520 ° C., thus allowing the use of inexpensive types of glass (“window glass”).

【0004】 このために、ガラスが最初に例えばドープされた酸化錫からなる透明な電気伝
導性コーティングを備えていることが必要である。次いで硫化カドミウム(Cd
S)の薄いコーティングが続き、次いでそれに感光性CdTeフイルムが480
〜520℃での昇華により適用される。
For this purpose, it is necessary that the glass is first provided with a transparent, electrically conductive coating, for example made of doped tin oxide. Next, cadmium sulfide (Cd
S) followed by a thin coating, followed by 480 photosensitive CdTe film.
Applied by sublimation at 5520 ° C.

【0005】 CdTeフイルムを適用するのに必要な装置は複雑でありそして高価である。
即ち、担体材料及びCdTeソースは、CdTeソースが担体表面からたったの
2〜3mmの距離に配列されるように、必要な温度に加熱された対向して配置さ
れたグラファイトブロックにより収容される。次いで昇華は0.1ミリバールの
不活性ガス雰囲気、例えば窒素、ヘリウム、アルゴン又は水素雰囲気中で行われ
る。太陽電池の製造のためのCdTeコーティングされた材料の大きな表面はこ
の方法では費用効果的に製造することはできない。 この方法及び他の既知の方
法はポリマー有機材料としての担体シートの使用を許容しない。
[0005] The equipment required to apply a CdTe film is complex and expensive.
That is, the carrier material and CdTe source are contained by opposed graphite blocks heated to the required temperature such that the CdTe source is arranged at a distance of only 2-3 mm from the carrier surface. Sublimation is then carried out in an inert gas atmosphere of 0.1 mbar, for example a nitrogen, helium, argon or hydrogen atmosphere. Large surfaces of CdTe coated materials for the production of solar cells cannot be produced cost-effectively with this method. This and other known methods do not allow the use of carrier sheets as polymeric organic materials.

【0006】 本発明の目的は、支持体と該支持体上の光起電力的に活性な層(photov
oltaically active layer)、例えばCdTe層を有す
る太陽電池を費用効果的方法で製造するための材料を製造することであった。
An object of the present invention is to provide a support and a photovoltaically active layer (photov) on the support.
The objective was to produce materials for cost-effectively producing solar cells with an organically active layer, for example a CdTe layer.

【0007】 CdTeでコーティングしそしてポリマー担体材料を高温により損傷を受ける
ことなく調質する(tempering)ための柔軟性ポリマーシートの使用を
許容する方法が今回見いだされた。この方法では、高い効率の太陽電池のための
出発材料が得られる。
[0007] A method has now been found that allows the use of flexible polymer sheets to be coated with CdTe and tempered the polymeric carrier material without being damaged by high temperatures. In this way, starting materials for high efficiency solar cells are obtained.

【0008】 この方法は、他の物質でコーティングし、そして例えば、インジウム−酸化錫
(ITO)の透明な伝導性フイルムの製造のために、調質するのにも適当である
The method is also suitable for coating with other substances and for tempering, for example, for the production of transparent conductive films of indium-tin oxide (ITO).

【0009】 従って、本発明は、有機ポリマー担体材料を少なくとも1つの物質、特に少な
くとも1つの無機物質、好ましくはCdTeでコーティングし、そしてこのよう
にコーティングされた材料に適用されたフイルムを調質する方法であって、担体
材料が少なくとも60μm、特に90〜120μmの厚さを有しそして少なくと
も90℃のガラス転移温度を有するポリマー材料からなり、適用されたフイルム
は最大30μm、特に2〜7μmの厚さを有し、コーティングはガラス転移温度
より低い温度で行われ、そして調質は少なくとも250℃、特に400〜600
℃の温度でプラズマによって行われることを特徴とする方法に関する。
Thus, the present invention coats an organic polymeric carrier material with at least one substance, in particular at least one inorganic substance, preferably CdTe, and conditions a film applied to the material so coated. Process, wherein the carrier material has a thickness of at least 60 μm, in particular 90 to 120 μm and consists of a polymer material having a glass transition temperature of at least 90 ° C., the applied film having a thickness of at most 30 μm, in particular 2 to 7 μm. The coating is performed at a temperature below the glass transition temperature, and the tempering is at least 250 ° C., especially 400-600
Performed by a plasma at a temperature of ° C.

【0010】 プラズマは、ガスが等しい部の正及び負に帯電した粒子からなり、それにより
外面的に中性である物質の凝集体状態であると理解されるべきである。原子の残
部からの殻電子の分離による非常に高い温度でのプラズマの生成は知られている
[0010] It is to be understood that a plasma consists of an equal part of positive and negatively charged particles, whereby it is an agglomerate of substances that are externally neutral. The generation of plasma at very high temperatures by the separation of shell electrons from the rest of the atoms is known.

【0011】 プラズマ焼結として知られた本発明に従う方法は、焦点において電界強度の大
きさが、空気分子、しかし好ましくは保護ガス、例えば窒素又はアルゴンの電子
がそれらの原子芯(atomic cores)から離脱し、それによりプラズマが形成される
ようになる十分な強度のレーザーを焦点に集めることにより行われる。このプラ
ズマは高温でありそして膨張する。レーザーがレーザーのパルス周波数で焦点に
おいてパルス化されるならば、その周囲に対する対応する周波数の圧力サージ(
pressure surges)を有する脈動プラズマ(pulsating
plasma)が得られる。この脈動プラズマは焼結されるべきフイルムの上
に導かれることができ、それによりその場合に3つの事象が起こる。即ち、 フイルムは直接レーザーを吸収し、それにより加熱され、 フイルムはその表面に沿って滑る高温プラズマにより更に加熱され、 脈動プラズマは圧力サージを発生し、それは機械的にフイルムを圧縮する。
The method according to the invention, known as plasma sintering, is characterized in that the magnitude of the electric field strength at the focus is such that electrons of air molecules, but preferably protective gas, for example nitrogen or argon, are displaced from their atomic cores. This is done by focusing a laser of sufficient intensity to escape and thereby form a plasma. This plasma is hot and expands. If the laser is pulsed at the focus at the pulse frequency of the laser, a pressure surge of the corresponding frequency to its surroundings (
Pulsating plasma with pressure surges
plasma) is obtained. This pulsating plasma can be directed onto the film to be sintered, thereby causing three events. That is, the film directly absorbs the laser and is thereby heated, the film is further heated by the hot plasma gliding along its surface, and the pulsating plasma generates a pressure surge, which compresses the film mechanically.

【0012】 適当なレーザーは、例えば、100mJのパルスエネルギー及び50Hzのパ
ルス周波数を有するネオジム−YAGレーザーである。
A suitable laser is, for example, a neodymium-YAG laser having a pulse energy of 100 mJ and a pulse frequency of 50 Hz.

【0013】 好ましくは、焼結されるべき層は、該層を加熱するが、材料の与えられた輸送
速度でそれを損傷しない連続レーザーにより照射され、次いで脈動レーザーが材
料の加熱されたゾーンを焼結する。
Preferably, the layer to be sintered is irradiated by a continuous laser that heats the layer but does not damage it at a given transport speed of the material, and then a pulsating laser passes through the heated zone of the material. Sinter.

【0014】 コーティングは例えば水性又は溶媒含有CdTe懸濁液を使用して行われる。The coating is performed, for example, using an aqueous or solvent-containing CdTe suspension.

【0015】 次いで材料を乾燥させる。適当なコーティング方法は例えばキャスティング及
びブレードコーティングからなる。
The material is then dried. Suitable coating methods include, for example, casting and blade coating.

【0016】 調質は数回行うことができ、冷却相が好ましくは2つの調質段階の間に与えら
れる。
The refining can be performed several times, the cooling phase preferably being provided between the two refining stages.

【0017】 適当なポリマーはポリエチレンテレフタレート(PET)及びポリエチレンナ
フタレート(PEN)である。コーティングの前に、ポリマー担体材料は、Cd
Teフイルムの接着を改良する例えばインジウム−酸化錫からなる基材層を備え
ていることができる。基材層は透明でありそして電気伝導性であるべきである。
[0017] Suitable polymers are polyethylene terephthalate (PET) and polyethylene naphthalate (PEN). Prior to coating, the polymer carrier material may comprise Cd
A substrate layer comprising, for example, indium-tin oxide for improving the adhesion of the Te film can be provided. The substrate layer should be transparent and electrically conductive.

【0018】 有機ポリマー担体材料は柔軟性であり、かくして適当なコーティング方法、例
えば、キャスチング装置、例えば、写真フイルムのコーティングと関連して知ら
れているメニスカスもしくはカーテンキャスチング装置(meniscus o
r curtain casting devices)を使用する連続コーテ
ィング方法に従う連続コーティングを可能とする。
The organic polymeric carrier material is flexible and thus suitable coating methods, for example a casting device, for example a meniscus or curtain casting device known in connection with the coating of photographic films.
It allows continuous coating according to a continuous coating method using r curtain casting devices.

【0019】 CdTe粒子が特に微細粒子であること、特にいわゆるナノ粒子、即ち、その
平均直径がナノメートル範囲にありそして例えば3〜5nmである粒子からなる
ことが特に有利でありうる。
It may be particularly advantageous for the CdTe particles to be particularly fine particles, especially so-called nanoparticles, ie particles whose average diameter is in the nanometer range and is for example 3-5 nm.

【0020】 この場合に、実際にナノ粒子の製造中に、ナノ粒子の凝集を阻止する作用物質
(agent)、例えばトリブチルホスファンを加えることが好都合である。
In this case, it is advantageous to add, during the production of the nanoparticles, an agent which prevents aggregation of the nanoparticles, for example tributylphosphane.

【0021】 本発明は更に、担体が少なくとも60μmの厚さ及び少なくとも90℃のガラ
ス転移温度を有するポリマー有機材料であることを特徴とする、担体上に最大3
0μmの厚さを有する少なくとも1つのCdTeフイルムを有する太陽電池に関
する。
The invention further provides that the support is a polymeric organic material having a thickness of at least 60 μm and a glass transition temperature of at least 90 ° C.
The present invention relates to a solar cell having at least one CdTe film having a thickness of 0 μm.

【0022】 実施例1 100cmの幅を有するPENの100μmの厚さのシートを分散剤及びリッ
トル当たり31gのテルル化カドミウムを含有する懸濁液により連続的にコーテ
ィングする。次いでコーティングされたシートは乾燥され、そして5μmの適用
されたフイルムの乾燥層厚さを有する。
Example 1 A 100 μm thick sheet of PEN having a width of 100 cm is continuously coated with a suspension containing a dispersant and 31 g of cadmium telluride per liter. The coated sheet is then dried and has a dry layer thickness of the applied film of 5 μm.

【0023】 シートを下記のように調質する。The sheet is tempered as follows.

【0024】 100mJのパルスエネルギー及び50Hzのパルス周波数を有するネオジム
−YAGレーザーを、脈動プラズマがシートのすぐ上に形成されるように焦点に
集める。焼結されるべき全体の表面が引き続いて、しかしシートが損傷を受けな
いように十分に短く加熱されるように、シートをこのプラズマの下で格子様方式
(grid−like manner)で移動させる。
A neodymium-YAG laser having a pulse energy of 100 mJ and a pulse frequency of 50 Hz is focused so that a pulsating plasma is formed just above the sheet. The sheet is moved in a grid-like manner under this plasma so that the entire surface to be sintered is subsequently heated, but short enough that the sheet is not damaged.

【0025】 調質した後、シートは光依存性電気抵抗を有しており、かくして光電池の製造
に適当である。
After tempering, the sheet has a light-dependent electrical resistance and is thus suitable for the production of photovoltaic cells.

【0026】 実施例2 実施例1に従うPENのシートを実施例1に従ってコーティングしそして乾燥
する。次いでシートをダイオードレーザーにより8kW/cm2のパワー及び1
00msの各正方形要素の暴露期間で連続的に加熱し、しかる後100mJのパ
ルスエネルギー及び50Hzのパルス周波数を有する脈動プラズマを、ネオジム
−YAGレーザーにより焼結されるべき層の表面のすぐ上に生成させる。
Example 2 A sheet of PEN according to Example 1 is coated according to Example 1 and dried. The sheet was then treated with a diode laser at a power of 8 kW / cm 2 and 1
A continuous heating with an exposure time of each square element of 00 ms, followed by the generation of a pulsating plasma with a pulse energy of 100 mJ and a pulse frequency of 50 Hz directly above the surface of the layer to be sintered by the neodymium-YAG laser Let it.

【0027】 調質の後、シートは光電池の製造に適当である。After tempering, the sheet is suitable for photovoltaic cell manufacture.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 有機ポリマー担体材料を少なくとも1つのフイルムでコーテ
ィングし、そしてこのようにコーティングされた材料を調質する方法であって、
該担体材料は少なくとも60μm、特に90〜120μmの厚さを有しそして少
なくとも90℃のガラス転移温度を有するポリマー材料からなり、適用されるフ
イルムは最大30μm、特に2〜7μmの厚さを有し、コーティングはガラス転
移温度より低い温度で行われ、そして調質は少なくとも250℃、特に400〜
600℃の温度でプラズマによって行われることを特徴とする方法。
1. A method of coating an organic polymer carrier material with at least one film and tempering the material so coated, comprising:
The carrier material has a thickness of at least 60 μm, in particular 90 to 120 μm and consists of a polymer material having a glass transition temperature of at least 90 ° C., the film applied has a thickness of at most 30 μm, in particular 2 to 7 μm. The coating is carried out at a temperature below the glass transition temperature, and the tempering is at least 250 ° C., in particular 400 to
A method performed by plasma at a temperature of 600 ° C.
【請求項2】 適用されるフイルムが光起電力的に活性なフイルムであるこ
とを特徴とする請求項1に記載の方法。
2. The method according to claim 1, wherein the applied film is a photovoltaically active film.
【請求項3】 適用されるフイルムがCdTeフイルムであることを特徴と
する請求項1に記載の方法。
3. The method according to claim 1, wherein the applied film is a CdTe film.
【請求項4】 プラズマをレーザーにより生成させることを特徴とする請求
項1に記載の方法。
4. The method according to claim 1, wherein the plasma is generated by a laser.
【請求項5】 レーザーをパルス化されたモードで操作することを特徴とす
る請求項4に記載の方法。
5. The method according to claim 4, wherein the laser is operated in a pulsed mode.
【請求項6】 プラズマを保護ガスから生成させることを特徴とする請求項
1に記載の方法。
6. The method according to claim 1, wherein the plasma is generated from a protective gas.
【請求項7】 プラズマによる処理の前に材料を連続レーザーで加熱するこ
とを特徴とする請求項1に記載の方法。
7. The method according to claim 1, wherein the material is heated with a continuous laser before treatment with the plasma.
【請求項8】 担体が少なくとも60μmの厚さ及び少なくとも90℃のガ
ラス転移温度を有するポリマー有機材料であることを特徴とする、担体上に30
μmの最大厚さを有する少なくとも1つの光起電力的に活性なフイルムを有する
太陽電池。
8. The method according to claim 1, wherein the carrier is a polymeric organic material having a thickness of at least 60 μm and a glass transition temperature of at least 90 ° C.
A solar cell having at least one photovoltaically active film having a maximum thickness of μm.
【請求項9】 光起電力的に活性なフイルムがテルル化カドミウムを含有す
ることを特徴とする請求項8に記載の太陽電池。
9. The solar cell according to claim 8, wherein the photovoltaically active film contains cadmium telluride.
【請求項10】 担体がポリエチレンテレフタレート又はポリエチレンナフ
タレートからなることを特徴とする請求項8に記載の太陽電池。
10. The solar cell according to claim 8, wherein the carrier is made of polyethylene terephthalate or polyethylene naphthalate.
JP2000597846A 1999-02-02 2000-01-18 Solar cell manufacturing method Pending JP2002536835A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19904082A DE19904082A1 (en) 1999-02-02 1999-02-02 Process for the production of solar cells
DE19904082.6 1999-02-02
PCT/EP2000/000397 WO2000046861A1 (en) 1999-02-02 2000-01-18 A method for the production of solar cells

Publications (1)

Publication Number Publication Date
JP2002536835A true JP2002536835A (en) 2002-10-29

Family

ID=7896136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000597846A Pending JP2002536835A (en) 1999-02-02 2000-01-18 Solar cell manufacturing method

Country Status (4)

Country Link
EP (1) EP1159765A1 (en)
JP (1) JP2002536835A (en)
DE (1) DE19904082A1 (en)
WO (1) WO2000046861A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013135165A (en) * 2011-12-27 2013-07-08 Ricoh Co Ltd Thin film manufacturing device, thin-film manufacturing method, droplet discharge head, and ink jet recording device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002233930A1 (en) * 2000-11-16 2002-05-27 Solarflex Technologies, Inc. System and methods for laser assisted deposition
US6548751B2 (en) 2000-12-12 2003-04-15 Solarflex Technologies, Inc. Thin film flexible solar cell
DE102004060737B4 (en) * 2004-12-15 2007-03-08 Degussa Ag Process for the preparation of semiconducting or photovoltaically active films
WO2008073763A2 (en) 2006-12-07 2008-06-19 Innovalight, Inc. Methods for creating a densified group iv semiconductor nanoparticle thin film
EP2140483A1 (en) 2007-04-04 2010-01-06 Innovalight, Inc. Methods for optimizing thin film formation with reactive gases
US8968438B2 (en) 2007-07-10 2015-03-03 Innovalight, Inc. Methods and apparatus for the in situ collection of nucleated particles
US7851336B2 (en) 2008-03-13 2010-12-14 Innovalight, Inc. Method of forming a passivated densified nanoparticle thin film on a substrate
US8247312B2 (en) 2008-04-24 2012-08-21 Innovalight, Inc. Methods for printing an ink on a textured wafer surface
DE102010004996B4 (en) * 2010-01-19 2014-03-06 Institut Für Photonische Technologien E.V. Process for producing a cadmium telluride solar cell

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536950A (en) * 1978-09-05 1980-03-14 Fuji Photo Film Co Ltd Manufacturing of thin film photocell
JPS58194377A (en) * 1982-05-07 1983-11-12 Agency Of Ind Science & Technol Manufacture of thin film solar battery
IT1205350B (en) * 1984-03-21 1989-03-15 Gianfranco Vitali IMPROVEMENT OF CRYSTALLINE STRUCTURES IN SEMICONDUCTORS IN ALLOY OR NOT BY LASER IMPULSES
JPS61168271A (en) * 1985-01-21 1986-07-29 Sumitomo Bakelite Co Ltd Amorphous silicon solar battery
JPH0671091B2 (en) * 1985-10-08 1994-09-07 帝人株式会社 Thin film solar cell
US5389195A (en) * 1991-03-07 1995-02-14 Minnesota Mining And Manufacturing Company Surface modification by accelerated plasma or ions
JPH0590624A (en) * 1991-09-28 1993-04-09 Nissha Printing Co Ltd Adhesive material for solar battery
DE4132882C2 (en) * 1991-10-03 1996-05-09 Antec Angewandte Neue Technolo Process for the production of pn CdTe / CdS thin-film solar cells
JPH06163958A (en) * 1992-02-21 1994-06-10 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacture
US5714391A (en) * 1995-05-17 1998-02-03 Matsushita Electric Industrial Co., Ltd. Method of manufacturing a compound semiconductor thin film for a photoelectric or solar cell device
JP2002521848A (en) * 1998-07-30 2002-07-16 アグフア−ゲヴエルト,ナームローゼ・フエンノートシヤツプ Solar cell manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013135165A (en) * 2011-12-27 2013-07-08 Ricoh Co Ltd Thin film manufacturing device, thin-film manufacturing method, droplet discharge head, and ink jet recording device

Also Published As

Publication number Publication date
WO2000046861A1 (en) 2000-08-10
EP1159765A1 (en) 2001-12-05
DE19904082A1 (en) 2000-08-03

Similar Documents

Publication Publication Date Title
Mincuzzi et al. Laser processing in the manufacture of dye‐sensitized and perovskite solar cell technologies
WO2006015328A2 (en) Pulse thermal processing of functional materials using directed plasma arc
JP2001093591A (en) Photoelectric conversion device
KR100931766B1 (en) Absorption layer coating material and coating technology
KR101359663B1 (en) Sintering method of semiconductor oxide by using intense pulsed light
JP2002536835A (en) Solar cell manufacturing method
CN109911888B (en) Preparation method and application of defect-free disordered-layer stacked graphene nano-film
Chowdhury et al. Post‐Deposition Vapor Annealing Enables Fabrication of 1 cm2 Lead‐Free Perovskite Solar Cells
CN101419867B (en) Nano composite electrode preparation for dye sensitization solar cell
TW200531330A (en) Laminated film for dye-sensitized solar cell, electrode for dye-sensitized solar cell and process for producing the same
US6841082B2 (en) Method of manufacturing Er-doped silicon nano-dot array and laser ablation appparatus used therein
Zhang et al. Shrink induced nanostructures for energy conversion efficiency enhancement in photovoltaic devices
WO2000007250A1 (en) Method of producing solar cells
JP2007149600A (en) Laminated film for dye-sensitized solar cell and electrode for dye-sensitized solar cell using it
CN115084393A (en) Perovskite thin film and preparation method thereof, solar cell and light-emitting device
JP2002305041A (en) Solar cell
US10879478B2 (en) Polymer solar cell
CN113744929A (en) Preparation method of silver nanowire flexible conductive transparent film
Lee et al. Intense pulsed light annealed buffer layers for organic photovoltaics
KR20120000422A (en) Method of forming nano-structure using pulsed laser deposition and electrode having the nano-structure
CN108584932B (en) Graphene-based dye-sensitized transparent solar cell
US10777761B2 (en) Polymer solar cell
JP5688698B2 (en) Fullerene polymer manufacturing method and conductor film manufacturing method
JP5260373B2 (en) Method for manufacturing thin film solar cell
Kim et al. Photoactive Layer Formation with Oven Annealing for a Carbon Electrode Perovskite Solar Cell