JPS61168271A - Amorphous silicon solar battery - Google Patents

Amorphous silicon solar battery

Info

Publication number
JPS61168271A
JPS61168271A JP60007548A JP754885A JPS61168271A JP S61168271 A JPS61168271 A JP S61168271A JP 60007548 A JP60007548 A JP 60007548A JP 754885 A JP754885 A JP 754885A JP S61168271 A JPS61168271 A JP S61168271A
Authority
JP
Japan
Prior art keywords
amorphous silicon
substrate
film
polymer film
incident light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60007548A
Other languages
Japanese (ja)
Inventor
Yoshihiro Hamakawa
圭弘 浜川
Hiroaki Okamoto
博明 岡本
Atsuo Ishikawa
石川 敦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP60007548A priority Critical patent/JPS61168271A/en
Publication of JPS61168271A publication Critical patent/JPS61168271A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To improve the heat resistance by using a polymer film having heat resistance and transparency at the incident light window side of an amorphous silicon solar battery, thereby enabling to produce it in a rollup type. CONSTITUTION:A substrate of a polymer film having transparency, flexibility and 170 deg.C of glass transition point is used for an incident light window side of an outer layer, and a transparent conductive film and an electromotive force generating layer made of a hydrogenated or fluorized amorphous silicon layer are provided between the substrate and a back surface electrode. A polymer film having 170 deg.C or higher of glass transition point Tg is made of polyether sulfone, and the film is manufactured by an extruding method of a casting method. To obtain an amorphous silicon of high quality and high photoelectric conversion efficiency, a substrate heated at 150 deg.C or higher is desired. Tg of standard of the substrate such as polyether sulfone has 223 and 150 deg.C or higher of heat resistance.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、可とう性かつ耐熱性に富み、しかも透明性に
すぐれた高分子フィルムを基板とした非晶質シリコン太
陽電池に関するものであり、更に詳しくは該高分子フィ
ルム基板上の片面に透明導電膜、各種非晶質シリコン、
導電性裏面電極を順次形成し、該高分子フィルムの他方
の面を入射光窓側とした非晶質太陽電池に関するもので
ある。
[Detailed Description of the Invention] [Industrial Application Field 1] The present invention relates to an amorphous silicon solar cell having a flexible, heat-resistant, and highly transparent polymer film as a substrate. , More specifically, on one side of the polymer film substrate, a transparent conductive film, various types of amorphous silicon,
The present invention relates to an amorphous solar cell in which conductive back electrodes are sequentially formed and the other surface of the polymer film is placed on the incident light window side.

[従来技術1 従来太陽電池の基板としてはガラス、ステンレス、ポリ
イミドフィルムが知られている。ガラス基板は基板側か
ら光を取り入れることかで外る。又ステンレス基板やボ
リイミド基板はステンレス、ポリイミドフィルムに対す
る光の透過率□が低いため基板と反対側から光を取り入
れている。
[Prior Art 1 Glass, stainless steel, and polyimide films are conventionally known as substrates for solar cells. The glass substrate can be removed by letting in light from the substrate side. Furthermore, since the stainless steel substrate or polyimide substrate has a low light transmittance □ relative to the stainless steel or polyimide film, light is taken in from the side opposite to the substrate.

ガラス基板太陽電池は、入射光窓側にガラス基板がある
ので裏面電極はデバイスの内部となるため、保護膜が必
要でないことが多い。又必要な場合も保護膜は入射光窓
側と反対なので、透明性を必要としない点から有色の保
護膜でよく、透明性を有する保護膜と比較してコストダ
ウンが可能である。しカルながらガラス基板では可とう
性を有していないために曲げると割れ、しかも重量が重
いという欠点があった。
Glass substrate solar cells often do not require a protective film because the glass substrate is on the side of the incident light window, so the back electrode is inside the device. Furthermore, even if necessary, since the protective film is on the opposite side of the incident light window, a colored protective film may be used since transparency is not required, and the cost can be reduced compared to a transparent protective film. However, glass substrates do not have flexibility, so they break when bent, and they are heavy.

ガラス基板が割れやすいという欠点を改善するため、ス
テンレス基板やポリイミド基板が用いられているが、先
に述べたように、ステンレス基板、ポリイミド基板では
基板に対する光の透過率が低いため、基板は非晶質シリ
コンの入射光窓側とは反対側つまり基板側に用いなけれ
ばならないため、入射光窓側には、非晶質シリコンと透
明導電膜保護のため保護膜が必要となる。
Stainless steel and polyimide substrates are used to overcome the drawback that glass substrates are easily broken, but as mentioned earlier, stainless steel and polyimide substrates have low light transmittance to the substrate, so Since it must be used on the side of crystalline silicon opposite to the incident light window, that is, on the substrate side, a protective film is required on the incident light window side to protect the amorphous silicon and the transparent conductive film.

これらの欠点を改善すべく、透明性および可とう性を有
するポリエステルフィルム番基板とする太陽電池の試作
検討がなされているが、透明性を有するポリエステルフ
ィルムは耐熱性が悪く、充電変換効率の高い良質な非晶
質シリコンを得るために必要な基板温度まで基板を加熱
することかでとないため所期の性能が得られないという
欠点があった。
In order to improve these shortcomings, solar cells using transparent and flexible polyester film substrates have been investigated, but transparent polyester films have poor heat resistance and have high charge conversion efficiency. In order to obtain high-quality amorphous silicon, it is necessary to heat the substrate to the necessary substrate temperature, which has the disadvantage that the desired performance cannot be obtained.

[発明の目的1 本発明は、これらの状況に鑑み、鋭意研究の結果、充電
変換素子である非晶質シリコンの入射光窓側に基板を用
いることができ、しかも充電変換効率の高い良質な非晶
質シリコンか得られ、しかも連続生産できるロールアッ
プ方式に使用可能な太陽電池基板として、透明性、可と
う性かつ耐熱性を有する高分子フィルムを入射光窓側基
板として使用することにより充電変換効率の高い太陽電
池を得ることにある。
[Objective of the Invention 1] In view of these circumstances, as a result of intensive research, the present invention has developed a high-quality non-crystalline silicon substrate that can be used on the incident light window side of amorphous silicon, which is a charge conversion element, and has high charge conversion efficiency. As a solar cell substrate that can be obtained from crystalline silicon and can be used in a roll-up method that allows continuous production, the charge conversion efficiency can be improved by using a transparent, flexible, and heat-resistant polymer film as the incident light window side substrate. The goal is to obtain high solar cells.

[発明の構成1 本発明は、透明性かつ可とう性を有し、ガラス転移点が
170°C以」二である高分子フィルムの基板を外層の
入射光窓側に用い、該基板と裏面電極の間に透明導電膜
および水素化あるいは弗素化した非晶質シリコン層から
なる起電力発生層を設けたことを特徴とする非晶質シリ
コン太陽電池である。
[Configuration 1 of the Invention] The present invention uses a substrate of a polymer film that is transparent and flexible and has a glass transition point of 170°C or higher on the incident light window side of the outer layer, and connects the substrate and the back electrode. This is an amorphous silicon solar cell characterized in that an electromotive force generating layer consisting of a transparent conductive film and a hydrogenated or fluorinated amorphous silicon layer is provided between the two.

本発明に用いるガラス転移点(Tg) 170°C以」
−の高分子フィルムは、ポリエーテルサルホン、ポリサ
ルホン、ポー3= リアリレート、ポリエーテルイミド、ポリアリルサルホ
ン等であり、そのフィルムの製造法は押出し法又はキャ
スティング法等によって得られる。
Glass transition point (Tg) used in the present invention: 170°C or higher
The polymer film of - is polyether sulfone, polysulfone, po-3-realylate, polyetherimide, polyallylsulfone, etc., and the film is produced by an extrusion method, a casting method, or the like.

光起電力素子である非晶質シリコンを作成する際、充電
変換効率の高い良質な非晶質シリコンを得るためには、
15 (1’C以にの基板加熱が望ましい。各基板の標
準のTFlは、ポリエーテルサルホン 223°C、ポ
リサルホン 190℃、ボリアリレート 175°C、
ポリエーテルイミド 216°C、ポリアリルサルホン
 22 (1’Cであり、いずれも150℃以」二の耐
熱性を有している。
When creating amorphous silicon, which is a photovoltaic element, in order to obtain high quality amorphous silicon with high charge conversion efficiency,
15 (It is desirable to heat the substrate to 1'C or higher. The standard TFL for each substrate is 223°C for polyethersulfone, 190°C for polysulfone, 175°C for polyarylate,
Polyetherimide has a heat resistance of 216°C and polyallylsulfone has a heat resistance of 22°C (1'C), and both have a heat resistance of 150°C or higher.

又入射光窓側の窓側利料として該高分子フィルムを基板
に用いる場合、可視領域での透過光か充電変換効率に大
トな影響を及ぼすが、厚み100μm0の該高分子フィ
ルムの透過率は可視領域でいずれも60%以」―であっ
た。
In addition, when the polymer film is used as a substrate on the window side of the incident light window, the transmitted light in the visible region has a large effect on the charging conversion efficiency, but the transmittance of the polymer film with a thickness of 100 μm is visible. 60% or more in all areas.

該高分子フィルムを太陽電池の基板として用いる場合の
厚みは特に限定するものではないが、10μm0以下な
らば水素化あるいは弗素化した非晶質シリコンを形成し
た際の非晶質シリコンの内部応力を緩和でトず、素子全
体が変形するので好ましくない。又厚みが5mm以−に
であれば可とう性が失なわれ、連続生産かで外るロール
アップ方式に該高分子フィルムが使用で%すい。
When using the polymer film as a substrate for a solar cell, the thickness is not particularly limited, but if it is 10 μm or less, it will reduce the internal stress of amorphous silicon when hydrogenated or fluorinated amorphous silicon is formed. This is not preferable because the entire element deforms due to relaxation. Moreover, if the thickness is 5 mm or more, the polymer film loses its flexibility, making it difficult to use the polymer film in a roll-up method that requires continuous production.

該高分子フィルム基板を入射光窓側基板とした場合、該
高分子フィルム基板と非晶質シリコンとの間には透明性
を有する導電性膜が必要である。この導電性膜はシート
抵抗値が大きくとも100Ω/口以下であることが必要
であり、厚みは透明性および可とう性を考慮すると20
0〜4000Aが適当であり、好ましくは反射防止膜の
役割も果すように、入射光の反射をできるだけ少なくす
る膜厚が望ましい。透明導電膜の材質としては酸化錫、
酸化インジウム、酸化カドミウムの金属酸化物あるいは
その混合物が望ましく、蒸着法又はスパッタ法等により
堆積させる。
When the polymer film substrate is used as the incident light window side substrate, a transparent conductive film is required between the polymer film substrate and the amorphous silicon. This conductive film needs to have a sheet resistance value of at most 100Ω/mouth or less, and a thickness of 20Ω/mouth considering transparency and flexibility.
A suitable value is 0 to 4000 A, and a film thickness that minimizes the reflection of incident light is desirable so that it preferably also serves as an antireflection film. The material of the transparent conductive film is tin oxide,
Metal oxides such as indium oxide, cadmium oxide, or a mixture thereof are preferable, and are deposited by a vapor deposition method, a sputtering method, or the like.

該高分子フィルム基板」二に非晶質シリコン薄膜を堆積
する方法としてはグロー放電法、スパッタリング法、C
VD法等公知の非晶質シリコン堆積法による。現状では
グロー放電法が最も望ましい。たとえば高周波グロー放
電法を用いて成膜する際、原料ガスにはシランガス、ノ
シランガス、ジボランガス、ホスフィンガス、メタンガ
ス、水素ガス等のガスをチャンバー内に導入して、太陽
電池基板としては透明導電膜付きの該高分子フィルムを
使用し、プラズマ発生装置としては静電容量型又は誘導
結合型のいずれかを用い13.56MHzの高周波電力
を用いてグロー放電を発生させ、所定の膜厚になるよう
前記ガスの分解によって得られた非晶質シリコンおよび
リン、ホウ素、炭素か′添加された非晶質シリコンを堆
積する。尚非晶質シリコンは入射光側よりp−1−n型
又はn−1−p型のいずれでもよい。
Methods for depositing the amorphous silicon thin film on the polymer film substrate include glow discharge method, sputtering method, C
A known amorphous silicon deposition method such as the VD method is used. At present, the glow discharge method is the most desirable. For example, when forming a film using the high-frequency glow discharge method, raw material gases such as silane gas, nosilane gas, diborane gas, phosphine gas, methane gas, and hydrogen gas are introduced into the chamber, and a transparent conductive film is used as a solar cell substrate. A glow discharge is generated using the high frequency power of 13.56 MHz using either a capacitance type or an inductively coupled type plasma generator to obtain a predetermined film thickness. Amorphous silicon obtained by decomposing the gas and amorphous silicon doped with phosphorus, boron, and carbon are deposited. Note that the amorphous silicon may be either p-1-n type or n-1-p type from the incident light side.

次に前記方法で得られた該高分子フィルムの非晶質シリ
コン層側に裏面電極としてアルミニウム、銀、ステンレ
ス、ジルコニウム、チタン、鉄、タンタル、ニオブ、ニ
ッケルークロム合金等の導電性膜を厚み0.01〜1μ
mの範囲で蒸着法又はスパッタリング法により堆積せし
める。裏面電極は本発明においては、入射光を取入れる
側とは反対側にあるので透明性を有する必要はない。又
裏面電極は入射した光を反射し、再び非晶質シリコン内
に光を入射させ光の有効利用を計るため、好ましくは可
視領域において反射率の高い銀などが望ましい。
Next, a conductive film of aluminum, silver, stainless steel, zirconium, titanium, iron, tantalum, niobium, nickel-chromium alloy, etc. is deposited as a back electrode on the amorphous silicon layer side of the polymer film obtained by the above method. 0.01~1μ
It is deposited by a vapor deposition method or a sputtering method within a range of m. In the present invention, the back electrode does not need to be transparent because it is located on the side opposite to the side that receives incident light. Further, since the back electrode reflects the incident light and makes the light enter the amorphous silicon again to effectively utilize the light, it is preferably made of silver or the like which has a high reflectance in the visible region.

[発明の効果1 本発明は非晶質シリコン太陽電池の入射光窓側に耐熱性
および透明性を有している該高分子フィルムを用いたこ
とに大きな特徴があり、入射光窓側に該高分子フィルム
を用いることにより、従来非晶質シリコンに透明導電膜
を設けて入射光窓側としで用いた場合、必要とされて外
だ保護膜を該高分子フィルムが代用し、しかも可とう性
を有するためロールアップ方式の生産が可能であり、又
150℃以上の耐熱性を有するため、光起電力装置とし
て用いる非晶質シリコン作成に好ましい基板温度にも耐
えうろことが可能となった。
[Effect of the invention 1 The present invention is characterized in that the polymer film having heat resistance and transparency is used on the incident light window side of an amorphous silicon solar cell. By using a film, when conventionally a transparent conductive film was provided on amorphous silicon and used as the incident light window side, the polymer film can replace the required external protective film and has flexibility. Therefore, roll-up production is possible, and since it has heat resistance of 150° C. or higher, it can withstand substrate temperatures preferred for producing amorphous silicon used in photovoltaic devices.

[実施例1 ポリエーテルサルホン樹脂を押出し法により厚みか1(
)()μmoのフィルムを成膜して得た。該ポリエーテ
ルサルホンフィルムはガラス転移点か223°Cで、か
つ光の透過率は4. Of) nmの波長で84%、6
00 ronの波長で88%であった。該フィルムに電
子ビーム蒸着法により厚みが2000 Aの酸化錫と酸
化インジ1シムで錫とインジウムか5:95で構成され
る透明導電膜を設けた。該フィルム基板において、透明
導電膜側に水素化した非晶質シリコン薄膜を堆積させた
。非晶質シリコン薄膜は、容量結合型の高周波(13,
56MHz)グロー放電装置を用い、透明導電膜側から
plrIII層の順に非晶質シリコンを堆積させた。9
層はシランガスとノボランガスをチャンバー内に導入し
、非晶質シリコン層を100 A堆積した。1層はシラ
ンガスのみをチャンバー内に導入し非晶質シリコンを6
000A堆積した。11層はシランガスとホスフィンガ
スの混合ガスをチャンバー内に導入し、300A堆積し
た。印加した高周波電力は1)層および1層が30〜5
0W、n層が100〜200 Wで、基板温度は150
〜20 r) ’Cの範囲で作製した。
[Example 1] Polyether sulfone resin was extruded to a thickness of 1 (
)( ) μmo film was formed. The polyether sulfone film has a glass transition point of 223°C and a light transmittance of 4. Of) 84% at a wavelength of nm, 6
It was 88% at a wavelength of 0.00 ron. A transparent conductive film having a thickness of 2000 A and consisting of one shim of tin oxide and one shim of indium oxide (5:95 ratio of tin and indium) was provided on the film by electron beam evaporation. In the film substrate, a hydrogenated amorphous silicon thin film was deposited on the transparent conductive film side. Amorphous silicon thin films are used for capacitively coupled high frequency (13,
Using a glow discharge device (56 MHz), amorphous silicon was deposited in order from the transparent conductive film side to the plrIII layer. 9
Silane gas and noborane gas were introduced into the chamber, and an amorphous silicon layer was deposited at 100 A. For the first layer, only silane gas is introduced into the chamber, and amorphous silicon is
000A deposited. The 11th layer was deposited at 300A by introducing a mixed gas of silane gas and phosphine gas into the chamber. The applied high frequency power is 1) layer and 1 layer is 30~5
0W, n layer is 100-200W, substrate temperature is 150W
~20 r) 'C.

次に非晶質のp−i−n型シリコンN膜」二に真空蒸着
法lこより、裏面電極として厚み50 (l Aのアル
ミを蒸着した。
Next, on the amorphous pin type silicon N film, aluminum was deposited to a thickness of 50 lA as a back electrode using a vacuum evaporation method.

得られた太陽電池をAMIの状態に設定したソーラーシ
ュミレータ−(100mW/cm’)を用(・て光電変
換効率を測定した。アルミ電極の面積0.033 cm
2で6.3%の充電変換効率であった。
The photoelectric conversion efficiency of the obtained solar cell was measured using a solar simulator (100 mW/cm') set to an AMI state.The area of the aluminum electrode was 0.033 cm.
2, the charge conversion efficiency was 6.3%.

特許出願人  住友ベークライト株式会社浜川圭弘 手続補正書(自発) 昭和60年 2月19日Patent applicant: Keihiro Hamakawa, Sumitomo Bakelite Co., Ltd. Procedural amendment (voluntary) February 19, 1985

Claims (1)

【特許請求の範囲】[Claims] 透明性かつ可とう性を有し、ガラス転移点が170℃以
上である高分子フィルム基板を外層の入射光窓側に用い
、該基板と裏面電極の間に透明導電膜および水素化ある
いは弗素化した非晶質シリコン層からなる起電力発生層
を設けたことを特徴とする非晶質シリコン太陽電池。
A polymer film substrate that is transparent and flexible and has a glass transition point of 170°C or higher is used on the incident light window side of the outer layer, and a transparent conductive film and a hydrogenated or fluorinated film are used between the substrate and the back electrode. An amorphous silicon solar cell characterized by having an electromotive force generating layer made of an amorphous silicon layer.
JP60007548A 1985-01-21 1985-01-21 Amorphous silicon solar battery Pending JPS61168271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60007548A JPS61168271A (en) 1985-01-21 1985-01-21 Amorphous silicon solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60007548A JPS61168271A (en) 1985-01-21 1985-01-21 Amorphous silicon solar battery

Publications (1)

Publication Number Publication Date
JPS61168271A true JPS61168271A (en) 1986-07-29

Family

ID=11668846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60007548A Pending JPS61168271A (en) 1985-01-21 1985-01-21 Amorphous silicon solar battery

Country Status (1)

Country Link
JP (1) JPS61168271A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000007250A1 (en) * 1998-07-30 2000-02-10 Agfa-Gevaert Naamloze Vennootschap Method of producing solar cells
WO2000046861A1 (en) * 1999-02-02 2000-08-10 Agfa-Gevaert N.V. A method for the production of solar cells

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169371A (en) * 1980-05-30 1981-12-26 Teijin Ltd Amorphous silicon solar battery of flexible film substrate
JPS57190368A (en) * 1981-05-19 1982-11-22 Matsushita Electric Ind Co Ltd Solar battery
JPS5934677A (en) * 1982-08-20 1984-02-25 Nippon Denso Co Ltd Photovoltaic element
JPS59189683A (en) * 1983-04-13 1984-10-27 Sharp Corp Solar battery
JPS60194582A (en) * 1984-03-16 1985-10-03 Matsushita Electric Ind Co Ltd Manufacture of amorphous silicon photovoltaic element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169371A (en) * 1980-05-30 1981-12-26 Teijin Ltd Amorphous silicon solar battery of flexible film substrate
JPS57190368A (en) * 1981-05-19 1982-11-22 Matsushita Electric Ind Co Ltd Solar battery
JPS5934677A (en) * 1982-08-20 1984-02-25 Nippon Denso Co Ltd Photovoltaic element
JPS59189683A (en) * 1983-04-13 1984-10-27 Sharp Corp Solar battery
JPS60194582A (en) * 1984-03-16 1985-10-03 Matsushita Electric Ind Co Ltd Manufacture of amorphous silicon photovoltaic element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000007250A1 (en) * 1998-07-30 2000-02-10 Agfa-Gevaert Naamloze Vennootschap Method of producing solar cells
WO2000046861A1 (en) * 1999-02-02 2000-08-10 Agfa-Gevaert N.V. A method for the production of solar cells

Similar Documents

Publication Publication Date Title
Rech et al. New materials and deposition techniques for highly efficient silicon thin film solar cells
US4162505A (en) Inverted amorphous silicon solar cell utilizing cermet layers
US4528082A (en) Method for sputtering a PIN amorphous silicon semi-conductor device having partially crystallized P and N-layers
US5456764A (en) Solar cell and a method for the manufacture thereof
JPS61168271A (en) Amorphous silicon solar battery
JPS61116883A (en) Transparent electrode with metal wiring
JP2001060707A (en) Photoelectric transfer device
Iida et al. High efficiency a-Si: H pin solar cell using a SnO 2/glass substrate
JPH04118975A (en) Photovoltaic device and manufacture thereof
JPH10200143A (en) Amorphous silicon solar battery
JPH03185769A (en) Solar cell
JP2838141B2 (en) Solar cell
Das et al. Improvement in the optoelectronic properties of a-SiO: H films
JPH02205078A (en) Flexible photoelectric transducer
JPH01128476A (en) Laminated layer type photoelectromotive device
JPS6324677A (en) Solar cell
JP5563850B2 (en) Photoelectric conversion device and manufacturing method thereof
JPH0519834B2 (en)
JPH11163379A (en) Amorphous silicon solar cell
JP2788798B2 (en) Photovoltaic element
JPS61222282A (en) Amorphous silicon solar battery
JPH02181473A (en) Amorphous solar cell
JPS59154081A (en) Solar battery
JPS59151476A (en) Photoelectric conversion element
JPH01152765A (en) Manufacture of amorphous silicon solar cell