JPH03185769A - Solar cell - Google Patents

Solar cell

Info

Publication number
JPH03185769A
JPH03185769A JP1322738A JP32273889A JPH03185769A JP H03185769 A JPH03185769 A JP H03185769A JP 1322738 A JP1322738 A JP 1322738A JP 32273889 A JP32273889 A JP 32273889A JP H03185769 A JPH03185769 A JP H03185769A
Authority
JP
Japan
Prior art keywords
solar cell
ethylene
protective film
film
tetrafluoroethylene copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1322738A
Other languages
Japanese (ja)
Inventor
Hisami Tanaka
久巳 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1322738A priority Critical patent/JPH03185769A/en
Publication of JPH03185769A publication Critical patent/JPH03185769A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To improve a solar cell of this design in durability by a method wherein an ethylene-tetrafluoroethylene copolymer biaxially oriented film is used as a solar cell module protective film. CONSTITUTION:A solar cell module is composed of a substrate 1 of glass, stainless steel, or the like and an amorphous silicon 2, or a solar cell element of CdS/CdTe or the like and a protective film 5 of ethylene-tetrafluoroethylene copolymer biaxially oriented film. In this case, as the protective film 5 is formed of ethylene-tetrafluoroethylene copolymer biaxially oriented film, it is needless to say that it hardly deteriorates over a long term when it is kept at normal temperature and humidity, and further it also hardly deteriorates even if it is kept at high temperature and high humidity, and as it is kept transparent, a solar cell of this design can be prevented from deteriorating in photoelectric conversion efficiency. As the surface of the protective film 5 is lubricant, foreign particles, dusts, and the like are hardly attached to it, in result it is prevented from deteriorating in light transmittance. By this setup, a solar cell of long life can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は太陽電池に関し、特に耐熱性や耐湿性や耐候性
に優れた保護膜を有する太陽電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a solar cell, and particularly to a solar cell having a protective film with excellent heat resistance, moisture resistance, and weather resistance.

[従来の技術及び発明が解決しようとする課題]太陽電
池はエネルギー供給手段として、火力発電や原子力発電
のような環境汚染の心配もなく、クリーンな太陽エネル
ギーから何処でも直接電気エネルギーが容易に取り出せ
るということから注目されている。
[Conventional technology and problems to be solved by the invention] Solar cells can be used as an energy supply means without worrying about environmental pollution like thermal power generation or nuclear power generation, and electrical energy can be easily obtained directly from clean solar energy anywhere. It is attracting attention because of this.

しかし、現状でLま太陽電池の製造原価が高く、変換効
率も十分ではないため、広く一般に普及する段階にまで
至っていない。
However, at present, the production cost of L-type solar cells is high and the conversion efficiency is not sufficient, so they have not reached the stage where they are widely used.

太陽電池′の普及のためには、変換効率の向上とともに
、屋外で長期に渡る耐久性が必要である。
In order to popularize solar cells', it is necessary to improve conversion efficiency and to have long-term durability outdoors.

太陽電池モジュールの耐久性、信頼性を上げるために、
保護膜は重要な役割を持っている。
To increase the durability and reliability of solar cell modules,
The protective film has an important role.

太陽電池素子の電極は、水分で酸化されやすいため、保
護膜で外部より遮断し、耐湿性、耐候性を改善する必要
がある。
Electrodes of solar cell elements are easily oxidized by moisture, so they need to be shielded from the outside with a protective film to improve moisture resistance and weather resistance.

従来の太陽電池では、保護膜としてはポリメチルメタク
リレート及びエポキシ樹脂(特開昭6O−88481)
 、シリコン樹脂(FR−2426337)、ポリフッ
化ビニル(特開昭6O−148175)等が用いられて
いる。
In conventional solar cells, the protective film is polymethyl methacrylate and epoxy resin (Japanese Patent Application Laid-open No. 6O-88481).
, silicone resin (FR-2426337), polyvinyl fluoride (JP-A-6O-148175), etc. are used.

しかし、ポリメチルメタクリレートは耐湿性が悪く、柔
軟性が無いのでクラックが入りやすく、エポキシ樹脂は
高温高湿時では黄変劣化しやすく、光透過を妨げるとい
う欠点があり、ポリフッ化ビニルは、安定だが、もとも
と透明性が悪いため、変換効率を低下させるという問題
がある。また、従来使用されるRTV型(室温加硫型)
シリコン樹脂は、材料が高価であり、また化学的には安
定であるが、表面にゴミ、チリが付着し易く、やはり、
光透過を妨げるという問題がある。
However, polymethyl methacrylate has poor moisture resistance and lacks flexibility, so it is prone to cracking, epoxy resin is prone to yellowing and deterioration at high temperatures and high humidity, and has the disadvantage of impeding light transmission. Polyvinyl fluoride is stable. However, there is a problem in that the transparency is inherently poor, which lowers the conversion efficiency. In addition, the conventionally used RTV type (room temperature vulcanization type)
Although silicone resin is an expensive material and is chemically stable, it is easy for dirt and dust to adhere to its surface.
There is a problem that it obstructs light transmission.

[発明の目的] 本発明は上記のような欠点の無い、つまり保護膜自体の
劣化がなく、高温下、高湿下でも安定して、光透過性及
び保護機能を保つ保護膜を有する長寿命の太陽電池を提
供することである。
[Objective of the Invention] The present invention does not have the above-mentioned drawbacks, that is, the protective film itself does not deteriorate, is stable even under high temperature and high humidity, and has a long lifespan that maintains light transmittance and protective function. solar cells.

[課題を解決するための手段及び作用]本発明は、上述
した課題を、 導電性基体上に太陽電池素子を設けた太陽電池において
、エチレン−テトラフロロエチレン共重合体二軸延伸フ
ィルムを保護膜として有する太陽電池によって解決しよ
うとするものである。
[Means and effects for solving the problems] The present invention solves the above-mentioned problems by using a biaxially stretched ethylene-tetrafluoroethylene copolymer film as a protective film in a solar cell in which a solar cell element is provided on a conductive substrate. This is what we are trying to solve by using solar cells that have the same characteristics.

すなわち、本発明の太陽電池は、ガラス、ステンレス等
の基体とアモルファス−シリコン(以下a−3L) 、
またはCdS/CdTe等の太陽電池素子とエチレン−
テトラフロロエチレン共重合体二軸延伸フィルムの保護
膜より構成される。
That is, the solar cell of the present invention includes a substrate made of glass, stainless steel, etc., and amorphous silicon (hereinafter referred to as a-3L),
Or solar cell elements such as CdS/CdTe and ethylene-
Consists of a protective film made of biaxially stretched tetrafluoroethylene copolymer film.

エチレンフィルムは透明性は良いが、耐熱性が悪く、表
面の潤滑性も悪い。
Although ethylene film has good transparency, it has poor heat resistance and poor surface lubricity.

一方、テトラフロロエチレンフィルムは、全く不透明で
あるが、耐熱性は高く、表面の潤滑性も良い。
On the other hand, tetrafluoroethylene film is completely opaque, but has high heat resistance and good surface lubricity.

エチレン−テトラフロロエチレン共重合体はそれぞれの
長所を保ち、透明性も高く、耐熱性も高く、表面潤滑性
も良い。
Ethylene-tetrafluoroethylene copolymers maintain the advantages of each, with high transparency, high heat resistance, and good surface lubricity.

しかしエチレン−テトラフロロエチレン共重合体フィル
ムも未延伸フィルムではフィルム密度が低く、水蒸気を
透過させるため、太陽電池モジュールでは内部電極を酸
化させたり、長期にわたると結晶化して白濁化する。
However, an unstretched ethylene-tetrafluoroethylene copolymer film has a low film density and allows water vapor to pass through it, which may oxidize the internal electrodes of solar cell modules or crystallize and turn cloudy over a long period of time.

本発明のエチレン−テトラフロロエチレン共重合体二軸
延伸フィルムではフィルム密度が高くなり、水蒸気を透
過させずに、結晶化も発生せず、長期使用を可能にした
The ethylene-tetrafluoroethylene copolymer biaxially stretched film of the present invention has a high film density, does not allow water vapor to pass through, does not undergo crystallization, and can be used for a long period of time.

エチレン−テトラフロロエチレン共重合体二軸延伸フィ
ルムはエチレン−テトラフロロエチレン共重合体をフィ
ルム状にし、二軸延伸加工して製造したものである。
The ethylene-tetrafluoroethylene copolymer biaxially stretched film is produced by forming an ethylene-tetrafluoroethylene copolymer into a film and biaxially stretching the film.

ここで、本発明における二輪延伸とは、縦方向と同時に
横方向にも分子配向させて、強度をバランスさせるとと
もに、他の物性を向上させるものである。本発明では、
エチレン−テトラフロロエチレン共重合体をガラス転移
点以上かつ融点以下の温度において、縦方向及び横方向
に150〜500%延伸させ、フィルム状に成型したも
のを用いる。
Here, two-wheel stretching in the present invention means to orient the molecules in both the longitudinal and transverse directions, thereby balancing the strength and improving other physical properties. In the present invention,
The ethylene-tetrafluoroethylene copolymer is stretched by 150 to 500% in the longitudinal and transverse directions at a temperature above the glass transition point and below the melting point, and then formed into a film.

保護膜として、エチレン−テトラフロロエチレン共重合
体二軸延伸フィルムの膜厚は、10〜200μm、好ま
しくは30〜1OOLL11が良い。
As the protective film, the thickness of the biaxially stretched ethylene-tetrafluoroethylene copolymer film is 10 to 200 μm, preferably 30 to 1OOLL11.

また保護膜と太陽電池素子の接着には、従来と同様の透
明性の接着剤が用いられる。
Furthermore, a transparent adhesive similar to that used in the past is used to bond the protective film and the solar cell element.

本発明の保護膜は、エチレン−テトラフロロエチレン共
重合体二軸延伸フィルムより成っているため、常温常温
ではもちろん、更に高温高湿下でも、長期にわたり劣化
せず、透明性を保持するため、光から電気エネルギーへ
の変換効率を低下させない。
Since the protective film of the present invention is made of a biaxially stretched ethylene-tetrafluoroethylene copolymer film, it does not deteriorate over a long period of time and maintains its transparency not only at room temperature but also under high temperature and high humidity. Does not reduce the conversion efficiency from light to electrical energy.

また、表面に潤滑性があるため、ゴミ、チリ等が付着し
にくく、光透過を妨げることもない。
In addition, since the surface has lubricating properties, dirt, dust, etc. are difficult to adhere to, and light transmission is not obstructed.

また、水蒸気の透過性も少ないため、太陽電池モジュー
ル内部の電極が酸化されることなく、長期にわたる使用
が可能となった。
In addition, since the solar cell module has low water vapor permeability, the electrodes inside the solar cell module are not oxidized and can be used for a long period of time.

[実施例] 本発明の太陽電池の構成を説明するために、第1図に実
施例の太陽電池モジュールの断面図を示した。第1図に
おいて、lは基体としてのステンレス基板で、その王に
アモルファスシリコン膜2を形成し、その上にIn*O
s電極3を設け、接着剤4を介して保護膜5を貼り付け
ることにより、本発明の太陽電池が構成されている。
[Example] In order to explain the structure of the solar cell of the present invention, FIG. 1 shows a cross-sectional view of a solar cell module of an example. In Fig. 1, l is a stainless steel substrate as a base, an amorphous silicon film 2 is formed on the base, and an In*O film is formed on it.
The solar cell of the present invention is constructed by providing an s-electrode 3 and pasting a protective film 5 via an adhesive 4.

次に、本発明に用いられるa−5L(アモルファスシリ
コン)太陽電池の製造例について説明する。
Next, an example of manufacturing an a-5L (amorphous silicon) solar cell used in the present invention will be described.

第3図は、a−5L光起電力素子の製造に使用する装置
の概要を示すブロック図であり、31は反応容器、32
は放電用陰電極、33は放電用陽電極、34は加熱回転
台、35は基板、36は真空計へ継がれる管、37は排
気ガス口、38は原料ガス供給管、39は真空引きに継
がれる管、40141.42はガスタンク、43.44
.45は流量計、46はコールドトラップ、47.48
.49は開、閉弁である。
FIG. 3 is a block diagram showing the outline of the apparatus used for manufacturing the a-5L photovoltaic device, in which 31 is a reaction vessel, 32
33 is a negative electrode for discharge, 33 is a positive electrode for discharge, 34 is a heating rotary table, 35 is a substrate, 36 is a tube connected to a vacuum gauge, 37 is an exhaust gas port, 38 is a raw material gas supply tube, 39 is for evacuation Pipe to be connected, 40141.42 is gas tank, 43.44
.. 45 is a flow meter, 46 is a cold trap, 47.48
.. 49 is an open and closed valve.

次に、この製造装置の動作の一例を示す。まず排気ガス
口37に接続された排気ポンプ(不図示)を起動して反
応容器31の内部を1.0−’T。
Next, an example of the operation of this manufacturing apparatus will be shown. First, an exhaust pump (not shown) connected to the exhaust gas port 37 is started, and the inside of the reaction vessel 31 is heated to 1.0-'T.

rr程度に減圧した後、加熱回転台34を動作させて、
これに載置された基板35を加熱しつつ回転させる。加
熱操作と前後して開閉弁47と48を開放し、ガスタン
ク40と41からそれぞれS i Ha / Hl混合
ガスと、P Hl / Hl混合ガスを反応容器31に
供給する。
After reducing the pressure to about rr, operate the heating rotary table 34,
The substrate 35 placed thereon is heated and rotated. Before and after the heating operation, the on-off valves 47 and 48 are opened, and the S i Ha / Hl mixed gas and the P Hl / Hl mixed gas are supplied to the reaction vessel 31 from the gas tanks 40 and 41, respectively.

次に放電用発電機Gを動作させて上記ガスに高周波電界
を印加し、放電用陽電極33と陰電極32との間でグロ
ー放電を生じさせる。このようにして、基板35の上に
n型層−Si層を堆積したのち放電を停止し、これと相
対後して開閉弁47と48を閉鎖してガスの供給を停止
し、反応容器31内に残留する原料ガスを排気する。
Next, the discharge generator G is operated to apply a high-frequency electric field to the gas, and a glow discharge is generated between the discharge positive electrode 33 and the negative electrode 32. In this way, after depositing the n-type layer-Si layer on the substrate 35, the discharge is stopped, and after that, the on-off valves 47 and 48 are closed to stop the gas supply, and the reaction vessel 31 Exhaust the raw material gas remaining inside.

次に開閉弁47を開閉して、ガスタンク4oからS i
 H4/ Hl混合ガスを反応容器31に供給し、グロ
ー放電を再開する。このようにして、n型層上にi型層
−Si層を堆積したのちグロー放電を停止し、これと相
前後して開閉弁47を閉鎖して原料ガスの供給を停止し
、残留する原料ガスを排気する。
Next, open and close the on-off valve 47 to remove the S i from the gas tank 4o.
The H4/Hl mixed gas is supplied to the reaction vessel 31 and the glow discharge is restarted. In this way, after depositing the i-type layer-Si layer on the n-type layer, the glow discharge is stopped, and at the same time, the on-off valve 47 is closed to stop the supply of raw material gas, and the remaining raw material Exhaust the gas.

更に、開閉弁47と49を開放して、ガスタンク40と
42からそれぞれS i H4/ Hl混合ガスとB*
 HII / H*l混合ガス反応容器31に供給し、
グロー放電を再開する。このようにしてi型層上にp型
層−3tを堆積した後、グロー放電を停止し、これと相
前後して開閉弁47と49を閉鎖して原料ガスの供給を
停止し、残留する原料ガスを排気する。このようにして
得られたn型、i型およびp型のa−3i層を総じてa
−Si単位セルと呼ぶ。
Furthermore, the on-off valves 47 and 49 are opened, and the S i H4/Hl mixed gas and B* are discharged from the gas tanks 40 and 42, respectively.
HII/H*l mixed gas is supplied to the reaction vessel 31,
Restart glow discharge. After depositing the p-type layer -3t on the i-type layer in this way, the glow discharge is stopped, and at the same time, the on-off valves 47 and 49 are closed to stop the supply of raw material gas, and the remaining Exhaust raw material gas. The n-type, i-type and p-type a-3i layers obtained in this way are collectively a
- Called Si unit cell.

更に起電力を増すために、a−Si単位セルを繰り返し
積層してもよい。
In order to further increase the electromotive force, a-Si unit cells may be repeatedly stacked.

更に、公知の電子ビーム蒸着法、RFスパッタリング法
などにより、最終のa−8t単セルのp型層−Si層上
に錫インヂウム酸化物等の透明導電層を形成する。
Furthermore, a transparent conductive layer of tin indium oxide or the like is formed on the p-type layer-Si layer of the final A-8T single cell by known electron beam evaporation, RF sputtering, or the like.

本実施例では、上述の装置を用いて以下の様にしてa−
3iセルの製造を行なった。
In this example, using the above-mentioned apparatus, a-
A 3i cell was manufactured.

まず基板35としては、厚み0.5mm、寸法20X2
0mmの表面を鏡面研磨したステンレス鋼を使用した。
First, the substrate 35 has a thickness of 0.5 mm and dimensions of 20×2.
Stainless steel with a mirror-polished surface of 0 mm was used.

また原料ガスの体積比はS i H4/H,=0.1、
PHs /Hz =5×10−’B x Ha / H
z = 5 X l O−’であり、更にこれらの混合
ガスの体積混合比は5 i H4/ Hl混合ガスに対
して、PH,/H1混合ガス、およびB2H6/ H1
混合ガスの比が、いずれも0.1〜1%のオーダーであ
る。反応容器内の原料ガスの圧力を2〜5Torr、放
電用発電機Gの高周波出力を50〜500W (4MH
z) 、ステンレス基板の温度を250〜350℃とし
たとき、p型およびn型層−5i層の成長速度は0.4
〜1入/sec、i型層−3i層の成長速度は0.8〜
3人/ s e cであった。a−Si層の層厚さは堆
積時間の調整などによって任意の厚さに容易に調整でき
る。
In addition, the volume ratio of the raw material gas is S i H4/H, = 0.1,
PHs/Hz = 5 x 10-'B x Ha/H
z = 5
The ratio of mixed gases is on the order of 0.1 to 1% in all cases. The pressure of the raw material gas in the reaction vessel was set at 2 to 5 Torr, and the high frequency output of the discharge generator G was set at 50 to 500 W (4 MH
z) When the temperature of the stainless steel substrate is 250 to 350°C, the growth rate of the p-type and n-type layers-5i layer is 0.4
~1 entry/sec, growth rate of i-type layer-3i layer is 0.8~
There were 3 people/sec. The thickness of the a-Si layer can be easily adjusted to any desired thickness by adjusting the deposition time.

本発明に用いるa−3iの層構成は、n型のa−3i層
の厚さを100人、i型のa−3i層の厚さを6000
人、p型のa−Si層の厚さを30人とした。
The layer structure of the a-3i used in the present invention is that the thickness of the n-type a-3i layer is 100 mm, and the thickness of the i-type a-3i layer is 6000 mm.
The thickness of the p-type a-Si layer was 30 people.

(実施例1) 第1図の太陽電池モジュールにおいて、接着剤にエチレ
ン−酢酸ビニルホットメルトシート(膜厚50μff1
)を用い、保護膜にエチレン−テトラフロロエチレン共
重合体(エチレン20mo1%、テドラフロロエチレン
80mo1%)二輪延伸フィルム(膜厚lOOμm)を
用いて、太陽電池モジュールを製作した。
(Example 1) In the solar cell module shown in FIG.
), and a two-wheel stretched film (thickness lOOμm) of ethylene-tetrafluoroethylene copolymer (ethylene 20 mo1%, tetrafluoroethylene 80 mo1%) was used as a protective film to produce a solar cell module.

この太陽電池モジュールを用いて、キセノンフェードメ
ーター(FAL−25AX−HC−B−ECスガ試験機
(株)製)で2000時間の耐候テストを行なった。
Using this solar cell module, a 2000 hour weather test was conducted using a xenon fade meter (FAL-25AX-HC-B-EC manufactured by Suga Test Instruments Co., Ltd.).

第2図は、本実施例の耐候テストで用いた試験機の構造
を示す図であり、第2図(a)は垂直型試料ホルダーを
備えた装置の正面図を示す図であるが、部分的に内部構
造も図示している。第2図(b)は、標準型・試料ホル
ダー使用時の拡大図を示す図である。
Figure 2 is a diagram showing the structure of the testing machine used in the weather resistance test of this example, and Figure 2 (a) is a front view of the equipment equipped with a vertical sample holder; The internal structure is also illustrated. FIG. 2(b) is a diagram showing an enlarged view when the standard type sample holder is used.

本装置は第2図(a)に図示される様に、本体正面左側
には、制御盤12があり、試験機の操作に必要な計器、
スイッチ等が取り付けられている。また右側には試験槽
があり、中央にキセノンランプ10が設置され、その周
囲を試料回転枠15が回転する。また下部は機械室にな
っており、送風機17、トランス18等が取り付けられ
ている。上述の装置を用い、耐候テストを以下の様に行
なった。
As shown in FIG. 2(a), this device has a control panel 12 on the left side of the front of the main body, and includes meters and meters necessary for operating the test machine.
Switches etc. are installed. Further, there is a test tank on the right side, a xenon lamp 10 is installed in the center, and a sample rotating frame 15 rotates around the xenon lamp 10. Further, the lower part is a machine room in which a blower 17, a transformer 18, etc. are installed. A weather resistance test was conducted using the above-mentioned apparatus as follows.

先ず第2図(b)に示す試料回転枠20に取り付けであ
る試料ホルダー19に試験用の試料をセットし、回転枠
20に取り付けであるブラックパネル温度計21の測定
値を63±3℃とする。これによって試験機内の温度は
約45℃となる。また試験機内の湿度は70%R−Hと
する。また試験機内に取り付けである放射照度計(不図
示)の測定値を340mmで0.5±0.02W/m”
とした。試料は回転して均等に光を受ける様にし、以上
の条件で2000時間、光照射を行なった。
First, a test sample was set on the sample holder 19 attached to the sample rotation frame 20 shown in FIG. 2(b), and the measured value of the black panel thermometer 21 attached to the rotation frame 20 was 63±3℃. do. As a result, the temperature inside the test machine becomes approximately 45°C. Furthermore, the humidity inside the test machine is 70% RH. In addition, the measured value of the irradiance meter (not shown) installed in the test machine was 0.5 ± 0.02 W/m at 340 mm.
And so. The sample was rotated to receive light evenly, and irradiated with light for 2000 hours under the above conditions.

その後、保護膜の無い太陽電池素子と比較して出力低下
の測定を行ない、また、耐候テスト後の保護膜の状態を
観察した。
Thereafter, the output reduction was measured in comparison with a solar cell element without a protective film, and the state of the protective film was observed after the weather test.

これらの結果を表1に示した。These results are shown in Table 1.

(実施例2) 第1図の太陽電池モジュールにおいて、接着剤にエチレ
ン−酢酸ビニルホットメルトシート(膜厚50μm)を
用い、保護膜にエチレン−テトラフロロエチレン共重合
体(エチレン50mo1%、テトラフロロエチレン50
mo1%)二軸延伸フィルム(膜厚501LI11)を
用いて、太陽電池モジュールを製作した。この太陽電池
モジュールを用いて、実施例1と同様の測定を行ない1
.結果を表1に示した。
(Example 2) In the solar cell module shown in Fig. 1, an ethylene-vinyl acetate hot melt sheet (film thickness 50 μm) was used as the adhesive, and an ethylene-tetrafluoroethylene copolymer (ethylene 50 mo1%, tetrafluoroethylene copolymer) was used as the protective film. ethylene 50
A solar cell module was manufactured using a biaxially stretched film (film thickness: 501LI11). Using this solar cell module, the same measurements as in Example 1 were carried out.
.. The results are shown in Table 1.

(実施例3) 第1図の太陽電池モジュールにおいて、接着剤にエチレ
ン−酢酸ビニルホットメルトシート(膜厚50μm)を
用い、保護膜にエチレン−テトラフロロエチレン共重合
体(エチレン70mo1%、テトラフロロエチレン30
moL%)二軸延伸フィルム(膜厚80uI11)を用
いて、太陽電池モジュールを製作し、実施例1と同様の
測定を行ない、結果を表1に示した。
(Example 3) In the solar cell module shown in Fig. 1, an ethylene-vinyl acetate hot melt sheet (film thickness 50 μm) was used as the adhesive, and an ethylene-tetrafluoroethylene copolymer (ethylene 70 mo1%, tetrafluoroethylene copolymer) was used as the protective film. ethylene 30
A solar cell module was manufactured using a biaxially stretched film (film thickness: 80 μI) and the same measurements as in Example 1 were performed, and the results are shown in Table 1.

(比較例1) 第1図の太陽電池モジュールにおいて、接着剤にエチレ
ン−酢酸ビニルホットメルトシート(膜厚50μm)を
用い、保護膜にエチレン−テトラフロロエチレン共重合
体(エチレン20mo1%、テトラフロロエチレン80
mo1%)未延伸フィルム(膜厚80gm+)を用いて
、太陽電池モジュールを製作した。測定は実施例1と同
様に行ない、結果を表1に示した。
(Comparative Example 1) In the solar cell module shown in Fig. 1, an ethylene-vinyl acetate hot melt sheet (film thickness 50 μm) was used as the adhesive, and an ethylene-tetrafluoroethylene copolymer (ethylene 20 mo1%, tetrafluoroethylene copolymer) was used as the protective film. ethylene 80
A solar cell module was manufactured using an unstretched film (film thickness: 80 gm+) (mo1%). Measurements were carried out in the same manner as in Example 1, and the results are shown in Table 1.

(比較例2) 第1図の太陽電池モジュールにおいて、接着剤にエチレ
ン−酢酸ビニルホットメルトシート(膜厚50um)を
用い、保護膜に従来のポリフッ化ビニルフィルム(膜厚
100gm)を用いて、太陽電池モジュールを製作した
。測定は実施例1と同様に行ない、結果を表1に示した
(Comparative Example 2) In the solar cell module shown in Fig. 1, an ethylene-vinyl acetate hot melt sheet (thickness: 50 um) was used as the adhesive, and a conventional polyvinyl fluoride film (thickness: 100 gm) was used as the protective film. A solar cell module was manufactured. Measurements were carried out in the same manner as in Example 1, and the results are shown in Table 1.

(比較例3) 第1図の太陽電池モジュールにおいて、
接着剤にエチレン−酢酸ビニルホットメルトシート(膜
厚50μ!+)を用い、保護膜に従来のポリメチルメタ
クリレートフィルム(膜厚100μm)を用いて、太陽
電池モジュールを製作した。測定は実施例1と同様に行
ない、結果を表1に示した。
(Comparative Example 3) In the solar cell module shown in Fig. 1,
A solar cell module was manufactured using an ethylene-vinyl acetate hot melt sheet (thickness: 50 μm!+) as an adhesive and a conventional polymethyl methacrylate film (thickness: 100 μm) as a protective film. Measurements were carried out in the same manner as in Example 1, and the results are shown in Table 1.

表1に示されるように、実施例1,2.3の、保護膜と
してエチレン−テトラフロロエチレン共重合体二輪延伸
フィルムを用いたものでは、それぞれ膜厚により多少の
差はあるが、いずれも、初期92〜94%の出力効率比
が試験後91〜92%と1〜2%の出力効率比の低下し
か発生せず、保護膜表面も変化しない。しかしながら、
エチレン−テトラフロロエチレン共重合体未延伸フィル
ムを用いた比較例1では、初期効率比も86%と低く、
試験後80%に低下し、6%の劣化が発生し、保護膜自
体もはがれてしまった。
As shown in Table 1, in Examples 1 and 2.3, in which the ethylene-tetrafluoroethylene copolymer two-wheel stretched film was used as the protective film, there were some differences depending on the film thickness, but both , the initial output efficiency ratio of 92-94% was reduced to 91-92% after the test, resulting in only a 1-2% decrease in the output efficiency ratio, and the surface of the protective film did not change. however,
In Comparative Example 1 using an ethylene-tetrafluoroethylene copolymer unstretched film, the initial efficiency ratio was as low as 86%.
After the test, it decreased to 80%, 6% deterioration occurred, and the protective film itself peeled off.

また、従来の材質の保護膜を用いた比較例2゜3でも、
初期効率比が低かったり、試験後4%〜34%の低下が
発生し、保護膜が割れることもあった。
Also, in Comparative Example 2゜3 using a protective film made of a conventional material,
In some cases, the initial efficiency ratio was low, the efficiency decreased by 4% to 34% after the test, and the protective film was cracked.

表1 [発明の効果] 以上、説明したように、太陽電池モジュールの保護膜に
エチレン−テトラフロロエチレン共重合体二軸延伸フィ
ルムを用いることにより、透明性が良く、初期から出力
効率が高く、しかも長期に渡り、透明性が良く、出力効
率が安定し、保護膜自体の劣化もないという耐久性が得
られ、またゴミ、チリ等を付着することもないという効
果が得られる。
Table 1 [Effects of the invention] As explained above, by using the ethylene-tetrafluoroethylene copolymer biaxially stretched film as the protective film of the solar cell module, it has good transparency, high output efficiency from the beginning, In addition, it is possible to obtain long-term durability such as good transparency, stable output efficiency, and no deterioration of the protective film itself, and also to avoid the adhesion of dirt, dust, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の太陽電池モジュールの一例の断面図で
ある。 第2図は実施例で行なった耐候テストに用いた試験装置
の構造図。 第3図は光起電力素子の製造に使用する装置の概要を示
すブロック図。 1、ステンレス基板 2、アモルファスシリコン 3 、1nn’s電極 4、接着剤 5、保護膜 31、反応容器 32、放電用陰電極 33、放電用陽電極 34、加熱回転台 35、基板
FIG. 1 is a sectional view of an example of the solar cell module of the present invention. FIG. 2 is a structural diagram of the test equipment used in the weather resistance test conducted in the example. FIG. 3 is a block diagram showing an outline of an apparatus used for manufacturing a photovoltaic element. 1, stainless steel substrate 2, amorphous silicon 3, 1nn's electrode 4, adhesive 5, protective film 31, reaction vessel 32, negative electrode for discharge 33, positive electrode for discharge 34, heating rotary table 35, substrate

Claims (1)

【特許請求の範囲】[Claims]  導電性基体上に太陽電池素子を設けた太陽電池におい
て、エチレン−テトラフロロエチレン共重合体二軸延伸
フィルムを保護膜として有する太陽電池。
A solar cell in which a solar cell element is provided on a conductive substrate, the solar cell having an ethylene-tetrafluoroethylene copolymer biaxially stretched film as a protective film.
JP1322738A 1989-12-14 1989-12-14 Solar cell Pending JPH03185769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1322738A JPH03185769A (en) 1989-12-14 1989-12-14 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1322738A JPH03185769A (en) 1989-12-14 1989-12-14 Solar cell

Publications (1)

Publication Number Publication Date
JPH03185769A true JPH03185769A (en) 1991-08-13

Family

ID=18147079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1322738A Pending JPH03185769A (en) 1989-12-14 1989-12-14 Solar cell

Country Status (1)

Country Link
JP (1) JPH03185769A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0562517A2 (en) * 1992-03-23 1993-09-29 Canon Kabushiki Kaisha Solar cell with a polymer protective layer
US5344498A (en) * 1991-10-08 1994-09-06 Canon Kabushiki Kaisha Solar cell module with improved weathering characteristics
US5354385A (en) * 1991-09-30 1994-10-11 Canon Kabushiki Kaisha Solar cell
US5476740A (en) * 1992-08-19 1995-12-19 Xerox Corporation Multilayer electrophotographic imaging member
US5532103A (en) * 1992-08-19 1996-07-02 Xerox Corporation Multilayer electrophotographic imaging member
WO2008029651A1 (en) * 2006-09-04 2008-03-13 Toray Industries, Inc. Seal film for solar cell module and solar cell module utilizing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5354385A (en) * 1991-09-30 1994-10-11 Canon Kabushiki Kaisha Solar cell
US5344498A (en) * 1991-10-08 1994-09-06 Canon Kabushiki Kaisha Solar cell module with improved weathering characteristics
EP0562517A2 (en) * 1992-03-23 1993-09-29 Canon Kabushiki Kaisha Solar cell with a polymer protective layer
US5344501A (en) * 1992-03-23 1994-09-06 Canon Kabushiki Kaisha Solar cell
US5476740A (en) * 1992-08-19 1995-12-19 Xerox Corporation Multilayer electrophotographic imaging member
US5532103A (en) * 1992-08-19 1996-07-02 Xerox Corporation Multilayer electrophotographic imaging member
WO2008029651A1 (en) * 2006-09-04 2008-03-13 Toray Industries, Inc. Seal film for solar cell module and solar cell module utilizing the same

Similar Documents

Publication Publication Date Title
US5603778A (en) Method of forming transparent conductive layer, photoelectric conversion device using the transparent conductive layer, and manufacturing method for the photoelectric conversion device
US5620530A (en) Back reflector layer, method for forming it, and photovoltaic element using it
US4207119A (en) Polycrystalline thin film CdS/CdTe photovoltaic cell
JP3152328B2 (en) Polycrystalline silicon device
AU732181B2 (en) Amorphous silicon solar cell
US6177711B1 (en) Photoelectric conversion element
KR101274857B1 (en) Method for depositing an oxide layer on absorbers of solar cells, solar cells and use of the method
JPS6091626A (en) Method of producing amorphous silicon pin semiconductor device
CN105714262A (en) Preparation method of preferred growing ITO transparent conductive film
Scofield et al. Sodium diffusion, selenization, and microstructural effects associated with various molybdenum back contact layers for CIS-based solar cells
JP2007059484A (en) Solar cell and method of manufacturing the same
JPH03185769A (en) Solar cell
CN107863401B (en) A kind of preparation method of antimony trisulfide base full-inorganic thin-film solar cells
CN105957924A (en) Method for preparing preferred orientation ITO photoelectric thin film by ZnO buffer layer
JPH10190030A (en) Photovoltaic element
JPH0951114A (en) Vacuum lamination device and method
CN208706660U (en) A kind of thin-film solar cells
CN114032503A (en) Solar control film and preparation method thereof
JPH04357885A (en) Solar cell
JPH10150209A (en) Photoelectric conversion element
CN109545869A (en) A kind of flexible cadmium telluride solar cell of two-sided three terminal
JP2948506B2 (en) Vacuum laminating apparatus and method for manufacturing solar cell
KR101144483B1 (en) Solar cell apparatus, solar power generating system having the same and method of fabricating the same
CN214675055U (en) Photovoltaic power generation system with selective reflection film
Perrenoud et al. Flexible CdTe solar cells with high photovoltaic conversion efficiency