JPH0671091B2 - Thin film solar cell - Google Patents

Thin film solar cell

Info

Publication number
JPH0671091B2
JPH0671091B2 JP60222659A JP22265985A JPH0671091B2 JP H0671091 B2 JPH0671091 B2 JP H0671091B2 JP 60222659 A JP60222659 A JP 60222659A JP 22265985 A JP22265985 A JP 22265985A JP H0671091 B2 JPH0671091 B2 JP H0671091B2
Authority
JP
Japan
Prior art keywords
film
solar cell
layer
thin film
amorphous silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60222659A
Other languages
Japanese (ja)
Other versions
JPS6284568A (en
Inventor
幸彦 南平
博史 冨田
重嘉 升田
淳二 小林
智行 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP60222659A priority Critical patent/JPH0671091B2/en
Publication of JPS6284568A publication Critical patent/JPS6284568A/en
Publication of JPH0671091B2 publication Critical patent/JPH0671091B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は薄膜太陽電池に関し、更に詳細には特定の可撓
性の熱可塑重合体フイルムを基板とすることを特徴とす
る非晶質シリコン型薄膜太陽電池に関する。
Description: TECHNICAL FIELD The present invention relates to a thin film solar cell, and more particularly to amorphous silicon characterized by using a specific flexible thermoplastic polymer film as a substrate. Type thin film solar cell.

〔従来技術〕 太陽電池の光起電力発生層を構成する非晶質シリコン膜
は、特開昭52−16990号,同56−104433号及び同56−104
477号各公報にも開示されている如くプラズマグロー放
電法,スパツタ蒸着法又はイオンプレーテイング法によ
つて形成され、膜内に少なくとも10〜30原子%の水素原
子を含有し、その他に第三成分原子としてフツ素原子,
炭素原子若しくは窒素原子等を含有するものが代表的な
ものとして挙げられる。ここで上記非晶質シリコン膜な
る語は粒径が約100Å以下の微結晶からなるシリコン膜
をも包含する意味で用いられている。
[Prior Art] An amorphous silicon film forming a photovoltaic layer of a solar cell is disclosed in JP-A-52-16990, JP-A-56-104433 and JP-A-56-104.
No. 477, it is formed by a plasma glow discharge method, a sputter deposition method or an ion plating method as disclosed in each publication, and contains at least 10 to 30 atomic% of hydrogen atoms in the film. Fluorine atom as component atom,
Representative ones include those containing carbon atoms or nitrogen atoms. Here, the term "amorphous silicon film" is used to include a silicon film made of fine crystals having a grain size of about 100Å or less.

上記非晶質シリコン膜は、可視光に対する吸収係数が単
結晶シリコン膜に比べて1桁以上大きく、従つて太陽光
を有効に吸収利用するに必要な膜厚は3μm以下とする
ことも可能である。このことは上記非晶質シリコン膜か
らなる光起電力発生層を可撓性基板上に設けることによ
つて任意に曲げ得る適用範囲の広い薄膜太陽電池を製造
し得ることを示唆している。
The above-mentioned amorphous silicon film has an absorption coefficient for visible light larger than that of a single crystal silicon film by one digit or more, and accordingly, the film thickness necessary for effectively absorbing and utilizing sunlight can be 3 μm or less. is there. This suggests that by providing the photovoltaic generation layer made of the amorphous silicon film on the flexible substrate, it is possible to manufacture a thin film solar cell having a wide applicable range that can be arbitrarily bent.

事実、可撓性に富んだプラスチツクフイルムをベースと
した非晶質シリコン型薄膜太陽電池が、既に特開昭54−
149489号,同55−4994号及び同55−154726号公報に記載
されている。
In fact, an amorphous silicon type thin film solar cell based on a flexible plastic film has already been disclosed in JP-A-54-
No. 149489, No. 55-4994, and No. 55-154726.

しかるに太陽電池として良質な非晶質シリコン膜を形成
するためには可撓性プラスチツクフイルムとしては200
〜300℃の耐熱性を必要とするとされ、かかる見地から
耐熱性のあるポリイミドフイルムをベースとして用いら
れることが提案されているがこれらのフイルムは溶媒や
吸着水を含有しているため非晶質シリコン膜を積層する
温度領域に加熱するとそれら溶媒や吸着水の放出がおこ
り、形成される非晶質シリコン膜を汚染して良質の非晶
質シリコン膜の形成を妨害する。更にこれらのフイルム
は一般に着色しているため、フイルム側から光を入射せ
しめて使用する態様は採用し難く、その応用形態を制限
する等の問題がある。
However, in order to form a high-quality amorphous silicon film as a solar cell, it is necessary to use 200 as a flexible plastic film.
It is said that heat resistance of ~ 300 ° C is required, and from this point of view, it has been proposed to use a heat-resistant polyimide film as a base, but since these films contain a solvent and adsorbed water, they are amorphous. When the silicon film is heated to a temperature range where the silicon film is laminated, the solvent or adsorbed water is released, which contaminates the formed amorphous silicon film and interferes with the formation of a good quality amorphous silicon film. Further, since these films are generally colored, it is difficult to adopt a mode in which light is incident from the film side for use, and there is a problem that the application form is limited.

そこで、本発明者らは非晶質シリコン膜を積層する温度
領域においても溶媒や吸着水の放出などというトラブル
がなく、且つ透明なプラスチツクフイルムとしてポリエ
チレンテレフタレートフイルムを選択し非晶質シリコン
型薄膜太陽電池の作製を試みたが、非晶質シリコン膜を
積層する温度(例えば200℃前後)においてフイルムは
耐熱性が不充分なため熱収縮し、形成された非晶質シリ
コン膜にクラツクが入り、実質的に太陽電池として使用
し難いものであつた。
Therefore, the present inventors have selected the polyethylene terephthalate film as the transparent plastic film without causing troubles such as the release of the solvent or the adsorbed water even in the temperature range where the amorphous silicon film is laminated, and select the amorphous silicon type thin film solar cell. Attempts were made to manufacture a battery, but at the temperature at which the amorphous silicon film is stacked (for example, around 200 ° C.), the film has insufficient heat resistance and thus heat shrinks, causing cracks in the formed amorphous silicon film. It was practically difficult to use as a solar cell.

〔発明の目的〕[Object of the Invention]

本発明の目的は、上記欠点を解消せしめ、可撓性に富
み、光変換効率の優れた薄膜太陽電池を提供しようとす
るものである。殊に、薄膜型太陽電池の基板となる透明
性、耐熱性、加工性(シリコン膜形成等)に問題のない
新しい可撓性材料を見い出して、実用性のある可撓性の
薄膜型太陽電池を提供するものである。
An object of the present invention is to solve the above drawbacks, to provide a thin film solar cell which is rich in flexibility and excellent in light conversion efficiency. In particular, we have found a new flexible material that has no problems in transparency, heat resistance, and workability (silicon film formation, etc.), which is a substrate for thin-film solar cells, and has practical utility. Is provided.

〔発明の構成〕[Structure of Invention]

本発明は、可撓性の基板の上に非晶質シリコンからなる
光起電力発生層を形成せしめた薄膜太陽電池において、
当該基板として200℃の熱収縮率が全方向2.0%以下であ
る、要すれば密度1.355〜1.390g/cm3の2軸配向ポリエ
チレン−2,6−ナフタレンジカルボキシレートフイルム
を用いたことを特徴とする薄膜太陽電池である。
The present invention is a thin film solar cell in which a photovoltaic generation layer made of amorphous silicon is formed on a flexible substrate,
As the substrate, a biaxially oriented polyethylene-2,6-naphthalenedicarboxylate film having a heat shrinkage at 200 ° C of 2.0% or less in all directions, if necessary, a density of 1.355 to 1.390 g / cm 3 is used. Is a thin film solar cell.

本発明におけるポリエチレンナフタレートとは、ポリエ
チレン−2,6−ナフタレンジカルボキシレート(以下PEN
と略す)ホモポリマー、他の異性体ポリマー、PENを70
重量%以上含む共重合体,混合体をいい、本質的にポリ
エチレン2,6−ナフタレンジカルボキシレートの性質を
失わないポリエステル組成物等も包含する。
The polyethylene naphthalate in the present invention means polyethylene-2,6-naphthalenedicarboxylate (hereinafter referred to as PEN
Abbreviated) homopolymer, other isomer polymer, PEN 70
The term "copolymer" or "mixture" means that the content of polyethylene 2,6-naphthalenedicarboxylate is not lost.

本発明において基板とはPENフイルムをベースとし、そ
の上に太陽電池に必要な電極層等を積層したものを含め
ることがある。かかる電極層としては通常の金属層を挙
げることができる。
In the present invention, the substrate may include a PEN film as a base on which an electrode layer necessary for a solar cell is laminated. As such an electrode layer, an ordinary metal layer can be mentioned.

本発明における2軸配向PENフイルムは、公知の逐次2
軸延伸法によつて製造されたものであつてよく、同時2
軸延伸法によつて製造されたものや、簡易な試験装置で
製造されたものであつてよい。
The biaxially oriented PEN film in the present invention is a known sequential 2
It may be manufactured by an axial stretching method, and the simultaneous 2
It may be manufactured by the axial stretching method or manufactured by a simple test device.

かかる特性を有するPENフイルムは通常の製造方法で得
られたフイルムを熱処理することによつて得ることがで
きる。熱処理の温度としては(時間との関係や方法にも
よるが、ステンターや枠に固定して定長下で行う場合に
は)、210℃〜250℃、好ましくは230℃〜245℃であり、
処理時間は数秒間〜数分間である。
The PEN film having such characteristics can be obtained by heat-treating the film obtained by a usual production method. As the temperature of the heat treatment (depending on the time and the method, when fixed to a stenter or a frame and performed under a fixed length), 210 ° C to 250 ° C, preferably 230 ° C to 245 ° C,
The processing time is several seconds to several minutes.

熱処理はテンシヨンフリー或いはテンシヨン下で実施で
きるが、四方にテンシヨンをかけて行うのが好ましい。
小規膜にはフイルムの四方を枠で固定すればよく、工業
的には巻き出しロール,巻き取りロール等で進行方向に
テンシヨンをかけ、巾方向はテンターで固定することに
より達成できる。またバネなどで固定して一定張力に保
つことも可能である。
The heat treatment can be carried out under tension or under tension, but it is preferable to carry out tension on all sides.
It is sufficient to fix the four sides of the film to the small scale film with a frame. Industrially, this can be achieved by applying a tension in the traveling direction with a take-up roll, a take-up roll, etc. and fixing it in the width direction with a tenter. It is also possible to fix it with a spring or the like to maintain a constant tension.

上記PENフイルムは熱処理に先だち、又は熱処理後、片
面又は両面に必要に応じて種々の下塗り層を設けること
ができる。
The above-mentioned PEN film may be provided with various undercoat layers on one side or both sides before or after the heat treatment, if necessary.

フイルムの厚さは25〜500μmが製造や取扱のうえで好
ましい。
The thickness of the film is preferably 25 to 500 μm for manufacturing and handling.

次に本発明を図面により詳しく説明する。Next, the present invention will be described in detail with reference to the drawings.

可撓性のフイルムを基板とした本発明によつて得られる
薄膜太陽電池の代表的構造を第1図〜第4図に示す。図
中1はPENフイルム,2は非晶質シリコン膜とオーミツク
接触をなす金属層である。この層は鉄,クロム,チタ
ン,タンタル,ニオブ,モリブデン,ニツケル,アルミ
ニウム,コバルト等の金属,ニクロム,ステンレス等の
合金からなる。これらは物理的又は化学的方法によつて
薄層として設けられる。3,4,5は非晶質シリコン膜(既
述した如く、粒径が100Å以下の微結晶によるものも含
む)である。これらはグロー放電法,スパツタリング
法,イオンプレーテイング法によつて設けられる。3は
V属原子であるリン(P)あるいはヒ素(As)を100ppm
〜20,000ppm含んだn型シリコン層であり、金属層2と
オーミツク接触をなす。5はIII族原子であるホウ素
(B),ガリウム(Ga)又はアルミニウム(Al)などを
100ppm〜20,000ppm含んだP型シリコン層である。第1
図及び第3図ではn型シリコン層と5のP型シリコン層
とを入替えた構成とすることもできる。
A typical structure of a thin film solar cell obtained by the present invention using a flexible film as a substrate is shown in FIGS. In the figure, 1 is a PEN film, and 2 is a metal layer in ohmic contact with the amorphous silicon film. This layer is made of metal such as iron, chromium, titanium, tantalum, niobium, molybdenum, nickel, aluminum and cobalt, and alloy such as nichrome and stainless steel. These are provided as thin layers by physical or chemical methods. 3, 4 and 5 are amorphous silicon films (including those made of fine crystals having a grain size of 100Å or less, as described above). These are provided by the glow discharge method, the sputtering method, and the ion plating method. 3 is 100 ppm of phosphorus (P) or arsenic (As) which is a group V atom
It is an n-type silicon layer containing ˜20,000 ppm and makes an ohmic contact with the metal layer 2. 5 is a group III atom such as boron (B), gallium (Ga) or aluminum (Al)
It is a P-type silicon layer containing 100 ppm to 20,000 ppm. First
In FIGS. 3 and 4, the n-type silicon layer and the P-type silicon layer 5 may be replaced with each other.

シリコン層3〜5を設けるにはグロー放電法ではシラン
(SiH4)ガスやジシラン(Si2H6)を出発物質として用
いグロー放電分解させ成膜させる。3のn型シリコン層
はSiH4に対し1%程度のPH3或いはAsH3を加えた混合ガ
スを用いてグロー放電させる。この場合H2,Ar2,He2など
のガスで希釈してもよい。一方5のP型シリコン層の場
合には、例えばホウ素を添加する場合にはSiH4に対し1
%程度のB2H3を加えた混合ガスを用いてグロー放電させ
ればよい。この場合も上記と同様に希釈して用いること
もできる。グロー放電におけるRFパワー,放電中の圧力
は所要とするシリコン膜に応じて適宜選択されるが、通
常は10Torr以下、好ましくは5Torr以下の公知の条件で
行うことができる。基板温度は100〜300℃,好ましくは
200〜270℃特に好ましくは230〜260℃である。
In order to provide the silicon layers 3 to 5, in the glow discharge method, silane (SiH 4 ) gas or disilane (Si 2 H 6 ) is used as a starting material and glow discharge decomposition is performed to form a film. The n-type silicon layer of No. 3 is glow-discharged by using a mixed gas in which about 1% PH 3 or AsH 3 is added to SiH 4 . In this case, it may be diluted with a gas such as H 2 , Ar 2 or He 2 . On the other hand, in the case of the P-type silicon layer of 5, for example, when adding boron, 1 is added to SiH 4.
A glow discharge may be performed using a mixed gas containing about 2 % of B 2 H 3 . In this case as well, it can be diluted as in the above case. The RF power in the glow discharge and the pressure during the discharge are appropriately selected according to the required silicon film, but they can be performed under known conditions of usually 10 Torr or less, preferably 5 Torr or less. Substrate temperature is 100-300 ℃, preferably
200 to 270 ° C, particularly preferably 230 to 260 ° C.

スパツタリング法,イオンプレーテイング法では、膜内
に10〜30原子%の水素を含ませるために雰囲気中に水素
ガスを導入し、水素原子がシリコン膜中のダングリング
ボンドを補償し、電気特性を向上せしめるようにする。
In the sputtering method and the ion plating method, hydrogen gas is introduced into the atmosphere in order to contain 10 to 30 atomic% of hydrogen in the film, and hydrogen atoms compensate dangling bonds in the silicon film to improve the electrical characteristics. Try to improve.

フツ素原子を第三成分原子として導入する時は、フツ素
ガス或いは三フツ化シラン(SiF4)ガスを;炭素原子を
導入するときはメタン,エチレン,エタン等の炭素原子
数が1〜2の炭化水素分子を;窒素原子を導入するとき
は、窒素ガス或いはアンモニアガスをシランガス或いは
水素ガス中に混入せしめてデポジツトすればよい。
When introducing a fluorine atom as a third component atom, fluorine gas or silane trifluoride (SiF 4 ) gas is used; when introducing a carbon atom, the number of carbon atoms of methane, ethylene, ethane, etc. is 1 to 2 When a nitrogen atom is introduced, the hydrocarbon molecule (1) may be deposited by mixing nitrogen gas or ammonia gas into silane gas or hydrogen gas.

図中の6は電位障壁形成層であり、厚さ10〜200Åの
金,白金,パラジウムなどの金属薄膜或いは厚さ100〜5
000Åの酸化スズ,酸化インジウム,スズ酸カドミウム
等の透明導電膜である。これら電位障壁形成層は入射太
陽光を良く透過し、かつ表面抵抗の小さい層が好まし
く、厚さ50〜150Åの金,白金層や厚さ300〜1500Åのス
ズドーブの酸化インジウム層が好ましい。
Reference numeral 6 in the figure denotes a potential barrier forming layer, which is a thin metal film such as gold, platinum or palladium having a thickness of 10 to 200Å or a thickness of 100 to 5
It is a transparent conductive film of 000Å tin oxide, indium oxide, cadmium stannate, etc. The potential barrier forming layer is preferably a layer which transmits incident sunlight well and has a small surface resistance, and a gold or platinum layer having a thickness of 50 to 150Å and an indium oxide layer of tin dove having a thickness of 300 to 1500Å are preferable.

図中の7は収集用電極で蒸着法,スパツタ法,印刷法,
メツキ法等各種の方法が利用できる。
In the figure, 7 is a collecting electrode, which is a vapor deposition method, a sputtering method, a printing method,
A variety of methods such as a method for plating can be used.

図中8は無反射コート層であり、酸化ケイ素,酸化チタ
ン,酸化タングステン等の無機物層或いは適当な有機物
層が用いうる。
In the figure, reference numeral 8 is a non-reflective coating layer, and an inorganic layer such as silicon oxide, titanium oxide, or tungsten oxide or an appropriate organic layer can be used.

〔発明の効果〕〔The invention's effect〕

本発明における薄膜太陽電池は、2軸配向したPENフイ
ルムを用いているのでフイルム中に溶媒や、吸着水が全
くなく更にポリエチレンテレフタレートフイルムと異つ
て残留ガスやオリゴマー等がはるかに少ないため、薄膜
形成後経時的に非晶質シリコン膜が汚染されない。
Since the thin film solar cell of the present invention uses a biaxially oriented PEN film, there is no solvent or adsorbed water in the film and, unlike polyethylene terephthalate film, much less residual gas, oligomers, etc. The amorphous silicon film is not contaminated over time.

また、200℃において1時間放置した条件で測定される
熱収縮率が2.0%以下と小さく、寸法変化が少なく非晶
質シリコン膜にクラツクが生ずることがないので、可撓
性に富み、光変換効率の秀れた薄膜太陽電池の特性を発
揮することが出来る。
In addition, the thermal shrinkage ratio measured under the condition of standing at 200 ° C for 1 hour is as small as 2.0% or less, the dimensional change is small, and the amorphous silicon film is not cracked. The characteristics of a thin film solar cell with excellent efficiency can be exhibited.

なお、シリコン製膜時の基板温度を250℃程度まで昇温
できるため、他の熱可塑性重合体フイルムを基材とする
場合に比較して成膜条件の選択範囲が拡がり、高い変換
効率を有つ太陽電池が得られる。
Since the substrate temperature during silicon film formation can be raised up to about 250 ° C, the selection range of film forming conditions is widened and high conversion efficiency is achieved compared to the case where other thermoplastic polymer films are used as the base material. One solar cell is obtained.

〔実施例〕〔Example〕

以下実施例に基づいて、本発明を説明する。 The present invention will be described below based on examples.

なお、本発明における熱収縮率及び密度は、以下の如く
して測定される。
The heat shrinkage ratio and the density in the present invention are measured as follows.

(1)熱収縮率 テンシヨンフリーで200℃,1時間保持した時の長さの変
化の割合を意味し、例えばフイルムの長さ方向(MD)及
び巾方向(TD)においてそれぞれ短冊状の試料を用意
し、各試料の片側をクリツプなどで挾み、テンシヨンフ
リーの状態で200℃に1時間保持し、テスト前後の長さ
を測定して収縮率を求める。テスト前の長さをLo,テス
ト後の長さをLとしたとき収縮率は で求められる。
(1) Thermal shrinkage rate This is the rate of change in length when held at 200 ° C for 1 hour without tension. For example, strip-shaped samples in the length direction (MD) and width direction (TD) of the film, respectively. Each sample is clamped on one side with a clip or the like, held at 200 ° C. for 1 hour in a tension-free state, and the length before and after the test is measured to obtain the shrinkage rate. When the length before the test is Lo and the length after the test is L, the contraction rate is Required by.

(2)密度 ヘプタンと四塩化炭素の混合溶液を用い、密度勾配管法
で25℃において測定した。単位は〔g/cm3〕である。
(2) Density Using a mixed solution of heptane and carbon tetrachloride, the density gradient tube method was used to measure at 25 ° C. The unit is [g / cm 3 ].

実施例1,比較例1 極限粘度0.65のポリエチレン2,6ナフタレンジカルボキ
シレート(ホモポリマー)のペレツトを170℃で5時間
乾燥した。このペレツトを常法に従つてT型ダイによ
り、300℃で溶融押出を行い、更に公知の逐次2軸延伸
法により、縦方向に130℃で3.7倍,横方向に135℃で3.9
倍延伸し、更に240℃で30秒間熱固定を行ない厚み100μ
mのPEN2軸配向フイルムを得た。このフイルムの一部を
切りとり、200℃の乾燥器中に1時間保持し、その熱収
縮率を測定したところフイルム長さ方向(MD)の収縮率
は1.8%,フイルム巾方向(TD)の収縮率は1.3%であつ
た。また密度は1.359g/cm3であつた。残りのPENフイル
ムの上に、金属電極としてステンレス(SUS 304)をス
パツタング法で厚さ約4000Å設けた。このフイルムをSU
S 304製の金枠に四面固定してとりつけた後、グロー放
電反応装置内にセツトし、基板温度200℃,圧力0.6Torr
のアルゴン雰囲気中で15分間,13.56MHZの高周波放電さ
せて清浄化した。次に10-3Torrまで排気した後、水素希
釈した10%シランガス(SiH4)と2%ホスフインガス
(PH3)(SiH4に対して1%量のPH3)を導入して約1Tor
r、基板温度度200℃で高周波放電を行ない、ステンレス
層上にn型シリコン層を約350Åの厚さに設けた。次に
装置内を排気してから、水素希釈したシランガスのみを
供給し、約0.5μmのシリコン層を形成した。
Example 1, Comparative Example 1 A pellet of polyethylene 2,6 naphthalene dicarboxylate (homopolymer) having an intrinsic viscosity of 0.65 was dried at 170 ° C for 5 hours. This pellet was melt extruded at 300 ° C. by a T-die according to a conventional method, and further, by a known sequential biaxial stretching method, the longitudinal direction was 130 ° C. at 3.7 times, and the transverse direction was 135 ° C. at 3.9 times.
Double stretching and heat setting at 240 ℃ for 30 seconds, thickness 100μ
m PEN biaxially oriented film was obtained. A part of this film was cut out and kept in a dryer at 200 ° C for 1 hour, and the heat shrinkage was measured. The shrinkage in the film length direction (MD) was 1.8%, and the shrinkage in the film width direction (TD). The rate was 1.3%. The density was 1.359 g / cm 3 . On the remaining PEN film, stainless steel (SUS 304) was provided as a metal electrode by a spattang method to a thickness of about 4000Å. SU this film
After mounting on an S 304 metal frame fixed on all sides, it was set in a glow discharge reactor, the substrate temperature was 200 ° C, and the pressure was 0.6 Torr.
It was cleaned by high frequency discharge of 13.56MHZ for 15 minutes in Argon atmosphere. Next, after exhausting to 10 -3 Torr, hydrogen diluted 10% silane gas (SiH 4 ) and 2% phosphine gas (PH 3 ) (1% amount of PH 3 with respect to SiH 4 ) were introduced to about 1 Torr.
High frequency discharge was performed at a substrate temperature of 200 ° C, and an n-type silicon layer was provided on the stainless steel layer to a thickness of about 350Å. Next, after evacuating the inside of the apparatus, only a silane gas diluted with hydrogen was supplied to form a silicon layer of about 0.5 μm.

さらに、ジボラン(B2H6)をシラン中に約0.5%の濃度
に混合し、反応装置内にに導入して、高周波放電を用い
て約150ÅのP型シリコン層を設けた。
Further, diborane (B 2 H 6 ) was mixed in silane to a concentration of about 0.5%, and the mixture was introduced into the reactor, and a P-type silicon layer of about 150 Å was provided by using high frequency discharge.

次にこのP型シリコン層上に、厚さ約700Åの酸化イン
ジウムを反応性蒸着法によつて設けた。さらに酸化イン
ジウム膜上に銀をくし型に蒸着して収集電極とした。
Then, on the P-type silicon layer, indium oxide having a thickness of about 700 Å was provided by a reactive vapor deposition method. Further, silver was comb-deposited on the indium oxide film to form a collecting electrode.

比較のため、極限粘度0.65のポリエチレンテレフタレー
ト(ホモポリマー)(PETと略記する)のペレツトを用
い、適宜温度条件を変え厚み100μmのポリリエチレン
テレフタレート2軸配向フイルムを得た。但し熱固定温
度は210℃とした。
For comparison, a polyethylene terephthalate (homopolymer) (abbreviated as PET) pellet having an intrinsic viscosity of 0.65 was used, and a biaxially oriented poly (ethylene terephthalate) film having a thickness of 100 μm was obtained by appropriately changing temperature conditions. However, the heat setting temperature was 210 ° C.

この場合のPETフイルムの200℃,1時間の熱収縮率はフイ
ルム長さ方向(MD)が6.3%,巾方向(TD)が5.9%であ
つた。また密度は1.396g/cm3であつた。また、非晶質シ
リコン層を設けた後にはフイルム面に多数のクラツクが
見られた。
In this case, the heat shrinkage of the PET film at 200 ° C for 1 hour was 6.3% in the film length direction (MD) and 5.9% in the width direction (TD). The density was 1.396 g / cm 3 . Further, after the amorphous silicon layer was provided, many cracks were found on the film surface.

酸化インジウム層を設ける時、マスクを用いて3×3m角
型セルを同一フイルム上に300個設け、その中の最大変
換効率の85%までのセルを生存セルとして数えた。PEN
及びPETの2軸配向フイルムの場合の生存数を表−1に
示した。
When the indium oxide layer was provided, 300 3 × 3 m square cells were provided on the same film using a mask, and the cells having up to 85% of the maximum conversion efficiency among them were counted as surviving cells. PEN
Table 1 shows the survival numbers in the case of the biaxially oriented film of PET and PET.

実施例23,比較例23 実施例1の厚さ100μmの2軸配向PENフイルムを正方形
に切りとり、四辺を固定して245℃で3分間熱処理を行
い、一部を切取つて熱収縮率、密度を測定した。フイル
ムの熱収縮率は、長さ方向,及び幅方向とも1.0%で、
密度は1.372g/cm3あつた。
Example 23, Comparative Example 23 The biaxially oriented PEN film having a thickness of 100 μm of Example 1 was cut into a square shape, fixed on all four sides, and heat-treated at 245 ° C. for 3 minutes. It was measured. The heat shrinkage rate of the film is 1.0% in both the length and width directions,
The density was 1.372 g / cm 3 .

同様にして比較例1のPETフイルムを240℃で3分間熱処
理して熱収縮率長さ方向1.4%,幅方向1.6%,密度1.40
2g/cm2のフイルムを得た。
Similarly, the PET film of Comparative Example 1 was heat-treated at 240 ° C. for 3 minutes to obtain a heat shrinkage ratio of 1.4% in the length direction, 1.6% in the width direction, and a density of 1.40.
A film of 2 g / cm 2 was obtained.

この2種のフイルムについて、シリコン層形成時の基板
の温度を200℃,240℃と各々変え、他の条件は実施例1
と同様として太陽電池を製作し、そのセル特性を測定し
た。3mm角のセル板100個の生存率と生存セル5個の平均
変換率を表−2に示した。
Regarding these two kinds of films, the temperature of the substrate at the time of forming the silicon layer was changed to 200 ° C. and 240 ° C. respectively, and the other conditions were the same as in Example 1.
A solar cell was manufactured in the same manner as, and the cell characteristics were measured. Table 2 shows the survival rate of 100 3 mm square cell plates and the average conversion rate of 5 surviving cells.

基板にPENフイルムを用いることにより、成膜条件の選
択幅が拡くなり、変換効率を高くすることができる。
By using the PEN film as the substrate, the selection range of film forming conditions can be widened and the conversion efficiency can be increased.

実施例4及び比較例4 実施例1に於て熱処理温度を230℃(実施例4)又は220
℃(比較例4)に変更してPENフイルムの熱固定を行
い、実施例1と同様の方法でサンプルを作製し、同種の
評価を行なつた。結果を表−3に示す。PENフイルムで
あっても密度が1.355g/cm3未満のもの(比較例4)は生
存セル数が少ない。
Example 4 and Comparative Example 4 In Example 1, the heat treatment temperature was 230 ° C. (Example 4) or 220.
C. (Comparative Example 4) was changed to heat-setting the PEN film, a sample was prepared in the same manner as in Example 1, and the same kind of evaluation was performed. The results are shown in Table-3. Even the PEN film having a density of less than 1.355 g / cm 3 (Comparative Example 4) has a small number of viable cells.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第4図は本発明で得られる薄膜太陽電池の構成
例である。 図中(1)はポリエチレン−2,6−ナフタレンジカルボ
キシレートフイルム,(2)は金属層,(3),
(4),(5)は非晶質シリコン層,(6)は電位障壁
形成層,(7)は収集電極,(8)は無反射コート層で
ある。
1 to 4 are examples of the structure of the thin film solar cell obtained by the present invention. In the figure, (1) is polyethylene-2,6-naphthalenedicarboxylate film, (2) is a metal layer, (3),
(4) and (5) are amorphous silicon layers, (6) is a potential barrier forming layer, (7) is a collecting electrode, and (8) is an antireflection coating layer.

フロントページの続き (72)発明者 升田 重嘉 神奈川県相模原市小山3丁目37番19号 帝 人株式会社プラスチツク研究所内 (72)発明者 小林 淳二 神奈川県相模原市小山3丁目37番19号 帝 人株式会社プラスチツク研究所内 (72)発明者 中村 智行 神奈川県相模原市小山3丁目37番19号 帝 人株式会社プラスチツク研究所内 (56)参考文献 特開 昭56−152276(JP,A) 特開 昭58−194377(JP,A)Continued Front Page (72) Inventor Shigeyoshi Shimoda 3-37-19 Oyama, Sagamihara City, Kanagawa Prefecture Teijin Ltd. Plastics Research Institute (72) Junji Kobayashi 3-37-19 Oyama, Sagamihara City, Kanagawa Prefecture Teijin Inside Plastics Research Laboratory (72) Inventor Tomoyuki Nakamura 3-37-19 Oyama, Sagamihara-shi, Kanagawa Inside Plastics Research Laboratory, Teijin Limited (56) Reference JP-A-56-152276 (JP, A) JP-A-58 -194377 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】可撓性の熱可塑性重合体フイルムからなる
基板に非晶質シリコンからなる光起電力発生層を形成せ
しめた薄膜太陽電池において、可撓性基板として200
℃、1時間で測定した熱収縮率があらゆる方向で2.0%
以下であり、かつ密度が1.355〜1.390g/cm3の範囲であ
る2軸配向ポリエチレン−2,6−ナフタレンジカルボキ
シレートフイルムを用いたことを特徴とする薄膜太陽電
池。
1. A thin film solar cell comprising a substrate made of a flexible thermoplastic polymer film and a photovoltaic generation layer made of amorphous silicon formed thereon.
Thermal shrinkage measured in 1 hour at ℃ is 2.0% in all directions
A thin film solar cell characterized by using a biaxially oriented polyethylene-2,6-naphthalene dicarboxylate film having the following density of 1.355 to 1.390 g / cm 3 .
JP60222659A 1985-10-08 1985-10-08 Thin film solar cell Expired - Lifetime JPH0671091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60222659A JPH0671091B2 (en) 1985-10-08 1985-10-08 Thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60222659A JPH0671091B2 (en) 1985-10-08 1985-10-08 Thin film solar cell

Publications (2)

Publication Number Publication Date
JPS6284568A JPS6284568A (en) 1987-04-18
JPH0671091B2 true JPH0671091B2 (en) 1994-09-07

Family

ID=16785913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60222659A Expired - Lifetime JPH0671091B2 (en) 1985-10-08 1985-10-08 Thin film solar cell

Country Status (1)

Country Link
JP (1) JPH0671091B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU5285199A (en) * 1998-07-30 2000-02-21 Agfa-Gevaert Naamloze Vennootschap Method of producing solar cells
DE19904082A1 (en) * 1999-02-02 2000-08-03 Agfa Gevaert Ag Process for the production of solar cells
US7022407B2 (en) * 2000-11-29 2006-04-04 Teijin Limited Polyester film for capacitors
JP5205874B2 (en) * 2007-08-30 2013-06-05 富士電機株式会社 Manufacturing method of solar cell
KR101445462B1 (en) 2010-01-06 2014-09-29 다이니폰 인사츠 가부시키가이샤 Collector sheet for solar cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152276A (en) * 1980-04-25 1981-11-25 Teijin Ltd Solar cell made of amorphous silicon thin film
JPS58194377A (en) * 1982-05-07 1983-11-12 Agency Of Ind Science & Technol Manufacture of thin film solar battery

Also Published As

Publication number Publication date
JPS6284568A (en) 1987-04-18

Similar Documents

Publication Publication Date Title
AU712220B2 (en) Photovoltaic device and its method of preparation
Kakalios et al. Properties of amorphous semiconducting multilayer films
US4598164A (en) Solar cell made from amorphous superlattice material
US7288332B2 (en) Conductive layer for biaxially oriented semiconductor film growth
AU7842798A (en) Photovoltaic device, process for production thereof, and zinc oxide thin film
KR100681162B1 (en) Semiconductor device and its manufacturing method
JPH0671091B2 (en) Thin film solar cell
JPS5936435B2 (en) thin film solar cells
JPH11261102A (en) Photovoltaic device
JPH0370388B2 (en)
JPH01311511A (en) Transparent conductive film
JP2838141B2 (en) Solar cell
JPH08242010A (en) Solar cell module
JP3753528B2 (en) Manufacturing method of silicon-based thin film photoelectric conversion device
CN117337060A (en) Laminated battery and preparation method thereof
JPH06150724A (en) Transparent conductive film and manufacture thereof
JPS6222274B2 (en)
CN114864752A (en) Method for improving residual stress of absorption layer of flexible CZTSSe thin-film solar cell and application
JPH04257273A (en) Solar cell
Gutiérrez et al. Inert gas dilution: An alternative technique to make layers for a-Si: H solar cells
JPH02122575A (en) Photoelectric conversion device
JPH0746731B2 (en) Amorphous solar cell manufacturing method
JPH0519833B2 (en)
JPH0815220B2 (en) Method for manufacturing photoelectric conversion element
JPH02187076A (en) Flexible photoelectric transducer

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term