JP2002536020A - 熱誘導可能プロモーター - Google Patents

熱誘導可能プロモーター

Info

Publication number
JP2002536020A
JP2002536020A JP2000598645A JP2000598645A JP2002536020A JP 2002536020 A JP2002536020 A JP 2002536020A JP 2000598645 A JP2000598645 A JP 2000598645A JP 2000598645 A JP2000598645 A JP 2000598645A JP 2002536020 A JP2002536020 A JP 2002536020A
Authority
JP
Japan
Prior art keywords
nucleic acid
sequence
acid molecule
heat
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000598645A
Other languages
English (en)
Other versions
JP3914389B2 (ja
Inventor
イヴァーノ ロマノ
ジェルド ジェリッセン
ヴィルジリオ クラウディオ デ
Original Assignee
ライン バイオテック ゲゼルシャフト フュル ノイエ バイオテクノロジスク プロツェッセ ウント プロドクテ エムベーハー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ライン バイオテック ゲゼルシャフト フュル ノイエ バイオテクノロジスク プロツェッセ ウント プロドクテ エムベーハー filed Critical ライン バイオテック ゲゼルシャフト フュル ノイエ バイオテクノロジスク プロツェッセ ウント プロドクテ エムベーハー
Publication of JP2002536020A publication Critical patent/JP2002536020A/ja
Application granted granted Critical
Publication of JP3914389B2 publication Critical patent/JP3914389B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/39Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Air Conditioning Control Device (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Tires In General (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

(57)【要約】 本発明は、熱誘導可能プロモーターを含む核酸分子、ならびに本発明に係る核酸分子を少なくとも1個含有する発現ベクター及び宿主細胞に関する。本発明はさらに、本発明に係る核酸分子を用いる一つ又は複数のタンパク質を作製するためのキット及び方法、ならびにそれらの様々な用途に関する。本発明の目的は、できる限り選択的な熱誘導可能な特徴を有するプロモーター、特に、酵母において活性であり、かつ高温でのタンパク質発現に適したプロモーターを提供することである。この目的は、熱誘導可能プロモーターを含み、かつ以下の核酸分子から選択される核酸分子、又は(a)〜(g)に示された核酸のうちの一つの配列と相補的な配列を有するような核酸分子により達成される:(a)トレハロース-6-リン酸シンターゼ活性を有するタンパク質をコードするハンセヌラ・ポリモルファ遺伝子のプロモーター配列を含む配列を有する核酸;(b)配列番号:1に示された配列を有する核酸;(c)300bpの長さにわたり、(a)もしくは(b)に示された配列のうちの一つと少なくとも40%の同一性を示す配列を有する核酸;(d)(a)、(b)、もしくは(c)に示された核酸のうちの一つの相補鎖とハイブリダイズする核酸;(e)一つもしくは複数のヌクレオチドの置換、付加及び/もしくは欠失により得られた、(a)、(b)、もしくは(c)に示された核酸のうちの一つの誘導体;(f)熱誘導可能プロモーターの機能を保持している、(a)〜(e)に示された核酸のうちの一つの断片;(g)異なっていても、同一であってもよい配列を有する、(a)〜(f)に示された核酸のうちのいくつかの組み合わせ。

Description

【発明の詳細な説明】
【0001】 本発明は、熱誘導可能プロモーターを含む核酸分子に関し、さらに、本発明に
係る核酸分子を少なくとも1個含有する発現ベクター及び宿主細胞に関する。本
発明はさらに、本発明に係る核酸分子を用いて一つ又は複数のタンパク質を作製
するためのキット及び方法に関し、それらの様々な用途に関する。
【0002】 微生物は、熱ショックもしくは低温ショック、エタノール、重金属イオン、酸
素枯渇、又は栄養枯渇、特にグルコース枯渇のような多数のストレス状況に応答
することができる。酵母及びその他の真菌は、減数増殖(reduced growth)期に
トレハロースを蓄積することが知られている。これらは、一般に、胞子、分生子
、菌核、又は定常増殖期の細胞のような、例えば水枯渇及び熱に耐性の発達段階
である。酵母細胞が27℃から40℃までの1時間の熱ショックにおいてトレハロー
スを蓄積すること、及びトレハロースの蓄積が耐熱性の増加と相関していること
もまた既知である。トレハロースが実際に耐熱性の誘導にとって必要な因子であ
ることを証明するため、選択的突然変異が用いられている。
【0003】 HSE(熱ショック因子)及びSTRE(ストレス応答因子)は、トレハロース合成
を担うS.セレビシエ(Saccharomyces cerevisiae)の遺伝子のような、ストレス
により誘導される遺伝子のプロモーター領域に存在する。これらの因子は、熱シ
ョック誘導を含むストレス誘導によりストレス遺伝子の活性化を媒介していると
考えられている。Ras/cAMP経路を介したMsn2p及びMsn4pのリン酸化は、Msn2p及
びMsn4p転写因子を阻害することが一般に認められている。阻害が存在しない場
合(例えば、ストレス条件下で)、Msn2p及びMsn4pは活性型となる。CCCCTとい
う配列を有するSTREは、ストレス状態に対する応答において役割を果たしている
と考えられている。
【0004】 翻訳中及び翻訳後の、ヒトにおける修飾と類似した修飾を実施できるため、真
菌、特に酵母は、組換えタンパク質の作製のための魅力的な系である。組換えタ
ンパク質の作製のためには、目的のタンパク質をコードする遺伝子のコード配列
を、適当な異種のプロモーターの調節下で発現させる場合が多い。特定の環境条
件により誘導されうる、いわゆる誘導可能プロモーターは、この目的のために特
に有利であることが立証されている。MOX(メタノールオキシダーゼ)のような
メチロトローフの代謝における重要酵素をコードする遺伝子のプロモーター、又
はFMD(ギ酸デヒドロゲナーゼ)プロモーターは、例えば炭素源により強力に制
御される異種遺伝子発現のための、広範に活用可能な可能性をもつ。
【0005】 例えばショウジョウバエ(Drosophila)由来のhsp70遺伝子のプロモーターの
ような、熱誘導可能プロモーターを含む発現ベクターが、分子生物学における研
究のため作製されている。真菌細胞、特に酵母における熱ショック誘導のため過
去に使用されたプロモーターは、それらの熱ショックに対する応答が選択的では
ないという欠点を有している。従って、活性化及び非活性化のメカニズムを十分
には調節することができず、このため、特に細胞に対して傷害性のタンパク質の
作製の際に、問題を引き起こしうる。例えば、S.セレビシエ由来TPS1プロモータ
ーには、一般的なストレス因子(STRE因子)であることが知られている既知の配
列、即ちCCCCT及びAGGGGが数個知られているが、熱ショック因子(HSE)として
作用する配列、即ちGGAACAGAACAATCGは1個しか知られていない。さらに、現在既
知のプロモーターはストレス応答の範囲が広いため、多くの適用に関して十分な
程度までストレス因子により活性化されない。
【0006】 本発明の目的は、可能な限り選択的な熱誘導特性を有するプロモーター、特に
、真菌、及び中でも酵母において活性を有し、高温でのタンパク質発現に適した
プロモーターを提供することである。
【0007】 本発明により、この目的は、熱誘導可能プロモーターを含む核酸分子であって
、以下の核酸から選択される核酸分子、又は(a)から(g)に示された核酸のうちの
一つの配列と相補的な配列を有する核酸分子により達成される: (a)トレハロース-6-リン酸シンターゼ活性を有するタンパク質をコードするハン
セヌラ・ポリモルファ(Hansenula polymorpha)遺伝子のプロモーター配列を含
む配列を有する核酸; (b)配列番号:1に示された配列を有する核酸; (c)300bpの長さにわたり、(a)もしくは(b)に示された配列のうちの一つと少なく
とも40%の同一性を示す配列を有する核酸; (d)(a)、(b)、もしくは(c)に示された核酸のうちの一つの相補鎖とハイブリダイ
ズする核酸; (e)一つもしくは複数のヌクレオチドの置換、付加及び/もしくは欠失により得ら
れる、(a)、(b)、もしくは(c)に示された核酸のうちの一つの誘導体; (f)熱誘導可能プロモーターの機能を保持している、(a)から(e)に示された核酸
のうちの一つの断片; (g)核酸配列が異なっていても同一であってもよいような、(a)から(f)に示され
た核酸のうちのいくつかの組み合わせ。
【0008】 本明細書において使用される「熱誘導可能プロモーター」という用語は、25℃
から少なくとも37℃、好ましくは47℃まで培養培地の温度を上昇させた際に、プ
ロモーターの転写制御下での遺伝子の転写(RNA合成)を少なくとも50%増加さ
せる核酸配列を指す。
【0009】 「トレハロース-6-リン酸シンターゼ活性」とは、トレハロース-6-リン酸シン
ターゼ(TPS)により触媒される、グルコース-6-リン酸(Glu6P)及びUDP-グル
コース(UDPG)からトレハロース-6-リン酸及びUDPへの変換を指す。タンパク質
又はポリペプチドのトレハロース-6-リン酸シンターゼ活性は、例えば、下記の
「材料及び方法」の方法により測定されうる。
【0010】 「(a)、(b)、又は(c)に示された核酸のうちの一つの相補鎖とハイブリダイズ
する核酸」という特徴は、(a)、(b)、又は(c)に示された特性を有する核酸の相
補鎖とストリンジェントな条件下でハイブリダイズする配列を指す。例えばハイ
ブリダイゼーションを、2×SSC中で68℃において、又はベーリンガー(Boehring
er)(Mannheim)により製造されたジオキシゲニン標識キットのプロトコールに
従い実施することができる。ストリンジェントなハイブリダイゼーション条件の
さらなる例は、7%SDS、1%BSA、1mM EDTA、250mMリン酸ナトリウム緩衝液(pH7
.2)中で65℃で一夜のインキュベーション、及びそれに続く2×SSC、0.1%SDSで
65℃での洗浄である。
【0011】 「%の同一性」という用語は、当技術分野において既知のように、配列の比較
により決定されるような2つもしくはそれ以上のDNA分子又は2つもしくはそれ以
上のポリペプチド分子の配列間の類似性の程度を指す。「同一性」の割合は、ギ
ャップ又はその他の特定の配列特性を考慮して、2つ又はそれ以上の配列におけ
る同一領域の割合から得られる。
【0012】 関連したDNA分子又はポリペプチドの同一性は、既知の方法により決定されう
る。主に、特定の需要を考慮に入れたアルゴリズムを用いた専用コンピュータ・
プログラムが使用される。第一に、同一性の決定のための好ましい方法は、研究
される配列間に最大の一致を発生させる。2つの配列間の同一性を決定するため
のコンピュータ・プログラムには、GAP(Devereux,J.ら,Nucleic Acids Researc
h 12(12):387(1984);Genetic Computer Group,University of Wisconsin,Madis
on,(WI))を含むGCGプログラム・パッケージ;BLASTP、BLASTN、及びFASTA(Ats
chul,S.ら,J.Molec Biol 215:403/410(1990))が含まれるが、必ずしもこれらに
限定されない。BLASTXプログラムは、NCBI(National Centre for Biotechnolog
y Information)及びその他の供給元(BLAST Manual.Altschul,S.らNCB NLM NIH
Bethesda MD 20894;Atschul,S.ら,J.Mol.Biol.215:403/410(1990))から入手
可能である。周知のスミスウォーターマン(Smith Waterman)アルゴリズムも、
同一性を決定するために用いられうる。
【0013】 配列比較のための好ましいパラメータには、以下のものが含まれる。 アルゴリズム:Needleman 及び Wunsch,J.Mol.Biol.48:443-453(1970) 比較マトリックス:一致= +10、不一致= 0 ギャップ・ペナルティ(Gap penalty):50 ギャップ長ペナルティ(Gap length penalty):3 GAPプログラムも、上記パラメータを用いた使用に適している。上記パラメータ
は、核酸配列比較のためのデフォルト・パラメータである。
【0014】 プログラムマニュアル(Program Manual),Wisconsin Package,第9版,Septemb
er,1997に記載のものを含む、その他のアルゴリズム、ギャップ・オープニング
・ペナルティ(gap opening penalties)、ギャップ伸長ペナルティ(gap exten
sion penalties)、比較マトリックスもまた、使用されうる。行われる選択は、
行うべき特定の比較によって、そしてさらに、比較が、GAP又はBest Fitが好ま
しいような、対の配列間の比較であるか、又はFASTA又はBLASTが好ましいような
、1個の配列と大きな配列データベースとの間の比較であるかによって異なるで
あろう。
【0015】 驚くべきことに、本発明に係る核酸分子、特にハンセヌラ・ポリモルファのト
レハロース-6-リン酸シンターゼ(TSP1)遺伝子のプロモーターは、S.セレビシ
エにおいて発見されこの遺伝子の熱ショック誘導を含むストレス応答を主に担っ
ていると推測されるSTRE因子を、コード配列上流の最初の300bpにおいては少な
くとも含有していないことが、本発明において見出された。
【0016】 本発明に係る核酸分子を、従来の方法により合成的に調製してもよく、又は適
当なDNAライブラリーから単離し、その後必要であれば変異させてもよい。その
ようなライブラリーの調製もまた、当技術分野において既知である。H.ポリモル
ファのTSP1遺伝子のコード配列(図6参照)の少なくとも200〜400bpの長さを有
するプローブを調製し、それをDNAライブラリー、特にゲノムDNAライブラリーの
スクリーニングに用いることにより単離が行われることが好ましい。この種のプ
ローブは、適当なプライマー及び「鋳型」としてのH.ポリモルファ由来のゲノム
DNA又はcDNAを用いたPCR(ポリメラーゼ連鎖反応)により調製されうる。またプ
ライマーは、好ましくはそれぞれ少なくとも20bp〜21bpの長さであり、図6に示
された適当な配列(又は対応する相補配列)を有するべきである。
【0017】 プローブは、合成されてもよく、又は適用可能であれば、利用可能なTPS1 DNA
の断片化により調製されてもよい。プロモーター配列の一部に対応するプローブ
により直接スクリーニングすることも当然可能である。しかし、非コーディング
部分の配列の保存性は、最も高くても不完全であるため、この方法は比較的好ま
しくない。
【0018】 本発明に係る核酸分子の1つの態様において、核酸の配列は、300bpの長さにわ
たり、前記の(a)又は(b)に示された配列のうちの一つと少なくとも60%、好まし
くは少なくとも80%の同一性を示す。
【0019】 熱誘導可能プロモーターを含み、かつ300bpの長さにわたり、前記の(a)又は(b
)に示された配列のうちの一つと少なくとも90%の同一性を示す核酸分子が、特
に好ましい。しかし、最も好ましいのは、300bpの長さにわたり、前記の(a)又は
(b)に示された配列のうちの一つと少なくとも95%の同一性を示す核酸分子であ
る。
【0020】 本発明を実施するために好ましい核酸分子は、Nと表示されたヌクレオチドは
互いに独立に、A、T、C、又はGでありうるような、NGAANNNNNNNGAAN(配列番号
:2)という配列又はその相補配列を有する熱ショック因子を少なくとも1個示す
。好ましくは、本発明に係る核酸分子は、BがG、C、又はTであり、WがA又はTで
あり、MがC又はAであるような、NGAANNBWMNNGAAN(配列番号:3)という配列又
はその相補配列を有する熱ショック因子を少なくとも1個示す。
【0021】 本発明の特に好ましい態様において、2つ又はそれ以上の熱ショック因子が存
在する場合、それらは同一の配列を示してもよく、又は異なる配列を示してもよ
いような熱ショック因子は、TGAAGCCTCTTGAAA(配列番号:4)及び/もしくはTGA
ATATAAAGGAAA(配列番号:5)並びに/又はそれらの相補配列から選択される。本
発明に係る好ましい核酸分子は、熱ショック因子を少なくとも2個示す。
【0022】 本発明の好ましい態様において、本発明に係る核酸分子は、CCCCT又はAGGGGと
いう配列を有するSTRE因子を含有しない。
【0023】 本発明は、熱誘導可能プロモーターの機能を保持している、前記の本発明に係
る核酸分子の断片も提供する。配列番号:1の228ヌクレオチドから792ヌクレオ
チドまでの配列を含む断片が特に好ましい。さらに好ましい断片は、配列番号:
1の493ヌクレオチドから792ヌクレオチドまでの配列を含む。配列番号:1の627
ヌクレオチドから713ヌクレオチドまでの配列を含む断片もまた用いられうる。
【0024】 本発明に係る核酸分子は、熱誘導可能プロモーターの転写制御下で異種遺伝子
のための核酸配列を少なくとも1個さらに含んでいてもよい。
【0025】 「異種遺伝子」とは、それ自身の(同種の)プロモーターの調節下で発現され
ないか、又は遺伝子が由来する生物において発現されないか、又は本来のプロモ
ーターの調節下においても本来の生物において発現されない構造遺伝子のコーデ
ィング部分を指す。
【0026】 本発明のさらなる態様において、熱誘導可能プロモーターの転写制御下で、本
発明に係る核酸分子は以下の配列から選択される核酸配列をさらに含む: (i)ハンセヌラ・ポリモルファのトレハロース-6-リン酸シンターゼのアミノ酸
配列を有するポリペプチドをコードする核酸配列; (ii)配列番号:6に示された核酸配列; (iii)配列番号:6に示された配列と少なくとも80%の同一性を示す核酸配列;
(iv)ポリペプチドがトレハロース-6-リン酸シンターゼ活性を示すような、配
列番号:7に示されたアミノ酸配列又はその部分配列を有するポリペプチドをコ
ードする核酸配列; (v)ポリペプチドがトレハロース-6-リン酸シンターゼ活性を示すような、遺伝
暗号の縮重を考慮すると配列番号:7に示されたアミノ酸配列又はその部分配列
を有するポリペプチドをコードすると考えられる核酸配列; (vi)配列番号:7に示されたアミノ酸配列と少なくとも80%の同一性を示すア
ミノ酸配列を有するポリペプチドをコードする核酸配列。
【0027】 (iii)に示された核酸配列は、配列番号:6に示された配列と少なくとも90%
の同一性を示す。本発明に係る核酸分子の別の形態において、(vi)に示された
核酸配列は、配列番号:7に示されたアミノ酸配列と少なくとも90%の同一性を
示すアミノ酸配列を有するポリペプチドをコードする。
【0028】 本発明に係る核酸分子は、シグナルペプチドをコードする核酸配列が、好まし
くは発現させたい異種遺伝子と直接結合しているような、発現したタンパク質の
搬出を保証するシグナルペプチドをコードする核酸配列をさらに含んでいてもよ
い。多くの真核生物のタンパク質の分泌及び修飾には、ポリペプチドを分泌器官
へと向かわせるため、タンパク質配列のN末端をシグナル配列と融合させること
が必要となる。例えば、ヒルジンの分泌にうまく用いられている(Weydemann et
al.,1995)S.オクシデンタリス(occidentalis)遺伝子GAM1、及びカニ、カル
シヌス・マエナス(Crab Carcinus maenas)のホルモン遺伝子に由来する成分が
、本明細書において考慮されうる。本発明に係る核酸分子は、転写終結をもたら
す、RNAポリメラーゼのシグナル構造を含有するターミネーター因子をさらに含
んでいてもよい。使用されうるターミネーター因子の例は、H.ポリモルファのMO
X又はPHO1のターミネーターである。
【0029】 本発明のさらなる主題は、原核細胞又は真核細胞であるような、本発明に係る
核酸分子を少なくとも1つ含有する宿主細胞である。真核細胞は、例えば植物細
胞でありうる。真核細胞は、好ましくは真菌細胞であり、酵母細胞が特に好まし
い。例えば、アスペルギルス(Aspergillus)、ノイロスポラ(Neurospora)、
ムコール(Mucor)、トリコデルマ(Trichoderma)、アクレモニウム(Acremoni
um)、ソルダリア(Sordaria)、及びペニシリウム(Penicillium)のような糸
状菌、又はサッカロミセス(Saccharomyces)、ハンセヌラ(Hansenula)、ピキ
ア(Pichia)、クルイベロミセス(Kluyveromyces)、シュワニオミセス(Schwa
nniomyces)、ヤロウィア(Yarrowia)、アルキスラ(Arxula)、トリコスポロ
ン(Trichosporon)、及びカンジダ(Candida)のような酵母は、本発明を実施
するための宿主細胞として特に考慮される。本発明の最も好ましい態様において
、酵母細胞は、任意メチロトローフのハンセヌラ酵母、好ましくはハンセヌラ・
ポリモルファである。H.ポリモルファは耐熱性酵母細胞であり、かつ炭素源及び
エネルギー源としてメタノールを用いる能力を有する、いわゆるメチロトローフ
酵母の小さい群に属する。H.ポリモルファが、37℃でのインキュベーションによ
り土壌試料から単離された(Levine及びCooney,1973)。H.ポリモルファが、増
殖及びタンパク質産生を継続するための高温は、他の望ましくない生物の排除を
可能にする。その理由は、H.ポリモルファが約37℃という極めて高い至適増殖温
度を有しているのみならず、約50℃の温度でも害を受けることなく生存しうるこ
とが示されているためである(図1参照)。47℃においてさえ、定常期の開始後
のH.ポリモルファの生存力は約50時間低下しない(図2)。
【0030】 本発明のさらなる主題は、本発明に係る核酸分子を少なくとも1個含む発現ベ
クターである。そのような発現ベクターもまた、熱誘導可能プロモーターに加え
、他の核酸配列、例えば、ポリペプチドをコードする配列、選択マーカー遺伝子
、大腸菌の複製開始点等を含有していてもよい。
【0031】 本発明は、 (a)組換えタンパク質をコードする核酸のクローニングに適した本発明に係る発
現ベクター;並びに (b)熱誘導可能プロモーターの誘導及び組換えタンパク質の作製に適した宿主細
胞 を含むキットも提供する。
【0032】 「クローニング」とは、この目的のため使用されうる当技術分野において既知
の全てのクローニング法を含む。これらの方法全てを本明細書において個別には
記載しないが、当業者はそれらに精通している。
【0033】 本発明は、 (a)発現ベクター;及び (b)熱誘導可能プロモーターの誘導及び熱誘導可能プロモーターの転写制御下で
のコード配列によりコードされるタンパク質の作製に適した宿主細胞 を含むキットをさらに提供する。
【0034】 本発明に係る核酸分子、宿主細胞、発現ベクター、及びキットは、熱誘導可能
プロモーター制御下での遺伝子の組換え発現のため、又は一つもしくは複数のタ
ンパク質の作製のために使用されうる。
【0035】 「適当な宿主細胞における組換え発現」とは、この目的のため用いられうる既
知の発現系における、当技術分野において既知の全ての発現方法を指す。これら
の方法全てを個別には本明細書に記載しないが、当業者はそれらに精通している
【0036】 本発明のさらなる主題は、 (i)クローニングされた核酸が熱誘導可能プロモーターの転写制御下に置かれ
るよう、本発明に係る発現ベクターへ、組換えタンパク質をコードする核酸を少
なくとも1個クローニングする段階; (ii)熱誘導可能プロモーターの誘導及び組換えタンパク質の作製に適した宿主
細胞に、(i)で得られた発現ベクターを導入する段階; (iii)(ii)で得られた宿主細胞を培養する段階; (iv)それ自体は既知の方法により熱誘導可能プロモーターを誘導する段階 を含む、一つ又は複数のタンパク質の作製のための方法である。
【0037】 本発明に係る発現ベクターが、熱誘導可能プロモーターの転写制御下に置かれ
ている、ポリペプチドをコードする配列を含有する場合には、本発明に係る一つ
又は複数のタンパク質の作製のための方法は、 (i)熱誘導可能プロモーターの誘導及び組換えタンパク質の作製に適した宿主
細胞に、発現ベクターを導入する段階; (ii)(i)で得られた宿主細胞を培養する段階; (iii)自体既知の方法により熱誘導可能プロモーターを誘導する段階 を含む。
【0038】 実施例 材料及び方法: 特殊な試薬及び材料
【0039】 使用装置
【0040】 細菌菌株及び培養条件 E.coli菌株DH5α(F'endA1hsdR17rkmk+supE44thi-1recAgyra relA(lacZYA-arF
)U169(φ80△(lacZ)M15)(Gibco BRL, Gaithersburg MD, USA)を、H.polymorpha
のTPS1遺伝子をクローニングするために用い、続いて標準的プロトコール(Samb
rookら、1989)を行った。E.coli用の培地も、標準的な方法(Sambrookら、1989
)により作製した。
【0041】 E.coliからプラスミドDNAの単離(STET prep) プラスミドDNAを、Sambrookら(1989)による改変プロトコールに従って単離
した。プレートから細胞材料を削り取るためにスパーテルを用いた。続いてこの
材料を、35μlのリゾチーム(10mg/ml)を入れた500μlのSTET(8%(w/v)ショ
糖、5%(v/v)TritonX-100、50mMのEDTA、50mMのトリス-HCl、pH8.0)に添加し
て混合した。次にその試料を100℃で1分40秒間煮沸し、20,000gで10分間、4℃で
遠心分離した。約400μlの上清をピペットを用いて吸引し、そのDNAを400μlの
イソプロパノールを用いて沈殿させた。続いて20,000gで10分間、4℃で遠心分離
を行ってから上清すべてを捨て、DNAペレットを氷冷した70%(v/v)のエタノー
ルで一度洗浄した。最後にそのDNAを室温で乾燥し、50-70μlのTE(10mMのトリ
ス-HCl、pH8.0、1mMのEDTA、pH8.0)中に懸濁した。
【0042】 酵母菌株及び培養条件 使用した酵母の菌株は、野生型のHansenula polymorpha(P.Piper, London (1
994)により入手可能にされている)であった。ストックされている培養物をYPD
寒天(2%(w/v)のグルコース、2%(w/v)のバクトペプトン、1%(w/v}の酵
母抽出物、2%(w/v)の寒天)中で増殖させ、6週間ごとに再ストックした。そ
れらはYDP液体培養物(YPD寒天と同じであるが、2%(w/v)の寒天を含まない組
成物)に対する接種材料として機能した。
【0043】 菌株H.polymorpha RB11(odc1 オルチジン-5-ホスフェート-デカルボキシラー
ゼ-不完全物(ウラシル-栄養要求性)H.polymorpha菌株(Weydemanら、1995))
を、実施例3及び4での実験で使用した。使用した完全培地は、2%のグルコース
またはグリセリン、1%の酵母抽出物、及び2%のバクトペプトンを含んでいて、
選択培地は、0.17%の酵母窒素塩基、0.5%の硫酸アンモニウム、2%のグルコー
スまたはグリセリン、38.4mg/lのアルギニン、57.6mg/lのイソロイシン、48mg/l
のフェニルアラニン、57.6mg/lのバリン、6mg/lのスレオニン、50mg/lのイノシ
トール、40mg/lのトリプトファン、15mg/lのチロシン、60mg/lのロイシン、4mg/
lのヒスチジンを含んでいた。ウラシルは選択培地中には存在していない。
【0044】 細胞培養物を培養するために、オートクレーブ処理した液体培地にストック培
養物を播種し、培養器を振動させながら一晩、実験に応じて27℃、37℃または47
℃でインキュベートした。
【0045】 H.polymorpha細胞培養物の光学濃度の測定 光学濃度(OD)を測定するために、200μl(YDPを用いて利用可能なように適
当に希釈した)の細胞培養物をバイアルのマイクロタイタープレートに配置し、
アントス(Anthos)2001ホトスペクトロメーターを用いて620nmで測定した。200
μlのYPDをブランクとして用いた。
【0046】 H.polymorphaを用いる増殖及び熱ショック実験 一晩培養した培養物を、エーレンマーヤー(Erlenmeler)フラスコ中のYPD培
地に播種しるために用いた。後で開始する実験自体の温度(熱ショック実験に対
しては27℃、増殖実験に対しては27℃、37℃または47℃)でその前培養物が播種
されるように注意が払われた。
【0047】 培養物は、それぞれの増殖実験に対して最初のOD620が0.2になるように播種さ
れ、振動型インキュベーター(マルチトロン(Multitron))中で連続的に維持
された。これに対して、熱ショック実験においては培養物は最初のOD620が0.05
になるように播種された。振動機能を備えた水浴(アクアトロン(Aquatron))
において47℃で熱ショックを実施する前に、OD620が0.4(約1-1.5×108細胞/ml
の培養物)になるまで培養物を27℃で増殖させた。その後試料をさらに2時間維
持した。続いて培養物を27℃で1時間、第2の水浴中で冷却した。
【0048】 エレクトロポレーションによるH.polymorphaの形質転換 100mlのYPDには、高密度で一晩増殖させた5mlの培養物を播種した。培養物を
、OD620が0.8-1.2になるまで約3時間、37℃で振騰した。細胞を、3,000rpmの遠
心分離により回収し、20mlのKpi緩衝液(50mM/pH7.5)に再懸濁した。続いて0.5
mlのDTTを添加し、37℃で15分間振動してから2,500rpmで遠心分離したところ細
胞が沈殿し、それをSTM緩衝液(270mMショ糖、10mMのトリスCl、1mMのMgCl2、pH
7.5)を用いて2度洗浄した。次に、それを0.25mlのSTM緩衝液に懸濁し、60μlの
アリコートを-70℃で保存した。rDNAの組み込みベクターを用いて形質転換する
際、プラスミドDNAを、XholまたはSaclを用いてまず線状にした。この線状プラ
スミドDNAの0.1-1μgを、氷上で解凍した新しいコンピテントセルと混合した。
続いてこれらの調製物を2mmのキュベットに入れた。形質転換は、ジーンパルサ
ー(Gene Pulser)(Bio-Rad, Munich)において2.0kV、25μF及び200オームで行
った。それから細胞を1mlのYPD中で37℃で1時間インキュベートし、選択培地上
に播種しる前に回収した。37℃で2日から4日間インキュベートした後で肉眼で見
えるコロニーが可視化した。
【0049】 培地中のグルコース濃度の測定 培地中のグルコース濃度は、GOD法(GOD/PODキット、Bohringer)という手段
によって測定した。試料を、水を用いて1:200に希釈した。190μlの1%(w/v)
GOD酵素溶液(キットとともに粉末形状で供給されている)を10μlのそれぞれの
試料に添加し、その混合物を27℃で約25分間インキュベートした。このキットで
供給されるグルコース溶液は、標準物質として10μl(0.91μgのグルコース)が
用いられる。この吸収をアントス2001分光光度計で405nmにて測定した。
【0050】 トレハロースの抽出及び定量的検出トレハロースの抽出 1-10mlの細胞培養物をガラス繊維製フィルター(ワットマン(Whatman)GF/C)
を通して濾過し、水で3回洗浄した。フィルターを1mlの水を用いてエッペンドル
フ(Eppendorf)チューブに入れ、30秒間ボルテックスしてから注意深く搾り取っ
て除去した。続いてその細胞懸濁液を水浴中で10分間煮沸した。細胞物質から完
全に上清を分離するために、20,000gで3回遠心分離した。
【0051】HPLCによるトレハロースの検出 抽出された糖を、陰イオン交換カラム(DIONEX CarboPac PA1カラム、4×250m
m)を用いる方法で分離し、金電極(PED=パルス電気化学的検出器)で電流測定
をして検出した。溶出の勾配についての組成は次のとおりである。
【0052】 これらの条件によると、結果的にトレハロース保持時間が約3.7分になった。
それぞれの場合に20μlの試料を注入した。0.1mg/mlのトレハロース溶液を標準
物質として用いた。
【0053】酵素アッセイ法によるトレハロースの検出 同程度の信頼性のある酵素アッセイ法を、より高価なHPLC法(Parrou及びFran
cois、1997を改変した)に代わる方法としてある場合に用いた。すなわち、25μ
lのトレハロース抽出物を12.5μlのトレハロース(Sigma)及び37.5μlの緩衝溶
液(0.2Mの酢酸ナトリウム、0.03MのCaCl2、pH5.7)ともに混合し、水浴中で37
℃で5時間、インキュベートした。これにより結果的に、トレハロースが2ユニッ
トのグルコースに完全に分解した。簡単な遠心分離を行った後、その試料を95℃
で3分間インキュベートし、続いて20,000gでさらに5分間、再び遠心分離を行っ
た。トレハロースの濃度を、グルコース濃度を測定する(GOD/PODキット、上述
参照)ことで間接的に検出した。上清の10μlをこのために用いた。
【0054】 タンパク質の定量(わずかに改変されている)ピーターソン(Peterson (1997))によるタンパク
質検出 細胞培養物の全タンパク質濃度を検出するために、1mlの細胞懸濁液を1mlの10
%(w/v)TCAに沈降させ、3,000gで10分間遠心分離した。その上清を、ウォータ
ージェットポンプに接続したパスツール(Pasteur)ピペットを用いて吸引し、
沈殿物を1NのPCA、1mlで洗浄した。このペレットをその後、0.8NのNaOH:10%(
w/v)SDS(1:1)からなる溶液、5-12ml(研究すべき細胞培養物のODに応じて変
わる)に懸濁し、60℃で少なくとも1時間インキュベートした。この懸濁液200μ
lをCTC試薬(10%のNa2CO3、0.1%のCuSO4・5H2O、0.2%のKNa酒石酸塩)の6倍
希釈液、600μlに添加した。正確に10分間経過後、フォーリン-チオカルト(Fol
in-Ciocalteu)試薬の6倍希釈溶液、200μlを添加して軽く混合した。試料を30
分間暗所に放置し、その後、標準物質として作用するBSAの750nmでの吸収を測定
した。
【0055】ブラッドフォールド(Bradford)(1976)によるタンパク質の検出 細胞非含有の抽出物中のタンパク質濃度を検出するために、100μlの適当に希
釈された抽出物を700μlの水とともに混合した。200μlのBio Radタンパク質ア
ッセイ試薬(ブラッドフォールド)を続いて添加し、簡単に振騰した(ボルテッ
クス(Vortex))。この吸収は、標準物質として機能するBSAについて595nmで測
定した。
【0056】 酵素活性測定透過性細胞の調製 トレハロース-6-リン酸シンターゼ(Tre-6-Pシンターゼ)の酵素活性を透過性
細胞で測定した(De Virgilioら、1991)。この目的のために1-6mlの細胞を濾過
し(GF/Cガラス繊維フィルター上、ワットマン(Whatman))、氷冷した水を用
いて二度洗浄してから1mlの溶解緩衝液(0.2MのTRICIN、pH7.0、0.5%(v/v)ト
リトンX-100)中でボルテックスして懸濁した。このフィルターを除去してエッ
ペンドルフチューブを液体窒素で凍結させ、-20℃で保存した。測定を行う前に
その細胞を、30℃で3分間水浴中で解凍した。続いてそれらを0.2MのTRICIN(pH7
.0)で2度洗浄し、それぞれの洗浄を行った後4℃で20秒間、8,000rpmにて遠心分
離した(バイオフュージ(Biofuge)17RS)。最終的にその細胞を、0.2MのTRICI
N(pH7.0)、600μl中に再懸濁した。
【0057】トレハロース-6-リン酸シンターゼ活性 Tre6Pシンターゼ活性を、Hottigerら(1987)による結合酵素アッセイ法によ
り、50℃で透過性細胞60μlを標準的に用いて測定した。基質(グルコース-6-P
を含まない)及び酵素ブランク(透過性細胞を含まない)の両方を対照として処
理した。
【0058】 ウエスタンブロット分析細胞崩壊によるタンパク質の抽出 5-15mlの細胞培養物を4℃で5分間、3,000rpm(IECセントラGP8R)で遠心分離
し、その後でその上清をデカントした。ペレットを1mlの水に懸濁し、サーステ
ッド(Sarstedt)チューブ(ネジ蓋を備えている)に移した。10秒間遠心分離し
た後、上清をピペットを用いて吸引し、空のチューブが無視できる重さであると
考慮して、ペレットを秤量した。ペレット1mgあたり、0.2MのTRICIN緩衝液(pH7
.0、プロテナーゼ阻害剤[2タブレット/25ml]を含む)1μlを添加し、そのペレッ
トを再懸濁した。ガラスビーズを液体メニスカスのちょうど下部まで添加し、そ
の後でサーステッドチューブを、冷却保存されている細胞ホモジナイザー(Fast
prep FP120)にしっかりと取り付けた。この細胞ホモジナイザーを6.0に調節し
て30秒間、二回稼働させ、90%より多い細胞崩壊を引き起こした。この段階を進
行させるために、その試料が常に十分に冷却されている状態を維持できるように
徹底的な注意が払われた。小さな穴は注射針によってサーステッドチューブに形
成された。そのチューブをガラスチューブ上に配置し、4℃、100gにて遠心分離
することによって、ガラスビーズから抽出物を分離した。それから細胞崩壊のた
めに用いられる量のTRICIN緩衝液を一度にそのサーステッドチューブに添加し、
それをもう一度遠心分離した。次にこの濁った抽出物をエッペンドルフチューブ
に移し、25,000gをかけて4℃で10分間、3度遠心分離を行うと(Biofuge 17RS)
、その上清はそれぞれの際に連続して用いられた可溶性タンパク質(Tre6Pシン
ターゼを含む)を含んでいた。
【0059】試料の調製 続いてこれらの抽出物のタンパク質濃度をブラッドフォールド法(上記参照)
により測定した。得られた値に従って、それらが水で2.5μgのタンパク質/μlに
希釈され、5×試料緩衝液の1容量がこのタンパク質溶液の4容量に添加された。
次にその試料を95℃で5分間かけて変性し、SDSゲル電気泳動に直ちにかけるか、
あるいは10μl、すなわち20μgのタンパク質を凍結するかいずれかを行って分析
するために用いた。
【0060】 試料緩衝液: 1mlの0.5Mトリス-HCl、pH6.8、0.8mlのグリセリン、1.6mlの10%(w/v)SDS、
0.2mlの0.05%(w/v)ブロモフェノールブルー、4mlの水。19容量の試料緩衝液
が、使用する直前に1容量の2-β-メルカプトメタノールに添加された。
【0061】SDSポリアクリルアミドゲル電気泳動(SDS-PAGE) ラムリー(Laemmli)ら(1970)によるシステムを、分子量によりタンパク質を
分離するために用いた。以下の組成物を含む10%と4%のアクリルアミドゲル(
全体の寸法10×10cm)を、分離用ゲル及びスタック用ゲルとしてそれぞれ利用で
きるように調製した。
【0062】 分離用ゲル: 2.5mlの40%(w/v)アクリルアミド/ビスアクリルアミド、2.5mlの1.5Mトリス
-HCl、pH8.8、100μlの10%(w/v)SDS、4.95mlの水、50μlの10%(w/v)アン
モニウムパーサルフェート、5μlのTEMED
【0063】 スタック用ゲル: 1mlの40%(w/v)アクリルアミド/ビスアクリルアミド、2.5mlの0.5Mトリス-H
Cl、pH6.8、100μlの10%(w/v)SDS、6.4mlの水、50μlの10%(w/v)アンモニ
ウムパーサルフェート、10μlのTEMED
【0064】 5×ランニング緩衝液: 15gのトリス、72gのグリシン、5gのSDS、H2Oを1lに添加した。そのpH値は、さ
らに調節しなくても約8.3であるはずであった。
【0065】 20μgのタンパク質をそれぞれのゲルにロードした。BioRadから入手できる「
カレイドスコープの予め染色されたスタンダード(Kaleidoscope prestained st
andard)」はその組成が以下に記載されているが、標準物質として用いた。すな
わちミオシン(204kDa)、β-ガラクトシダーゼ(121kDa)、BSA(78kDa)、カ
ルボアンハイドラーゼ(39kDa)、大豆トリプシン阻害剤(30kDa)からなる。ゲ
ル電気泳動は、200Vの定電圧で約1時間(試料の先端がゲルの下端に達するより
は長くない)かけて行った。その後これらのゲルは、10%(v/v)の酢酸/50%(
v/v)のエタノールに入れた0.1%(w/v)クマージーブルーR250を用いて染色す
る(10%(v/v)の酢酸、20%(v/v)のエタノールを用いて約1時間後に脱色し
た)か、あるいはニトロセルロースにブロットする(次のセクションを参照)か
、そのいずれかを行った。
【0066】イムノブロッティング 次にSDS-PAGEゲルを、40Vで4℃、1時間15分かけてトランスブロット緩衝液(2
50mMのトリス、1250mMのグリシン、15%(v/v)のメタノール)を用いてブロッ
ティングユニット(Scieplas)にあるニトロセルロースにブロットした。
【0067】免疫染色 そのニトロセルロース膜をまずTBS(TBS:20mMのトリス、500mMのNaCl、HClを
用いて7.5に調節したpH)に入れた3%(w/v)のBSAを含む飽和溶液に少なくとも
1時間維持し、続いてTTBS(TTBS:0.05%のTween-20を含むこと以外はTBSと同じ
)を用いて5分間洗浄した。続いてポリクローナル抗-Tps1pウサギ抗体(TTBSに
入れた1%(w/v)BSAを用いて1:50に希釈した)(Eurogentec, Belguim)を一
晩4℃で添加したが、その目的はニトロセルロースに存在するH.polymorpha由来
のTps1タンパク質(Tps1p)に結合させることであった。
【0068】 次にニトロセルロースブロットをTTBSで5分間かけて二度洗浄し、アルカリホ
スファターゼ(1%(w/v)BSAのTTBS溶液を用いて1:10,000に希釈されている)
と結合したモノクローナル抗-ウサギ抗体とともに1時間30分間インキュベートし
た。これをさらにTTBSを用いて5分間で二度、そしてTBSを用いて5分間で一度洗
浄した。そのバンドの染色を顕色させるために、10倍の色素顕在性緩衝液(100m
Mのトリス-HCl、pH9.5、1mMのMgCl)を水で1:10に希釈し、45μlのNBT(75mg/m
lの70%(v/v)DMF)と35μlのX-ホスフェート(50mgの5-ブロモ-4-クロロ-3-イ
ンドリルホスフェート、トルイジニウム塩/mlのDMF)を添加した。この膜を20分
間(もしくは、そのバンドがはっきりと可視化するまで)、この混合液とともに
暗所でインキュベートし、その後反応を停止させるために水で洗浄した。
【0069】 H.polymorpha細胞を用いるコロニーPCR コロニーPCRはHuxleyら(1990、改変された)によるプロトコールに従って行
った。すなわち個々のコロニーをイエローピペットの先端で回収し、PCRチュー
ブにこすり落とした。それからチューブを電子レンジに入れて、フルパワーで2
分間加熱した。最後に25μlのPCR混合物(Taqポリメラーゼが0.2μl、10×PCR緩
衝液が2.5μl、25mMのMgCl2が2.5μl、10mMのdNTPが0.5μl、それぞれのプライ
マーの最終濃度が0.5μM、及び容量が25μlになるように加えられた水)をそれ
ぞれのチューブに添加してその細胞を再懸濁した。続いてそのチューブをPCRユ
ニットに直ちに設置して92℃にまで予熱を加え、プログラムをスタートさせた。
【0070】 ノーザンブロット分析 Piper(1994, 最適化した)によるプロトコールに従ってH.polymorphaからRNA
を抽出した。この目的で、40mlの対数的細胞培養物または20mlの静止状態の細胞
培養物を回収し、氷冷した滅菌性のDEPC水を添加することによって直ちに冷却し
た(熱ショック実験による)。次にその細胞を遠心分離によって沈殿させ、滅菌
性のDEPC水でもう一度洗浄した。遠心分離の後で上清を捨てて得られたペレット
を-20℃で保存した。解凍してから1-2gのガラスビーズ、2mlのRNA抽出緩衝液(2
0mMのトリス-HCl、pH8.5、10mMのNa2-EDTA、1%(w/v)SDS)及び2mlのフェノー
ルをそのペレットに添加した。続いてこの混合物を、3,500rpm(IEC Centra GP8
R)で5分間遠心分離する前に室温で5分間、中断することなく遠心分離した。上
層の水性相を、フェノール/クロロホルム(1:1)からなる等容量を含む新しい
チューブに移した。懸濁液を1分間ボルテックスし、3,500rpmで5分間遠心分離し
てからその上清を、等容量のクロロホルムを含む新しいチューブに入れた。ボル
テックスを1分間繰り返し、3,500rpmの遠心分離を2分間行い、そしてその上清を
15mlのコレックス(Corex)チューブに移した。6Mの酢酸アンモニウムを、最終
濃度が1Mの酢酸アンモニウムになるまで添加し、続いて2容量のエタノール(氷
冷された)を添加し、そしてそのチューブを少なくとも20分間-20℃の冷凍庫に
保存した。その後そのRNAを7,500gで4℃にて15分間、遠心分離を行うことによっ
て沈殿させた。その上清をデカントし、チューブを吸収性ペーパー上で乾燥した
。続いてそのペレットを1mlのTE中で懸濁し、RNAを3Mの酢酸ナトリウム(最終濃
度が0.2Mになる)と2.5容量の氷冷エタノールの添加により沈殿させた。7,500g
で4℃にて15分間、遠心分離を行った後でペレットを氷冷した70%(v/v)のエタ
ノールで洗浄し、室温で乾燥した。最後にそのRNAを400μlのTE中に再懸濁した
【0071】試料の調製 1試料あたり50μgのRNAを、ノーザンブロット分析(Sambrookら、1989による
)を行うために10-15分間、スピードバック(SpeedVac)にて乾燥した。続いて
そのRNAを50μlの試料緩衝液(最終濃度:20mMのMOPS、pH7.0、0.5mMの酢酸ナト
リウム、1mMのEDTA、pH8.0、2.2Mのホルムアルデヒド、50%(v/v)ホルムアミ
ド)に再懸濁し、10分間55℃で加熱した。最後に5.5μlのRNAローディング緩衝
液(10×)及び1μlのエチジウムブロマイド溶液(1μl/ml)をそれぞれの試料
に添加した。
【0072】前(pre-)ゲル及びメインゲル 前ゲル(40mMのMOPS、pH7.0、10mMの酢酸ナトリウム、2mMのEDTA、pH8.0を含
むMOPS緩衝液中に、1%(w/v)のアガロース及び0.65Mのホルムアルデヒドを含
む)は、抽出したRNAが完全であることを試験するため、またロードした量を可
視的に補正するために用いた。メインゲル電気泳動(前ゲルの組成と同一の組成
)は、ランニング緩衝液として機能するMOPS緩衝液を用いて80Vで34時間行った
【0073】ブロッティング ゲルはまず、10×SSC(1.5MのNaCl、170mMのクエン酸ナトリウム)中で20分間
かけて二度洗浄した。続いてRNAを、ニトロセルロース膜(BA83)にキャピラリ
ー移行(移行用緩衝液として20×SSCを用いる)によって一晩ブロットした。次
に膜を6×SCCで洗浄し、3MMのフィルター紙(ワットマン)の間に挟んでから、
ニトロセルロースにRNAが固定化できるように80℃で2時間、真空オーブン中で焼
き付けた。
【0074】ハイブリダイゼーション そのニトロセルロース膜を、10mlのRNAハイブリダイゼーション溶液(0.5MのN
aHPO4、pH7.2、1mMのEDTA、1%(w/v)のBSA、7%(w/v)のSDS)中で60℃で5時
間、特殊なオーブン(Hybaid)内でプレハイブリダイゼーションした。メインの
ハイブリダイゼーション段階では、150μlの放射活性のプローブ(全体で約1×1
07cpm)を10mlのRNAハイブリダイゼーション溶液に添加し、膜を60℃で一晩イン
キュベートした。最後に過剰の放射活性を300mlの洗浄用緩衝液(1mMのEDTA、40
mMのNa2HPO4、pH7.2、1%(w/v)のSDS)を用いて60℃で15分間かけて二度洗浄
した。そのニトロセルロース膜は、BioMaxフィルム上に露光した。
【0075】 フィターゼの検出 H.polymorpha細胞を3mlの一晩培養物から回収し、200μlのYNB培地と1mlの5%
グリセリンに懸濁した。1-2日間の増殖を行った後、まずOD600を測定した。続い
てその細胞を遠心分離によって沈殿させ、25μlの上清を引き続き用いた。5MのN
aAc 25μl及び4-ニトロフェニルホスフェート50μlをこのアリコートに添加した
。混合物を37℃で30分間インキュベートした。基質の酵素的転換を、15%トリク
ロロ酢酸を100μl添加することによって停止させた。1MのNaOH、100μlを添加し
た後、陽性培養物の上清試料においては着色された黄色が濃くなった。この黄色
を、光度計でOD405を測定することにより定量した。
【0076】 X-galオーバーレイ(overlay)アッセイ法-β-ガラクトシダーゼの検出 試験すべき菌株を37℃で4-6時間、選択培地中で培養した。それぞれの培養物
の4μlの液滴を選択的プレートに置き、37℃で一晩インキュベートした。このプ
レートを、新しい上層寒天(0.5%のアガロース、0.5MのNa2HPO4/NaH2PO4(pH7
)、0.2%のSDS、2%のDMF(ジメチルホルムアミド)、2mg/mlのX-gal(o-ニト
ロフェニル-β-D-ガラクトピラノシド))で、70℃にて被覆した。数分後、lacZ
の発現を伴うクローンは青を呈色した。
【0077】 実施例1 H.polymorphaのTPS1遺伝子のクローニング放射活性のTPS1プローブの調製 S.cerevisiae、S.pombe、K.lactis、Canadida albicans及びA.niger(図6参照
)の既知のTPS1遺伝子の配列を比較したことに基づいて、二つの縮重したプライ
マーを、H.polymorpha由来のゲノムDNAを用いたPCR(それぞれ92℃で1分間、52
℃で30秒間、72℃で1分間を行う30サイクルからなる)により、約650bpの断片を
増幅させる二つの高度に保存された領域から調製することができる。この二つの
プライマーの配列は以下のとおりである。
【0078】 次に、このPCR産物を1%(w/v)の調整用アガロースゲルに載せ、電気泳動で
分離した。650bpのバンドを切り出してジーンクリーン(Geneclean)IIキット(
Bio 101, Vista, USA)を用いて抽出し、放射活性の[α-32P]-dCTPを用いて標識
した。この目的のためにプライム-イット(Prime-It)IIキットを用い、またク
リーニングのためにヌックトラップ(NucTrap)カラムを用いた。この放射活性の
プローブを、H.polymorphaのTPS1をスクリーニングするため、及びノーザンブロ
ット分析を行うために使用した。
【0079】H.polymorphaのゲノムDNAライブラリー 使用した遺伝子のDNAライブラリーは、R.Hilblands(University of Groninge
n, Netherlands)により入手可能なように作製された。もし断片が約2kbならば
、ゲノムDNAライブラリーを調製することは決定的なことではない。長さが2-5kb
であるH.polymorphaのゲノムDNA断片(この長さはしばしばあり得る)を、pHRP2
(7813bp)のBamHI制限部位にクローニングした。このプラスミド(Faberら、19
92)には、E.coliにおいて複製と選択を行うためのori(複製起点)及びアンピ
シリン-耐性遺伝子が含まれる。H.polymorphaの形質転換を行うためには、HARS1
配列(H.polymorphaの自律複製配列)及び、H.polymorphaでも機能するマーカー
として作用するS.cerevisiaeのLEU2遺伝子とが存在する。ライブラリーには、約
20,000個の異なるクローンが含まれる。
【0080】E.coliの形質転換 ゲノムDNAライブラリーを用いるE.coliの形質転換はエレクトロポレーション
(Sambrookら、1989)により行い、細胞を50LB+Amp(75mg/l)のプレート(1プ
レートあたり2,000-4,000個のコロニー)に播種した。プレートを37℃で一晩イ
ンキュベートした。
【0081】H.polymorphaのTPS1遺伝子のスクリーニング 個々のコロニーの分析を可能にするために、ニトロセルロース膜をそのプレー
ト上に注意を払ってロードした(Sambrookら、1989による)。注射針を用いて、
その膜とゲルを通る4つの対照的に分布した穴を作製した。これらは、後の段階
で再現されるはずのプレート上の膜の位置付けを可能にするための印として機能
する。膜をはがすと、プレート上に存在するコロニーが再現した。
【0082】 3MMの吸収性ペーパー(ワットマン)を含む4個のプラスチック製皿を並べ、そ
れぞれの皿を4種の異なる溶液の一つで潤した。余分の液は捨てた。ニトロセル
ロース膜はまず、10%(w/v)のSDSに3分間浸した吸収性ペーパーに置いた(コ
ロニーの面を上にして)。続いてそれらを変性溶液(0.5NのNaOH、1.5MのNaCl)
を含む第2の皿に載せ、5分間それらを保持した。その後それらを、中和溶液(1.
5MのNaCl、0.5Mのトリス-HCl、pH7.4)及び2×SCC(10×SSC、1.5MのNaCl、160m
Mのクエン酸ナトリウム)を用いて、吸収性ペーパーに順次保持させた。ニトロ
セルロースにDNAを固定化するために、それぞれの膜を二枚の3MM吸収性ペーパー
の間に配置し、80℃の真空オーブン中で2時間焼き付けた。続いてその膜を5分間
2×SCCで湿潤し、その後前洗浄溶液(5×SCC,0.5%(w/v)SDS、1mMのEDTA、pH8
.0)に50℃で30分間、浸漬した。膜をプレハイブリダイゼーション溶液(6×SSC
、0.25%(w/v)スキムミルクパウダー)中に、2時間68℃で配置する前に、余分
な細菌材料をぬぐい取るためにウェットクリネックス(wet Kleenex)を使用し
た。メインのハイブリダイゼーション段階のために、約1×107cpmの放射活性TPS
1プローブ(「放射活性のTPS1プローブの調製」を参照のこと)を40mlのプレハ
イブリダイゼーション溶液中に入れ、その中で膜を68℃で一晩インキュベートし
た。2×SSC、0.1%(w/v)のSDS中で3回軽く洗浄し、さらに1×SCC、0.1%(w/v
)SDS中で68℃で1時間洗浄した後、その膜を乾燥してバイオマックスフィルム(
BioMax)に感光した。現像したフィルムのシグナルがプレート上で選択された8
個の陽性コロニーを示したので、それらからストックを作製した。プラスミドを
、これらのコロニーから抽出した。650bpの断片が実際に存在するかどうかを試
験するために、PCRを用いた。
【0083】 実施例2 H.polymorphaのTPS1遺伝子のシークエンシングプラスミドの単離 シークエンシングを行うために、650bpの断片の外側(F4及びR4、表1参照)か
ら、またインサートの前方のプラスミド(プラスミドF及びプラスミドR、表1参
照)から得られるプライマーを用いるPCR手段によって、最大の可能なバンドを
生じる二つのコロニーが調製された。純粋なプラスミド抽出物は、プラスミドミ
ディキット(Plasmid Midi Kit)(Qiagen)を用いる方法で、これらの二つのコロ
ニーから調製された(20.1番と21.3番)。
【0084】配列決定 サイクル式シークエンシングプログラム(PCR装置:Progene)とAB1 301自動
化シークエンサー(Perkin Elmer)の装置によって、配列を決定した。0.5μl(
0.5μg)のプラスミドDNA、1μlのプライマー(最終濃度0.5μM)、4μlの反応
混合液(DNAシークエンシングキット)及び4μlの水を、この目的のために利用
した。96℃で30秒間、50℃で15秒間、及び60℃で4分間からなる27サイクルを含
むシークエンシングプログラムが用いられた。このプログラムが完了したところ
で、10μlの水を反応に添加し、DNAを酢酸ナトリウムとエタノールを用いて沈殿
させた。ペレットを1mlの氷冷した70%(v/v)エタノールで二度洗浄した。その
後、DNAを軽く乾燥し、25μlのTSR(鋳型抑制試薬、DNAシークエンシングキット
)に再懸濁した。二分間のインキュベーションを行った後、AB1 301でシークエ
ンシングを行うための試料を準備した。
【0085】 21.3番のクローン由来のプラスミドをシークエンシングするために用いられる
プライマーが表1に列挙されている。これらは、「エクスペディット(Expedite
)(商標)核酸合成」装置のFM1で調製された。この配列を、GCGプログラム(Dev
ereuxら、1984)を用いて分析した。
【0086】
【表1】 TPS1遺伝子をシークエンシングするために用いられるプライマーの一
【0087】 H.polymorphaから単離したプロモーター及びその作用形態は、下記に非常に詳
細に記載されている。TPS1の発現を制御するこのプロモーターは、ある条件下で
のTPS1のmRNAの増加の測定により研究された。非常に低い温度では、このプロモ
ーターはH.polymorphaに対して非常に少量のTPS1しか発現しないが、高温では発
現が非常に大量に増加する、すなわち、前述した熱ショック誘導性プロモーター
を用いた場合(熱ショックについてのノーザンブロット、図3A参照)よりもずっ
と大量に増加することが判明した。TPS1のmRNAについての熱により誘導される増
加は、Tps1タンパク質の増加(図3B)及びトレハロース-6-リン酸シンターゼ活
性の増加と、また細胞内のトレハロース濃度の増加(図3C)と関連する。熱的影
響を最適化するためには、例えばプロモーターを選択的に短くしてもよいし、ま
たHSEを含む別のセグメントと結合させてもよい。
【0088】 熱誘導に加えて、グルコースの欠乏に依存するトレハロースの蓄積も観察され
たが、それはこれらの二つのストレスファクターの間に密接な生物学的関係(図
4A参照)があるために予想されたとおりである。このトレハロースの蓄積は、ト
レハロース-6-リン酸シンターゼ活性の増加、TPS1のmRNAの増加(図4B)、及び
グルコースが欠乏する際のTps1タンパク質の増加とともに観察されるトレハロー
スの蓄積の増加(図4C)と関連がある。
【0089】 TPS1のmRNAが非常にたくさん蓄積することは、TPS1のmRNAが非常に安定である
ことを示しており、よってそれ(及びそれに基づくcDNAまたはそれから入手でき
る情報)を、プロモーターを単離する際の有益な道具にするだけでなく、熱また
は欠乏のようなストレス条件の範囲に対して他の生物を保護するのに特に有益な
手段にもする。適当なプロモーター及びベクター(例えば、国際公開広報第93/1
7093号、国際公開広報第96/00789号、及び国際公開広報第96/00789号に記載され
ているような)を提供するTPS1のDNAを、例えば水が欠乏することから植物を保
護するために用いることができ、これによって加温領域や沈殿の少ない領域でそ
れらを培養できるようになる。TPS1のDNAだけでなくそれに関連するDNAももちろ
ん、この目的のために利用できる。
【0090】実施例3 FMDプロモーター及びTPS1プロモーターの調節下における細菌性lacZ遺伝子の相
対的発現 組み込み型H.polymorphaベクターpC11(図7)に基づいて、二つの誘導体は、l
acZレポーター遺伝子の前にあるそれぞれのプロモーター内のみが異なるように
構築された。pC-11FMD(図8)の場合、lacZ遺伝子はFMDプロモーターの制御下に
あり、それはすでに十分に特徴が明らかにされている。pC11-TPS1(図9)の場合
、それは試験すべき熱誘導性のプロモーターの対照下にある。この実験のために
、配列番号1(TPS1プロモーターとして下記に参照される)で示される配列の228
ヌクレオチドと792ヌクレオチドとの間の断片が熱誘導性プロモーターとして用
いられた。
【0091】 H.polymorphaのRB11を、pC-FMDとpC-TPS1(材料及び方法を参照)を用いて形
質転換した。それぞれのプラスミドが遺伝子的に安定な組み込み状態で存在して
いる安定な菌株を、それぞれの形質転換に対する約1,000個のウラシル-プロトト
ロフィック細胞クローンから別個に生成させた。この場合の段階は以下のとおり
である。形質転換後、その細胞を選択培地を含むプレートに播種した。3日後に
、顕微鏡下で個々のコロニーが可視化できた。どちらの場合においても、1,000
個の個々の分離したコロニーを滅菌条件下で新しい選択培地プレートに移し、こ
れを37℃で2日間インキュベートした。この方法をさらに二度繰り返した(選抜
)。続いてこの細胞クローンを完全培地のプレートに移し、37℃で2日間、再び
インキュベートした(安定化)。最後に、残っている遊離のプラスミドを除くた
めに細胞クローンをもう一度選択培地プレートに移した。37℃で2日間これらの
プレートをインキュベートしてから、菌株の生成を完成させた。個々の菌株にお
ける複製物及びプラスミドの組み込み遺伝子座の正確な数は、Gatzkeら(1995)に
よっては検出できないが、生成した菌株の違いによってこの様子は互いにはっき
りと異なると考えられる。
【0092】 複製数及びゲノムの環境の両方が遺伝子の転写速度に大きく影響するため、個
々の細胞クローンがβ-ガラクトシダーゼ活性に関して互いに相当に異なるとい
うことも想定しなくてはならない。これについては、実験的に確認された(デー
タは示されていない)。そのため、個々の菌株を用いて直接的にプロモーターの
能力を比較することは可能ではない。にもかかわらず目的のプロモーターの研究
を可能にするために、別々に作製した500個の個々の菌株を組み合わせたが、そ
の目的はコピー数と組み込み遺伝子座に関して標準的な菌株混合物を作製するこ
とであった。菌株を作製するために用いたプラスミドpC11-FMD及びpC11-TPS1は
、lac遺伝子の前方に位置するそれぞれのプロモーターを除いて同一であるため
、それらが相同的な態様で宿主ゲノムに組み込まれることが予想された。この仮
説は、同様の形質転換由来の種々の菌株混合物のβ-ガラクトシダーゼ活性は互
いにわずかしか異ならないという観察によって確認された(データは示されてい
ない)。したがって大部分は同一のプラスミドを用いて形質転換により作製され
た菌株混合物のβ-ガラクトシダーゼ活性の検出は、H.polymorphaにおける対象
のプロモーターとの比較により可能となると考えられる。
【0093】 FMDプロモーターまたはTPS1プロモーターの制御下でのlacZ活性は、三つの異
なる炭素供給源における三つの異なる温度で機能した(図10参照)。このために
上記で記載された菌株混合物を、細胞抽出物が調製された後、10mlの選択的培地
内においてその温度でかつ指定の炭素供給源を用いてOD600が5になるまで培養し
、液体培地において、ONPG測定法によりそのβ-ガラクトシダーゼ活性を測定し
た。方法は以下のとおりである。所望の密度条件下で培養物を4℃で10分間遠心
分離し、細胞ペレットを、10mlのlacZ緩衝液(50mlのリン酸ナトリウム緩衝液、
pH7、10mMのKCl、1mMのMgSO4)で洗浄して500μlのlacZ緩衝液に再懸濁し、続い
て1.5mlのエッペンドルフチューブに移した。直径0.45mmのガラスビーズを懸濁
液に添加し(液体のメニスカスの高さまで)、その後、細胞をビブラックス(Vi
brax)(Jack & Kunkel、6分間、4℃、2,200rpm)で崩壊させた。細胞溶解産物
を除去してから遠心分離した(ベンチ遠心分離、4℃、10分間)。β-ガラクトシ
ダーゼ活性測定のため、また全タンパク質含有量の測定のための両方の目的で、
可溶性画分を用いた。β-ガラクトシダーゼ活性測定のために、1mlのONPG溶液(
4mgのONPG/mlのlacZ緩衝液)を可溶性画分の種々の希釈液に添加し、続いてそれ
ぞれの混合物を1cmのプラスチック製キュベットに移した。それからΔEの測定が
可能になるように、OD420を30秒間間隔で3分間測定した。細胞抽出物の全タンパ
ク質含有量を測定するため、790μlのH2Oを、10μlのそれぞれの可溶性画分(タ
ンパク質含有量に係り、1:10、1:5、1:2に希釈されている画分、または希釈
されていない断片)と混合し、200μlのブラッドフォード試薬(Biorad)を添加
した。室温で10分間インキュベーションした後、OD490を測光法で測定し、細胞
抽出物の代わりにlacZ緩衝液を含む対照試料を調製した。細胞抽出物に含まれる
タンパク質濃度を、BSA補正曲線の方法によって吸収値より決定した。特異的β-
ガラクトシダーゼ活性を以下の式より計算した。
【0094】 FMDプロモーターは、炭素供給源の種類によって主に制御されることがわかっ
ているが、温度依存性についての記載は未だない(欧州特許第299108号)。これ
を、本明細書における測定法により確認した(図10A参照)。β-ガラクトシダー
ゼ活性はグルコース存在下では低くなることがわかっているが(グルコース抑制
)、これに対して実質的に高い値がグリセリンまたはメタノール存在下で測定さ
れた(活性化すなわち誘導)。温度変化は、得られる測定値における顕著な変化
をもたらさなかった(図10A参照)。これは、本明細書において用いた試験系に
おいても観察された。β-ガラクトシダーゼの活性は30℃または37℃では低いが
、44℃では劇的に増大した(図10B参照)。プロモーター活性におけるこのよう
な温度依存性の増大はメタノール存在下では起こらず(図10B)、この現象はこ
れまでに記載されていない。驚くべきことに、TPS1プロモーターについて測定さ
れた最も高いβ-ガラクトシダーゼの活性は、FMDプロモーターについての活性よ
りも実質的に高かった(図10A、図10Bを参照)。
【0095】実施例4 FMDプロモーター及びTPS1プロモーターの調節下におけるフィターゼ(phytase)
遺伝子の比較的発現 標準的な方法に従って、ベクター、pTPS1ConphysMT及びpFMDConphysMTを用い
る形質転換によって組換え菌株を作製した。発現カセットにおいては、プロモー
ター要素を除いて形質転換のために用いた二つのベクターは同一であった。pTPS
1ConphysMTに含まれる熱誘導性プロモーターは、3'末端にEcoR1制限部位を持っ
ている配列番号1の228ヌクレオチドと792ヌクレオチドの間の配列に対応する断
片(以下、TPS1プロモーターと呼ぶ)であり、これに対してpFMDConphysMTはFMD
プロモーターを含んでいる。ベクターであるpTPS1ConphysMTのプラスミドマップ
及びヌクレオチド配列が図11に示されている。フィターゼのミューテイン(mute
in)が、レポーター遺伝子として用いられた。
【0096】 エレクトロポレーションによる形質転換を行った後、H.polymorpha菌株は、少
なくとも80世代にわたって選択培地で形質転換することによって産生したウラシ
ル原栄養性のクローンを増殖させることによって得られる(Gatzkeら、1995)。
作製された二つの菌株回収物の典型的な形質転換体を、3mlの液体培養において
異なる条件下で比較的に培養した。2%のグルコースまたは5%のグリセリンを補
充したpH5.0の0.1Mリン酸緩衝液で緩衝化したYBS培地において、培養を行った。
48時間後、材料及び方法の項で記載された方法を用いて、培養物の上清のアリコ
ートにおいて分泌されたフィターゼを定量した。
【0097】 本研究では、今日最も一般的に用いられているプロモーターであるFMDプロモ
ーターと、TPS1プロモーターを比較した。TPS1プロモーターを使用を使用したと
ころ、FMDプロモーターと比べた場合、結果的に37℃での発現値がわずかに増加
した。TPS1プロモーターを用いた場合には、FMDプロモーターを用いて観察され
たよりも2倍から3倍高い発現が40℃と44℃において観察された。
【0098】 文献
【配列表】
【図面の簡単な説明】
以下に示す図面を参照して、本発明をより詳細に記載する。
【図1】 27℃、37℃、及び47℃におけるH.ポリモルファの増殖曲線を示す
図である。
【図2】 27℃、37℃、及び47℃における定常期の開始後の生存力を示す図
である。
【図3A】 27℃から47℃への熱ショックを与え、続いて27℃へ冷却した後
、野生型H.ポリモルファ由来RNAのノーザンブロットを示す図である。初期対数
増殖期までは、27℃でYDP培地で細胞を培養した。次いで温度を47℃に上昇させ
(ゼロ時点)、120分後に再度27℃に低下させた。
【図3B】 27℃から47℃までの熱ショックを与え、続いて27℃へ冷却した
後(図3A参照)H.ポリモルファ由来Tps1タンパク質(Tps1p)のウェスタンブロ
ットを示す図である。この図から、TPS1 mRNAの増加とTps1タンパク質(Tps1p)
の増加との間の相関が見られる。
【図3C】 27℃から47℃への熱ショックを与え、続いて27℃へ冷却した後
(図3A参照)のH.ポリモルファに関する、時間に対してプロットされた細胞内ト
レハロース濃度及びトレハロース-6-リン酸シンターゼ活性を示す図である。白
丸は細胞内トレハロース濃度を表し、黒四角はトレハロース-6-リン酸シンター
ゼ活性を表す。TPS1 mRNAの増加と、トレハロース-6-リン酸シンターゼ活性及び
細胞内トレハロース濃度の増加との間の相関が、図から明らかである。
【図4】 27℃(A)、37℃(B)、及び47℃(C)で、グルコース枯渇下で
、7時間、10時間、17時間、及び36時間培養されたハンセヌラ・ポリモルファ細
胞内のトレハロース-6-リン酸シンターゼ活性(白バー)及び細胞内トレハロー
ス濃度(黒バー)を表す、3つの棒グラフを示す図である。トレハロース蓄積は
、トレハロース-6-リン酸シンターゼ活性の増加(図4A)、TPS1 mRNAの増加(図
4B)、及びTps1タンパク質(Tps1p)の増加(図4C)と相関している。
【図5】 多数の生物由来のトレハロース-6-リン酸シンターゼのいくつか
のDNA配列領域の相同性を示す図である。
【図6】 H.ポリモルファのTPS1遺伝子のDNA配列(配列番号:8)及びそこ
から派生したアミノ酸配列(配列番号:6)を示す図である。プロモーター配列
内の熱ショック因子には下線が施されている。
【図7】 pM1(M.Suckow、個人的通信(personal communication))のポリ
リンカーへのlacZ遺伝子の挿入により得られたpM1の誘導体、プラスミドpC11を
示す図である。プラスミドは、HARS1配列(H.polymorpha Autonomously Replica
ting Sequences)、pBR322由来のori(複製開始点)、アンピシリン耐性遺伝子
、H.ポリモルファ及び大腸菌における繁殖及び選択のためのURA3遺伝子、並びに
転写過程の終結のためのlacZ遺伝子の後のMOXターミネーターを含有する。
【図8】 pC11のlacZレポーター遺伝子の前にFMDプロモーターを挿入する
ことにより得られた、プラスミドpC11-FMDを示す図である。
【図9】 pC11のlacZレポーター遺伝子の前にTPS1プロモーターを挿入する
ことにより得られた、プラスミドpC11-TPS1を示す図である。
【図10】 3つの異なる炭素源(2%グルコース、2%グリセリン、又は2%
メタノール)における、30℃、37℃、及び44℃におけるFMDプロモーター(A)及
びTPS1プロモーター(B)の活性の比較を示す図である。
【図11】 実施例4において用いられたプラスミドpTPS1ConphysMTを示す
図である。MOX-T=MOXターミネーター、Conphys=Conphys3遺伝子、TPS1=ハン
セヌラ・ポリモルファのTPS1プロモーター、HARS=H.polymorpha Autonomously R eplicating Sequences、tet=テトラサイクリン耐性遺伝子、URA3=S.セレビシ
エ由来のURA3、amp=アンピシリン耐性遺伝子。
【手続補正書】
【提出日】平成13年8月28日(2001.8.28)
【手続補正1】
【補正対象書類名】明細書
【補正対象項目名】特許請求の範囲
【補正方法】変更
【補正の内容】
【特許請求の範囲】
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) (C12P 21/02 C12R 1:78) (81)指定国 EP(AT,BE,CH,CY, DE,DK,ES,FI,FR,GB,GR,IE,I T,LU,MC,NL,PT,SE),OA(BF,BJ ,CF,CG,CI,CM,GA,GN,GW,ML, MR,NE,SN,TD,TG),AP(GH,GM,K E,LS,MW,SD,SL,SZ,TZ,UG,ZW ),EA(AM,AZ,BY,KG,KZ,MD,RU, TJ,TM),AE,AL,AM,AT,AU,AZ, BA,BB,BG,BR,BY,CA,CH,CN,C R,CU,CZ,DE,DK,DM,EE,ES,FI ,GB,GD,GE,GH,GM,HR,HU,ID, IL,IN,IS,JP,KE,KG,KP,KR,K Z,LC,LK,LR,LS,LT,LU,LV,MA ,MD,MG,MK,MN,MW,MX,NO,NZ, PL,PT,RO,RU,SD,SE,SG,SI,S K,SL,TJ,TM,TR,TT,TZ,UA,UG ,US,UZ,VN,YU,ZA,ZW (72)発明者 デ ヴィルジリオ クラウディオ スイス国 ビニンゲン シャフマットウェ グ 85 Fターム(参考) 4B024 AA20 CA04 DA12 EA04 GA11 HA03 4B064 AG01 CA06 CA19 CC24 CE12 DA13 4B065 AA76 AB01 BA02 CA24 CA46

Claims (29)

    【特許請求の範囲】
  1. 【請求項1】 熱誘導可能プロモーターを含む核酸分子であって、以下の核
    酸から選択される核酸分子、又は(a)から(g)に示された核酸のうちの一つの配列
    と相補的な配列を有する核酸分子: (a)トレハロース-6-リン酸シンターゼ活性を有するタンパク質をコードするハン
    セヌラ・ポリモルファ(Hansenula polymorpha)遺伝子のプロモーター配列を含
    む配列を有する核酸; (b)配列番号:1に示された配列を有する核酸; (c)300bpの長さにわたり、(a)もしくは(b)に示された配列のうちの一つと少なく
    とも40%の同一性を示す配列を有する核酸; (d)(a)、(b)、もしくは(c)に示された核酸のうちの一つの相補鎖とハイブリダイ
    ズする核酸; (e)一つもしくは複数のヌクレオチドの置換、付加及び/もしくは欠失により得ら
    れる、(a)、(b)、もしくは(c)に示された核酸のうちの一つの誘導体; (f)熱誘導可能プロモーターの機能を保持している、(a)から(e)に示された核酸
    のうちの一つの断片; (g)核酸配列が異なっていても同一であってもよいような、(a)から(f)に示され
    た核酸のうちのいくつかの組み合わせ。
  2. 【請求項2】 (c)に示された核酸が、(a)もしくは(b)に示された配列のう
    ちの一つ、又はその相補配列と少なくとも60%の同一性を示すことを特徴とする
    、請求項1記載の核酸分子。
  3. 【請求項3】 (c)に示された核酸が、(a)もしくは(b)に示された配列のう
    ちの一つ、又はその相補配列と少なくとも80%の同一性を示すことを特徴とする
    、請求項1記載の核酸分子。
  4. 【請求項4】 (c)に示された核酸が、(a)もしくは(b)に示された配列のう
    ちの一つ、又はその相補配列と少なくとも90%の同一性を示すことを特徴とする
    、請求項1記載の核酸分子。
  5. 【請求項5】 (c)に示された核酸が、(a)もしくは(b)に示された配列のう
    ちの一つ、又はその相補配列と少なくとも95%の同一性を示すことを特徴とする
    、請求項1記載の核酸分子。
  6. 【請求項6】 Nと示されたヌクレオチドは、互いに独立に、A、T、C、又は
    Gでありうる、NGAANNNNNNNGAAN(配列番号:2)という配列又はその相補配列を
    有する熱ショック因子を少なくとも1個示すことを特徴とする、請求項1〜5のい
    ずれかに記載の核酸分子。
  7. 【請求項7】 BがG、C、又はTであり、WがA又はTであり、MがC又はAである
    、NGAANNBWMNNGAAN(配列番号:3)という配列又はその相補配列を有する熱ショ
    ック因子を少なくとも1個示すことを特徴とする、請求項6記載の核酸分子。
  8. 【請求項8】 2つ又はそれ以上の熱ショック因子が存在する場合それらが
    同一の配列又は異なる配列を示してもよいような、熱ショック因子がTGAAGCCTCT
    TGAAA(配列番号:4)及び/もしくはTGAATATAAAGGAAA(配列番号:5)という配
    列並びに/又はそれらの相補配列から選択されることを特徴とする、請求項7記載
    の核酸分子。
  9. 【請求項9】 少なくとも2個の異なる熱ショック因子を示すことを特徴と
    する、請求項6、請求項7、又は請求項8のいずれか一項記載の核酸分子。
  10. 【請求項10】 CCCCT又はAGGGGという配列を有するSTRE因子を含有しない
    ことを特徴とする、請求項1〜請求項9のいずれか一項記載の核酸分子。
  11. 【請求項11】 (f)に示された断片が、配列番号:1の228ヌクレオチドか
    ら792ヌクレオチドの配列を含むことを特徴とする、請求項1記載の核酸分子。
  12. 【請求項12】 (f)に示された断片が、配列番号:1の492ヌクレオチドか
    ら792ヌクレオチドの配列を含むことを特徴とする、請求項1記載の核酸分子。
  13. 【請求項13】 (f)に示された断片が、配列番号:1の627ヌクレオチドか
    ら713ヌクレオチドの配列を含むことを特徴とする、請求項1記載の核酸分子。
  14. 【請求項14】 熱誘導可能プロモーターの転写制御下で、異種遺伝子に関
    する少なくとも1個の核酸配列をさらに含むことを特徴とする、請求項1〜請求項
    13のいずれか一項記載の核酸分子。
  15. 【請求項15】 熱誘導可能プロモーターの転写制御下で、以下の配列から
    選択される核酸配列をさらに含むことを特徴とする、請求項1〜請求項13のいず
    れか一項記載の核酸分子: (i)ハンセヌラ・ポリモルファのトレハロース-6-リン酸シンターゼのアミノ酸
    配列を有するポリペプチドをコードする核酸配列; (ii)配列番号:6に示された核酸配列; (iii)配列番号:6に示された配列と少なくとも80%の同一性を示す核酸配列; (iv)ポリペプチドがトレハロース-6-リン酸シンターゼ活性を示すような、配
    列番号:7に示されたアミノ酸配列又はその部分配列を有するポリペプチドをコ
    ードする核酸配列; (v)ポリペプチドがトレハロース-6-リン酸シンターゼ活性を示すような、遺伝
    暗号の縮重を考慮すると配列番号:7に示されたアミノ酸配列又はその部分配列
    を有するポリペプチドをコードすると考えられる核酸配列; (vi)配列番号:7に示されたアミノ酸配列と少なくとも80%の同一性を示すア
    ミノ酸配列を有するポリペプチドをコードする核酸配列。
  16. 【請求項16】 (iii)に示された核酸配列が、配列番号:6に示された配
    列と少なくとも90%の同一性を示すことを特徴とする、請求項15記載の核酸分子
  17. 【請求項17】 (vi)に示された核酸配列が、配列番号:7に示されたア
    ミノ酸配列と少なくとも90%の同一性を示すアミノ酸配列を有するポリペプチド
    をコードすることを特徴とする、請求項15記載の核酸分子。
  18. 【請求項18】 原核細胞又は真核細胞である、請求項1〜請求項17のいず
    れか一項記載の核酸分子を含有する宿主細胞。
  19. 【請求項19】 真核細胞が真菌細胞であることを特徴とする、請求項18記
    載の宿主細胞。
  20. 【請求項20】 真菌細胞が酵母細胞であることを特徴とする、請求項19記
    載の宿主細胞。
  21. 【請求項21】 酵母細胞がハンセヌラ・ポリモルファであることを特徴と
    する、請求項20記載の宿主細胞。
  22. 【請求項22】 請求項1〜請求項13のいずれか一項記載の核酸分子を少な
    くとも1個含む発現ベクター。
  23. 【請求項23】 請求項14〜請求項17のいずれか一項記載の核酸分子を少な
    くとも1個含む発現ベクター。
  24. 【請求項24】 (a)組換えタンパク質をコードする核酸がクローニングさ
    れるのに適した請求項22記載の発現ベクター、並びに (b)熱誘導可能プロモーターの誘導及び組換えタンパク質の作製に適した宿主細
    胞:を含むキット。
  25. 【請求項25】 (a)請求項23記載の発現ベクター、並びに (b)熱誘導可能プロモーターの誘導及び熱誘導可能プロモーターの転写制御下で
    のコード配列によりコードされるタンパク質の作製に適した宿主細胞 を含むキット。
  26. 【請求項26】 熱誘導可能プロモーターの転写制御下での遺伝子の発現の
    ための、請求項1〜請求項17のいずれか一項記載の核酸分子、又は請求項18〜請
    求項21のいずれか一項記載の宿主細胞、又は請求項22もしくは請求項23のいずれ
    か一項記載の発現ベクター、又は請求項24もしくは請求項25のいずれか一項記載
    のキットの使用。
  27. 【請求項27】 一つ又は複数のタンパク質の作製のための、請求項1〜請
    求項17のいずれか一項記載の核酸分子、又は請求項18〜請求項21のいずれか一項
    記載の宿主細胞、又は請求項22もしくは請求項23のいずれか一項記載の発現ベク
    ター、又は請求項24もしくは請求項25のいずれか一項記載のキットの使用。
  28. 【請求項28】 (i)組換えタンパク質をコードする少なくとも1個の核酸
    を、請求項22記載の発現ベクターへクローニングし、よってクローニングされた
    核酸が熱誘導可能プロモーターの転写制御下に置かれるような段階; (ii)熱誘導可能プロモーターの誘導及び組換えタンパク質の作製に適した宿主
    細胞に、(i)で得られた発現ベクターを導入する段階; (iii)(ii)で得られた宿主細胞を培養する段階; (iv)それ自体は既知の方法により熱誘導可能プロモーターを誘導する段階 を含む、一つ又は複数のタンパク質の作製のための方法。
  29. 【請求項29】 (i)熱誘導可能プロモーターの誘導及び組換えタンパク
    質の作製に適した宿主細胞に、請求項23記載の発現ベクターを導入する段階; (ii)(i)で得られた宿主細胞を培養する段階; (iii)それ自体が既知の方法により熱誘導可能プロモーターを誘導する段階 を含む、一つ又は複数のタンパク質の作製のための方法。
JP2000598645A 1999-02-11 2000-02-11 熱誘導可能プロモーター Expired - Fee Related JP3914389B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH00279/99A CH690127A5 (de) 1999-02-11 1999-02-11 Hitzeschock induzierter Promotor.
CH279/99 1999-02-11
PCT/EP2000/001144 WO2000047749A1 (de) 1999-02-11 2000-02-11 Hitzeinduzierbarer promotor

Publications (2)

Publication Number Publication Date
JP2002536020A true JP2002536020A (ja) 2002-10-29
JP3914389B2 JP3914389B2 (ja) 2007-05-16

Family

ID=4183386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000598645A Expired - Fee Related JP3914389B2 (ja) 1999-02-11 2000-02-11 熱誘導可能プロモーター

Country Status (14)

Country Link
US (1) US6852511B2 (ja)
EP (1) EP1151112B1 (ja)
JP (1) JP3914389B2 (ja)
KR (1) KR100473882B1 (ja)
AT (1) ATE455856T1 (ja)
AU (1) AU3422200A (ja)
BR (1) BRPI0008789B1 (ja)
CA (1) CA2362518C (ja)
CH (1) CH690127A5 (ja)
DE (1) DE50015851D1 (ja)
IL (2) IL144648A0 (ja)
RU (1) RU2230786C2 (ja)
TR (1) TR200102302T2 (ja)
WO (1) WO2000047749A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7901191B1 (en) 2005-04-07 2011-03-08 Parker Hannifan Corporation Enclosure with fluid inducement chamber
US8682619B2 (en) * 2005-12-14 2014-03-25 The Invention Science Fund I, Llc Device including altered microorganisms, and methods and systems of use
US8734823B2 (en) * 2005-12-14 2014-05-27 The Invention Science Fund I, Llc Device including altered microorganisms, and methods and systems of use
US8278094B2 (en) 2005-12-14 2012-10-02 The Invention Science Fund I, Llc Bone semi-permeable device
US20110183348A1 (en) * 2010-01-22 2011-07-28 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Compositions and methods for therapeutic delivery with microorganisms
US20110172826A1 (en) * 2005-12-14 2011-07-14 Amodei Dario G Device including altered microorganisms, and methods and systems of use
WO2011159153A2 (en) * 2010-06-15 2011-12-22 Universiteit Utrecht Holding B.V. Inducible promoter and its use
US11504427B2 (en) 2016-11-22 2022-11-22 The Regents Of The University Of California Acoustic and ultrasound-based mechanogenetics and thermogenetics for immunotherapy
WO2021050658A1 (en) * 2019-09-10 2021-03-18 The Regents Of The University Of California Ultrasound-based thermogenetics for immunotherapy

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5422254A (en) * 1992-02-14 1995-06-06 Oy Alko Ab Method to increase the trehalose content of organisms by transforming them with the structural genes for the short and long chains of yeast trehalose synthase
US5792921A (en) * 1992-02-14 1998-08-11 Londesborough; John Increasing the trehalose content of organisms by transforming them with combinations of the structural genes for trehalose synthase

Also Published As

Publication number Publication date
TR200102302T2 (tr) 2002-02-21
EP1151112A1 (de) 2001-11-07
EP1151112B1 (de) 2010-01-20
US20040086998A1 (en) 2004-05-06
AU3422200A (en) 2000-08-29
WO2000047749A1 (de) 2000-08-17
CH690127A5 (de) 2000-05-15
CA2362518A1 (en) 2000-08-17
KR100473882B1 (ko) 2005-03-08
CA2362518C (en) 2009-04-21
KR20010108200A (ko) 2001-12-07
DE50015851D1 (de) 2010-03-11
RU2230786C2 (ru) 2004-06-20
BRPI0008789B1 (pt) 2015-09-08
ATE455856T1 (de) 2010-02-15
IL144648A (en) 2007-08-19
IL144648A0 (en) 2002-05-23
US6852511B2 (en) 2005-02-08
JP3914389B2 (ja) 2007-05-16
BR0008789A (pt) 2001-11-06

Similar Documents

Publication Publication Date Title
Van Peij et al. Isolation and analysis of xlnR, encoding a transcriptional activator co‐ordinating xylanolytic expression in Aspergillus niger
Pan et al. Sok2 regulates yeast pseudohyphal differentiation via a transcription factor cascade that regulates cell-cell adhesion
Arellano et al. Schizosaccharomyces pombe protein kinase C homologues, pck1p and pck2p, are targets of rho1p and rho2p and differentially regulate cell integrity
Song et al. A novel suppressor of ras1 in fission yeast, byr4, is a dosage-dependent inhibitor of cytokinesis.
Dey et al. The Ydj1 molecular chaperone facilitates formation of active p60v-src in yeast.
Graham et al. In vivo analysis of functional regions within yeast Rap1p
Dombek et al. Functional analysis of the yeast Glc7-binding protein Reg1 identifies a protein phosphatase type 1-binding motif as essential for repression of ADH2 expression
Nolting et al. A STE12 homologue of the homothallic ascomycete Sordaria macrospora interacts with the MADS box protein MCM1 and is required for ascosporogenesis
JP3914389B2 (ja) 熱誘導可能プロモーター
US6555657B2 (en) Isolated transcription factor for an alpha-amylase promoter in filamentous fungi
EP0587788A1 (en) Methods and compositions of genetic stress response systems
US20050164393A1 (en) Method for identifying genes encoding signal sequences
EP0690874A1 (en) Materials and methods relating to proteins that interact with casein kinase i
Weber et al. Ectopic expression of a constitutively active Cdc42 small GTPase alters the morphology of haploid and dikaryotic hyphae in the filamentous homobasidiomycete Schizophyllum commune
Yakura et al. zds1, a novel gene encoding an ortholog of Zds1 and Zds2, controls sexual differentiation, cell wall integrity and cell morphology in fission yeast
Joseph et al. Calcium binding is required for calmodulin function in Aspergillus nidulans
JPH07163373A (ja) マルチクローニングベクター、発現ベクター、および異種蛋白質の生産
Chen et al. Colletotrichum trifolii TB3 kinase, a COT1 homolog, is light inducible and becomes localized in the nucleus during hyphal elongation
Jeong et al. Expression of the mnpA gene that encodes the mannoprotein of Aspergillus nidulans is dependent on fadA and flbA as well as veA
Tekinay et al. Genetic interactions of the E3 ubiquitin ligase component FbxA with cyclic AMP metabolism and a histidine kinase signaling pathway during Dictyostelium discoideum development
Franko et al. Molecular cloning and functional characterization of two murine cDNAs which encode Ubc variants involved in DNA repair and mutagenesis
US20050244861A1 (en) Nucleic acids essential for expression of hyphal-specific genes and methods for using the same
EP1716170A2 (en) Hyphal growth in fungi
US5912153A (en) (1,3) β-glucan synthase genes and inducible inhibition of fungal growth using the antisense constructs derived therefrom
Chulkin et al. Transcriptional regulator of carbon catabolite repression CreA of filamentous fungus Penicillium canescens

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050419

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051130

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060421

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060720

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3914389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees