JP2002528910A - Injection-molded soft magnetic powder composite material and method for producing the same - Google Patents

Injection-molded soft magnetic powder composite material and method for producing the same

Info

Publication number
JP2002528910A
JP2002528910A JP2000578824A JP2000578824A JP2002528910A JP 2002528910 A JP2002528910 A JP 2002528910A JP 2000578824 A JP2000578824 A JP 2000578824A JP 2000578824 A JP2000578824 A JP 2000578824A JP 2002528910 A JP2002528910 A JP 2002528910A
Authority
JP
Japan
Prior art keywords
alloy
injection
soft magnetic
powder
powder composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000578824A
Other languages
Japanese (ja)
Inventor
ブルンナー、マルクス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuumschmelze GmbH and Co KG
Original Assignee
Vacuumschmelze GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuumschmelze GmbH and Co KG filed Critical Vacuumschmelze GmbH and Co KG
Publication of JP2002528910A publication Critical patent/JP2002528910A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15358Making agglomerates therefrom, e.g. by pressing
    • H01F1/15366Making agglomerates therefrom, e.g. by pressing using a binder
    • H01F1/15375Making agglomerates therefrom, e.g. by pressing using a binder using polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Continuous Casting (AREA)

Abstract

(57)【要約】 ナノ結晶強磁性合金の少なくとも1つの合金粉末からなる射出成形された軟磁性材料において、この合金は合成樹脂に埋め込まれ、合金粉末が10〜70体積%の濃度で合成樹脂内に分配される。   (57) [Summary] In an injection-molded soft magnetic material comprising at least one alloy powder of a nanocrystalline ferromagnetic alloy, the alloy is embedded in a synthetic resin and the alloy powder is distributed in the synthetic resin at a concentration of 10 to 70% by volume.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】 本発明は射出成形された軟磁性粉末複合材料に関する。圧縮磁心としてのかか
る軟磁性粉末複合材料はずっと以前から公知であり、特に誘導性部品において使
用される。
The present invention relates to an injection-molded soft magnetic powder composite material. Such soft magnetic powder composites as compression cores have been known for a long time and are used in particular in inductive components.

【0002】 鉄粉からなる圧縮粉末複合材料は公知である。この磁心により約10〜300
の透磁率範囲が充分にカバーされる。この磁心で達成可能な飽和磁気誘導は約1
.6Tである。適用周波数は比較的低い比抵抗と鉄粒子の粒子サイズとにより標
準的には50kHz以下である。
[0002] Compressed powder composites of iron powder are known. About 10 to 300
Is sufficiently covered. The saturation magnetic induction achievable with this core is about 1
. 6T. The applied frequency is typically below 50 kHz due to the relatively low resistivity and the particle size of the iron particles.

【0003】 その他に、軟磁性結晶の鉄・アルミニウム・ケイ素合金からなる圧縮粉末複合
磁心が公知である。両粉末複合材料により20〜120の透磁率が1Tの飽和磁
気誘導において達成される。適用周波数は比較的高い比抵抗により100kHz
以上にまで達する。
[0003] In addition, a compressed powder composite core made of a soft magnetic crystal iron / aluminum / silicon alloy is known. With both powder composites, a magnetic permeability of 20-120 is achieved with 1T of saturation magnetic induction. Applicable frequency is 100kHz due to relatively high specific resistance
To reach more.

【0004】 飽和磁気誘導に関しては結晶質のニッケル・鉄合金をベースとする粉末複合材
料が最高である。この場合、ニッケル含有量により透磁率が約500の範囲にま
でもしくは飽和磁束密度が1.5T近くまで達成される。比較的小さいヒステリ
シス損失により100kHz以上までの周波数において適用することができる。
With regard to saturation magnetic induction, powder composites based on crystalline nickel-iron alloys are the best. In this case, depending on the nickel content, a magnetic permeability of up to about 500 or a saturation magnetic flux density of about 1.5T is achieved. It can be applied at frequencies up to and above 100 kHz due to the relatively small hysteresis loss.

【0005】 しかしながら、これら全ての公知の粉末複合材料にとって、その製造に使用さ
れるプレス技術により非常に簡単な構造形状しか実現できないという共通の欠点
がある。鉄粉複合材料の場合この構造は主として環状もしくは外鉄形磁心である
。他の上述の粉末複合材料では環状磁心しか作れない。さらに、良好な軟磁性特
性を得るために、鉄粉磁心を除いて、通常、成形に続いて熱処理が必要である。
[0005] However, a common disadvantage of all these known powder composites is that only very simple structural shapes can be realized by the pressing technique used for their production. In the case of iron powder composites, this structure is mainly an annular or outer iron core. With the other powder composites mentioned above, only annular magnetic cores can be made. Further, in order to obtain good soft magnetic properties, heat treatment is usually required following molding, except for the iron powder core.

【0006】 本発明の課題は、従って、簡単でコスト的に有利に複雑な構造形状及び同時に
良好な軟磁性特性を実現できる新たな粉末複合材料を提供することにある。
An object of the present invention is therefore to provide a new powder composite material which can achieve a simple and cost-effectively complex structural shape and at the same time good soft magnetic properties.

【0007】 この課題は、本発明によれば、粉末複合材料が射出成形可能な合成樹脂に埋め
込まれているナノ結晶強磁性合金の少なくとも1つの合金粉末からなり、この合
金粉末が合成樹脂に10〜70体積%の濃度で合成樹脂内に分配されていること
を特徴とする射出成形された軟磁性粉末複合材料によって解決される。
According to the invention, the object consists, in accordance with the invention, of at least one alloy powder of a nanocrystalline ferromagnetic alloy, which is embedded in an injection-moldable synthetic resin, the alloy powder being added to the synthetic resin. The problem is solved by an injection molded soft magnetic powder composite characterized by being distributed in a synthetic resin at a concentration of ~ 70% by volume.

【0008】 ナノ結晶合金を使用することにより、例えば高透磁率、非常に小さい保磁力、
非常に小さいヒステリシス損失、相対的に高い飽和磁気誘導及び殆ど磁気歪みが
ないというような優れた軟磁性特性が得られる。
[0008] By using nanocrystalline alloys, for example, high permeability, very low coercivity,
Excellent soft magnetic properties such as very low hysteresis loss, relatively high saturation magnetic induction and little magnetostriction are obtained.

【0009】 このようなナノ結晶合金は例えばヨーロッパ特許出願公開第0271657号
及び同第0455113号明細書により公知である。
[0009] Such nanocrystalline alloys are known, for example, from EP-A-0271657 and EP-A-0 455 113.

【0010】 これらの両特許明細書から明らかなように、これらの合金はそこに記載されて
いる溶融紡糸技術により薄板の形に製造され、この板材はナノ結晶組織を作るた
めに熱処理される。
As is evident from both of these patents, these alloys are produced in the form of sheets by the melt spinning technique described therein, and the sheets are heat treated to produce a nanocrystalline structure.

【0011】 さらに、射出成形された板材の磁気特性は磁界内で熱処理することにより調整
される。ナノ結晶板材は元来非常に脆弱であるので、この板材は大して苦労せず
に非常に容易に小片(フレーク)に細分化することができるが、その場合にも軟
磁性特性に目立った損傷は見られない。ナノ結晶の合金板を細分化することによ
り、標準的には10μm〜30μmの元々の板厚で、水平方向の寸法が特に0.
05〜2mmのフレークからなる合金粉末が得られる。これより小さい水平方向
の寸法は透磁率に悪影響する。合金粉末がさらになお細分化されると、その場合
必要となる製粉エネルギーに起因して組織の破壊や粉末の保磁力の明らかな上昇
につながる。
Further, the magnetic properties of the injection-molded plate are adjusted by heat treatment in a magnetic field. Because nanocrystalline sheet materials are inherently very fragile, they can be easily broken down into small pieces (flakes) without much difficulty, but even in this case, noticeable damage to soft magnetic properties can not see. By subdividing the nanocrystalline alloy plate, the original plate thickness is typically 10 μm to 30 μm, and the horizontal dimension is particularly 0.1 μm.
An alloy powder consisting of flakes of 0.5 to 2 mm is obtained. Horizontal dimensions smaller than this will adversely affect permeability. If the alloy powder is further subdivided, then the required milling energy will lead to tissue destruction and a distinct increase in the coercive force of the powder.

【0012】 これに対して、合金粉末を傷つけないように細分化、特に傷つけないように折
ると、ナノ結晶の初期材の保磁力を殆ど上回らない、従って粉末複合磁心の分野
において比類のないものとされる保磁力を得ることができる。
On the other hand, when the alloy powder is subdivided so as not to be damaged, especially when it is folded so as not to be damaged, it hardly exceeds the coercive force of the initial material of the nanocrystal, and is therefore unmatched in the field of powder composite magnetic core. Is obtained.

【0013】 これにより良好な軟磁性特性を作るかもしくは再生するための最終的な形状形
成後の熱処理は省略することができる。
[0013] This makes it possible to omit the heat treatment after the final shape formation for producing or reproducing good soft magnetic properties.

【0014】 高い動作周波数において使用するための充分なその他の前提は、一つには合金
自体の比抵抗ができるだけ高いこと、またその他には体積渦電流を抑制するため
の個別フレークの粒子絶縁がよいことである。ナノ結晶の半金属含有量は高いの
で、当然に比抵抗が高く、従って高い動作周波数における使用も容易に可能とな
る。
Other assumptions sufficient for use at high operating frequencies are, in part, that the specific resistance of the alloy itself is as high as possible, and, in addition, that the particle insulation of the individual flakes to suppress volume eddy currents. That is good. Due to the high metalloid content of the nanocrystals, they naturally have a high specific resistance and therefore can easily be used at high operating frequencies.

【0015】 体積渦電流を抑制するために、フレークは標準的にはしかしながら表面被膜が
施される。この表面被膜として特に適しているのは、一つにはフレークの表面酸
化であり、他には酸化ケイ素を含むポリマー、いわゆるシランもしくはこれから
作られたシラノールの被膜である。フレークの表面酸化と、さらにこの上にシラ
ンを被膜したものが特に優れた結果を生ずる。
[0015] To suppress volume eddy currents, the flakes are, however, typically surface-coated. Particularly suitable as this surface coating are coatings of polymers containing silicon oxide, so-called silanes or silanols made therefrom, in part on the surface oxidation of the flakes. Surface oxidation of the flakes and further coatings of silanes thereon give particularly good results.

【0016】 このように処理された合金粉末はその後射出成形される。射出成形のために必
要な合成樹脂はその場合この処理された合金粉末と捏ねられ、これにより生じた
混合物がその後通常の射出成形機で射出される。
[0016] The alloy powder thus treated is then injection molded. The synthetic resin required for injection molding is then kneaded with the treated alloy powder, and the resulting mixture is subsequently injected on a conventional injection molding machine.

【0017】 従来の技術から公知の方法に較べて、この場合、この合成樹脂は一時的に結合
剤として(即ち、この結合剤は射出成形に続いて、通常、成形品をさらに圧縮す
るために焼結プロセスによって再び除去される)だけでなく、電気絶縁体として
も機能する。
Compared to the methods known from the prior art, in this case, the synthetic resin is temporarily used as a binder (ie, the binder is usually used for further compaction of the molded article following injection molding. (Removed again by the sintering process), but also acts as an electrical insulator.

【0018】 ナノ結晶合金の合金粉末から成形品を製作する際に、工具でプレスする際に通
常使用される、工具の圧力及び温度のパラメータで、ナノ結晶合金の非常に小さ
い延性に起因して通常磁気材料における約65%の充填密度が得られることが判
明している。もっと高い充填密度は圧力が15t/cm2及び温度が約500℃
において初めて達成される。
A tool pressure and temperature parameter commonly used when stamping with a tool in making molded articles from alloy powders of the nanocrystalline alloy, due to the very small ductility of the nanocrystalline alloy It has been found that packing densities of typically about 65% in magnetic materials are obtained. Higher packing density is a pressure of 15 t / cm 2 and a temperature of about 500 ° C.
Is achieved for the first time.

【0019】 この程度のことは、しかしながら、ここに提案された射出成形方法により問題
なく達成できるので、この方法の使用によって適用技術的な欠点を甘受する必要
はない。
This degree can, however, be achieved without problems by the injection molding method proposed here, so that the use of this method does not have to suffer from the technical disadvantages of the application.

【0020】 この合成樹脂は射出成形後成形品に残り、結合剤の機能を果たす。使用される
合成樹脂の選択は、一つには射出成形プロセスの必要性に、他には得ようとする
成形品の性質に依拠している。
This synthetic resin remains in the molded article after the injection molding and functions as a binder. The choice of the synthetic resin used depends in part on the needs of the injection molding process and in others on the properties of the molding to be obtained.

【0021】 溶融物の粘性は小さく、成形品の永続使用温度に対する特性がよくかつ高温に
おける強度が大きいことが望まれる。
It is desired that the viscosity of the melt is small, the molded article has good properties with respect to the permanent use temperature, and has high strength at high temperatures.

【0022】 使用に当っては特にポリアミド並びにいわゆる液晶の合成樹脂が優れている。
耐熱性について著しい要求がある場合にはそれに応じた高温熱可塑性合成樹脂、
例えばポリフェニル硫化物が用いられる。
In use, polyamides and so-called liquid crystal synthetic resins are particularly excellent.
If there is a remarkable demand for heat resistance, high-temperature thermoplastic synthetic resin
For example, polyphenyl sulfide is used.

【0023】 上述の方法に従ってナノ結晶合金Fe73.5Cu1Nb3Si15.57と結合剤と
してポリアミドとを使用して、約0.7Tの飽和磁気誘導、10〜100の透磁
率μ並びに100kHzの周波数及び0.1Tの飽和磁気誘導において約60W
/kgのヒステリシス損失を示す射出成形された軟磁性磁心が製造された。
Using the nanocrystalline alloy Fe 73.5 Cu 1 Nb 3 Si 15.5 B 7 and polyamide as binder according to the method described above, a saturation magnetic induction of about 0.7 T, a permeability μ of 10 to 100 and a permeability of 100 kHz About 60W at frequency and 0.1T saturation magnetic induction
Injection molded soft magnetic cores with hysteresis loss of / kg were produced.

【0024】 その場合、上記の組成をもつナノ結晶板材が公知の溶融紡糸技術により成形さ
れ、次いで水素雰囲気中で熱処理されてナノ結晶組織を調整した。ついで熱処理
された合金の板材は約20μmの厚さと約1.5mmの水平方向の粒子寸法をも
つフレークに挽かれた。このようにして作られたフレークは400℃〜540℃
の温度で2時間酸化処理された。
In this case, the nanocrystalline sheet having the above composition was formed by a known melt spinning technique, and then heat-treated in a hydrogen atmosphere to adjust the nanocrystalline structure. The heat treated alloy sheet was then ground into flakes having a thickness of about 20 μm and a horizontal grain size of about 1.5 mm. The flakes made in this way are 400 ° C-540 ° C
At a temperature of 2 hours.

【0025】 この酸化の後フレークはシランで被覆され、これにより生じたシラン被膜は8
0〜200℃の温度で約1時間焼成された。シラン被膜の代りに膜を形成する他
の有機性のラッカーを使用することもできる。ただこの場合の前提は、この樹脂
が射出成形のために必要な温度に対して充分な熱的安定性を持っていることであ
る。
After this oxidation, the flakes are coated with silane, and the resulting silane coating is
It was fired at a temperature of 0 to 200 ° C. for about 1 hour. Other organic lacquers which form the film can be used instead of the silane film. The prerequisite in this case, however, is that the resin has sufficient thermal stability for the temperatures required for injection molding.

【0026】 この意味において、それ故、可溶性のポリアミド樹脂或いはシラン樹脂の使用
も考慮される。この付加的な表面被膜によりヒステリシス損失のさらなる改善が
達成可能である。このように処理されたフレークは次いでポリアミドと捏ねられ
(混合され)、最後に射出成形される。
In this sense, therefore, the use of soluble polyamide resins or silane resins is also considered. With this additional surface coating a further improvement of the hysteresis loss can be achieved. The flakes thus treated are then kneaded (mixed) with the polyamide and finally injection molded.

【0027】 上記に提示された方法において、使用されたシランは射出成形に必要な合成樹
脂に対しても両立することは特筆される。ポリアミドを合成樹脂として使用する
場合例えばアミノシランが使用され、ポリフェニルを使用する場合グリシジルシ
ランが使用される。
It is noted that in the method presented above, the silane used is compatible with the synthetic resin required for injection molding. When using polyamide as a synthetic resin, for example, aminosilane is used, and when using polyphenyl, glycidylsilane is used.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C23C 8/10 C23C 8/10 22/00 22/00 Z Fターム(参考) 4E004 DB01 TA02 TA03 4K017 AA06 BA06 BB01 BB04 BB05 BB06 BB09 BB11 BB12 DA02 ED06 4K018 AA24 BA16 BC18 CA29 KA44 4K026 AA02 AA23 BA01 BA02 BA08 BB05 CA16 CA37 EA17 5E041 AC05 HB15 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C23C 8/10 C23C 8/10 22/00 22/00 Z F term (Reference) 4E004 DB01 TA02 TA03 4K017 AA06 BA06 BB01 BB04 BB05 BB06 BB09 BB11 BB12 DA02 ED06 4K018 AA24 BA16 BC18 CA29 KA44 4K026 AA02 AA23 BA01 BA02 BA08 BB05 CA16 CA37 EA17 5E041 AC05 HB15

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】粉末複合材料が射出成形可能な合成樹脂に埋め込まれているナ
ノ結晶強磁性合金の少なくとも1つの合金粉末からなり、この合金粉末が10〜
70体積%の濃度で前記合成樹脂内に分配されていることを特徴とする射出成形
された軟磁性粉末複合材料。
The powder composite comprises at least one alloy powder of a nanocrystalline ferromagnetic alloy embedded in an injection-moldable synthetic resin, wherein the alloy powder is 10 to 10 nm.
An injection-molded soft magnetic powder composite material which is distributed in the synthetic resin at a concentration of 70% by volume.
【請求項2】合金粉末が0.05〜2mmの平均粒子サイズを持っているこ
とを特徴とする請求項1に記載の射出成形された軟磁性粉末複合材料。
2. The injection-molded soft magnetic powder composite according to claim 1, wherein the alloy powder has an average particle size of 0.05 to 2 mm.
【請求項3】粉末複合材料が飽和磁化BS>0.5Tと、透磁率10≦μ≦
200を持っていることを特徴とする請求項1又は2に記載の射出成形された軟
磁性粉末複合材料。
3. The powder composite material has a saturation magnetization B S > 0.5 T and a magnetic permeability of 10 ≦ μ ≦
3. The injection-molded soft magnetic powder composite according to claim 1, wherein the composite has 200.
【請求項4】ナノ結晶強磁性合金がほぼ次の式 (Fe1-aa100-x-y-z-αCuxSiyzM’α (但し、MはCo及び/又はNi、M’は元素のNb,W,Ta,Zr,Hf,
Ti、Moの少なくとも1つであり;a,x,y,z,αはそれぞれ条件0≦a
≦0.5、0.1≦x≦3、0≦y≦30、0≦z≦25、5≦y+z≦30、
0.1≦α≦30を満たす)からなる組成を有し、 合金構造の少なくとも50%は100nm以下の平均粒子サイズをもつ微結晶
粒子で占められていることを特徴とする射出成形された軟磁性粉末複合材料。
4. The nanocrystalline ferromagnetic alloy substantially following formula (Fe 1-a M a) 100-xyz- αCu x Si y B z M'α ( where, M is Co and / or Ni, M 'is The elements Nb, W, Ta, Zr, Hf,
A, x, y, z and α are each at least one of Ti and Mo;
≦ 0.5, 0.1 ≦ x ≦ 3, 0 ≦ y ≦ 30, 0 ≦ z ≦ 25, 5 ≦ y + z ≦ 30,
0.1 ≦ α ≦ 30), wherein at least 50% of the alloy structure is occupied by microcrystalline particles having an average particle size of 100 nm or less. Magnetic powder composite material.
【請求項5】ナノ結晶強磁性合金がほぼ次の式 (Fe1-aa100-x-y-z-α-β-γCuxSiyzM’αM”βXγ (但し、MはCo及び/又はNi、M’は元素のNb,W,Ta,Zr,Hf,
Ti,Moの少なくとも1つ;M”は元素のV,Cr,Mn,Alの少なくとも
1つ、白金族の1つの元素、Sc,Yの1つの希土類元素、Au,Zn,Sn及
び/又はRe;Xは元素のC,Ge,P,Ga,Sb,In,Bi,Asの少な
くとも1つ;a,x,y,z,α,β,γはそれぞれ条件0≦a≦0.5、0.
1≦x≦3、0≦y≦30、0≦z≦25、5≦y+z≦30、0.1≦α≦3
0、β≦10、γ≦10を満たす)からなる組成を有し、 合金構造の少なくとも50%が100nm以下の平均粒子サイズをもつ微結晶
粒子であることを特徴とする射出成形された軟磁性粉末複合材料。
5. The nanocrystalline ferromagnetic alloy substantially following formula (Fe 1-a M a) 100-xyz- α - β - γCu x Si y B z M'αM "βXγ ( where, M is Co and / Or Ni and M ′ are elements of Nb, W, Ta, Zr, Hf,
At least one of Ti and Mo; M ″ is at least one of the elements V, Cr, Mn and Al, one element of the platinum group, one rare earth element of Sc and Y, Au, Zn, Sn and / or Re. X is at least one of the elements C, Ge, P, Ga, Sb, In, Bi, and As; a, x, y, z, α, β, and γ are conditions 0 ≦ a ≦ 0.5, 0, respectively. .
1 ≦ x ≦ 3, 0 ≦ y ≦ 30, 0 ≦ z ≦ 25, 5 ≦ y + z ≦ 30, 0.1 ≦ α ≦ 3
0, β ≦ 10, γ ≦ 10), wherein at least 50% of the alloy structure is microcrystalline particles having an average particle size of 100 nm or less. Powder composite.
【請求項6】ナノ結晶強磁性合金がほぼ次の式 (Fe1-aabxM’yM”z (但し、Mは元素のCo及び/又はNi、M’はTi,Zr,Hf,V,Nb,
Ta,Mo,Wの少なくとも1つ、この場合Zr及び/又はHfは常に含まれ;
M”は元素のCu,Ag,Au,Pd,Ptの少なくとも1つであり;a,b,
x,y,zはそれぞれ条件0≦a≦0.05、0≦b≦93,0.5≦x≦16
,4≦y≦10、0≦z≦4.5である)からなる組成を有していることを特徴
とする射出成形された軟磁性粉末複合材料。
6. The nanocrystalline ferromagnetic alloy has a formula (Fe 1 -a M a ) b B x M ′ y M ″ z (where M is the element Co and / or Ni, M ′ is Ti, Zr, Hf, V, Nb,
At least one of Ta, Mo, W, in this case Zr and / or Hf, is always included;
M "is at least one of the elements Cu, Ag, Au, Pd, Pt; a, b,
x, y, and z are conditions 0 ≦ a ≦ 0.05, 0 ≦ b ≦ 93, and 0.5 ≦ x ≦ 16, respectively.
, 4 ≦ y ≦ 10, 0 ≦ z ≦ 4.5), wherein the soft magnetic powder composite material is injection-molded.
【請求項7】合成樹脂としてポリアミドが使用されていることを特徴とする
請求項1乃至6の1つに記載の射出成形された軟磁性粉末複合材料。
7. The injection-molded soft magnetic powder composite material according to claim 1, wherein a polyamide is used as the synthetic resin.
【請求項8】合成樹脂としてポリフェニル硫化物が使用されていることを特
徴とする請求項1乃至6の1つに記載の射出成形された軟磁性粉末複合材料。
8. The soft magnetic powder composite material according to claim 1, wherein polyphenyl sulfide is used as the synthetic resin.
【請求項9】ナノ結晶強磁性合金からなる合金粉末を製造し、この合金粉末
を少なくとも1つの有機結合剤とともに捏ね、これにより生じた混合物を射出成
形する工程を備えた請求項1乃至8に記載の射出成形された軟磁性粉末複合材料
の製造方法。
9. The method according to claim 1, further comprising the steps of: producing an alloy powder comprising a nanocrystalline ferromagnetic alloy; kneading the alloy powder together with at least one organic binder; and injection-molding the resulting mixture. A method for producing the injection-molded soft magnetic powder composite according to the above.
【請求項10】合金粉末を溶融紡糸技術により作られた薄い合金板の細分化
により作ることを特徴とする請求項9に記載の方法。
10. The method according to claim 9, wherein the alloy powder is produced by subdivision of a thin alloy plate produced by a melt spinning technique.
【請求項11】合金板が細分化の前に熱処理されることを特徴とする請求項
9又は10の1つに記載の方法。
11. The method according to claim 9, wherein the alloy sheet is heat-treated before fragmentation.
【請求項12】合金粉末が表面酸化されることを特徴とする請求項9乃至1
1の1つに記載の方法。
12. The method according to claim 9, wherein the surface of the alloy powder is oxidized.
A method according to one of the preceding claims.
【請求項13】合金粉末が400℃<T<540℃の温度で0.1h<t<
5hの時間に亘って表面酸化されることを特徴とする請求項12に記載の方法。
13. The alloy powder having a temperature of 400 ° C. <T <540 ° C. and a temperature of 0.1 h <t <
13. The method according to claim 12, wherein the surface is oxidized for a period of 5 h.
【請求項14】表面酸化処理された合金粉末がシランの被膜を備えることを
特徴とする請求項12又は13に記載の方法。
14. A method according to claim 12, wherein the surface-oxidized alloy powder comprises a silane coating.
【請求項15】シランの被膜が80℃≦T’≦200℃の温度で0.1h≦
t’≦3hの時間焼成されることを特徴とする請求項14に記載の方法。
15. A film of silane having a temperature of 80 ° C. ≦ T ′ ≦ 200 ° C. for 0.1 h ≦
The method according to claim 14, wherein the calcination is performed for a time of t '? 3h.
【請求項16】誘導性部品の製造のために請求項1乃至8の1つに記載の粉
末複合材料を使用する方法。
16. Use of the powder composite according to one of claims 1 to 8 for the production of an inductive component.
JP2000578824A 1998-10-28 1999-10-28 Injection-molded soft magnetic powder composite material and method for producing the same Pending JP2002528910A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19849781A DE19849781A1 (en) 1998-10-28 1998-10-28 Injection molded soft magnetic powder composite and process for its manufacture
DE19849781.4 1998-10-28
PCT/DE1999/003444 WO2000025326A1 (en) 1998-10-28 1999-10-28 Injection-molded soft-magnetic powder composite material and method for producing the same

Publications (1)

Publication Number Publication Date
JP2002528910A true JP2002528910A (en) 2002-09-03

Family

ID=7885981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000578824A Pending JP2002528910A (en) 1998-10-28 1999-10-28 Injection-molded soft magnetic powder composite material and method for producing the same

Country Status (4)

Country Link
EP (1) EP1125307A1 (en)
JP (1) JP2002528910A (en)
DE (1) DE19849781A1 (en)
WO (1) WO2000025326A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006304594A (en) * 2005-04-22 2006-11-02 Isa Innovation Sa Grooved part of electric motor
CN107564646A (en) * 2016-07-30 2018-01-09 宋震天 A kind of manufacture method of Inductive component for inductor

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10024824A1 (en) * 2000-05-19 2001-11-29 Vacuumschmelze Gmbh Inductive component and method for its production
CN100424505C (en) * 2005-12-21 2008-10-08 宋京伟 Vortex detecting method of plastic product crack
DE102006028389A1 (en) * 2006-06-19 2007-12-27 Vacuumschmelze Gmbh & Co. Kg Magnetic core, formed from a combination of a powder nanocrystalline or amorphous particle and a press additive and portion of other particle surfaces is smooth section or fracture surface without deformations
US9057115B2 (en) 2007-07-27 2015-06-16 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and process for manufacturing it
DE102010017901A1 (en) * 2010-04-21 2011-10-27 Abb Ag Electro-magnetic trigger for circuit breakers e.g. residual current circuit breaker, comprises fixed magnetic core, movable armature, coil tube, and coil, where fixed magnetic core and movable armature are arranged in coil tube
DE102015105431A1 (en) * 2015-04-09 2016-10-13 Volkswagen Ag Process for producing a soft magnetic body
JP6761742B2 (en) * 2016-11-24 2020-09-30 山陽特殊製鋼株式会社 Magnetic powder used at high frequency and magnetic resin composition containing it
DE102021109597A1 (en) 2021-04-16 2022-10-20 Magnetec Gmbh Magnetic field sensitive component, manufacturing process and use

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4197146A (en) * 1978-10-24 1980-04-08 General Electric Company Molded amorphous metal electrical magnetic components
US4385944A (en) * 1980-05-29 1983-05-31 Allied Corporation Magnetic implements from glassy alloys
JPS57176704A (en) * 1981-04-23 1982-10-30 Fujitsu Ltd Manufacture of core
JPS59129405A (en) * 1983-01-14 1984-07-25 Kijima Musen Kk Core of winding part
EP0205786B1 (en) * 1985-06-26 1990-01-31 Kabushiki Kaisha Toshiba Magnetic core and preparation thereof
JPS62226603A (en) * 1986-03-28 1987-10-05 Hitachi Metals Ltd Amophous dust core and manufacture thereof
DE3876529T2 (en) * 1987-07-31 1993-06-24 Tdk Corp MAGNETIC SOFT IRON POWDER FOR SHAPING MAGNETIC SHIELDING, CONNECTION AND METHOD FOR PRODUCING IT.
US4876305A (en) * 1987-12-14 1989-10-24 The B. F. Goodrich Company Oxidation resistant compositions for use with rare earth magnets
DE69015881T2 (en) * 1989-05-27 1995-09-14 Tdk Corp Soft magnetic alloy, manufacturing process, magnetic core, magnetic shield and pressed magnetic core with it.
GB9211145D0 (en) * 1992-05-26 1992-07-08 Abbott A D Polymer bonded soft magnetic materials
DE69306481T2 (en) * 1992-06-15 1997-04-30 Kureha Chemical Ind Co Ltd Resin bonded magnetic composition and castings therefrom
JPH07153628A (en) * 1993-11-26 1995-06-16 Hitachi Metals Ltd Choke coil for active filter, active filter circuit and power-supply device using that
DE19608891A1 (en) * 1996-03-07 1997-09-11 Vacuumschmelze Gmbh Toroidal choke for radio interference suppression of semiconductor circuits using the phase control method
US6102980A (en) * 1997-03-31 2000-08-15 Tdk Corporation Dust core, ferromagnetic powder composition therefor, and method of making

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006304594A (en) * 2005-04-22 2006-11-02 Isa Innovation Sa Grooved part of electric motor
CN107564646A (en) * 2016-07-30 2018-01-09 宋震天 A kind of manufacture method of Inductive component for inductor

Also Published As

Publication number Publication date
EP1125307A1 (en) 2001-08-22
WO2000025326A1 (en) 2000-05-04
DE19849781A1 (en) 2000-05-11

Similar Documents

Publication Publication Date Title
TWI697571B (en) Soft magnetic alloys and magnetic parts
CN108376598B (en) Soft magnetic alloy and magnetic component
CN108461245B (en) Soft magnetic alloy and magnetic component
KR102031183B1 (en) Soft magnetic alloy and magnetic device
TW201828309A (en) Soft magnetic alloy and magnetic device
JP6981200B2 (en) Soft magnetic alloys and magnetic parts
JP4968519B2 (en) Permanent magnet and method for manufacturing the same
JPH04329847A (en) Manufacture of fe-ni alloy soft magnetic material
JP2002528910A (en) Injection-molded soft magnetic powder composite material and method for producing the same
JPH0257662A (en) Rapidly cooled thin strip alloy for bond magnet
JP2003059710A (en) Dust core
JP2003257763A (en) Manufacturing method for rare earth permanent magnet
JP6981199B2 (en) Soft magnetic alloys and magnetic parts
JP2005347641A (en) Dust core, its manufacturing method, and winding component
JPS61154014A (en) Dust core
JP4257846B2 (en) Method for producing soft magnetic compact
JPS59179729A (en) Magnetic core of amorphous alloy powder compact
JPH09263913A (en) Hard magnetic alloy compacted body and its production
JPH10324958A (en) Hard magnetic alloy compacted body, its production and thin type hard magnetic alloy compacted body
JP2004014613A (en) PROCESS FOR PRODUCING Fe-Co BASED COMPOSITE SOFT MAGNETIC SINTERED ALLOY HAVING HIGH DENSITY AND HIGH PERMEABILITY
JPS62256411A (en) Permanent magnet with outstanding resistance to oxidation
JPH09194911A (en) Production of raw material powder for permanent magnet excellent in moldability
JP2004014614A (en) METHOD FOR PRODUCING Fe-Si BASED SOFT MAGNETISM SINTERED ALLOY HAVING HIGH DENSITY AND HIGH PERMEABILITY
JPH02141501A (en) Alloy powder for permanent magnet
KR940003340B1 (en) Magnetic materials