JP2002510030A - Heat exchanger tube, method of manufacturing heat exchanger tube, and condenser - Google Patents

Heat exchanger tube, method of manufacturing heat exchanger tube, and condenser

Info

Publication number
JP2002510030A
JP2002510030A JP2000541472A JP2000541472A JP2002510030A JP 2002510030 A JP2002510030 A JP 2002510030A JP 2000541472 A JP2000541472 A JP 2000541472A JP 2000541472 A JP2000541472 A JP 2000541472A JP 2002510030 A JP2002510030 A JP 2002510030A
Authority
JP
Japan
Prior art keywords
heat exchanger
exchanger tube
surface layer
chromium
coating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000541472A
Other languages
Japanese (ja)
Other versions
JP4276382B2 (en
Inventor
シュミット、フリートヘルム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of JP2002510030A publication Critical patent/JP2002510030A/en
Application granted granted Critical
Publication of JP4276382B2 publication Critical patent/JP4276382B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/02Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using water or other liquid as the cooling medium

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

(57)【要約】 外側の表面層(2)と、この外側の表面層により囲まれる内側の表面層(3)とを備え、これらの表面層が互いに固定結合されている、特に復水器(10)用の熱交換器管(1)において、一方の表面層が高耐食性の被覆材料(4)からなり、他方の表面層がそれより低い耐食性の基材(5)からなる。この発明は、さらに、この熱交換器管の製造方法及び復水器に関する。 (57) Abstract: A condenser comprising an outer surface layer (2) and an inner surface layer (3) surrounded by the outer surface layer, wherein the surface layers are fixedly connected to each other, in particular, a condenser. In the heat exchanger tube (1) for (10), one surface layer is made of a high corrosion resistant coating material (4), and the other surface layer is made of a lower corrosion resistant base material (5). The present invention further relates to a method for manufacturing the heat exchanger tube and a condenser.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】 この発明は、外側の表面層と、この外側の表面層に囲まれている内側の表面層
とを備えた、特に復水器用の熱交換器管に関する。
The present invention relates to a heat exchanger tube, particularly for a condenser, having an outer surface layer and an inner surface layer surrounded by the outer surface layer.

【0002】 熱交換器管は、媒体の熱を他の媒体に伝達するいろいろな種類の熱交換器にお
いて使用される。これにより、例えば媒体を蒸発するまで加熱したり、媒体を凝
縮するまで冷却したりすることができる。フィシャー企業グループの情報誌「管
技術の今日」、7/95、には、「D1L−最新の管コンセプトの新しい公式」
なる論文で、排ガス設備、特に排ガス曲管用の二重壁管が記載されている。この
二重壁管は特殊鋼で作られ、これにより平滑で、流れ状態のよい管内面が得られ
る。この二重壁管を製造するために、2つのスリット帯板を連続プロセスで圧延
形成し、その突き合わせ端でレーザ溶接により溶接する。このようにして製造し
た二重壁管は、従来公知の二重壁管のように、共通の溶接継ぎ目で互いに結合さ
れた2つの管壁からなっている。かくして製造した二重壁管においては、ただ1
つの接続を溶接継ぎ目により行っているので、内管と外管の分かれ目において音
響の伝達を有効に遮断し、その結果このような二重壁管で有効な音響絶縁を行え
ることが示されている。
[0002] Heat exchanger tubes are used in various types of heat exchangers that transfer the heat of a medium to another medium. Thereby, for example, the medium can be heated until it evaporates or the medium can be cooled until it condenses. "D1L-a new formula for the latest tube concept" in the Fischer Corporate Group's information magazine "Today in Tube Technology", 7/95.
In a dissertation, a double wall pipe for exhaust gas installations, in particular for bent exhaust pipes, is described. This double-walled tube is made of special steel, which results in a smooth, well-flowing tube inner surface. To produce this double-walled tube, two slit strips are roll formed in a continuous process and are welded at their butt ends by laser welding. The double-walled pipe produced in this way consists of two pipe walls which are connected to one another by a common weld seam, as is the case for the double-walled pipes known in the prior art. In a double-walled tube manufactured in this way, only one
Since the two connections are made by welding seams, it has been shown that sound transmission can be effectively cut off at the junction between the inner and outer tubes, resulting in effective acoustic insulation with such a double-walled tube .

【0003】 ヨーロッパ特許第0619466号明細書には、蒸気復水器として説明された
熱交換器が示されている。この熱交換器は蒸気タービン用の長方形構造の表面復
水器である。この復水器は、この場合、排出蒸気短管を介して蒸気タービンに接
続され、これを介して蒸気が復水器の首部に流入する。この復水器は熱交換器管
の束を備え、その外側を全長にわたり蒸気が流れる。熱交換器管の内部は冷却水
が貫流する。熱交換器管の各束は、熱交換器管に対し垂直に配置された支え板に
より幾つかの区分に分割されている。
[0003] EP 0619466 shows a heat exchanger described as a steam condenser. This heat exchanger is a rectangular surface condenser for a steam turbine. This condenser is in this case connected to a steam turbine via a short steam discharge pipe, through which steam flows into the neck of the condenser. The condenser comprises a bundle of heat exchanger tubes through which steam flows over its entire length. Cooling water flows through the inside of the heat exchanger tube. Each bundle of heat exchanger tubes is divided into several sections by support plates arranged perpendicular to the heat exchanger tubes.

【0004】 オーストリー特許第AT350286号明細書は、例えば自動車用の、アルミ
ニウムラジエータ形の熱交換器管を開示している。この熱交換器管は、2つの異
なるアルミニウム合金を互いに圧延固定した複合管である。これにおいては、異
なるアルミニウム合金のそれぞれ2つの薄板が互いに圧延固定されている。この
ように圧延固定された帯板は、その継ぎ目を溶接することにより円管に形成され
る。この熱交換器管は、内面に耐食性のアルミニウム合金(被膜、メッキ)を、
外面にこれより遙かに厚い、基材としてのアルミニウム合金を備えている。内面
被膜の材料は、この場合、水を含む環境において、例えば自動車のラジエータに
おいて不凍液に起因して、基材に対し陽極性である。これによって、もし被膜に
局部的に孔があくと、相対的に大きな陽極(被膜)と小さな陰極とにより発生す
る電流が基材に孔の空くのを阻止し、これをそれ以上破壊しないように陰極的に
保護する作用を持つことになる。
[0004] Austrian Patent AT 350286 discloses a heat exchanger tube of the aluminum radiator type, for example for motor vehicles. This heat exchanger tube is a composite tube in which two different aluminum alloys are rolled and fixed to each other. In this case, two thin plates of different aluminum alloys are each rolled and fixed to one another. The strip fixed by rolling in this manner is formed into a circular pipe by welding the joint. This heat exchanger tube is made of a corrosion-resistant aluminum alloy (coating, plating) on the inner surface,
The outer surface is provided with a much thicker aluminum alloy as the substrate. The material of the inner coating is in this case anodic to the substrate in a water-containing environment, for example due to antifreeze in the radiator of a motor vehicle. This prevents the current generated by the relatively large anode (coating) and the small cathode from puncturing the substrate if the coating is locally punctured, so that it is not destroyed further. It has the effect of protecting the cathode.

【0005】 フランス特許出願第2389863号明細書には、冷蔵庫或いは暖房装置に使
用される、複合材からなる熱交換器管が記載されている。この熱交換器管は、こ
の場合、アルミニウム合金からなる管状の基材を備え、この基材は内側もまた外
側も、別のアルミニウム・シリコン合金で被膜されている。
[0005] French patent application 2,389,863 describes a heat exchanger tube made of composite material for use in refrigerators or heating devices. The heat exchanger tube in this case comprises a tubular substrate made of an aluminum alloy, which substrate is coated both inside and outside with another aluminum-silicon alloy.

【0006】 この発明の課題は、高い耐食性を持つ熱交換器管を提供することにある。この
発明のその他の課題は、このような熱交換器管の製造方法並びにこのような熱交
換器管を使用した復水器を提供することにある。
An object of the present invention is to provide a heat exchanger tube having high corrosion resistance. Another object of the present invention is to provide a method for manufacturing such a heat exchanger tube and a condenser using such a heat exchanger tube.

【0007】 この発明によれば、最初に挙げた課題は、外側の表面層と、この外側の表面層
によって囲まれている内側の表面層とを備えた、特に復水器用の熱交換器管にお
いて、これらの表面層が互いに固く結合され、一方の表面層が高耐食性の被覆材
料からなり、他方の表面層がそれより低い耐食性の基材からなり、この低耐食性
の基材が10重量%以上のクロム成分を含むクロム鋼及び/又はこの被覆材料が
20重量%以上のクロム成分を含む非腐食性クロム鋼或いはチタン、タンタル又
はジルコニウム合金であることによって解決される。
According to the present invention, the first object is to provide a heat exchanger tube, particularly for a condenser, having an outer surface layer and an inner surface layer surrounded by the outer surface layer. Wherein the surface layers are firmly bonded to each other, one surface layer comprises a high corrosion resistant coating material, the other surface layer comprises a lower corrosion resistant substrate, and the low corrosion resistant substrate comprises 10% by weight. The problem is solved by the chromium steel containing the above chromium component and / or the coating material is a non-corrosive chromium steel or a titanium, tantalum or zirconium alloy containing not less than 20% by weight of the chromium component.

【0008】 この発明は、この場合、熱交換器管が、良熱伝導性の他に、特に腐食性の水、
例えば海水、汽水或いは汚染河川水に接触するときに、特に含有塩分、有機性含
有物質或いは水又は他の媒体の化学的処理に基づき、高い耐食性を要求されると
いう認識に基づいている。高い熱伝導性と、これに伴う高い熱交換性とは、特に
熱交換器管の壁厚を薄くすることにより達成できる。例えば、非腐食性の鋼或い
はチタンからなる熱交換器管用の材料においては、高耐食性を達成し、薄壁構成
により同時に高い熱交換性を達成することが可能であり、しかも、銅合金からな
る熱交換器管とは異なり、長期にわたって使用しても殆ど壁厚の減少が起こらな
い。特に、著しい耐食性の材料(物質)、例えばモリブデンを含む、非腐食性の
CrNi鋼、チタン、ジルコニウム及びタンタル合金の場合には、材料及び製造
コストが高いので壁厚を減らすことは大きなコスト節減に繋がる。勿論、この場
合、製造性、加工性及び負荷強度に関しては限界があるので、例えば基材が一定
の厚さを下回ると、管を製造するためにその製造プロセスが明らかに高騰し、こ
のような熱交換器管の組立は、特に損傷の危険が増大することを考えると、より
難しくなる。さらに、このような材料は熱交換器管を、例えば復水器或いは熱交
換器の管底に固定する際に問題になる。というのは、管底において管を広げるこ
とによって接着強度及び密封性が小さくなるからである。このことは、特に、例
えばスーパーオーステナイト、スーパージュプレックス或いはスーパーフェライ
トのような高耐食性である非腐食性鋼が、その合金組成により高い強度を持って
いるので、これらの非腐食性鋼が低合金化、低強度の鋼板からなる管底において
、特に薄い管壁厚さ及びルート間隔において、充分に固着し、密封することがで
きないことに起因する。高耐食性の材料或いはチタンからなるこのような熱交換
器管においては、従って、これらを被覆された管底に溶接することが必要になる
。しかしこのためには、極めて時間がかかる。その上、高耐食性の材料からなる
このような管の振動強度は小さく、かかる薄壁の熱交換器管の振動を抑制するた
めに使用される支え板の数が大きくならざるを得ず、これに伴ない熱交換器、特
に復水器の製造における構造的経費が高騰する。
According to the invention, the heat exchanger tubes, in addition to the good thermal conductivity, have, in particular, corrosive water,
It is based on the recognition that high corrosion resistance is required, for example, when coming into contact with seawater, brackish water or polluted river water, especially due to the chemical treatment of the salt content, organic content or water or other media. High thermal conductivity and consequently high heat exchange can be achieved, in particular, by reducing the wall thickness of the heat exchanger tubes. For example, in a material for a heat exchanger tube made of non-corrosive steel or titanium, it is possible to achieve high corrosion resistance and at the same time achieve a high heat exchange property by a thin-walled structure, and furthermore, it is made of a copper alloy. Unlike heat exchanger tubes, there is little wall thickness reduction over long periods of use. Particularly in the case of non-corrosive CrNi steels, titanium, zirconium and tantalum alloys, which contain significantly corrosion-resistant materials, for example molybdenum, the high material and production costs make reducing the wall thickness a significant cost saving. Connect. Of course, in this case, there is a limit in terms of manufacturability, workability and load strength, so that, for example, if the base material falls below a certain thickness, the manufacturing process for manufacturing the tube will obviously increase, and such a process will increase. Assembly of the heat exchanger tubes becomes more difficult, especially given the increased risk of damage. Furthermore, such materials are problematic when fixing the heat exchanger tubes, for example, to the condenser or to the bottom of the heat exchanger tubes. This is because spreading the tube at the bottom of the tube reduces the adhesive strength and the sealability. This is especially true because non-corrosive steels, such as super austenitic, super-duplex or super ferrite, which have high corrosion resistance have a higher strength due to their alloy composition. This is due to the fact that it cannot be sufficiently fixed and sealed at the bottom of a tube made of a low-strength steel plate, particularly at a small tube wall thickness and a route interval. In such heat exchanger tubes made of highly corrosion resistant materials or titanium, it is therefore necessary to weld them to the coated tube bottom. However, this takes a very long time. In addition, the vibration strength of such tubes made of highly corrosion resistant materials is low, and the number of support plates used to suppress the vibration of such thin-walled heat exchanger tubes must be increased. As a result, the structural costs in the production of heat exchangers, especially condensers, increase.

【0009】 高耐食性の材料と、それより耐食性の低い材料とからなる複合材を備えたこの
発明による熱交換器管により、比較的強度が高く、高耐食性の被覆材料と、低合
金化、低強度の基材とを備え、管底においても簡単に固定ができまた薄い壁厚に
おいても振動強度の優れた熱交換器管が得られる。熱交換器管の要求に応じ、外
側の表面層或いは内側の表面層のいずれかに高耐食性の被覆材料を備えることが
できる。例えば熱交換器管の内部を腐食作用を持つ媒体、例えば塩分を含む水が
貫流する場合、内側の表面層を高耐食性の被覆材料とする。これに対し、熱交換
器管の外側を腐食性の媒体が環流するときには、外側の表面層を高耐食性の被覆
材料とする。
[0009] The heat exchanger tube according to the present invention, comprising a composite of a material having high corrosion resistance and a material having lower corrosion resistance, provides a coating material having relatively high strength and high corrosion resistance, and a low alloying and low alloying material. A heat exchanger tube which has a strong base material, can be easily fixed even at the bottom of the tube, and has excellent vibration strength even with a small wall thickness. Depending on the requirements of the heat exchanger tube, either the outer surface layer or the inner surface layer can be provided with a highly corrosion resistant coating material. For example, when a medium having a corrosive action, for example, water containing salt, flows through the inside of the heat exchanger tube, the inner surface layer is made of a highly corrosion-resistant coating material. On the other hand, when the corrosive medium circulates outside the heat exchanger tubes, the outer surface layer is made of a highly corrosion-resistant coating material.

【0010】 この熱交換器管は特に薄壁状に形成するのがよく、これにより内部に流れる媒
体と管壁の回りを流れる媒体との間の良好な熱伝達が行える。この壁厚は、その
場合、0.3〜2mmの間、特に蒸気タービンの復水器用の熱交換器管として適
用する場合には約0.5mmの範囲にあるのがよい。
[0010] The heat exchanger tube is particularly preferably formed in a thin-walled form, so that a good heat transfer between the medium flowing inside and the medium flowing around the tube wall can be achieved. This wall thickness may then be in the range between 0.3 and 2 mm, especially about 0.5 mm when applied as a heat exchanger tube for a steam turbine condenser.

【0011】 被覆材料からなる表面層の部分の厚さは、基材からなる表面層の部分の厚さよ
り薄いのがよい。特に、基材の部分の厚さは被覆材料の部分の厚さの1.5倍で
あるのがよい。これにより腐食性の媒体が接触する熱交換器管の表面における腐
食に対する保護が得られ、同時に基材の特性が、基材の強度が小さく、従って、
変形性が良いことにより、管底における熱交換器管の振動安定性及び容易な固定
に貢献する。
The thickness of the portion of the surface layer made of the coating material is preferably smaller than the thickness of the portion of the surface layer made of the base material. In particular, the thickness of the part of the substrate may be 1.5 times the thickness of the part of the coating material. This provides protection against corrosion at the surface of the heat exchanger tube where the corrosive medium comes into contact, while at the same time the properties of the substrate reduce the strength of the substrate, thus
Good deformability contributes to vibration stability and easy fixing of the heat exchanger tube at the bottom of the tube.

【0012】 被覆材料からなる表面層の部分の厚さは0.1〜0.5mmの間、特に約0.
2mmであるのがよい。基材からなる表面層の部分の厚さは0.2〜1.5mm
の間、特に約0.3mmであるのがよい。
The thickness of the part of the surface layer made of the coating material is between 0.1 and 0.5 mm, in particular about 0.
It is preferably 2 mm. The thickness of the portion of the surface layer composed of the base material is 0.2 to 1.5 mm
, Especially about 0.3 mm.

【0013】 腐食性の媒体に曝される被覆材料は、高合金鋼、特にスーパーフェライト、ス
ーパージュプレックス或いはスーパーオーステナイトであるのがよい。これらの
合金鋼は、重量比にて以下の合金成分を含むのがよい。 スーパーフェライト:27〜31%のクロム、1〜5%のニッケル及び2〜5
%のモリブデン、特に約29%のクロム。 スーパージュプレックス:23〜27%のクロム、4〜8%のニッケル、2〜
5%のモリブデン並びに0.1%以上の窒素、特に約25%のクロム、5〜8%
のニッケル及び3〜5%のモリブデン。 スーパーオーステナイト:20〜25%のクロム、20〜25%のニッケル、
3〜7%のモリブデン、並びに0.2%以上の窒素。
[0013] The coating material exposed to the corrosive medium may be a high alloy steel, especially super ferrite, super duplex or super austenite. These alloy steels preferably contain the following alloy components by weight. Superferrite: 27-31% chromium, 1-5% nickel and 2-5
% Molybdenum, especially about 29% chromium. Super duplex: 23-27% chromium, 4-8% nickel, 2-
5% molybdenum and 0.1% or more nitrogen, especially about 25% chromium, 5-8%
Nickel and 3-5% molybdenum. Super austenite: 20-25% chromium, 20-25% nickel,
3-7% molybdenum, and 0.2% or more nitrogen.

【0014】 基材は、重量比にて10〜17%のクロムを含んだフェライトクロム鋼とする
のがよい。この基材は、また、重量比にて16〜20%のクロム及び6〜10%
のニッケル、特に約18%のクロム及び約8%のニッケルとすることもできる。
The substrate is preferably a ferritic chromium steel containing 10 to 17% by weight of chromium. The substrate also contains 16-20% chromium and 6-10% by weight.
Nickel, especially about 18% chromium and about 8% nickel.

【0015】 特に、この複合材は、スーパーフェライトとフェライト、スーパージュプレッ
クスとフェライト、スーパージュプレックスとオーステナイト或いはスーパーオ
ーステナイトとオーステナイトとのような、被覆材料と基材との組合せからなる
こともできる。また、熱交換器管の使用領域に応じて、他の組合せ、例えばスー
パージュプレックスとジュプレックス或いはスーパーオーステナイトとジュプレ
ックスのような組合せも使用することができる。
In particular, the composite can also consist of a combination of a coating material and a substrate, such as superferrite and ferrite, superduplex and ferrite, superduplex and austenite or superaustenite and austenite. Also, other combinations, such as super duplex and duplex or super austenitic and duplex, may be used depending on the area of use of the heat exchanger tubes.

【0016】 この熱交換器管は、特に複合材料の帯板を湾曲して管を形成し、その継ぎ目を
溶接して製造するのがよい。この場合、この継ぎ目の範囲における外表面と内表
面において、基材の被覆材料への混合或いはその逆の混合は起こらない。これに
より、腐食性媒体が接触する表面に、高耐食性の被覆材料がそれに応じた純度と
厚さで存在し、その結果継ぎ目には、腐食性媒体にさらされる全表面におけると
同等の耐食性が与えられる。従って、溶接継ぎ目によって許容できない程度に耐
食性が損なわれるのを回避できる。
The heat exchanger tube is preferably manufactured by bending a strip of composite material to form a tube and welding the seams. In this case, no mixing of the substrate with the coating material or vice versa occurs on the outer and inner surfaces in the region of this seam. This ensures that the surface in contact with the corrosive medium has a high corrosion-resistant coating material of corresponding purity and thickness, so that the seam has the same corrosion resistance as on all surfaces exposed to the corrosive medium. Can be Therefore, it is possible to prevent the corrosion resistance from being impaired to an unacceptable degree by the welding seam.

【0017】 この発明によれば、外側の表面層と、この外側の表面層により囲まれた内側の
表面層とを備えた熱交換器管の製造方法において、低合金基材、即ち10重量%
以上のクロム成分を含むクロム鋼が高耐食性の被覆材料で被覆される。適当な低
合金基材の上に、この場合、20重量%以上のクロム成分を含む非耐食性のクロ
ム鋼或いはチタン、タンタル或いはジルコニウム合金からなる高耐食性の被覆材
料が被着される。このように被覆された基材から薄厚の帯板が作られ、この帯板
から熱交換器管が湾曲されて、継ぎ目に沿って僅かな熱侵入で溶接が行われる。
最小の熱侵入と冷却速度の大きい溶接方法、例えばレーザ溶接或いは電子ビーム
溶接を使用することにより、溶接継ぎ目の範囲において腐食性媒体が接触する表
面にまで広がって、基材が被覆材料に混合することがない。この被覆材料の被覆
は、公知の被覆方法、例えば圧延、溶接及び溶射被覆により行うことができる。
圧延及び溶接被膜の場合、被覆材料及び基材に充分な延性が必要とされるが、溶
射被覆法では硬い、耐磨耗性の被覆材料でも処理可能である。冷間或いは熱間圧
延によれば大きな板状の基材も被覆することができる。溶射被覆法によれば、チ
タン合金を含む鋼板も被覆することができる。
According to the present invention, in a method for manufacturing a heat exchanger tube including an outer surface layer and an inner surface layer surrounded by the outer surface layer, a low alloy base material, that is, 10% by weight is used.
The chromium steel containing the above chromium component is coated with a coating material having high corrosion resistance. On a suitable low-alloy substrate, a non-corrosive chromium steel with a chromium content of more than 20% by weight or a highly corrosion-resistant coating material of a titanium, tantalum or zirconium alloy is applied. A thin strip is produced from the substrate coated in this way, from which the heat exchanger tubes are bent and welded along the seam with little heat penetration.
By using a welding method with a minimum heat penetration and a high cooling rate, such as laser welding or electron beam welding, the substrate is mixed with the coating material in the area of the welding seam, extending to the surface where the corrosive medium contacts. Nothing. The coating of the coating material can be performed by known coating methods such as rolling, welding and spray coating.
In the case of rolled and welded coatings, sufficient ductility is required for the coating material and the substrate, but the thermal spray coating method can process even hard, wear-resistant coating materials. According to the cold or hot rolling, a large plate-shaped substrate can be coated. According to the thermal spray coating method, a steel sheet containing a titanium alloy can also be coated.

【0018】 圧延被覆法を適用する場合には、先ず、広幅の帯板を作る。その場合、冷間或
いは熱間圧延の際の異なる合金成分により起きる、異なる変形抵抗を考慮して製
作する。この広幅の帯板から、次に、幅の狭い帯板を作り、この帯板を管に成形
し、少ない熱侵入で継ぎ目の範囲を溶接する。溶接の際に、基材が被覆材と著し
く混合する溶接法、特にシールドアーク溶接法に較べて、レーザ溶接或いは電子
ビーム溶接においては、基材と被覆材料との混合がない、最高の純度のかつ精密
な溶接継ぎ目が得られる。電子ビーム溶接は、深い、狭い溶接継ぎ目を、しかも
極めて狭い熱作用領域、従って複合材に対して最小の熱作用で、作ることを可能
とする。その上、熱侵入が少ないことにより、歪みや応力発生も小さくなり、精
密溶接を行うことができる。同様に、水素、酸素或いは窒素を供給する必要がな
いので、特に反応性の金属において、純粋なかつ脆性破壊のない、溶接継ぎ目の
形成が可能である。高いエネルギー密度は、その上、大きな溶接速度も、また非
常に薄い部分の微細溶接をも可能にする。高温溶融金属や、熱侵入の少ないこと
により非常に異なる溶融点を持つ材料も溶接できる。同様な利点は、レーザ溶接
によっても実現できる。なお、レーザ溶接は特に1mm以下の板厚に対して適し
ているので、凡そ0.5mmの板厚を持つ薄壁の管においてレーザ溶接が好適に
使用される。非消耗性のタングステン電極を用い、特に高合金鋼の溶接に適用さ
れる、保護ガス雰囲気下でのタングステン不活性ガス(WIG)溶接のような、
従来のシールドアーク溶接方法に比較して高いエネルギー密度及びビームによる
溶融溶接は、それ故、複合材からなる熱交換器管の製造に適している。
When the rolling coating method is applied, first, a wide strip is produced. In that case, it is manufactured in consideration of different deformation resistances caused by different alloy components at the time of cold or hot rolling. From this wide strip, a narrow strip is then made, which is formed into a tube and the area of the seam is welded with little heat penetration. In laser welding or electron beam welding, there is no mixing of the base material and the coating material, compared to the welding method in which the base material is significantly mixed with the coating material, especially shielded arc welding. And a precise welding seam can be obtained. Electron beam welding makes it possible to produce deep, narrow welding seams, but with a very small thermal action zone and thus minimal thermal action on the composite. In addition, since there is little heat penetration, distortion and stress generation are also small, and precision welding can be performed. Similarly, since there is no need to supply hydrogen, oxygen or nitrogen, it is possible to form a pure and brittle fracture-free weld seam, especially in reactive metals. The high energy density also allows for high welding speeds, as well as fine welding of very thin parts. High temperature molten metals and materials with very different melting points due to less heat penetration can also be welded. Similar advantages can be achieved by laser welding. Since laser welding is particularly suitable for a plate thickness of 1 mm or less, laser welding is suitably used for a thin-walled tube having a plate thickness of approximately 0.5 mm. Using non-consumable tungsten electrodes, such as tungsten inert gas (WIG) welding under protective gas atmosphere, especially applied to welding of high alloy steel
The high energy density and beam fusion welding compared to conventional shielded arc welding methods are therefore suitable for the manufacture of composite heat exchanger tubes.

【0019】 復水器に向けられた課題は、この発明によれば、外側の表面層と内側の表面層
とを備えた複合材からなる複数の熱交換器管を備え、この複合材が高耐食性の被
覆材料と低耐食性の基材とからなる、特に蒸気タービン用の復水器により解決さ
れる。被覆材料は、熱交換器管の外側の表面層が腐食性の媒体に接触するときに
は、高耐食性の被覆材料を形成する。熱交換器管の内面が腐食性の媒体に接触す
るときには、被覆材料は内側の表面層を形成する。冷却水、例えば河川、湖沼或
いは海から取り入れられる冷却水が貫流する復水器の熱交換器管においては、そ
れに応じて、内側の表面層が被覆材料から形成される。これによって、熱交換器
管の耐食性が向上し、他方では基材からなる外側の表面層により高い振動安定性
並びに復水器の管底における良好な固定が行える。
According to the present invention, a problem directed to a condenser includes a plurality of heat exchanger tubes made of a composite material having an outer surface layer and an inner surface layer, and the composite material has a high height. The problem is solved by a condenser comprising a corrosion-resistant coating material and a low-corrosion-resistant substrate, in particular for a steam turbine. The coating material forms a highly corrosion resistant coating material when the outer surface layer of the heat exchanger tube contacts a corrosive medium. When the inner surface of the heat exchanger tube comes into contact with a corrosive medium, the coating material forms an inner surface layer. In the heat exchanger tubes of the condenser through which cooling water, for example cooling water from rivers, lakes or the sea, flows, the inner surface layer is correspondingly formed from the coating material. Thereby, the corrosion resistance of the heat exchanger tubes is improved, while on the other hand the outer surface layer consisting of the substrate provides high vibration stability and good fixing at the tube bottom of the condenser.

【0020】 この発明による熱交換器管並びに復水器を、図面に示す実施例で詳細に説明す
る。各図において使用する記号は、一貫して同じ部分を示す。
A heat exchanger tube and a condenser according to the present invention will be described in detail with reference to an embodiment shown in the drawings. The symbols used in each figure indicate the same parts throughout.

【0021】 図1には帯板7が斜視図で示されている。この帯板7は低合金及び低強度の鋼
板からなる基材5を備え、この上に被覆方法、特に圧延被覆法を使用して、高耐
食性の、高合金鋼が被着されている。帯板7は0.5mmの範囲の板厚15を持
っている。基材5は板厚17を持ち、これはメッキ材料4の板厚16より厚い。
約0.5mmの板厚15を持つ熱交換器管1(図2参照)において、基材5の板
厚15は約0.3mmであり、被覆材料4の板厚16は約0.2mmである。
FIG. 1 shows the strip 7 in a perspective view. The strip 7 comprises a substrate 5 made of a low-alloy and low-strength steel plate, on which a high corrosion-resistant, high-alloy steel is applied using a coating method, in particular a rolling coating method. The strip 7 has a thickness 15 in the range of 0.5 mm. The substrate 5 has a thickness 17 which is greater than the thickness 16 of the plating material 4.
In the heat exchanger tube 1 having a thickness 15 of about 0.5 mm (see FIG. 2), the thickness 15 of the base material 5 is about 0.3 mm, and the thickness 16 of the coating material 4 is about 0.2 mm. is there.

【0022】 図2には熱交換器管1が斜視図で示されている。この熱交換器管1は帯板7(
図1参照)から形成されている。この熱交換器管1は、継ぎ目6に沿って電子ビ
ーム溶接或いはレーザビーム溶接により溶接されている。熱交換器管1は、内側
の表面層3に被覆材料4を、そして外側の表面層3に基材5を備えている。熱交
換器管1を継ぎ目6に沿って電子ビーム溶接或いはレーザビーム溶接を使用して
溶接することにより、外表面8と内表面9とのいずれにおいても、基材が被覆材
料と混合することはない。この結果継ぎ目6に沿って必要な材料特性、即ち、腐
食性媒体が接触する表面における高耐食性及び特に復水器の底面における固定の
ための小さい強度が保証される。腐食性媒体、例えば冷却水は、熱交換器管1を
内側から貫流する。
FIG. 2 shows the heat exchanger tube 1 in a perspective view. This heat exchanger tube 1 has a strip 7 (
1 (see FIG. 1). The heat exchanger tube 1 is welded along the joint 6 by electron beam welding or laser beam welding. The heat exchanger tube 1 comprises a coating material 4 on an inner surface layer 3 and a substrate 5 on an outer surface layer 3. By welding the heat exchanger tube 1 along the seam 6 using electron beam welding or laser beam welding, the substrate mixes with the coating material on both the outer surface 8 and the inner surface 9. Absent. This guarantees the necessary material properties along the seam 6, i.e. high corrosion resistance at the surface where the corrosive medium comes into contact and low strength, especially for fixing at the bottom of the condenser. A corrosive medium, for example cooling water, flows through the heat exchanger tube 1 from the inside.

【0023】 図3は、復水器10の一部を縦断面で示す。この復水器10は多数の熱交換器
管1を備え、図では分かりやすくするために、その中の4個だけを示している。
熱交換器管1は、復水器10の管底11に固定されている。熱交換器管1は、さ
らに、熱交換器の図示されていない両端において支え板12により支えられてい
る。基材4と被覆材料5とからなる複合材を使用したことに伴う熱交換器管1の
振動安定性により、支え板12の数は少数に保たれる。熱交換器管1には冷却媒
体13、特に水が貫流する。その外表面8(図2参照)には、図示しいない蒸気
タービンから蒸気14がその回りを流れ、この蒸気14は熱交換器管1(復水器
管)において凝縮し、復水器10から放出される。冷却媒体13は、例えば河川
、湖沼或いは海から供給される場合、冷却媒体13は熱交換器管1を高度に腐食
させるおそれがある。これは、高耐食性である被覆材料4によって明らかに減少
し、もしそうでなくても、阻止される。管底11の範囲の内部で管1を圧延する
ことによって、管1が拡張し、それに伴って基材4の変形が起こる。これにより
管底11において管1の良好な固定が行われる。
FIG. 3 shows a part of the condenser 10 in a longitudinal section. The condenser 10 has a number of heat exchanger tubes 1 of which only four are shown for clarity.
The heat exchanger tube 1 is fixed to the tube bottom 11 of the condenser 10. The heat exchanger tube 1 is further supported by support plates 12 at both ends, not shown, of the heat exchanger. Due to the vibration stability of the heat exchanger tube 1 associated with the use of the composite material composed of the base material 4 and the coating material 5, the number of the support plates 12 is kept small. The cooling medium 13, in particular water, flows through the heat exchanger tube 1. On its outer surface 8 (see FIG. 2), steam 14 flows from a steam turbine (not shown), which condenses in the heat exchanger tube 1 (condenser tube) and from the condenser 10 Released. When the cooling medium 13 is supplied from, for example, a river, a lake, or the sea, the cooling medium 13 may highly corrode the heat exchanger tube 1. This is clearly reduced by the coating material 4, which is highly resistant to corrosion, and is prevented if not. By rolling the tube 1 within the area of the tube bottom 11, the tube 1 expands and the deformation of the substrate 4 occurs accordingly. As a result, the tube 1 is fixed well at the tube bottom 11.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 複合材からなる帯板を斜視図で示す。FIG. 1 shows a perspective view of a strip made of a composite material.

【図2】 複合材からなる帯板で構成された熱交換器管を斜視図で示す。FIG. 2 is a perspective view showing a heat exchanger tube constituted by a strip made of a composite material.

【図3】 復水器の一部を縦断面で示す。FIG. 3 shows a part of the condenser in a longitudinal section.

【符号の説明】 1 熱交換器管 2 外側の表面層 3 内側の表面層 4 被覆材料 5 基材 6 継ぎ目 7 帯板 8 外表面 9 内表面 10 復水器 11 管底 12 支え板 13 冷却媒体(水) 14 蒸気 15 板厚 16、17 部分の板厚[Description of Signs] 1 Heat exchanger tube 2 Outer surface layer 3 Inner surface layer 4 Coating material 5 Base material 6 Seam 7 Strip plate 8 Outer surface 9 Inner surface 10 Condenser 11 Tube bottom 12 Support plate 13 Cooling medium (Wed) 14 Steam 15 Sheet thickness 16, 17 part thickness

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】外側の表面層(2)と、この外側の表面層(2)に囲まれてい
る内側の表面層(3)とを備え、これらの表面層(2、3)が互いに固く結合さ
れ、一方の表面層(2、3)が高耐食性の被覆材料(4)からなり、他方の表面
層(3、2)がそれより低い耐食性の基材(5)からなり、 この低耐食性の基材(5)が10重量%以上のクロム成分を含むクロム鋼であり
及び/又は この被覆材料(4)が20重量%以上のクロム成分を含む耐食性クロム鋼或いは
チタン、タンタル又はジルコニウム合金である 特に復水器(10)用の熱交換器管。
An outer surface layer (2) and an inner surface layer (3) surrounded by the outer surface layer (2), wherein the surface layers (2, 3) are hardened together. Bonded, one surface layer (2, 3) consisting of a coating material (4) with high corrosion resistance and the other surface layer (3, 2) consisting of a substrate (5) with lower corrosion resistance; The base material (5) is a chromium steel containing 10% by weight or more of chromium component and / or the coating material (4) is a corrosion-resistant chrome steel containing 20% by weight or more of chromium component or a titanium, tantalum or zirconium alloy. There are heat exchanger tubes, especially for the condenser (10).
【請求項2】0.3〜2mmの間の板厚(15)を持つ薄壁状に形成されて
いる請求項1記載の熱交換器管。
2. The heat exchanger tube according to claim 1, wherein the heat exchanger tube is formed as a thin wall having a plate thickness (15) of between 0.3 and 2 mm.
【請求項3】被覆材料(4)からなる表面層(2、3)の板厚(16)が、
基材(5)からなる表面層(3、2)の板厚(17)より薄い、特に約50%だ
け薄い請求項1又は2記載の熱交換器管。
3. The thickness (16) of the surface layer (2, 3) made of the coating material (4) is:
3. A heat exchanger tube according to claim 1, wherein the thickness of the surface layer (3, 2) of the substrate (5) is smaller than the plate thickness (17).
【請求項4】被覆材料(4)からなる表面層(2、3)の板厚(16)が0
.1〜0.3mmの間、特に約0.2mmである請求項3記載の熱交換器管。
4. The thickness (16) of the surface layer (2, 3) made of the coating material (4) is zero.
. 4. The heat exchanger tube according to claim 3, which is between 1 and 0.3 mm, in particular about 0.2 mm.
【請求項5】基材(5)からなる表面層(3、2)の板厚(17)が0.2
〜1.5mmの間、特に約0.3mmである請求項3又は4記載の熱交換器管。
5. The surface layer (3, 2) composed of the substrate (5) has a thickness (17) of 0.2.
Heat exchanger tube according to claim 3 or 4, wherein the heat exchanger tube is between about 1.5 mm and about 0.3 mm.
【請求項6】被覆材料(4)が、重量比にて27〜31%のクロム、1〜5
%のニッケル及び2〜4%のモリブデンを含むスーパーフェライトである請求項
1から5の1つに記載の熱交換器管。
6. The coating material (4) comprises 27 to 31% by weight of chromium, 1 to 5%.
Heat exchanger tube according to one of claims 1 to 5, which is a superferrite containing 5% nickel and 2-4% molybdenum.
【請求項7】被覆材料(4)が、重量比にて23〜27%のクロム、4〜8
%のニッケル及び2〜5%のモリブデン並びに0.1%以上の窒素を含むスーパ
ージュプレックスである請求項1から6の1つに記載の熱交換器管。
7. A coating material (4) comprising 23 to 27% by weight of chromium, 4 to 8%.
Heat exchanger tube according to one of claims 1 to 6, which is a superduplex containing 5% nickel and 2-5% molybdenum and 0.1% or more nitrogen.
【請求項8】被覆材料(4)が、重量比にて20〜25%のクロム、20〜
25%のニッケル、3〜7%のモリブデン並びに0.2%以上の窒素を含むスー
パーオーステナイトである請求項1ないし7の1つに記載の熱交換器管。
8. A coating material (4) comprising 20 to 25% by weight of chromium, 20 to 20% by weight.
8. The heat exchanger tube according to claim 1, which is a super-austenite containing 25% nickel, 3-7% molybdenum and 0.2% or more nitrogen.
【請求項9】基材(5)が重量比にて10〜17%のクロムを含むフェライ
トクロム鋼である請求項5又は6記載の熱交換器管。
9. The heat exchanger tube according to claim 5, wherein the base material (5) is a ferritic chrome steel containing 10 to 17% by weight of chromium.
【請求項10】基材(5)が重量比にて16〜20%のクロム及び6〜10
%のニッケル、特に18%のクロム及び8%のニッケルを含むオーステナイトク
ロム鋼である請求項6又は7記載の熱交換器管。
10. The base material (5) comprises 16 to 20% by weight of chromium and 6 to 10%.
Heat exchanger tube according to claim 6 or 7, which is an austenitic chromium steel containing 8% nickel, 18% chromium and 8% nickel.
【請求項11】外表面(8)と内表面(9)を備え、継ぎ目(6)に沿って
溶接されている熱交換器管(1)において、この継ぎ目(6)に沿ってこの外表
面(8)と内表面(9)のそれぞれの周囲にそれぞれ被覆材料(4)或いは基材
(5)だけが存在している請求項1ないし10の1つに記載の熱交換器管。
11. In a heat exchanger tube (1) having an outer surface (8) and an inner surface (9) and being welded along a seam (6), said outer surface along said seam (6). 11. The heat exchanger tube according to claim 1, wherein only the coating material (4) or the substrate (5) is present around each of (8) and the inner surface (9).
【請求項12】外側の表面層(2)と、この外側の表面層(2)に囲まれて
いる内側の表面層(3)とを備えた熱交換器管(1)の製造方法において、 a)低合金の基材(5)を高耐食性の被覆材料(4)で被覆し、その際低合金の
基材(5)として重量比にて10%以上のクロム成分を含むクロム鋼及び/又は
高耐食性の被覆材料(4)として20%以上のクロム成分を含む非腐食性クロム
鋼、チタン、タンタル或いはジルコニウム合金を使用し、 b)これから薄壁状の帯板(7)を作り、次いで c)この帯板(7)を湾曲させて熱交換器管(1)を形成し、継ぎ目(6)に沿
った少ない熱侵入で、特にレーザ溶接により溶接する 熱交換器管の製造方法。
12. A method for manufacturing a heat exchanger tube (1) comprising an outer surface layer (2) and an inner surface layer (3) surrounded by the outer surface layer (2). a) A low-alloy base material (5) is coated with a coating material (4) having high corrosion resistance, wherein the low-alloy base material (5) includes a chromium steel containing 10% or more by weight of a chromium component and / or Or using a non-corrosive chromium steel, titanium, tantalum or zirconium alloy containing 20% or more of chromium as a coating material (4) having high corrosion resistance; b) forming a thin-walled strip (7) therefrom; c) A method of manufacturing a heat exchanger tube in which the strip (7) is bent to form a heat exchanger tube (1) and welded with a small heat penetration along the seam (6), in particular by laser welding.
【請求項13】それぞれ外側の表面層(2)と、この外側の表面層(2)に
囲まれている内側の表面層(3)とを備えた多数の熱交換器管(1)を備え、こ
れらの表面層(2、3)が互いに固く結合され、一方の表面層(2、3)が高耐
食性の被覆材料(4)からなり、他方の表面層(3、2)がそれより低い耐食性
の基材(5)からなる、特に蒸気タービン用の復水器。
13. A number of heat exchanger tubes (1) each having an outer surface layer (2) and an inner surface layer (3) surrounded by the outer surface layer (2). The surface layers (2, 3) are firmly bonded to one another, one of the surface layers (2, 3) being made of a highly corrosion-resistant coating material (4) and the other surface layer (3, 2) being lower. A condenser comprising a corrosion-resistant substrate (5), especially for steam turbines.
JP2000541472A 1998-03-27 1999-03-15 Heat exchanger tube, heat exchanger tube manufacturing method and condenser Expired - Fee Related JP4276382B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19813771 1998-03-27
DE19813771.0 1998-03-27
PCT/DE1999/000714 WO1999050610A1 (en) 1998-03-27 1999-03-15 Heat exchanger tube, method for the production of a heat exchanger tube and capacitor

Publications (2)

Publication Number Publication Date
JP2002510030A true JP2002510030A (en) 2002-04-02
JP4276382B2 JP4276382B2 (en) 2009-06-10

Family

ID=7862686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000541472A Expired - Fee Related JP4276382B2 (en) 1998-03-27 1999-03-15 Heat exchanger tube, heat exchanger tube manufacturing method and condenser

Country Status (5)

Country Link
EP (1) EP1066494A1 (en)
JP (1) JP4276382B2 (en)
KR (1) KR20010034712A (en)
CN (1) CN1139782C (en)
WO (1) WO1999050610A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004069102A (en) * 2002-08-02 2004-03-04 Mitsuro Takahama Double cylinder type heat exchanger
KR101131846B1 (en) * 2009-12-09 2012-03-30 주식회사 다산 Manufacturing method of Cu/Ti bi-metal tube
WO2018131112A1 (en) * 2017-01-12 2018-07-19 三菱電機株式会社 Twisted tube heat exchanger and manufacturing method for twisted tube heat exchangers

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6318094B1 (en) 2000-08-11 2001-11-20 Paul Mueller Company Bimetallic tube in a heat exchanger of an ice making machine
US7660740B2 (en) 2000-10-16 2010-02-09 Ebay Inc. Method and system for listing items globally and regionally, and customized listing according to currency or shipping area
US7752266B2 (en) 2001-10-11 2010-07-06 Ebay Inc. System and method to facilitate translation of communications between entities over a network
US8078505B2 (en) 2002-06-10 2011-12-13 Ebay Inc. Method and system for automatically updating a seller application utilized in a network-based transaction facility
DE102004056619B4 (en) * 2004-03-09 2007-06-06 BRÜNDERMANN, Georg Process for the production of a heat exchanger partition with an armor and heat exchanger partition
EP1722917A1 (en) * 2004-03-09 2006-11-22 Bründermann, Georg Method for producing a heat exchanger partition with an armor-plating, and a heat exchanger partition
US20090266529A1 (en) * 2005-04-18 2009-10-29 Giovanni Jahier Protected Carbon Steel Pipe for Fire Tube Heat Exchange Devices, Particularly Boilers
US20090173485A1 (en) * 2007-11-30 2009-07-09 Ranga Nadig Fin tube assembly for air cooled heat exchanger and method of manufacturing the same
EP2161095A1 (en) * 2008-09-05 2010-03-10 ALSTOM Technology Ltd Method of surface treatment of a turbine component
US10620010B2 (en) 2015-02-05 2020-04-14 Moovit App Global Ltd Public and ordered transportation trip planning
WO2019049498A1 (en) 2017-09-11 2019-03-14 ソニーセミコンダクタソリューションズ株式会社 Semiconductor integrated circuit
AU2018347410B2 (en) * 2017-10-13 2024-06-13 Haynes International, Inc. Solar tower system containing molten chloride salts
CN117187700A (en) 2019-07-05 2023-12-08 斯塔米卡邦有限公司 Ferritic steel component in urea plant
CN110579131A (en) * 2019-09-20 2019-12-17 江阴市亚龙换热设备有限公司 highly corrosion-resistant heat exchanger

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3809155A (en) 1972-02-02 1974-05-07 Olin Corp Erosion-corrosion resistant aluminum radiator clad tubing
FR2389863B1 (en) 1977-05-06 1982-06-25 Chausson Usines Sa
JPS57120002A (en) * 1981-01-19 1982-07-26 Sumitomo Metal Ind Double tube for boiler
JPS59176596A (en) * 1983-03-25 1984-10-05 Babcock Hitachi Kk Tube for heat exchanger
JPS59176501A (en) * 1983-03-28 1984-10-05 株式会社日立製作所 Boiler tube
JPS61227152A (en) * 1985-03-29 1986-10-09 Sumitomo Metal Ind Ltd Surface covered heat resisting steel pipe for boiler for recovering black liquor
JPH028336A (en) * 1988-06-28 1990-01-11 Jgc Corp Carbon deposition-resistant two-layer pipe
JPH05118772A (en) * 1990-12-01 1993-05-14 Toshiba Corp Seawater cooling condenser
DE4311118A1 (en) 1993-04-05 1994-10-06 Abb Management Ag Steam condenser
EP0619179A1 (en) * 1993-04-06 1994-10-12 Nippon Steel Corporation Wear resisting steel for welded pipes, and manufacturing process
JPH07159056A (en) * 1993-12-08 1995-06-20 Toshiba Corp Condenser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004069102A (en) * 2002-08-02 2004-03-04 Mitsuro Takahama Double cylinder type heat exchanger
KR101131846B1 (en) * 2009-12-09 2012-03-30 주식회사 다산 Manufacturing method of Cu/Ti bi-metal tube
WO2018131112A1 (en) * 2017-01-12 2018-07-19 三菱電機株式会社 Twisted tube heat exchanger and manufacturing method for twisted tube heat exchangers

Also Published As

Publication number Publication date
JP4276382B2 (en) 2009-06-10
EP1066494A1 (en) 2001-01-10
KR20010034712A (en) 2001-04-25
CN1139782C (en) 2004-02-25
WO1999050610A1 (en) 1999-10-07
CN1295663A (en) 2001-05-16

Similar Documents

Publication Publication Date Title
JP4276382B2 (en) Heat exchanger tube, heat exchanger tube manufacturing method and condenser
US5118028A (en) Diffusion bonding method for corrosion-resistant materials
JP2883698B2 (en) Tube and fin assembly for heat exchange in power plants
US4159034A (en) Weldment heat exchanger
US3890143A (en) Welded constructions of stainless steels
CN101871063A (en) Aluminum alloy clad sheet for heat exchangers and method of producing the same
CN107406945A (en) The excellent stainless steel of soldering
EP1256411A2 (en) Welded joints in high strength, heat resistant steels, and welding method for the same
JP2010202916A (en) Ferritic stainless steel excellent in corrosion resistance of welded part with austenite stainless steel
JP2006315080A (en) Austenitic stainless steel welding structure having excellent low temperature toughness and seawater corrosion resistance
JPH07227695A (en) Flux for brazing, heat exchanger and production of heat exchanger
JP2010264510A (en) Welding alloy and articles for use in welding, welded product and method for producing welded product
JP3576472B2 (en) Welding material for low carbon martensitic stainless steel and arc welding method for low carbon martensitic stainless steel
JPH11320097A (en) Weld joint structure of high cr ferrite steel
KR930012131A (en) Welded pipe with corrosion resistant inner surface and manufacturing method thereof
CN101925791A (en) Fin tube assembly for air cooled heat exchanger and method of manufacturing the same
TW201809319A (en) Member formed from aluminum alloy and lng vaporizer
JP2003311472A (en) Wire for welding austenitic stainless steel having excellent sulfuric acid corrosion resistance and pitting corrosion resistance
JP6807221B2 (en) Ni brazed joint heat exchanger member
JP2575250B2 (en) Line pipe with excellent corrosion resistance and weldability
JPS60230953A (en) Composite plate made of aluminum material for heat exchanger
CN115072661A (en) Method for preventing converted gas steam converter from dew point corrosion and steam converter
JP3222391B2 (en) Cladded steel tubes for boilers and heat exchangers
JP2010540882A (en) Heat exchanger material coating
JPH09206967A (en) Manufacture of two-phase stainless steel welded tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080529

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080828

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090205

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090306

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees