JP2004069102A - Double cylinder type heat exchanger - Google Patents

Double cylinder type heat exchanger Download PDF

Info

Publication number
JP2004069102A
JP2004069102A JP2002225824A JP2002225824A JP2004069102A JP 2004069102 A JP2004069102 A JP 2004069102A JP 2002225824 A JP2002225824 A JP 2002225824A JP 2002225824 A JP2002225824 A JP 2002225824A JP 2004069102 A JP2004069102 A JP 2004069102A
Authority
JP
Japan
Prior art keywords
inner cylinder
cylinder
alloy
heat exchanger
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002225824A
Other languages
Japanese (ja)
Inventor
Mitsuro Takahama
高浜 充郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002225824A priority Critical patent/JP2004069102A/en
Publication of JP2004069102A publication Critical patent/JP2004069102A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air Supply (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive double cylinder type heat exchanger with superior corrosion resistance. <P>SOLUTION: The double cylinder type heat exchanger comprises an outer cylinder 1 where preheated fluid flows inside; and an inner cylinder 2 arranged inside the outer cylinder while the heat source fluid of a corrosive gas containing dust flows inside. In the double cylinder heat exchanger, the inner cylinder 2 comprises a first inner cylinder 2a; and a second inner cylinder 2b being provided in contact with the inner surface of the first inner cylinder 2a. The first inner cylinder 2a is made of stainless steel. The second inner cylinder 2b is made of a heat-resistant/corrosion-resistant alloy chosen from a group of a Ni - Cr alloy, a Ni - Cr - Fe alloy, a Ni - Cr - Fe - Ti alloy, a Ni - Cr - Fe - Ti - Al - Nb alloy, and a Ni - Cr - Fe - Mo - W alloy. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は熱交換器、特に内部を予熱流体が流動する外筒と、この外筒内に配設された内部を熱源流体が流動する内筒とを具備する複筒式熱交換器に関する。
【0002】
【発明が解決しようとする課題】
熱交換器には、内部を予熱流体が流動する外筒と、この外筒内に配設された内部を熱源流体が流動する内筒とを具備する複筒式(二重円筒式)熱交換器がある。
【0003】
このタイプの熱交換器は、主として、廃棄物焼却プラントに使用されている。すなわち、粉塵が含まれる腐蝕性ガス(熱源流体)を内筒内を流動させると共に粉塵などは含まれてない清浄な空気(予熱流体)を外筒内(正確には、外筒と内筒との間の空間)を流動させ、これによって熱交換を行わせるものである。
【0004】
ところで、これまでの外筒や内筒は、例えばSUS310SやSUS304等の厚さ4〜14mm程度のステンレススチールで構成されている。
【0005】
しかるに、上述した通り、内筒内を塩化物や硫化物などを含む腐蝕性ガスが流動するものであるから、内筒は腐蝕し易い問題が有る。
【0006】
そこで、内筒内面に炭化珪素などのセラミック素材のブロックを張り付けることが考えられた。
【0007】
しかしながら、炭化珪素のブロックを張り付けることにより腐蝕性ガスからの損傷を防ごうとすると、炭化珪素ブロックの厚さは50mm程度も必要なものであった。そして、厚さが厚い炭化珪素ブロックが用いられている為、内筒内面に張り付けていても、脱落し易い。更には、運転中に、張り付けている炭化珪素ブロック間の隙間から腐蝕性ガスが侵入し易く、内筒の損傷防止効果が未だと言う段階であり、炭化珪素ブロックを用いる手法は普及していない。
【0008】
すなわち、現実的に採用されている手法は、内筒の厚みを厚くして延命を図ったり、又、内筒の交換を頻繁に行うことが行われているに過ぎない。しかし、この手法は根本的な解決にはならない。
【0009】
従って、本発明が解決しようとする課題は、上記問題点を解決することである。特に、耐蝕性に富み、かつ、低廉な複筒式(二重円筒式)熱交換器を提供することである。
【0010】
【課題を解決するための手段】
前記の問題点に対する検討に際して、内筒の厚みを厚くして延命を図る手法や、内筒の交換を頻繁に行う手法は根本的なものでは無く、やはり、何らかの保護材を設けなければならないであろうとの結論に到達した。
【0011】
そこで、二重円筒式熱交換器の内筒保護材に用いる材料として如何なるものが適しているかの検討を鋭意行うと共に、思考錯誤を繰り返しながら実験を押し進めて行った。
【0012】
その結果、内筒の外面側をステンレススチール等の鋼材で構成すると共に、内筒の内面側を少なくともNi及びCrを成分として含む耐熱性・耐蝕性合金で構成した場合、内筒の耐久性が優れていることが判明した。
【0013】
上記知見に基づいて本発明が達成されたものであり、前記の課題は、
内部を予熱流体が流動する外筒と、この外筒内に配設された内部を熱源流体が流動する内筒とを具備する複筒式熱交換器であって、
前記内筒は、第1内筒と、この第1内筒の内面に接して設けられた第2内筒とを具備し、
前記第1内筒は鋼材で構成されると共に、前記第2内筒は少なくともNi及びCrを成分として含む耐熱性・耐蝕性合金で構成されてなる
ことを特徴とする複筒式熱交換器によって解決される。
【0014】
特に、内部を予熱流体が流動する外筒と、この外筒内に配設された内部を粉塵が含まれる腐蝕性ガスの熱源流体が流動する内筒とを具備する複筒式熱交換器であって、
前記内筒は、第1内筒と、この第1内筒の内面に接して設けられた第2内筒とを具備し、
前記第1内筒はステンレススチールで構成されると共に、前記第2内筒はNi−Cr合金、Ni−Cr−Fe合金、Ni−Cr−Fe−Ti合金、Ni−Cr−Fe−Ti−Al−Nb合金、Ni−Cr−Fe−Mo−W合金の群の中から選ばれる何れかの耐熱性・耐蝕性合金で構成されてなる
ことを特徴とする複筒式熱交換器によって解決される。
【0015】
すなわち、上記本発明の材料は、融点が約1600Kと耐熱性に富むことから、流動する高温の熱源流体が接する内筒(第2内筒)構成材料として好都合である。
【0016】
尚、高融点のみの観点からであれば、融点が約1900Kのチタン合金なども考慮されるが、このチタン合金は熱伝導率が約7W/m・Kと小さく、流動する熱源流体が接する内筒(第2内筒)構成材料としては適さない。更には、上記ニッケル系合金に比べて加工性が悪く、つまりチタン合金からなる板材を第1内筒の内面形状に加工するのは非常に厄介であった。
【0017】
逆に、クロム銅合金は、熱伝導率が約315W/m・Kと言った大きな値であることから、熱交換の観点からのみであれば、熱源流体が接する内筒(第2内筒)構成材料として考慮できるが、融点が1300K程度であることから、高温の熱源流体が接する内筒(第2内筒)構成材料としては適さない。
【0018】
ところが、上記本発明の材料は、高融点であって耐熱性に富むと共に熱伝導率もSUSと同程度あり、熱源流体が接する内筒(第2内筒)構成材料として非常に適している。因みに、上記本発明の材料は、熱伝導率が約11W/m・K以上であって、SUS304の熱伝導率16W/m・Kに比べれば小さいものの、セラミック素材に比べると熱伝導率は大きく、流動する熱源流体が接する内筒(第2内筒)構成材料として好都合である。
【0019】
又、上記のニッケル系合金はチタン合金に比べて加工性が遥かに良く、第1内筒の内面形状に加工するのが容易であった。
【0020】
又、上記本発明の材料は、塩化物や硫化物などを含む腐蝕性ガスに対しても腐蝕し難いものであった。
【0021】
更には、上記本発明の材料の線膨張率とSUS304の線膨張率とは約14×10−4−1と言ったように同程度であり、熱に対する変化度合いが同程度であるから、第1内筒の熱膨張・伸縮に第2内筒は追随して熱膨張・伸縮し、第2内筒が剥がれ難いものであった。
【0022】
尚、第2内筒は、第1内筒の内面形状に沿った形状に形成された一辺の長さが100〜3000mmの板体を第1内筒に対してプラグ熔接(栓熔接)により取り付けられて構成されたものであるのが好ましい。これは、第2内筒を一枚板で構成するよりも、複数枚の板材を第1内筒の内面に取り付けるようにしていると、仮に、第2内筒の何処かの部分が腐蝕性ガスによって腐蝕しても、その腐蝕した部分のみを交換できるから、ランニングコストが低廉なものになる。又、複数枚の板材を第1内筒の内面に取り付けるようにしている方が、初期費用も安くて済む。
【0023】
【発明の実施の形態】
本発明になる複筒式熱交換器は、内部を予熱流体が流動する外筒と、この外筒内に配設された内部を熱源流体が流動する内筒とを具備する複筒式熱交換器であって、前記内筒は、第1内筒と、この第1内筒の内面に接して設けられた第2内筒とを具備し、前記第1内筒は鋼材で構成されると共に、前記第2内筒は少なくともNi及びCrを成分として含む耐熱性・耐蝕性合金で構成されてなる。特に、内部を予熱流体が流動する外筒と、この外筒内に配設された内部を粉塵が含まれる腐蝕性ガスの熱源流体が流動する内筒とを具備する複筒式熱交換器であって、前記内筒は、第1内筒と、この第1内筒の内面に接して設けられた第2内筒とを具備し、前記第1内筒はステンレススチールで構成されると共に、前記第2内筒はNi−Cr合金、Ni−Cr−Fe合金、Ni−Cr−Fe−Ti合金、Ni−Cr−Fe−Ti−Al−Nb合金、Ni−Cr−Fe−Mo−W合金の群の中から選ばれる何れかの耐熱性・耐蝕性合金で構成されてなる。第2内筒は、第1内筒の内面形状に沿った形状に形成された一辺の長さが100〜3000mmの板体を第1内筒に対してプラグ熔接により取り付けられて構成されたものである。
【0024】
以下、図面を用いて更に詳しく説明する。
【0025】
図1は本発明になる複筒式熱交換器全体の概略図、図2は要部の断面図、図3は第2内筒の一部展開図である。
【0026】
各図中、1は二重円筒式熱交換器における円筒形の外筒、2は外筒1内に配設されている円筒形の内筒である。3は内筒2への熱源流体の前ダクト、4は熱源流体の後ダクトである。従って、塩化物や硫化物などの腐蝕性ガスを含む熱源流体は、前ダクト3から内筒2を通って後ダクト4から排出される。5は清浄空気である予熱流体の入口部、6は予熱流体の出口部である。従って、予熱流体は、入口部5から外筒1内に入り、外筒1と内筒2との間の空間を通って出口部6から排出される。そして、外筒1と内筒2との間の空間を通る間に、予熱流体は、内筒2内を通る熱源流体から熱を奪い、その分だけ温度が上昇する。つまり、熱交換が行われる。尚、このような構成は公知であるから詳細は省略される。尚、7は上部コニカルプレート、8は下部コニカルプレート、9は煙道コンペンセータである。
【0027】
ところで、内筒2は、厚さが4〜14mmのSUS304(熱伝導率16.0W/m・K、線膨張率13.6×10−6−1)製の円筒形状の第1内筒2aと、Ni−Cr−Fe−Ti−Al−Nb合金(熱伝導率12.0W/m・K、線膨張率12.6×10−6−1、融点1770K)製の第2内筒2bとで構成されている。尚、この第2内筒2bは、第1内筒2aの内面の曲率に合わせて円筒形状に加工した厚さが2〜6mmで、一辺の長さが300〜1000mmの正方形状のNi−Cr合金板をプラグ熔接により第1内筒2aの内面に取り付けたものである。従って、第2内筒2bの外面が第1内筒2aの内面に密接している。
【0028】
上記のように内筒2、つまり二重円筒式熱交換器を構成させていると、腐蝕性ガスを含む熱源流体が接する第2内筒2bは、その融点が1770Kと耐熱性に富むことから、優れた耐久性が確保される。又、塩化物や硫化物などを含む腐蝕性ガスに対しても腐蝕し難いものであった。すなわち、耐蝕性にも優れている。更には、第1内筒2aの線膨張率と第2内筒2bの線膨張率とは同程度であり、従って第1内筒2aの熱膨張・伸縮と第2内筒2bの熱膨張・伸縮とに大きなズレが無く、よって第2内筒2bの板をプラグ熔接の手段で第1内筒2aに取り付けただけでも剥離し難いものであった。つまり、熱膨張率に大きな差があると、これを全面熔接と言った手法によらなければ剥がれてしまう危険性が有るものの、上記のような材料で構成されていると、プラグ熔接の手段でも剥離の問題が無かった。このことは組立コストが低廉なことを意味する。かつ、組立が容易であることをも意味する。更に、第2内筒2bの熱伝導率12.0W/m・Kはセラミック材料に比べて大きな値のものであり、従って熱源流体の熱を第1内筒2a、引いては予熱流体に伝えることが出来、熱交換効率に優れていた。又、上記のニッケル系合金はチタン合金に比べて加工性が遥かに良く、第1内筒2aの内面形状に加工するのが容易であった。
【0029】
そして、第2内筒2bは一枚の板を円筒形状に曲げて加工したものでは無く、図3にも示される通り、300〜1000mmの板体を複数枚組み合わせて構成したものである。従って、一部が腐蝕しても、全てを交換する必要は無く、腐蝕した部分の板のみを交換するだけで済むから、そのメンテナンスコストが低廉である。
【0030】
上記実施の形態では、第1内筒2aがSUS304製のものであったが、これは、例えばSUS310S等のステンレススチールであっても良い。又、第2内筒2bはNi−Cr−Fe−Ti−Al−Nb合金製のものであったが、これは、例えばNi−Cr合金(熱伝導率17.4W/m・K、線膨張率13.2×10−6−1、融点1668K)、Ni−Cr−Fe合金(熱伝導率14.8W/m・K、線膨張率13.3×10−6−1)、Ni−Cr−Fe−Ti合金(熱伝導率11.5W/m・K、線膨張率14.2×10−6−1)、Ni−Cr−Fe−Mo−W合金(熱伝導率11.1W/m・K、線膨張率11.3×10−6−1、融点1578K)であっても良い。
【0031】
【発明の効果】
腐蝕性ガスを含む熱源流体が接する第2内筒は、高融点材料で構成されているから、優れた耐久性が確保される。又、塩化物や硫化物などを含む腐蝕性ガスに対しても腐蝕し難いものであることから、耐蝕性にも優れている。更には、第1内筒の線膨張率と第2内筒の線膨張率とは同程度であり、従って第1内筒の熱膨張・伸縮と第2内筒の熱膨張・伸縮とに大きなズレが無く、よって第2内筒の板をプラグ熔接の手段で第1内筒に取り付けただけでも剥離し難い。つまり、熱膨張率に大きな差があると、これを全面熔接と言った手法によらなければ剥がれてしまう危険性が有るものの、上記のような材料で構成されていると、プラグ熔接の手段でも剥離の問題が無い。このことは組立コストが低廉なことになる。かつ、組立が容易である。更に、第2内筒の熱伝導率はセラミック材料に比べても大きく、従って熱源流体の熱を予熱流体に伝えることが出来、熱交換効率に優れている。又、加工性が良く、第1内筒の内面形状に加工するのが容易である。
【0032】
そして、第2内筒は、一枚の板を円筒形状に曲げて加工したものでは無く、所定の大きさの板体を複数枚組み合わせて構成したものであるから、一部が腐蝕しても、全てを交換する必要は無く、腐蝕した部分の板のみを交換するだけで済み、メンテナンスコストが低廉である。
【図面の簡単な説明】
【図1】本発明になる二重円筒式熱交換器の全体概略図
【図2】本発明になる二重円筒式熱交換器の要部の断面図
【図3】本発明になる二重円筒式熱交換器の第2内筒の一部展開図
【符号の説明】
1   外筒
2   内筒
2a  第1内筒
2b  第2内筒
3   前ダクト
4   後ダクト
5   予熱流体入口部
6   予熱流体出口部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat exchanger, and more particularly to a double-cylinder heat exchanger including an outer cylinder through which a preheating fluid flows, and an inner cylinder disposed inside the outer cylinder and through which a heat source fluid flows.
[0002]
[Problems to be solved by the invention]
The heat exchanger has a double-cylinder (double-cylinder) heat exchange including an outer cylinder through which a preheating fluid flows, and an inner cylinder disposed inside the outer cylinder and through which a heat source fluid flows. There is a vessel.
[0003]
This type of heat exchanger is mainly used in waste incineration plants. That is, the corrosive gas (heat source fluid) containing dust flows in the inner cylinder, and the clean air (preheating fluid) containing no dust or the like flows in the outer cylinder (exactly, the outer cylinder and the inner cylinder). ), And thereby heat exchange is performed.
[0004]
By the way, the conventional outer cylinder and inner cylinder are made of, for example, stainless steel having a thickness of about 4 to 14 mm such as SUS310S or SUS304.
[0005]
However, as described above, since the corrosive gas containing chloride, sulfide, and the like flows in the inner cylinder, there is a problem that the inner cylinder is easily corroded.
[0006]
Therefore, it has been considered to attach a block made of a ceramic material such as silicon carbide to the inner surface of the inner cylinder.
[0007]
However, in order to prevent damage from corrosive gas by attaching a block of silicon carbide, the thickness of the silicon carbide block needs to be about 50 mm. And since a thick silicon carbide block is used, even if it is stuck on the inner surface of the inner cylinder, it easily falls off. Furthermore, during operation, corrosive gas is likely to enter from the gap between the attached silicon carbide blocks, and the effect of preventing damage to the inner cylinder has not yet been reached, and the method using silicon carbide blocks has not spread. .
[0008]
In other words, the practically adopted methods merely extend the life of the inner cylinder by increasing the thickness of the inner cylinder, or frequently replace the inner cylinder. However, this approach is not a fundamental solution.
[0009]
Therefore, the problem to be solved by the present invention is to solve the above problems. In particular, it is an object of the present invention to provide an inexpensive double-cylinder (double-cylinder) heat exchanger that is rich in corrosion resistance.
[0010]
[Means for Solving the Problems]
In examining the above problems, the method of extending the life by increasing the thickness of the inner cylinder and the method of frequently replacing the inner cylinder are not fundamental, and again, some protection material must be provided. I reached the conclusion that there was.
[0011]
Therefore, the present inventor has been studying what material is suitable for the inner cylinder protective material of the double-cylindrical heat exchanger, and has been conducting experiments while repeating thought and error.
[0012]
As a result, when the outer surface side of the inner cylinder is made of a steel material such as stainless steel and the inner surface side of the inner cylinder is made of a heat-resistant / corrosion-resistant alloy containing at least Ni and Cr as components, the durability of the inner cylinder is reduced. It turned out to be excellent.
[0013]
The present invention has been achieved based on the above findings,
An outer cylinder in which a preheating fluid flows, and a double-cylinder heat exchanger including an inner cylinder in which a heat source fluid flows inside the outer cylinder disposed in the outer cylinder,
The inner cylinder includes a first inner cylinder and a second inner cylinder provided in contact with an inner surface of the first inner cylinder,
The first inner cylinder is formed of a steel material, and the second inner cylinder is formed of a heat-resistant and corrosion-resistant alloy containing at least Ni and Cr as components. Will be resolved.
[0014]
In particular, a double-cylinder heat exchanger including an outer cylinder through which a preheating fluid flows, and an inner cylinder through which a heat source fluid of a corrosive gas containing dust flows inside provided inside the outer cylinder. So,
The inner cylinder includes a first inner cylinder and a second inner cylinder provided in contact with an inner surface of the first inner cylinder,
The first inner cylinder is made of stainless steel, and the second inner cylinder is a Ni-Cr alloy, a Ni-Cr-Fe alloy, a Ni-Cr-Fe-Ti alloy, a Ni-Cr-Fe-Ti-Al The problem is solved by a double-tube heat exchanger characterized by being formed of any heat-resistant and corrosion-resistant alloy selected from the group consisting of -Nb alloy and Ni-Cr-Fe-Mo-W alloy. .
[0015]
That is, since the material of the present invention has a high melting point of about 1600 K and is excellent in heat resistance, it is convenient as a constituent material of the inner cylinder (second inner cylinder) in contact with the flowing high-temperature heat source fluid.
[0016]
From the viewpoint of only the high melting point, a titanium alloy having a melting point of about 1900K may be considered. However, this titanium alloy has a small thermal conductivity of about 7 W / m · K, It is not suitable as a tube (second inner tube) constituent material. Furthermore, the workability is poor as compared with the above-mentioned nickel-based alloy, that is, it is very troublesome to process a plate made of a titanium alloy into the inner surface shape of the first inner cylinder.
[0017]
Conversely, since the chromium copper alloy has a large thermal conductivity of about 315 W / m · K, if only from the viewpoint of heat exchange, the inner cylinder (second inner cylinder) in contact with the heat source fluid Although it can be considered as a constituent material, since the melting point is about 1300K, it is not suitable as a constituent material of the inner cylinder (second inner cylinder) in contact with a high-temperature heat source fluid.
[0018]
However, the material of the present invention has a high melting point, high heat resistance, and a thermal conductivity similar to that of SUS, and is very suitable as a constituent material of the inner cylinder (second inner cylinder) in contact with the heat source fluid. Incidentally, the material of the present invention has a thermal conductivity of about 11 W / m · K or more, which is smaller than the thermal conductivity of SUS304 of 16 W / m · K, but larger than that of the ceramic material. This is convenient as a constituent material of the inner cylinder (the second inner cylinder) in contact with the flowing heat source fluid.
[0019]
Further, the nickel-based alloy had much better workability than the titanium alloy, and was easily processed into the inner surface shape of the first inner cylinder.
[0020]
Further, the material of the present invention is hardly corroded even by corrosive gas containing chloride, sulfide and the like.
[0021]
Furthermore, since the linear expansion coefficient of the material of the present invention and the linear expansion coefficient of SUS304 are about the same as about 14 × 10 −4 K −1 and the degree of change with respect to heat is about the same, The second inner cylinder thermally expanded and contracted following the thermal expansion and contraction of the first inner cylinder, and the second inner cylinder was difficult to peel off.
[0022]
The second inner cylinder is attached to the first inner cylinder by plug welding (plug welding) with a plate having a side length of 100 to 3000 mm and formed in a shape following the inner surface shape of the first inner cylinder. It is preferable that it is configured. This is because if a plurality of plate members are attached to the inner surface of the first inner cylinder, rather than forming the second inner cylinder with a single plate, some parts of the second inner cylinder may be corrosive. Even when corroded by gas, only the corroded portion can be replaced, so that the running cost is reduced. In addition, when a plurality of plate members are attached to the inner surface of the first inner cylinder, the initial cost can be reduced.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
A double-cylinder heat exchanger according to the present invention is a double-cylinder heat exchanger including an outer cylinder through which a preheating fluid flows, and an inner cylinder through which a heat source fluid flows inside the outer cylinder. A vessel, wherein the inner cylinder includes a first inner cylinder and a second inner cylinder provided in contact with an inner surface of the first inner cylinder, wherein the first inner cylinder is made of a steel material. The second inner cylinder is made of a heat-resistant and corrosion-resistant alloy containing at least Ni and Cr as components. In particular, a double-cylinder heat exchanger including an outer cylinder through which a preheating fluid flows, and an inner cylinder through which a heat source fluid of a corrosive gas containing dust flows inside provided inside the outer cylinder. The inner cylinder includes a first inner cylinder and a second inner cylinder provided in contact with an inner surface of the first inner cylinder, and the first inner cylinder is formed of stainless steel, The second inner cylinder is a Ni-Cr alloy, a Ni-Cr-Fe alloy, a Ni-Cr-Fe-Ti alloy, a Ni-Cr-Fe-Ti-Al-Nb alloy, a Ni-Cr-Fe-Mo-W alloy Of any heat-resistant and corrosion-resistant alloy selected from the group consisting of The second inner cylinder is formed by attaching a plate having a side length of 100 to 3000 mm formed in a shape along the inner surface shape of the first inner cylinder to the first inner cylinder by plug welding. It is.
[0024]
Hereinafter, a more detailed description will be given with reference to the drawings.
[0025]
FIG. 1 is a schematic view of an entire double-cylinder heat exchanger according to the present invention, FIG. 2 is a cross-sectional view of a main part, and FIG. 3 is a partially developed view of a second inner cylinder.
[0026]
In each of the figures, reference numeral 1 denotes a cylindrical outer cylinder in a double-cylindrical heat exchanger, and 2 denotes a cylindrical inner cylinder disposed inside the outer cylinder 1. 3 is a front duct of the heat source fluid to the inner cylinder 2, and 4 is a rear duct of the heat source fluid. Therefore, a heat source fluid containing a corrosive gas such as chloride or sulfide is discharged from the front duct 3 through the inner cylinder 2 to the rear duct 4. Reference numeral 5 denotes an inlet for a preheating fluid as clean air, and reference numeral 6 denotes an outlet for the preheating fluid. Accordingly, the preheating fluid enters the outer cylinder 1 from the inlet 5, passes through the space between the outer cylinder 1 and the inner cylinder 2, and is discharged from the outlet 6. Then, while passing through the space between the outer cylinder 1 and the inner cylinder 2, the preheating fluid deprives the heat source fluid passing through the inner cylinder 2 of heat, and the temperature rises accordingly. That is, heat exchange is performed. Since such a configuration is publicly known, details are omitted. In addition, 7 is an upper conical plate, 8 is a lower conical plate, and 9 is a flue compensator.
[0027]
Incidentally, the inner cylinder 2 is a cylindrical first inner cylinder made of SUS304 (thermal conductivity 16.0 W / m · K, linear expansion coefficient 13.6 × 10 −6 K −1 ) having a thickness of 4 to 14 mm. 2a and a second inner cylinder made of a Ni—Cr—Fe—Ti—Al—Nb alloy (thermal conductivity 12.0 W / m · K, linear expansion coefficient 12.6 × 10 −6 K −1 , melting point 1770 K) 2b. The second inner cylinder 2b is a square Ni-Cr having a thickness of 2 to 6 mm and a side length of 300 to 1000 mm processed into a cylindrical shape according to the curvature of the inner surface of the first inner cylinder 2a. An alloy plate is attached to the inner surface of the first inner cylinder 2a by plug welding. Therefore, the outer surface of the second inner cylinder 2b is in close contact with the inner surface of the first inner cylinder 2a.
[0028]
When the inner cylinder 2, that is, the double-cylindrical heat exchanger is configured as described above, the melting point of the second inner cylinder 2b, which is in contact with the heat source fluid containing corrosive gas, is 1770K, which is rich in heat resistance. , Excellent durability is ensured. Further, it was difficult to corrode even with corrosive gases containing chlorides and sulfides. That is, it has excellent corrosion resistance. Furthermore, the linear expansion coefficient of the first inner cylinder 2a and the linear expansion coefficient of the second inner cylinder 2b are substantially the same, and therefore, the thermal expansion and contraction of the first inner cylinder 2a and the thermal expansion and contraction of the second inner cylinder 2b. There was no large displacement in expansion and contraction, and therefore, it was difficult to peel off even if the plate of the second inner cylinder 2b was simply attached to the first inner cylinder 2a by means of plug welding. In other words, if there is a large difference in the coefficient of thermal expansion, there is a risk of peeling unless this is done by a method called full-surface welding. There was no problem of peeling. This means that assembly costs are low. It also means that assembly is easy. Further, the thermal conductivity of the second inner cylinder 2b is 12.0 W / m · K, which is larger than that of the ceramic material. Therefore, the heat of the heat source fluid is transmitted to the first inner cylinder 2a, and thus to the preheating fluid. And the heat exchange efficiency was excellent. Further, the nickel-based alloy had much better workability than the titanium alloy, and was easily processed into the inner surface shape of the first inner cylinder 2a.
[0029]
The second inner cylinder 2b is not formed by bending a single plate into a cylindrical shape, but is formed by combining a plurality of 300 to 1000 mm plate bodies as shown in FIG. Therefore, even if a part is corroded, it is not necessary to replace the entire part, and only the plate in the corroded part need be replaced, so that the maintenance cost is low.
[0030]
In the above embodiment, the first inner cylinder 2a is made of SUS304, but may be stainless steel such as SUS310S. The second inner cylinder 2b is made of a Ni-Cr-Fe-Ti-Al-Nb alloy, but is made of, for example, a Ni-Cr alloy (having a thermal conductivity of 17.4W / m · K and a linear expansion coefficient). Rate 13.2 × 10 −6 K −1 , melting point 1668 K), Ni—Cr—Fe alloy (thermal conductivity 14.8 W / m · K, linear expansion coefficient 13.3 × 10 −6 K −1 ), Ni -Cr-Fe-Ti alloy (thermal conductivity 11.5 W / m · K, linear expansion coefficient 14.2 × 10 -6 K -1 ), Ni-Cr-Fe-Mo-W alloy (thermal conductivity 11. 1 W / m · K, linear expansion coefficient 11.3 × 10 −6 K −1 , melting point 1578 K).
[0031]
【The invention's effect】
Since the second inner cylinder in contact with the heat source fluid containing the corrosive gas is made of a high melting point material, excellent durability is ensured. Further, since it is hard to corrode even with a corrosive gas containing chloride, sulfide or the like, it has excellent corrosion resistance. Further, the linear expansion coefficient of the first inner cylinder and the linear expansion coefficient of the second inner cylinder are substantially the same, so that the thermal expansion and expansion of the first inner cylinder and the thermal expansion and expansion of the second inner cylinder are large. There is no misalignment, and therefore, it is difficult to peel off even if the plate of the second inner cylinder is simply attached to the first inner cylinder by means of plug welding. In other words, if there is a large difference in the coefficient of thermal expansion, there is a risk of peeling unless this is done by a method called full-surface welding. No peeling problem. This results in low assembly costs. And it is easy to assemble. Further, the heat conductivity of the second inner cylinder is larger than that of the ceramic material, and therefore, the heat of the heat source fluid can be transmitted to the preheating fluid, and the heat exchange efficiency is excellent. Further, the workability is good, and it is easy to work into the inner surface shape of the first inner cylinder.
[0032]
The second inner cylinder is not formed by bending a single plate into a cylindrical shape, but is formed by combining a plurality of plates of a predetermined size. It is not necessary to replace all of the plates, only the corroded portion of the plate needs to be replaced, and the maintenance cost is low.
[Brief description of the drawings]
FIG. 1 is an overall schematic view of a double-cylindrical heat exchanger according to the present invention. FIG. 2 is a cross-sectional view of a main part of the double-cylindrical heat exchanger according to the present invention. FIG. Partially expanded view of the second inner cylinder of the cylindrical heat exchanger [Description of symbols]
Reference Signs List 1 outer cylinder 2 inner cylinder 2a first inner cylinder 2b second inner cylinder 3 front duct 4 rear duct 5 preheating fluid inlet 6 preheating fluid outlet

Claims (3)

内部を予熱流体が流動する外筒と、この外筒内に配設された内部を熱源流体が流動する内筒とを具備する複筒式熱交換器であって、
前記内筒は、第1内筒と、この第1内筒の内面に接して設けられた第2内筒とを具備し、
前記第1内筒は鋼材で構成されると共に、前記第2内筒は少なくともNi及びCrを成分として含む耐熱性・耐蝕性合金で構成されてなる
ことを特徴とする複筒式熱交換器。
An outer cylinder in which a preheating fluid flows, and a double-cylinder heat exchanger including an inner cylinder in which a heat source fluid flows inside the outer cylinder disposed in the outer cylinder,
The inner cylinder includes a first inner cylinder and a second inner cylinder provided in contact with an inner surface of the first inner cylinder,
The double-tube heat exchanger, wherein the first inner cylinder is made of a steel material, and the second inner cylinder is made of a heat-resistant and corrosion-resistant alloy containing at least Ni and Cr as components.
第1内筒はステンレススチールで構成され、第2内筒はNi−Cr合金、Ni−Cr−Fe合金、Ni−Cr−Fe−Ti合金、Ni−Cr−Fe−Ti−Al−Nb合金、Ni−Cr−Fe−Mo−W合金の群の中から選ばれる何れかの合金で構成されてなることを特徴とする請求項1の複筒式熱交換器。The first inner cylinder is made of stainless steel, the second inner cylinder is a Ni-Cr alloy, a Ni-Cr-Fe alloy, a Ni-Cr-Fe-Ti alloy, a Ni-Cr-Fe-Ti-Al-Nb alloy, 2. The double-cylinder heat exchanger according to claim 1, wherein the heat exchanger is made of any alloy selected from the group consisting of Ni-Cr-Fe-Mo-W alloys. 第2内筒は、第1内筒の内面形状に沿った形状に形成された一辺の長さが100〜3000mmの板体を第1内筒に対してプラグ熔接により取り付けられて構成されたものであることを特徴とする請求項1又は請求項2の複筒式熱交換器。The second inner cylinder is formed by attaching a plate having a side length of 100 to 3000 mm formed in a shape along the inner surface shape of the first inner cylinder to the first inner cylinder by plug welding. The double-tube heat exchanger according to claim 1 or 2, wherein:
JP2002225824A 2002-08-02 2002-08-02 Double cylinder type heat exchanger Pending JP2004069102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002225824A JP2004069102A (en) 2002-08-02 2002-08-02 Double cylinder type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002225824A JP2004069102A (en) 2002-08-02 2002-08-02 Double cylinder type heat exchanger

Publications (1)

Publication Number Publication Date
JP2004069102A true JP2004069102A (en) 2004-03-04

Family

ID=32013355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002225824A Pending JP2004069102A (en) 2002-08-02 2002-08-02 Double cylinder type heat exchanger

Country Status (1)

Country Link
JP (1) JP2004069102A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228685A (en) * 2008-03-19 2009-10-08 Teikoku Piston Ring Co Ltd Piston ring with plate spring, and combination of piston and piston ring
WO2019069703A1 (en) * 2017-10-05 2019-04-11 三菱日立パワーシステムズ株式会社 Heat exchanger

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158479U (en) * 1979-04-27 1980-11-14
JPS62156204U (en) * 1986-03-19 1987-10-03
JPH07241668A (en) * 1994-03-04 1995-09-19 Nippon Steel Corp Method for plug welding of stainless steel by flux-cored wire
JPH08188100A (en) * 1995-01-11 1996-07-23 Noboru Ono Grille guard
JPH09226886A (en) * 1996-02-27 1997-09-02 Chiyoda Corp Lining panel
JPH1029265A (en) * 1996-07-16 1998-02-03 Sumitomo Metal Ind Ltd Composite vibration-damping metal plate and its bend working method
JPH1030140A (en) * 1996-07-15 1998-02-03 Sumitomo Metal Ind Ltd Nickel-base alloy excellent in corrosion resistance and workability
JP2000141052A (en) * 1998-11-05 2000-05-23 Nippon Steel Corp Method for coating titanium sheet on metal base material
JP2001056194A (en) * 1999-06-30 2001-02-27 Rohm & Haas Co High performance heat exchanger
JP2002510030A (en) * 1998-03-27 2002-04-02 シーメンス アクチエンゲゼルシヤフト Heat exchanger tube, method of manufacturing heat exchanger tube, and condenser
WO2002035151A1 (en) * 2000-10-25 2002-05-02 Ebara Corporation Apparatus for incineration or gasification using high temperature corrosion resistant alloy

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158479U (en) * 1979-04-27 1980-11-14
JPS62156204U (en) * 1986-03-19 1987-10-03
JPH07241668A (en) * 1994-03-04 1995-09-19 Nippon Steel Corp Method for plug welding of stainless steel by flux-cored wire
JPH08188100A (en) * 1995-01-11 1996-07-23 Noboru Ono Grille guard
JPH09226886A (en) * 1996-02-27 1997-09-02 Chiyoda Corp Lining panel
JPH1030140A (en) * 1996-07-15 1998-02-03 Sumitomo Metal Ind Ltd Nickel-base alloy excellent in corrosion resistance and workability
JPH1029265A (en) * 1996-07-16 1998-02-03 Sumitomo Metal Ind Ltd Composite vibration-damping metal plate and its bend working method
JP2002510030A (en) * 1998-03-27 2002-04-02 シーメンス アクチエンゲゼルシヤフト Heat exchanger tube, method of manufacturing heat exchanger tube, and condenser
JP2000141052A (en) * 1998-11-05 2000-05-23 Nippon Steel Corp Method for coating titanium sheet on metal base material
JP2001056194A (en) * 1999-06-30 2001-02-27 Rohm & Haas Co High performance heat exchanger
WO2002035151A1 (en) * 2000-10-25 2002-05-02 Ebara Corporation Apparatus for incineration or gasification using high temperature corrosion resistant alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228685A (en) * 2008-03-19 2009-10-08 Teikoku Piston Ring Co Ltd Piston ring with plate spring, and combination of piston and piston ring
WO2019069703A1 (en) * 2017-10-05 2019-04-11 三菱日立パワーシステムズ株式会社 Heat exchanger
JP2019066157A (en) * 2017-10-05 2019-04-25 三菱日立パワーシステムズ株式会社 Heat exchanger

Similar Documents

Publication Publication Date Title
JP5255126B2 (en) Stirling engine
JP2002364801A (en) Waste heat utilization system
JP4948834B2 (en) Corrosion-resistant coating alloy and member coated therewith
JP4754959B2 (en) Heat exchanger
JP2004069102A (en) Double cylinder type heat exchanger
JP2007163115A (en) Heat exchanger
US7322317B2 (en) Heat-recovery boiler
JP4587138B2 (en) Components for boiler area of power plant or waste incineration plant
JP4360047B2 (en) Heat transfer tube support structure
JP5622323B2 (en) Heat exchanger
JP2004184045A (en) Heat exchanger
JP2007054887A (en) Heat resistant clad steel sheet
JP2005069575A (en) Heat exchanger
JP2001324289A (en) High temperature heat exchanger
JP5645534B2 (en) Heat exchanger for corrosive hot gas
JP2000119781A (en) Heat transfer tube for heat exchange, with corrosion and wear resistance, and heating furnace and incinerator using the same
JP2004225110A (en) Pipe of excellent wear resistance, and pipe repairing method
JP2000356497A (en) Heat exchanger and fluid heater
JP2009198117A (en) Protection member of marine boiler overheater pipe
EP1143198A1 (en) Device and method for cooling fume intakes
JPH09210260A (en) Anticorrosive steel pipe
JP2012097991A (en) Heat exchanger
JP2004163062A (en) Heat transfer tube for boiler
Samdani Heat exchange: the next wave
JPS586232A (en) Method and apparatus for recovering exhaust gas heat

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080723