JP2002373712A - Photoelectric conversion element and photocell - Google Patents

Photoelectric conversion element and photocell

Info

Publication number
JP2002373712A
JP2002373712A JP2001180428A JP2001180428A JP2002373712A JP 2002373712 A JP2002373712 A JP 2002373712A JP 2001180428 A JP2001180428 A JP 2001180428A JP 2001180428 A JP2001180428 A JP 2001180428A JP 2002373712 A JP2002373712 A JP 2002373712A
Authority
JP
Japan
Prior art keywords
group
photoelectric conversion
layer
conversion element
dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001180428A
Other languages
Japanese (ja)
Inventor
Jiro Tsukahara
次郎 塚原
Tetsuya Watanabe
哲也 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2001180428A priority Critical patent/JP2002373712A/en
Publication of JP2002373712A publication Critical patent/JP2002373712A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2009Solid electrolytes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/652Cyanine dyes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pigment sensitizing photoelectric conversion element using a substantially nonvolatile electrolytic composition and showing excellent stability for preservation and excellent conversion efficiency, and a photocell formed of the photoelectric conversion element. SOLUTION: The photoelectric conversion element having a charge transportation layer containing a salt represented by the general formula (I) and the photocell consisting of the element are disclosed. In the general formula (I), R1 and R2 each independently represent an alkyl group, an aryl group or an alkoxy group and may have a substituent; W1 represents C(=O), S(=O), S(=O)2 , P(=O), a triazolyl group or a tetrazolyl group, with the proviso that when W1 represents C(=O), S(=O) or S(=O)2 , n1 is 1; when W1 represents P(=O), n1 is 2; and when W1 represents a triazolyl group or a tetrazolyl group, n1 is 0 or 1; W2 represents C(=O), S(=O), P(=O), a triazolyl group or a tetrazolyl group, with the proviso that when W2 represents C(=O) or S(=O), n2 is 1; when W2 represents P(=O), n2 is 2; and when W2 represents a triazolyl group or a tetrazolyl group, n2 is 0 or 1; and Q<+> is an organic cation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光電変換素子及び光
電池に関し、特に色素で増感した半導体微粒子からなる
発光層と特定の塩を含有する電荷輸送層とを有する光電
変換素子、及び該光電変換素子からなる光電池に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoelectric conversion element and a photovoltaic cell, and more particularly, to a photoelectric conversion element having a light emitting layer composed of semiconductor fine particles sensitized with a dye and a charge transport layer containing a specific salt, and the photoelectric conversion element. The present invention relates to a photovoltaic cell including an element.

【0002】[0002]

【従来の技術】光電変換素子は各種の光センサー、複写
機、光発電装置等に用いられている。光電変換素子には
金属を用いたもの、半導体を用いたもの、有機顔料や色
素を用いたもの、これらを組み合わせたもの等の様々な
方式が実用化されている。米国特許4927721号、同46845
37号、同5084365号、同5350644号、同5463057号、同552
5440号、WO98/50393号、特開平7-249790号及び特表平10
-504521号には、色素によって増感した半導体微粒子を
用いた光電変換素子(以下、色素増感光電変換素子と称
する)、並びにこれを作成するための材料及び製造技術
が開示されている。半導体微粒子としては酸化チタン等
の安価な半導体を高純度に精製することなく用いること
ができるため、このような色素増感光電変換素子は低コ
ストで製造できるという利点を有する。しかしながら、
これらの色素増感光電変換素子においては電解質として
有機溶媒や水を含む電解液が用いられるため、有機溶媒
や水の揮発により素子が劣化するという問題がある。ジ
ャーナル・オブ・エレクトロケミカル・ソサエティー,
第143巻, 第10号, 3099〜3108頁, (1996年)は、実質的
に揮発性の無い溶融塩電解質を用いることにより上記の
問題を解決する方法を開示している。しかしながら、溶
融塩電解質を用いた光電変換素子は変換効率が低く、改
善が望まれている。
2. Description of the Related Art Photoelectric conversion elements are used in various optical sensors, copying machines, photovoltaic devices and the like. Various types of photoelectric conversion elements have been put into practical use, such as those using metals, those using semiconductors, those using organic pigments and dyes, and those combining these. U.S. Pat.
No. 37, No. 5084365, No. 5350644, No. 5463057, No. 552
No. 5440, WO98 / 50393, JP-A-7-249790 and JP-T-10
JP-504521 discloses a photoelectric conversion element using semiconductor fine particles sensitized by a dye (hereinafter, referred to as a dye-sensitized photoelectric conversion element), and a material and a manufacturing technique for producing the same. Since an inexpensive semiconductor such as titanium oxide can be used as the semiconductor fine particles without purification to a high degree of purity, such a dye-sensitized photoelectric conversion element has an advantage that it can be manufactured at low cost. However,
In these dye-sensitized photoelectric conversion elements, since an electrolytic solution containing an organic solvent or water is used as an electrolyte, there is a problem that the elements are deteriorated by volatilization of the organic solvent or water. Journal of Electrochemical Society,
Vol. 143, No. 10, pp. 3099-3108, (1996) discloses a method for solving the above problem by using a substantially non-volatile molten salt electrolyte. However, the conversion efficiency of the photoelectric conversion element using the molten salt electrolyte is low, and improvement is desired.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、実質
的に揮発性の無い電解質組成物を用いた、優れた保存安
定性及び変換効率を示す色素増感光電変換素子、並びに
該光電変換素子からなる光電池を提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a dye-sensitized photoelectric conversion device using a substantially non-volatile electrolyte composition and exhibiting excellent storage stability and conversion efficiency, and the photoelectric conversion device. An object is to provide a photovoltaic cell comprising an element.

【0004】[0004]

【課題を解決するための手段】上記目的に鑑み鋭意研究
の結果、本発明者は、特定の塩を含有する電荷輸送層を
有する光電変換素子は、優れた保存安定性及び変換効率
を示すことを発見し、本発明に想到した。
Means for Solving the Problems As a result of intensive studies in view of the above object, the present inventors have found that a photoelectric conversion element having a charge transport layer containing a specific salt exhibits excellent storage stability and conversion efficiency. And found the present invention.

【0005】即ち、本発明の光電変換素子は下記一般式
(I)により表される塩を含有する電荷輸送層を有するこ
とを特徴とする。また本発明の光電池は該光電変換素子
からなることを特徴とする。
That is, the photoelectric conversion element of the present invention has the following general formula:
It has a charge transport layer containing the salt represented by (I). Further, a photovoltaic cell of the present invention is characterized by comprising the photoelectric conversion element.

【化2】 一般式(I)中、R1及びR2はそれぞれ独立にアルキル基、
アリール基又はアルコキシ基を表し、置換基を有してい
てもよい。W1はC(=O)、S(=O)、S(=O)2、P(=O)、トリア
ゾリル基又はテトラゾリル基を表し、W1がC(=O)、S(=O)
又はS(=O)2を表すときn1は1であり、W1がP(=O)を表す
ときn1は2であり、W1がトリアゾリル基又はテトラゾリ
ル基を表すときn1は0又は1である。W2はC(=O)、S(=
O)、P(=O)、トリアゾリル基又はテトラゾリル基を表
し、W2がC(=O)又はS(=O)を表すときn2は1であり、W2
P(=O)を表すときn2は2であり、W2がトリアゾリル基又
はテトラゾリル基を表すときn2は0又は1である。Q+
有機カチオンを表す。
Embedded image In the general formula (I), R 1 and R 2 are each independently an alkyl group,
Represents an aryl group or an alkoxy group, and may have a substituent. W 1 represents C (= O), S (= O), S (= O) 2 , P (= O), a triazolyl group or a tetrazolyl group, and W 1 is C (= O), S (= O)
Or S (= O) is n1 to represent a 2 a 1, n1 when W 1 represents a P (= O) is 2, the n1 when W 1 represents a triazolyl group or a tetrazolyl group 0 or 1 is there. W 2 is C (= O), S (=
O), P (= O) , represents a triazolyl group or tetrazolyl group, n2 when W 2 represents C (= O) or S (= O) is 1, W 2 is
N2 to represent a P (= O) is 2, the n2 when W 2 represents a triazolyl group or tetrazolyl group is 0 or 1. Q + represents an organic cation.

【0006】本発明では下記好ましい条件を満たすこと
により、一層優れた保存安定性及び変換効率を示す光電
変換素子及び光電池が得られる。 (1)一般式(I)中のW1はS(=O)2であるのが好ましく、W2
C(=O)であるのが好ましく、W1がS(=O)2であり、且つW2
がC(=O)であるのが特に好ましい。 (2)一般式(I)中のR1はパーフルオロアルキル基であるの
が特に好ましい。 (3)一般式(I)中のQ+は芳香族ヘテロ環4級カチオンであ
るのが好ましい。 (4)一般式(I)により表される塩の分子量は1000以下であ
るのが好ましい。
In the present invention, by satisfying the following preferable conditions, a photoelectric conversion element and a photovoltaic cell exhibiting more excellent storage stability and conversion efficiency can be obtained. (1) W 1 in the general formula (I) is preferably a S (= O) 2, W 2 is
C (= O) is preferably from, W 1 is S (= O) 2, and W 2
Is particularly preferably C (= O). (2) R 1 in the general formula (I) is particularly preferably a perfluoroalkyl group. (3) Q + in the general formula (I) is preferably an aromatic heterocyclic quaternary cation. (4) The salt represented by the general formula (I) preferably has a molecular weight of 1,000 or less.

【0007】[0007]

【発明の実施の形態】[1]光電変換素子 本発明の光電変換素子は通常、導電性支持体、色素が吸
着した半導体微粒子の層、電荷輸送層及び対極を有す
る。以下、色素が吸着した半導体微粒子の層を感光層と
称する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS [1] Photoelectric conversion element The photoelectric conversion element of the present invention usually has a conductive support, a layer of semiconductor fine particles having a dye adsorbed thereon, a charge transport layer and a counter electrode. Hereinafter, the layer of the semiconductor fine particles having the dye adsorbed thereon is referred to as a photosensitive layer.

【0008】本発明の光電変換素子は、好ましくは図1
に示すように、導電層10、下塗り層60、感光層20、電荷
輸送層30、対極導電層40の順に積層してなり、感光層20
を色素22によって増感した半導体微粒子21とこの半導体
微粒子21の間の空隙に浸透した液状又はゲル状の電荷輸
送材料23とから構成する。感光層20中の電荷輸送材料23
は通常、電荷輸送層30に用いる材料と同じものである。
また光電変換素子に強度を付与するため、導電層10及び
/又は対極導電層40の下地として基板50を設けてもよ
い。本発明では、導電層10及び任意で設ける基板50から
なる層を「導電性支持体」、対極導電層40及び任意で設
ける基板50からなる層を「対極」と呼ぶ。なお、図1中
の導電層10、対極導電層40、基板50は、それぞれ透明導
電層10a、透明対極導電層40a、透明基板50aであっても
よい。この光電変換素子を外部負荷に接続して電気的仕
事をさせる目的(発電)で作られたものが光電池であ
り、光学的情報のセンシングを目的に作られたものが光
センサーである。光電池のうち、電荷輸送材料が主とし
てイオン輸送材料からなる場合を特に光電気化学電池と
呼び、また、太陽光による発電を主目的とする場合を太
陽電池と呼ぶ。
The photoelectric conversion device of the present invention preferably has the structure shown in FIG.
As shown in FIG. 2, the conductive layer 10, the undercoat layer 60, the photosensitive layer 20, the charge transport layer 30, and the counter electrode conductive layer 40 are laminated in this order.
From the semiconductor fine particles 21 sensitized by the dye 22 and the liquid or gel charge transport material 23 that has permeated into the gaps between the semiconductor fine particles 21. Charge transport material 23 in photosensitive layer 20
Is usually the same as the material used for the charge transport layer 30.
Further, a substrate 50 may be provided as a base of the conductive layer 10 and / or the counter electrode conductive layer 40 in order to impart strength to the photoelectric conversion element. In the present invention, a layer composed of the conductive layer 10 and the optional substrate 50 is referred to as a “conductive support”, and a layer composed of the counter electrode conductive layer 40 and the optional substrate 50 is referred to as a “counter electrode”. Note that the conductive layer 10, the counter electrode conductive layer 40, and the substrate 50 in FIG. 1 may be a transparent conductive layer 10a, a transparent counter electrode conductive layer 40a, and a transparent substrate 50a, respectively. A photovoltaic cell is made for the purpose of generating electrical work by connecting this photoelectric conversion element to an external load (power generation), and an optical sensor is made for the purpose of sensing optical information. Of the photovoltaic cells, a case where the charge transport material is mainly composed of an ion transport material is particularly called a photoelectrochemical cell, and a case where the main purpose is to generate power by sunlight is called a solar cell.

【0009】図1に示す光電変換素子において、半導体
微粒子がn型である場合、色素22により増感された半導
体微粒子21を含む感光層20に入射した光は色素22等を励
起し、励起された色素22等中の高エネルギーの電子が半
導体微粒子21の伝導帯に渡され、さらに拡散により導電
層10に到達する。このとき色素22等の分子は酸化体とな
っている。光電池においては、導電層10中の電子が外部
回路で仕事をしながら対極導電層40及び電荷輸送層30を
経て色素22等の酸化体に戻り、色素22が再生する。感光
層20は負極(光アノード)として働き、対極導電層40は
正極として働く。それぞれの層の境界(例えば導電層10
と感光層20との境界、感光層20と電荷輸送層30との境
界、電荷輸送層30と対極導電層40との境界等)では、各
層の構成成分同士が相互に拡散混合していてもよい。以
下各層について詳細に説明する。
In the photoelectric conversion device shown in FIG. 1, when the semiconductor fine particles are n-type, the light incident on the photosensitive layer 20 containing the semiconductor fine particles 21 sensitized by the dye 22 excites the dye 22 and the like. The high-energy electrons in the dyes 22 and the like passed to the conduction band of the semiconductor fine particles 21 and reach the conductive layer 10 by diffusion. At this time, molecules such as the dye 22 are oxidized. In the photovoltaic cell, the electrons in the conductive layer 10 return to an oxidized substance such as the dye 22 through the counter electrode conductive layer 40 and the charge transport layer 30 while working in an external circuit, and the dye 22 is regenerated. The photosensitive layer 20 functions as a negative electrode (photo anode), and the counter electrode conductive layer 40 functions as a positive electrode. Each layer boundary (for example, conductive layer 10
At the boundary between the photosensitive layer 20 and the photosensitive layer 20, the boundary between the photosensitive layer 20 and the charge transport layer 30, the boundary between the charge transport layer 30 and the counter electrode conductive layer 40, etc., even if the components of each layer are diffused and mixed with each other. Good. Hereinafter, each layer will be described in detail.

【0010】(A)電荷輸送層 電荷輸送層は下記一般式(I)により表される塩を含有す
る電解質組成物からなる。この電解質組成物は好ましく
は更に他のヨウ化物塩及びヨウ素を含有する。以下、一
般式(I)により表される塩を「塩(I)」と称する。
(A) Charge transport layer The charge transport layer comprises an electrolyte composition containing a salt represented by the following general formula (I). The electrolyte composition preferably further contains other iodide salts and iodine. Hereinafter, the salt represented by the general formula (I) is referred to as “salt (I)”.

【化3】 Embedded image

【0011】電荷輸送層が塩(I)、ヨウ化物塩及びヨウ
素を含有する場合、ヨウ化物イオンとヨウ素(又はヨウ
素とヨウ化物イオンが反応して生じるトリヨージドイオ
ン)とがレドックス対を形成し、塩(I)はこのレドック
ス対の媒体としての役割を果たす。これら3成分からな
る電解質組成物は室温で均一な液体であるのが好まし
い。この電解質組成物の粘度は低いほど好ましく、室温
における粘度は好ましくは1000cp以下、より好ましくは
500cp以下、特に好ましくは300cp以下である。
When the charge transport layer contains a salt (I), an iodide salt and iodine, an iodide ion and iodine (or a triiodide ion generated by a reaction between iodine and iodide ion) form a redox pair. The salt (I) serves as a medium for this redox couple. The electrolyte composition composed of these three components is preferably a uniform liquid at room temperature. The lower the viscosity of this electrolyte composition is, the more preferable it is.
It is 500 cp or less, particularly preferably 300 cp or less.

【0012】電荷輸送層に用いる電解質組成物は上記塩
(I)、ヨウ化物塩及びヨウ素以外の媒体や添加剤を含有
していてもよい。この場合も電解質組成物は室温で均一
な液体であるのが好ましい。また、電解質組成物はゲル
のマトリクスを含有してもよい。この場合、電解質組成
物は全体として流動性の無いゲルとなるが、各成分は均
一であるのが好ましい。
The electrolyte composition used for the charge transport layer is the above salt
It may contain a medium or an additive other than (I), an iodide salt and iodine. Also in this case, the electrolyte composition is preferably a uniform liquid at room temperature. Further, the electrolyte composition may contain a gel matrix. In this case, the electrolyte composition becomes a gel having no fluidity as a whole, but each component is preferably uniform.

【0013】電解質組成物の組成には特に制限はない
が、塩(I)の質量比は電解質組成物全体に対して1〜60
質量%であるのが好ましく、10〜30質量%であるのがよ
り好ましい。ヨウ化物塩の質量比は電解質組成物全体に
対して10〜98質量%であるのが好ましく、40〜90質量%
であるのがより好ましい。また、電解質組成物中のヨウ
素の濃度は1〜500mmol/lであるのが好ましく、10〜200
mmol/lであるのがより好ましい。以下、電解質組成物に
用いる各成分、電解質組成物のゲル化、及び電荷輸送層
の形成方法について詳述する。
The composition of the electrolyte composition is not particularly limited, but the mass ratio of the salt (I) is 1 to 60 with respect to the whole electrolyte composition.
%, More preferably from 10 to 30% by mass. The mass ratio of the iodide salt is preferably from 10 to 98% by mass, and more preferably from 40 to 90% by mass based on the whole electrolyte composition.
Is more preferable. Further, the concentration of iodine in the electrolyte composition is preferably 1 to 500 mmol / l, and 10 to 200 mmol / l.
More preferably, it is mmol / l. Hereinafter, the components used in the electrolyte composition, the gelation of the electrolyte composition, and the method of forming the charge transport layer will be described in detail.

【0014】(1)塩(I) 一般式(I)中、R1及びR2はそれぞれ独立にアルキル基
(メチル基、エチル基、イソブチル基、n-ドデシル基、
シクロヘキシル基等)、アリール基(フェニル基、トリ
ル基、ナフチル基等)又はアルコキシ基(メトキシ基、
エトキシ基等)を表す。R1及びR2はそれぞれ置換基を有
していてもよく、該置換基の例としては、ハロゲン原
子、アルキル基(シクロアルキル基、ビシクロアルキル
基を含む)、アルケニル基(シクロアルケニル基、ビシ
クロアルケニル基を含む)、アルキニル基、アリール
基、ヘテロ環基、シアノ基、ヒドロキシル基、ニトロ
基、カルボキシル基、アルコキシ基、アリールオキシ
基、シリルオキシ基、アシルオキシ基、カルバモイルオ
キシ基、アルコキシカルボニルオキシ基、アリールオキ
シカルボニルオキシ基、アミノ基(アニリノ基を含
む)、アシルアミノ基、アミノカルボニルアミノ基、ア
ルコキシカルボニルアミノ基、アリールオキシカルボニ
ルアミノ基、スルファモイルアミノ基、アルキルスルホ
ニルアミノ基、アリールスルホニルアミノ基、メルカプ
ト基、アルキルチオ基、アリールチオ基、スルファモイ
ル基、スルホ基、アルキルスルフィニル基、アリールス
ルフィニル基、アルキルスルホニル基、アリールスルホ
ニル基、アシル基、アリールオキシカルボニル基、アル
コキシカルボニル基、カルバモイル基、アリールアゾ
基、イミド基、ホスフィノ基、ホスフィニル基、ホスフ
ィニルオキシ基、ホスフィニルアミノ基、シリル基等が
挙げられる。R1はアルキル基であるのが好ましく、炭素
数6以下のハロゲン置換アルキル基であるのがより好ま
しく、炭素数6以下のパーフルオロアルキル基であるの
が特に好ましい。R2はアルキル基であるのが好ましく、
炭素数6以下のアルキル基であるのが特に好ましい。
(1) Salt (I) In the general formula (I), R 1 and R 2 are each independently an alkyl group (methyl, ethyl, isobutyl, n-dodecyl,
Cyclohexyl group), aryl group (phenyl group, tolyl group, naphthyl group, etc.) or alkoxy group (methoxy group,
Ethoxy group). R 1 and R 2 may have a substituent, examples of the substituent include a halogen atom, an alkyl group (cycloalkyl group, including a bicycloalkyl group), an alkenyl group (a cycloalkenyl group, a bicyclo Alkenyl group), alkynyl group, aryl group, heterocyclic group, cyano group, hydroxyl group, nitro group, carboxyl group, alkoxy group, aryloxy group, silyloxy group, acyloxy group, carbamoyloxy group, alkoxycarbonyloxy group, Aryloxycarbonyloxy group, amino group (including anilino group), acylamino group, aminocarbonylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfamoylamino group, alkylsulfonylamino group, arylsulfonylamino group, Mercap Group, alkylthio group, arylthio group, sulfamoyl group, sulfo group, alkylsulfinyl group, arylsulfinyl group, alkylsulfonyl group, arylsulfonyl group, acyl group, aryloxycarbonyl group, alkoxycarbonyl group, carbamoyl group, arylazo group, imide group Phosphino group, phosphinyl group, phosphinyloxy group, phosphinylamino group, silyl group and the like. R 1 is preferably an alkyl group, more preferably a halogen-substituted alkyl group having 6 or less carbon atoms, and particularly preferably a perfluoroalkyl group having 6 or less carbon atoms. R 2 is preferably an alkyl group,
Particularly preferred is an alkyl group having 6 or less carbon atoms.

【0015】一般式(I)中、W1はC(=O)、S(=O)、S(=
O)2、P(=O)、トリアゾリル基又はテトラゾリル基を表
し、好ましくはS(=O)2である。R1の数を示すn1は、W1
C(=O)、S(=O)又はS(=O)2を表すときは1であり、W1がP
(=O)を表すときは2であり、W1がトリアゾリル基又はテ
トラゾリル基を表すときは0又は1である。一般式(I)
中、W2はC(=O)、S(=O)、P(=O)、トリアゾリル基又はテ
トラゾリル基を表し、好ましくはC(=O)である。R2の数
を示すn2は、W2がC(=O)又はS(=O)を表すときは1であ
り、W2がP(=O)を表すときは2であり、W2がトリアゾリ
ル基又はテトラゾリル基を表すときは0又は1である。
In the general formula (I), W 1 represents C (= O), S (= O), S (=
O) 2 , P (= O), a triazolyl group or a tetrazolyl group, preferably S (= O) 2 . N1 indicating the number of R 1 is, W 1 is
C (= O), a 1 to represent an S (= O) or S (= O) 2, W 1 is P
When it represents (= O), it is 2, and when W 1 represents a triazolyl group or a tetrazolyl group, it is 0 or 1. General formula (I)
In, W 2 represents C (= O), S ( = O), P (= O), triazolyl group or tetrazolyl group, preferably a C (= O). N2 indicating the number of R 2 is 1 when W 2 represents C (= O) or S (= O), when W 2 represents a P (= O) is 2, W 2 is When it represents a triazolyl group or a tetrazolyl group, it is 0 or 1.

【0016】一般式(I)中、Q+は有機カチオンを表す。Q
+の例としてはテトラアルキルアンモニウムカチオン
(テトラメチルアンモニウムカチオン、テトラエチルア
ンモニウムカチオン、テトラブチルアンモニウムカチオ
ン、トリメチルベンジルアンモニウムカチオン等)、ト
リアルキルスルホニウムカチオン(トリメチルスルホニ
ウムカチオン、トリエチルスルホニウムカチオン等)、
テトラアルキルホスホニウムカチオン(テトラエチルホ
スホニウムカチオン等)、テトラアリールホスホニウム
カチオン(テトラフェニルホスホニウムカチオン等)、
芳香族ヘテロ環4級カチオン(N-アルキルピリジニウム
カチオン、1,3-ジアルキルイミダゾリウムカチオン、1,
2-ジアルキルピラゾリウムカチオン、ジアルキルトリア
ゾリウムカチオン、N-アルキルオキサゾリウムカチオ
ン、N-アルキルチアゾリウムカチオン、1,3-ジアルキル
ベンゾイミダゾリウムカチオン、ピリリウムカチオン、
チオピリリウムカチオン等)、非芳香族ヘテロ環4級カ
チオン(N,N-ジアルキルピロリジニウムカチオン、N,N-
ジアルキルピペリジニウムカチオン、N,N-ジアルキルモ
ルホリニウムカチオン等)等が挙げられる。これらのカ
チオンは置換基を有していてもよく、この置換基の例と
してはR1及びR2上の置換基の例として上述したものが挙
げられる。Q+は芳香族ヘテロ環4級カチオンであるのが
好ましく、N-アルキルピリジニウムカチオン、1,3-ジア
ルキルイミダゾリウムカチオン又は1,2-ジアルキルピラ
ゾリウムカチオンであるのがより好ましく、1,3-ジアル
キルイミダゾリウムカチオンであるのが特に好ましい。
In the general formula (I), Q + represents an organic cation. Q
+ Examples of the tetraalkyl ammonium cations (tetramethylammonium cation, tetraethylammonium cation, tetrabutylammonium cation, trimethylbenzylammonium cation, etc.), trialkyl sulfonium cation (trimethylsulfonium cation, triethylsulfonium cation, etc.),
Tetraalkylphosphonium cation (such as tetraethylphosphonium cation), tetraarylphosphonium cation (such as tetraphenylphosphonium cation),
Aromatic quaternary cations (N-alkylpyridinium cations, 1,3-dialkylimidazolium cations, 1,
2-dialkylpyrazolium cation, dialkyltriazolium cation, N-alkyloxazolium cation, N-alkylthiazolium cation, 1,3-dialkylbenzimidazolium cation, pyrylium cation,
Thiopyrylium cation, etc.), non-aromatic heterocyclic quaternary cation (N, N-dialkylpyrrolidinium cation, N, N-
Dialkylpiperidinium cation, N, N-dialkylmorpholinium cation, etc.). These cations may have a substituent, and examples of the substituent include those described above as examples of the substituent on R 1 and R 2 . Q + is preferably an aromatic heterocyclic quaternary cation, more preferably an N-alkylpyridinium cation, a 1,3-dialkylimidazolium cation or a 1,2-dialkylpyrazolium cation, Particular preference is given to -dialkylimidazolium cations.

【0017】塩(I)は通常固体又は液体である。塩(I)は
液体であるのが好ましく、そのため塩(I)の分子量は好
ましくは1000以下、より好ましくは600以下、特に好ま
しくは400以下である。分子量が1000を超えると電解質
組成物の粘度が上昇してしまうため好ましくない。
The salt (I) is usually solid or liquid. The salt (I) is preferably a liquid, so that the molecular weight of the salt (I) is preferably 1000 or less, more preferably 600 or less, particularly preferably 400 or less. If the molecular weight exceeds 1,000, the viscosity of the electrolyte composition increases, which is not preferable.

【0018】塩(I)は1種のみ単独で使用しても、2種
以上を混合して使用してもよい。また、電解質組成物に
は予め調製した塩(I)を添加してもよいし、アニオン
(R1)n1-W1-N--W2-(R2)n2を有する塩とカチオンQ+を有す
る塩とを混合して、系中で塩(I)を発生させてもよい。
塩(I)の具体例を以下に示すが、本発明はそれらにより
限定されない。
The salt (I) may be used alone or in combination of two or more. Further, a salt (I) prepared in advance may be added to the electrolyte composition, or an anion may be added.
The salt having (R 1 ) n1 -W 1 -N -- W 2- (R 2 ) n2 and the salt having cation Q + may be mixed to generate the salt (I) in the system.
Specific examples of the salt (I) are shown below, but the present invention is not limited thereto.

【0019】[0019]

【化4】 Embedded image

【0020】[0020]

【化5】 Embedded image

【0021】[0021]

【化6】 Embedded image

【0022】[0022]

【化7】 Embedded image

【0023】[0023]

【化8】 Embedded image

【0024】(2)ヨウ化物塩 本発明で用いるヨウ化物塩は、好ましくは融点が100℃
以下であり、より好ましくは室温において液状である。
本発明では、下記一般式(Y-a)、(Y-b)及び(Y-c)のいず
れかにより表されるヨウ化物塩を好ましく使用できる。
(2) Iodide salt The iodide salt used in the present invention preferably has a melting point of 100 ° C.
And more preferably liquid at room temperature.
In the present invention, an iodide salt represented by any of the following general formulas (Ya), (Yb) and (Yc) can be preferably used.

【0025】[0025]

【化9】 Embedded image

【0026】一般式(Y-a)中、Qy1は窒素原子と共に5又
は6員環の芳香族カチオンを形成する原子団を表す。Q
y1は炭素原子、水素原子、窒素原子、酸素原子及び硫黄
原子からなる群から選ばれる原子により構成されるのが
好ましい。Qy1が形成する5員環はオキサゾール環、チ
アゾール環、イミダゾール環、ピラゾール環、イソオキ
サゾール環、チアジアゾール環、オキサジアゾール環、
トリアゾール環、インドール環又はピロール環であるの
が好ましく、オキサゾール環、チアゾール環又はイミダ
ゾール環であるのがより好ましく、オキサゾール環又は
イミダゾール環であるのが特に好ましい。Qy1が形成す
る6員環はピリジン環、ピリミジン環、ピリダジン環、
ピラジン環又はトリアジン環であるのが好ましく、ピリ
ジン環であるのが特に好ましい。
In the general formula (Ya), Q y1 represents an atomic group which forms a 5- or 6-membered aromatic cation together with a nitrogen atom. Q
y1 is preferably constituted by an atom selected from the group consisting of a carbon atom, a hydrogen atom, a nitrogen atom, an oxygen atom and a sulfur atom. The 5-membered ring formed by Q y1 is an oxazole ring, a thiazole ring, an imidazole ring, a pyrazole ring, an isoxazole ring, a thiadiazole ring, an oxadiazole ring,
It is preferably a triazole ring, an indole ring or a pyrrole ring, more preferably an oxazole ring, a thiazole ring or an imidazole ring, and particularly preferably an oxazole ring or an imidazole ring. The 6-membered ring formed by Q y1 is a pyridine ring, a pyrimidine ring, a pyridazine ring,
It is preferably a pyrazine ring or a triazine ring, and particularly preferably a pyridine ring.

【0027】一般式(Y-b)中、Ay1は窒素原子又はリン原
子を表す。
In the general formula (Yb), A y1 represents a nitrogen atom or a phosphorus atom.

【0028】一般式(Y-a)、(Y-b)及び(Y-c)中のRy1〜R
y11はそれぞれ独立に置換又は無置換のアルキル基(好
ましくは炭素原子数1〜24であり、直鎖状であっても分
岐状であっても、また環式であってもよく、例えばメチ
ル基、エチル基、プロピル基、イソプロピル基、ペンチ
ル基、ヘキシル基、オクチル基、2-エチルヘキシル基、
t-オクチル基、デシル基、ドデシル基、テトラデシル
基、2-ヘキシルデシル基、オクタデシル基、シクロヘキ
シル基、シクロペンチル基等)、或いは置換又は無置換
のアルケニル基(好ましくは炭素原子数2〜24であり、
直鎖状であっても分岐状であってもよく、例えばビニル
基、アリル基等)を表す。Ry1〜Ry11はそれぞれ独立
に、より好ましくは炭素原子数2〜18のアルキル基又は
炭素原子数2〜18のアルケニル基であり、特に好ましく
は炭素原子数2〜6のアルキル基である。
R y1 to R in the general formulas (Ya), (Yb) and (Yc)
y11 is each independently a substituted or unsubstituted alkyl group (preferably having 1 to 24 carbon atoms, and may be linear, branched, or cyclic; for example, a methyl group , Ethyl group, propyl group, isopropyl group, pentyl group, hexyl group, octyl group, 2-ethylhexyl group,
t-octyl group, decyl group, dodecyl group, tetradecyl group, 2-hexyldecyl group, octadecyl group, cyclohexyl group, cyclopentyl group, etc., or a substituted or unsubstituted alkenyl group (preferably having 2 to 24 carbon atoms) ,
It may be linear or branched and represents, for example, a vinyl group, an allyl group, etc.). R y1 to R y11 are each independently preferably an alkyl group having 2 to 18 carbon atoms or an alkenyl group having 2 to 18 carbon atoms, and particularly preferably an alkyl group having 2 to 6 carbon atoms.

【0029】一般式(Y-b)中のRy2〜Ry5のうち2つ以上
が互いに連結してAy1を含む非芳香族環を形成してもよ
く、一般式(Y-c)中のRy6〜Ry11のうち2つ以上が互いに
連結して環を形成してもよい。
Two or more of R y2 to R y5 in the general formula (Yb) may be linked to each other to form a non-aromatic ring containing A y1, and R y6 to R y6 in the general formula (Yc) Two or more of R y11 may be linked to each other to form a ring.

【0030】上記Qy1及びRy1〜Ry11は置換基を有してい
てもよい。この置換基の好ましい例としては、ハロゲン
原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子
等)、シアノ基、アルコキシ基(メトキシ基、エトキシ
基、メトキシエトキシ基、メトキシエトキシエトキシ基
等)、アリーロキシ基(フェノキシ基等)、アルキルチ
オ基(メチルチオ基、エチルチオ基等)、アルコキシカ
ルボニル基(エトキシカルボニル基等)、炭酸エステル
基(エトキシカルボニルオキシ基等)、アシル基(アセ
チル基、プロピオニル基、ベンゾイル基等)、スルホニ
ル基(メタンスルホニル基、ベンゼンスルホニル基
等)、アシルオキシ基(アセトキシ基、ベンゾイルオキ
シ基等)、スルホニルオキシ基(メタンスルホニルオキ
シ基、トルエンスルホニルオキシ基等)、ホスホニル基
(ジエチルホスホニル基等)、アミド基(アセチルアミ
ノ基、ベンゾイルアミノ基等)、カルバモイル基(N,N-
ジメチルカルバモイル基等)、アルキル基(メチル基、
エチル基、プロピル基、イソプロピル基、シクロプロピ
ル基、ブチル基、2-カルボキシエチル基、ベンジル基
等)、アリール基(フェニル基、トルイル基等)、複素
環基(ピリジル基、イミダゾリル基、フラニル基等)、
アルケニル基(ビニル基、1-プロペニル基等)、シリル
基、シリルオキシ基等が挙げられる。
The above Q y1 and R y1 to R y11 may have a substituent. Preferred examples of the substituent include a halogen atom (such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom), a cyano group, an alkoxy group (such as a methoxy group, an ethoxy group, a methoxyethoxy group and a methoxyethoxyethoxy group), and an aryloxy group. Group (phenoxy group, etc.), alkylthio group (methylthio group, ethylthio group, etc.), alkoxycarbonyl group (ethoxycarbonyl group, etc.), carbonate group (ethoxycarbonyloxy group, etc.), acyl group (acetyl group, propionyl group, benzoyl group) ), Sulfonyl group (methanesulfonyl group, benzenesulfonyl group, etc.), acyloxy group (acetoxy group, benzoyloxy group, etc.), sulfonyloxy group (methanesulfonyloxy group, toluenesulfonyloxy group, etc.), phosphonyl group (diethylphosphonyl) Group, etc.), Group (an acetylamino group, benzoylamino group, etc.), a carbamoyl group (N, N-
Dimethylcarbamoyl group), alkyl group (methyl group,
Ethyl group, propyl group, isopropyl group, cyclopropyl group, butyl group, 2-carboxyethyl group, benzyl group, etc., aryl group (phenyl group, toluyl group, etc.), heterocyclic group (pyridyl group, imidazolyl group, furanyl group) etc),
Examples include an alkenyl group (vinyl group, 1-propenyl group, etc.), a silyl group, a silyloxy group, and the like.

【0031】一般式(Y-a)、(Y-b)及び(Y-c)のいずれか
により表されるヨウ化物塩は、Qy1及びRy1〜Ry11のいず
れかを介して多量体を形成してもよい。
The iodide salt represented by any of the general formulas (Ya), (Yb) and (Yc) may form a multimer via Q y1 and any of R y1 to R y11. .

【0032】ヨウ化物塩は1種単独で使用しても2種以
上混合して使用してもよい。本発明で好ましく用いられ
るヨウ化物塩の具体例を以下に示すが、本発明はそれら
に限定されるわけではない。
The iodide salts may be used alone or as a mixture of two or more. Specific examples of the iodide salt preferably used in the present invention are shown below, but the present invention is not limited thereto.

【0033】[0033]

【化10】 [Formula 10]

【0034】[0034]

【化11】 [Formula 11]

【0035】[0035]

【化12】 Embedded image

【0036】[0036]

【化13】 Embedded image

【0037】[0037]

【化14】 Embedded image

【0038】[0038]

【化15】 Embedded image

【0039】(3)添加剤 電解質組成物の粘度を下げる目的で、溶融塩を添加して
もよい。溶融塩とは常温で液体の塩であり、本発明で使
用できる好ましい溶融塩の例としては、上記好ましいヨ
ウ化物塩として例示したもののヨウ化物イオンを他のア
ニオンで置き換えた塩が挙げられる。ヨウ化物イオンを
置き換えるアニオンは、好ましくはSCN-、BF4 -、PF6 -
ClO4 -、(CF3SO2)2N-、(CF3CF2SO2)2N-、CH3SO3 -、CF3SO
3 -、CF3COO-、Ph4B-、(CF3SO2)3C-等であり、より好ま
しくはSCN-、CF3SO3 -、CF3COO-、(CF3SO2)2N-又はBF4 -
である。この溶融塩は塩(I)と同様にレドックス対の媒
体として機能する。溶融塩の添加量は、ヨウ化物塩の質
量比が電解質組成物全体に対して10質量%以下とならな
いよう適宜調節する。溶融塩の質量比は電解質組成物全
体に対して好ましくは1〜50質量%、より好ましくは5
〜30質量%である。
(3) Additives For the purpose of lowering the viscosity of the electrolyte composition, a molten salt may be added. The molten salt is a salt that is liquid at room temperature, and examples of preferred molten salts that can be used in the present invention include salts in which the iodide ion is replaced with another anion as exemplified above as the preferred iodide salt. The anion replacing the iodide ion is preferably SCN , BF 4 , PF 6 ,
ClO 4 -, (CF 3 SO 2) 2 N -, (CF 3 CF 2 SO 2) 2 N -, CH 3 SO 3 -, CF 3 SO
3 -, CF 3 COO -, Ph 4 B -, (CF 3 SO 2) 3 C - is like, more preferably SCN -, CF 3 SO 3 - , CF 3 COO -, (CF 3 SO 2) 2 N - or BF 4 -
It is. This molten salt functions as a medium for a redox couple similarly to the salt (I). The addition amount of the molten salt is appropriately adjusted so that the mass ratio of the iodide salt does not become 10% by mass or less based on the whole electrolyte composition. The mass ratio of the molten salt is preferably 1 to 50% by mass, more preferably 5 to 50% by mass based on the whole electrolyte composition.
~ 30% by mass.

【0040】光電変換素子の光電変換特性を改善する目
的で、アルカリ金属カチオン又はアルカリ土類金属カチ
オンとヨウ化物イオンからなる塩(ヨウ化リチウム、ヨ
ウ化ナトリウム、ヨウ化マグネシウム等)や、その他の
アルカリ金属塩(CF3COOLi、CF3COONa、LiSCN、NaSCN
等)を電解質組成物に添加してもよい。これらの塩の質
量比は電解質組成物全体に対して好ましくは0.02〜2質
量%、より好ましくは0.1〜1質量%とする。
For the purpose of improving the photoelectric conversion characteristics of the photoelectric conversion element, a salt composed of an alkali metal cation or an alkaline earth metal cation and iodide ions (lithium iodide, sodium iodide, magnesium iodide, etc.) Alkali metal salts (CF 3 COOLi, CF 3 COONa, LiSCN, NaSCN
Etc.) may be added to the electrolyte composition. The mass ratio of these salts is preferably 0.02 to 2% by mass, more preferably 0.1 to 1% by mass, based on the whole electrolyte composition.

【0041】光電変換素子の開放電圧を高めるために、
電解質組成物にピリジン類を添加してもよい。ピリジン
類の質量比は電解質組成物全体に対して1〜30質量%で
あるのが好ましい。
In order to increase the open voltage of the photoelectric conversion element,
Pyridine may be added to the electrolyte composition. The mass ratio of pyridines is preferably from 1 to 30% by mass based on the whole electrolyte composition.

【0042】(4)溶媒 電荷輸送層をなす電解質組成物は溶媒を含有しないこと
が好ましいが、溶媒を含有していてもよい。電解質組成
物に使用する溶媒は、粘度が低くイオン移動度を向上し
たり、誘電率が高く有効キャリアー濃度を向上したりし
て、優れたイオン伝導性を発現するものであることが望
ましい。このような溶媒としては、エチレンカーボネー
ト、プロピレンカーボネート等のカーボネート化合物、
3-メチル-2-オキサゾリジノン等の複素環化合物、ジオ
キサン、ジエチルエーテル等のエーテル化合物、エチレ
ングリコールジアルキルエーテル、プロピレングリコー
ルジアルキルエーテル、ポリエチレングリコールジアル
キルエーテル、ポリプロピレングリコールジアルキルエ
ーテル等の鎖状エーテル類、メタノール、エタノール、
エチレングリコールモノアルキルエーテル、プロピレン
グリコールモノアルキルエーテル、ポリエチレングリコ
ールモノアルキルエーテル、ポリプロピレングリコール
モノアルキルエーテル等のアルコール類、エチレングリ
コール、プロピレングリコール、ポリエチレングリコー
ル、ポリプロピレングリコール、グリセリン等の多価ア
ルコール類、アセトニトリル、グルタロジニトリル、メ
トキシアセトニトリル、プロピオニトリル、ベンゾニト
リル等のニトリル化合物、ジメチルスルフォキシド、ス
ルフォラン等の非プロトン極性物質、水等が挙げられ
る。これらは複数混合して用いてもよい。
(4) Solvent The electrolyte composition forming the charge transport layer preferably does not contain a solvent, but may contain a solvent. The solvent used in the electrolyte composition desirably exhibits excellent ionic conductivity by lowering the viscosity and improving the ion mobility or increasing the dielectric constant and improving the effective carrier concentration. As such a solvent, carbonate compounds such as ethylene carbonate and propylene carbonate,
Heterocyclic compounds such as 3-methyl-2-oxazolidinone, dioxane, ether compounds such as diethyl ether, ethylene glycol dialkyl ether, propylene glycol dialkyl ether, polyethylene glycol dialkyl ether, chain ethers such as polypropylene glycol dialkyl ether, methanol, ethanol,
Alcohols such as ethylene glycol monoalkyl ether, propylene glycol monoalkyl ether, polyethylene glycol monoalkyl ether, and polypropylene glycol monoalkyl ether; polyhydric alcohols such as ethylene glycol, propylene glycol, polyethylene glycol, polypropylene glycol, and glycerin; acetonitrile; Examples thereof include nitrile compounds such as glutarodinitrile, methoxyacetonitrile, propionitrile, and benzonitrile; aprotic polar substances such as dimethyl sulfoxide and sulfolane; and water. These may be used as a mixture of two or more.

【0043】(5)ゲル化 電解質組成物の揮発及び漏洩の防止、取扱いの容易化等
のために、電解質組成物をポリマー添加、オイルゲル化
剤添加、多官能モノマー類を含む重合、ポリマーの架橋
反応等の手法によりゲル化してもよい。
(5) Gelation In order to prevent volatilization and leakage of the electrolyte composition, to facilitate handling, etc., the electrolyte composition is added with a polymer, an oil gelling agent is added, polymerization containing polyfunctional monomers, polymer crosslinking. Gelation may be performed by a technique such as a reaction.

【0044】ポリマー添加によりゲル化する場合は、
“Polymer Electrolyte Reviews-1及び2”(J. R. Mac
CallumとC. A. Vincentの共編、ELSEVIER APPLIED SCIE
NCE)に記載された化合物を使用することができるが、特
にポリアクリロニトリル、ポリフッ化ビニリデンを好ま
しく使用することができる。
In the case of gelation by adding a polymer,
“Polymer Electrolyte Reviews-1 and 2” (JR Mac
Co-editing Callum and CA Vincent, ELSEVIER APPLIED SCIE
Compounds described in (NCE) can be used, and in particular, polyacrylonitrile and polyvinylidene fluoride can be preferably used.

【0045】オイルゲル化剤添加によりゲル化させる場
合は、工業科学雑誌(J. Chem. Soc. Japan, Ind. Che
m. Sec.), 46, 779 (1943)、J. Am. Chem. Soc., 111,
5542(1989)、J. Chem. Soc., Chem. Commun., 1993, 3
90、Angew. Chem. Int. Ed.Engl., 35, 1949 (1996)、C
hem. Lett., 1996, 885、及びJ. Chem. Soc., Chem.Com
mun., 1997, 545に記載されている化合物を使用するこ
とができるが、好ましい化合物は分子構造中にアミド構
造を有する化合物である。ゲル化剤は電荷輸送材料全体
に対して通常0.1〜20質量%使用し、好ましくは1〜10
質量%使用する。また、特開2000-58140号に記載されて
いるゲル化方法も本発明に適用できる。
When gelation is carried out by adding an oil gelling agent, an industrial science magazine (J. Chem. Soc. Japan, Ind. Che.
m. Sec.), 46, 779 (1943), J. Am. Chem. Soc., 111,
5542 (1989), J. Chem. Soc., Chem. Commun., 1993, 3
90, Angew. Chem. Int. Ed. Engl., 35, 1949 (1996), C
hem. Lett., 1996, 885, and J. Chem. Soc., Chem. Com.
mun., 1997, 545, and preferred compounds are compounds having an amide structure in the molecular structure. The gelling agent is usually used in an amount of 0.1 to 20% by mass relative to the whole charge transporting material,
Used by mass%. Further, the gelation method described in JP-A-2000-58140 is also applicable to the present invention.

【0046】また、ポリマーの架橋反応により電解質組
成物をゲル化する場合、架橋可能な反応性基を含有する
ポリマー及び架橋剤を併用することが望ましい。この場
合、架橋可能な反応性基は好ましくはアミノ基又は含窒
素複素環基(ピリジン環、イミダゾール環、チアゾール
環、オキサゾール環、トリアゾール環、モルホリン環、
ピペリジン環、ピペラジン環等を含む基)であり、架橋
剤は好ましくは窒素原子に対して求電子反応可能な2官
能以上の試薬(ハロゲン化アルキル、ハロゲン化アラル
キル、スルホン酸エステル、酸無水物、酸クロライド、
イソシアネート化合物、α,β-不飽和スルホニル化合
物、α,β-不飽和カルボニル化合物、α,β-不飽和ニト
リル化合物等)である。特開2000-17076号及び特開2000
-86724号に記載されている架橋技術も本発明に適用でき
る。
When the electrolyte composition is gelled by a crosslinking reaction of the polymer, it is desirable to use a polymer having a crosslinkable reactive group and a crosslinking agent together. In this case, the crosslinkable reactive group is preferably an amino group or a nitrogen-containing heterocyclic group (pyridine ring, imidazole ring, thiazole ring, oxazole ring, triazole ring, morpholine ring,
A group containing a piperidine ring, a piperazine ring or the like), and the crosslinking agent is preferably a bifunctional or higher functional reagent capable of electrophilic reaction with respect to a nitrogen atom (an alkyl halide, an aralkyl halide, a sulfonic acid ester, an acid anhydride, Acid chloride,
Isocyanate compounds, α, β-unsaturated sulfonyl compounds, α, β-unsaturated carbonyl compounds, α, β-unsaturated nitrile compounds, etc.). JP 2000-17076 and JP 2000
The crosslinking technique described in -86724 is also applicable to the present invention.

【0047】(6)電荷輸送層の形成 電荷輸送層の形成方法に関しては2通りの方法が考えら
れる。1つは感光層の上に先に対極を貼り合わせてお
き、その間隙に液状の電解質組成物を挟み込む方法であ
る。もう1つは感光層上に直接、電荷輸送層を付与する
方法で、対極はその後付与することになる。
(6) Formation of charge transport layer Regarding the method of forming the charge transport layer, two methods can be considered. One is a method in which a counter electrode is first stuck on the photosensitive layer, and a liquid electrolyte composition is sandwiched in the gap. The other is a method in which a charge transport layer is provided directly on the photosensitive layer, and a counter electrode is subsequently provided.

【0048】前者の方法の場合、電解質組成物の挟み込
み方法として、浸漬等による毛管現象を利用する常圧プ
ロセス、又は常圧より低い圧力にして間隙の気相を液相
に置換する真空プロセスを利用できる。
In the case of the former method, as a method of sandwiching the electrolyte composition, a normal pressure process utilizing a capillary phenomenon by immersion or the like, or a vacuum process of replacing the gas phase in the gap with a liquid phase at a pressure lower than normal pressure is used. Available.

【0049】後者の方法の場合、液状の電解質組成物を
用いる際には、未乾燥のまま対極を付与し、エッジ部の
液漏洩防止措置を施すことになる。またゲル状の電解質
組成物を用いる場合には湿式で塗布して重合等の方法に
より固体化する方法があり、その場合には乾燥、固定化
した後に対極を付与することもできる。
In the case of the latter method, when using a liquid electrolyte composition, a counter electrode is provided in an undried state to take measures to prevent liquid leakage at the edge portion. When a gel electrolyte composition is used, there is a method of applying the composition in a wet manner and solidifying it by a method such as polymerization. In this case, a counter electrode can be provided after drying and fixing.

【0050】(B)導電性支持体 導電性支持体は、(1)導電層の単層、又は(2)導電層及び
基板の2層からなる。(1)の場合は、導電層として強度
や密封性が十分に保たれるような材料、例えば、金属材
料(白金、金、銀、銅、亜鉛、チタン、アルミニウム、
これらを含む合金等)を用いることができる。(2)の場
合、感光層側に導電剤を含む導電層を有する基板を使用
することができる。好ましい導電剤としては金属(白
金、金、銀、銅、亜鉛、チタン、アルミニウム、ロジウ
ム、インジウム、これらを含む合金等)、炭素、及び導
電性金属酸化物(インジウム−スズ複合酸化物、酸化ス
ズにフッ素又はアンチモンをドープしたもの等)が挙げ
られる。導電層の厚さは0.02〜10μm程度が好ましい。
(B) Conductive Support The conductive support comprises (1) a single layer of a conductive layer, or (2) two layers of a conductive layer and a substrate. In the case of (1), a material that maintains sufficient strength and sealing properties as a conductive layer, for example, a metal material (platinum, gold, silver, copper, zinc, titanium, aluminum,
Alloys containing these, etc.) can be used. In the case of (2), a substrate having a conductive layer containing a conductive agent on the photosensitive layer side can be used. Preferred conductive agents include metals (platinum, gold, silver, copper, zinc, titanium, aluminum, rhodium, indium, alloys containing them, etc.), carbon, and conductive metal oxides (indium-tin composite oxide, tin oxide Which is doped with fluorine or antimony). The thickness of the conductive layer is preferably about 0.02 to 10 μm.

【0051】導電性支持体は表面抵抗が低い程よい。好
ましい表面抵抗の範囲は100Ω/□以下であり、さらに
好ましくは40Ω/□以下である。表面抵抗の下限に制限
はないが、通常0.1Ω/□程度である。
The lower the surface resistance of the conductive support, the better. A preferred range of the surface resistance is 100 Ω / □ or less, more preferably 40 Ω / □ or less. Although the lower limit of the surface resistance is not limited, it is usually about 0.1Ω / □.

【0052】導電性支持体側から光を照射する場合に
は、導電性支持体は実質的に透明であるのが好ましい。
実質的に透明であるとは、光の透過率が10%以上である
ことを意味し、50%以上であるのが好ましく、70%以上
がより好ましい。
When light is irradiated from the conductive support side, the conductive support is preferably substantially transparent.
Substantially transparent means that the light transmittance is 10% or more, preferably 50% or more, and more preferably 70% or more.

【0053】透明導電性支持体としては、ガラス又はプ
ラスチック等の透明基板の表面に導電性金属酸化物から
なる透明導電層を塗布又は蒸着等により形成したものが
好ましい。特に、フッ素をドーピングした二酸化スズか
らなる導電層を低コストのソーダ石灰フロートガラスか
らなる透明基板上に堆積した導電性ガラスが好ましい。
また、低コストでフレキシブルな光電変換素子を得るた
めには、透明ポリマーフィルムに導電層を設けたものを
用いるのが好ましい。透明ポリマーフィルムの材料とし
ては、テトラアセチルセルロース(TAC)、ポリエチレ
ンテレフタレート(PET)、ポリエチレンナフタレート
(PEN)、シンジオタクチックポリスチレン(SPS)、ポ
リフェニレンスルフィド(PPS)、ポリカーボネート(P
C)、ポリアリレート(PAr)、ポリスルフォン(PS
F)、ポリエステルスルフォン(PES)、ポリイミド(P
I)、ポリエーテルイミド(PEI)、環状ポリオレフィ
ン、ブロム化フェノキシ樹脂等が使用可能である。十分
な透明性を確保するために、導電性金属酸化物の塗布量
はガラス又はプラスチックの支持体1m2当たり0.01〜10
0gとするのが好ましい。
As the transparent conductive support, it is preferable that a transparent conductive layer made of a conductive metal oxide is formed on the surface of a transparent substrate such as glass or plastic by coating or vapor deposition. In particular, a conductive glass in which a conductive layer made of fluorine-doped tin dioxide is deposited on a transparent substrate made of low-cost soda-lime float glass is preferable.
To obtain a flexible photoelectric conversion element at low cost, it is preferable to use a transparent polymer film provided with a conductive layer. Transparent polymer film materials include tetraacetyl cellulose (TAC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), syndiotactic polystyrene (SPS), polyphenylene sulfide (PPS), and polycarbonate (P
C), polyarylate (PAr), polysulfone (PS)
F), polyester sulfone (PES), polyimide (P
I), polyetherimide (PEI), cyclic polyolefin, brominated phenoxy resin and the like can be used. In order to ensure sufficient transparency, the amount of the conductive metal oxide to be applied is 0.01 to 10 per m 2 of a glass or plastic support.
It is preferably 0 g.

【0054】透明導電性支持体の抵抗を下げる目的で金
属リードを用いるのが好ましい。金属リードの材質は白
金、金、ニッケル、チタン、アルミニウム、銅、銀等の
金属が好ましく、特にアルミニウム及び銀が好ましい。
金属リードは透明基板に蒸着、スパッタリング等で設置
し、その上に透明導電層を設けるのが好ましい。また透
明導電層を透明基板に設けた後、透明導電層上に金属リ
ードを設置するのも好ましい。金属リード設置による入
射光量の低下は、好ましくは10%以内、より好ましくは
1〜5%とする。
It is preferable to use a metal lead for the purpose of lowering the resistance of the transparent conductive support. The material of the metal lead is preferably a metal such as platinum, gold, nickel, titanium, aluminum, copper, and silver, and particularly preferably aluminum and silver.
The metal lead is preferably provided on a transparent substrate by vapor deposition, sputtering, or the like, and a transparent conductive layer is preferably provided thereon. It is also preferable to provide a metal lead on the transparent conductive layer after providing the transparent conductive layer on the transparent substrate. The decrease in the amount of incident light due to the installation of the metal leads is preferably within 10%, more preferably 1 to 5%.

【0055】(C)感光層 感光層において、半導体は感光体として作用し、光を吸
収して電荷分離を行い電子と正孔を生ずる。色素増感し
た半導体では、光吸収及びこれによる電子及び正孔の発
生は主として色素において起こり、半導体微粒子はこの
電子(又は正孔)を受け取り、伝達する役割を担う。本
発明で用いる半導体は光励起下で伝導体電子がキャリア
ーとなり、アノード電流を与えるn型半導体であること
が好ましい。
(C) Photosensitive Layer In the photosensitive layer, the semiconductor acts as a photoreceptor, absorbs light to separate charges, and generates electrons and holes. In a dye-sensitized semiconductor, light absorption and the resulting generation of electrons and holes mainly occur in the dye, and semiconductor fine particles have a role of receiving and transmitting the electrons (or holes). The semiconductor used in the present invention is preferably an n-type semiconductor in which a conductor electron becomes a carrier under photoexcitation and gives an anode current.

【0056】(1)半導体 半導体としては、シリコン、ゲルマニウムのような単体
半導体、III-V族系化合物半導体、金属のカルコゲナイ
ド(酸化物、硫化物、セレン化物、それらの複合物
等)、ペロブスカイト構造を有する化合物(チタン酸ス
トロンチウム、チタン酸カルシウム、チタン酸ナトリウ
ム、チタン酸バリウム、ニオブ酸カリウム等)等を使用
することができる。
(1) Semiconductors Semiconductors include simple semiconductors such as silicon and germanium, III-V group compound semiconductors, metal chalcogenides (oxides, sulfides, selenides, composites thereof, etc.), and perovskite structures. (Such as strontium titanate, calcium titanate, sodium titanate, barium titanate, and potassium niobate) can be used.

【0057】好ましい金属のカルコゲナイドとして、チ
タン、スズ、亜鉛、鉄、タングステン、ジルコニウム、
ハフニウム、ストロンチウム、インジウム、セリウム、
イットリウム、ランタン、バナジウム、ニオブ又はタン
タルの酸化物、カドミウム、亜鉛、鉛、銀、アンチモン
又はビスマスの硫化物、カドミウム又は鉛のセレン化
物、カドミウムのテルル化物等が挙げられる。他の化合
物半導体としては亜鉛、ガリウム、インジウム、カドミ
ウム等のリン化物、ガリウム−ヒ素又は銅−インジウム
のセレン化物、銅−インジウムの硫化物等が挙げられ
る。さらには、MxOySz又はM1xM2yOz(M、M1及びM2はそ
れぞれ金属元素、Oは酸素、x、y、zは価数が中性になる
組み合わせの数)のような複合物も好ましく用いること
ができる。
Preferred metal chalcogenides include titanium, tin, zinc, iron, tungsten, zirconium,
Hafnium, strontium, indium, cerium,
Examples include oxides of yttrium, lanthanum, vanadium, niobium or tantalum, sulfides of cadmium, zinc, lead, silver, antimony or bismuth, selenides of cadmium or lead, tellurides of cadmium, and the like. Other compound semiconductors include phosphides such as zinc, gallium, indium and cadmium, selenides of gallium-arsenic or copper-indium, and sulfides of copper-indium. Further, M x O y S z or M 1x M 2y O z (M, M 1 and M 2 are metal elements, O is oxygen, x, y and z are the number of combinations whose valence is neutral) Compounds such as are also preferably used.

【0058】本発明に用いる半導体の好ましい具体例
は、Si、TiO2、SnO2、Fe2O3、WO3、ZnO、Nb2O5、CdS、Z
nS、PbS、Bi2S3、CdSe、CdTe、SrTiO3、GaP、InP、GaA
s、CuInS2、CuInSe2等であり、より好ましくはTiO2、Zn
O、SnO2、Fe2O3、WO3、Nb2O5、CdS、PbS、CdSe、SrTi
O3、InP、GaAs、CuInS2又はCuInSe2であり、特に好まし
くはTiO2又はNb2O5であり、最も好ましくはTiO2であ
る。TiO2の中でもアナターゼ型結晶を70%以上含むTiO2
が好ましく、100%アナターゼ型結晶のTiO2が特に好ま
しい。また、これらの半導体中の電子伝導性を上げる目
的で金属をドープすることも有効である。ドープする金
属としては2又は3価の金属が好ましい。半導体から電
荷輸送層へ逆電流が流れるのを防止する目的で、半導体
に1価の金属をドープすることも有効である。
Preferred examples of the semiconductor used in the present invention include Si, TiO 2 , SnO 2 , Fe 2 O 3 , WO 3 , ZnO, Nb 2 O 5 , CdS, Z
nS, PbS, Bi 2 S 3 , CdSe, CdTe, SrTiO 3 , GaP, InP, GaA
s, CuInS 2 , CuInSe 2 and the like, more preferably TiO 2 , Zn
O, SnO 2, Fe 2 O 3, WO 3, Nb 2 O 5, CdS, PbS, CdSe, SrTi
O 3 , InP, GaAs, CuInS 2 or CuInSe 2 , particularly preferably TiO 2 or Nb 2 O 5 , most preferably TiO 2 . TiO 2 containing 70% or more of anatase crystal among TiO 2
Is preferred, and TiO 2 of 100% anatase type crystal is particularly preferred. It is also effective to dope a metal for the purpose of increasing electron conductivity in these semiconductors. The metal to be doped is preferably a divalent or trivalent metal. It is also effective to dope the semiconductor with a monovalent metal for the purpose of preventing a reverse current from flowing from the semiconductor to the charge transport layer.

【0059】本発明に用いる半導体は単結晶でも多結晶
でもよいが、製造コスト、原材料確保、エネルギーペイ
バックタイム等の観点からは多結晶が好ましく、半導体
微粒子の層は多孔質膜であるのが特に好ましい。また、
一部アモルファス部分を含んでいてもよい。
The semiconductor used in the present invention may be a single crystal or a polycrystal, but is preferably a polycrystal from the viewpoints of production cost, securing of raw materials, energy payback time and the like, and the layer of semiconductor fine particles is particularly preferably a porous film. preferable. Also,
A part may include an amorphous portion.

【0060】半導体微粒子の粒径は一般にnm〜μmのオ
ーダーであるが、投影面積を円に換算したときの直径か
ら求めた一次粒子の平均粒径は5〜200nmであるのが好
ましく、8〜100nmがより好ましい。また分散液中の半
導体微粒子(二次粒子)の平均粒径は0.01〜30μmが好
ましい。粒径分布の異なる2種類以上の微粒子を混合し
てもよく、この場合小さい粒子の平均サイズは25nm以下
であるのが好ましく、より好ましくは10nm以下である。
入射光を散乱させて光捕獲率を向上させる目的で、粒径
の大きな、例えば100〜300nm程度の半導体粒子を混合す
ることも好ましい。
The particle size of the semiconductor fine particles is generally on the order of nm to μm, but the average particle size of the primary particles obtained from the diameter when the projected area is converted into a circle is preferably from 5 to 200 nm, and from 8 to 200 nm. 100 nm is more preferred. The average particle size of the semiconductor fine particles (secondary particles) in the dispersion is preferably 0.01 to 30 μm. Two or more types of fine particles having different particle size distributions may be mixed. In this case, the average size of the small particles is preferably 25 nm or less, more preferably 10 nm or less.
For the purpose of improving the light capture rate by scattering incident light, it is also preferable to mix semiconductor particles having a large particle diameter, for example, about 100 to 300 nm.

【0061】種類の異なる2種以上の半導体微粒子を混
合して用いてもよい。2種以上の半導体微粒子を混合し
て使用する場合、一方はTiO2、ZnO、Nb2O5又はSrTiO3
あることが好ましい。また他方はSnO2、Fe2O3又はWO3
あることが好ましい。さらに好ましい組み合わせとして
は、ZnOとSnO2、ZnOとWO3、ZnOとSnO2とWO3等の組み合
わせを挙げることができる。2種以上の半導体微粒子を
混合して用いる場合、それぞれの粒径が異なっていても
よい。特に上記TiO2、ZnO、Nb2O5又はSrTiO3の粒径が大
きく、SnO2、Fe2O3又はWO3が小さい組み合わせが好まし
い。好ましくは大きい粒径の粒子を100nm以上、小さい
粒径の粒子を15nm以下とする。
Two or more different types of semiconductor fine particles may be mixed and used. When two or more kinds of semiconductor fine particles are used in combination, one of them is preferably TiO 2 , ZnO, Nb 2 O 5 or SrTiO 3 . The other is preferably SnO 2 , Fe 2 O 3 or WO 3 . More preferred combinations include combinations of ZnO and SnO 2 , ZnO and WO 3 , ZnO and SnO 2 and WO 3, and the like. When two or more kinds of semiconductor fine particles are used as a mixture, the respective particle diameters may be different. In particular, a combination in which the above TiO 2 , ZnO, Nb 2 O 5 or SrTiO 3 has a large particle diameter and SnO 2 , Fe 2 O 3 or WO 3 is small is preferable. Preferably, particles having a large particle diameter are 100 nm or more, and particles having a small particle diameter are 15 nm or less.

【0062】半導体微粒子の作製法としては、作花済夫
の「ゾル−ゲル法の科学」アグネ承風社(1998年)、技
術情報協会の「ゾル−ゲル法による薄膜コーティング技
術」(1995年)等に記載のゾル−ゲル法や、杉本忠夫の
「新合成法ゲル−ゾル法による単分散粒子の合成とサイ
ズ形態制御」、まてりあ, 第35巻, 第9号, 1012〜1018
頁(1996年)等に記載のゲル−ゾル法が好ましい。また
Degussa社が開発した塩化物を酸水素塩中で高温加水分
解により酸化物を作製する方法も好ましく使用できる。
As for the method of producing semiconductor fine particles, there are “Sol-gel method science” by Agaku Sakuhana, Agne Shofusha (1998), and “Thin film coating technology by sol-gel method” by the Technical Information Association (1995). ) And Tadao Sugimoto's "Synthesis of Monodisperse Particles and Control of Size and Morphology by New Synthetic Gel-Sol Method", Materia, Vol. 35, No. 9, 1012-1018.
The gel-sol method described on page (1996) is preferred. Also
A method developed by Degussa to produce an oxide by high-temperature hydrolysis of a chloride in an oxyhydrogen salt can also be preferably used.

【0063】半導体微粒子が酸化チタンの場合、上記ゾ
ル-ゲル法、ゲル−ゾル法、塩化物の酸水素塩中での高
温加水分解法はいずれも好ましいが、さらに清野学の
「酸化チタン 物性と応用技術」技報堂出版(1997年)
に記載の硫酸法又は塩素法を用いることもできる。さら
にゾル−ゲル法として、Barbeらのジャーナル・オブ・
アメリカン・セラミック・ソサエティー, 第80巻, 第12
号, 3157〜3171頁(1997年)に記載の方法や、Burnside
らのケミストリー・オブ・マテリアルズ, 第10巻, 第9
号, 2419〜2425頁に記載の方法も好ましい。
When the semiconductor fine particles are titanium oxide, any of the above-mentioned sol-gel method, gel-sol method, and high-temperature hydrolysis method in chloride oxyhydrogen salt are preferable. Applied Technology "Gihodo Publishing (1997)
The sulfuric acid method or chlorine method described in (1) can also be used. Further, as a sol-gel method, Barbe et al.
American Ceramic Society, Vol. 80, No. 12
No., pages 3157-3171 (1997) and Burnside
La no Chemistry of Materials, Vol. 10, No. 9
Pp. 2419-2425 are also preferred.

【0064】(2)半導体微粒子層 半導体微粒子を導電性支持体上に塗布するには、半導体
微粒子の分散液又はコロイド溶液を導電性支持体上に塗
布する方法の他に、前述のゾル−ゲル法等を使用するこ
ともできる。光電変換素子の量産化、半導体微粒子液の
物性、導電性支持体の融通性等を考慮した場合、湿式の
製膜方法が比較的有利である。湿式の製膜方法として
は、塗布法、印刷法、電解析出法及び電着法が代表的で
ある。また、金属を酸化する方法、金属溶液から配位子
交換等で液相にて析出させる方法(LPD法)、スパッタ
等で蒸着する方法、CVD法、或いは加温した基板上に熱
分解する金属酸化物プレカーサーを吹き付けて金属酸化
物を形成するSPD法を利用することもできる。
(2) Semiconductor fine particle layer In order to coat semiconductor fine particles on a conductive support, in addition to the method of applying a dispersion or colloidal solution of semiconductor fine particles on a conductive support, the above-mentioned sol-gel A method can also be used. In consideration of mass production of photoelectric conversion elements, physical properties of semiconductor fine particle liquid, flexibility of a conductive support, and the like, a wet film forming method is relatively advantageous. Typical examples of the wet film forming method include a coating method, a printing method, an electrolytic deposition method, and an electrodeposition method. In addition, a method of oxidizing a metal, a method of depositing a metal solution in a liquid phase by ligand exchange (LPD method), a method of depositing by sputtering, a CVD method, or a metal that thermally decomposes on a heated substrate An SPD method in which an oxide precursor is sprayed to form a metal oxide can also be used.

【0065】半導体微粒子の分散液を作製する方法とし
ては、前述のゾル−ゲル法の他に、乳鉢ですり潰す方
法、ミルを使って粉砕しながら分散する方法、半導体を
合成する際に溶媒中で微粒子として析出させそのまま使
用する方法等が挙げられる。
As a method of preparing a dispersion of semiconductor fine particles, in addition to the above-mentioned sol-gel method, a method of crushing in a mortar, a method of dispersing while pulverizing using a mill, and a method of preparing a semiconductor in a solvent when synthesizing. And then use as it is as fine particles.

【0066】分散媒としては、水及び各種の有機溶媒
(例えばメタノール、エタノール、イソプロピルアルコ
ール、シトロネロール、ターピネオール、ジクロロメタ
ン、アセトン、アセトニトリル、酢酸エチル等)が使用
できる。分散の際、必要に応じてポリエチレングリコー
ル、ヒドロキシエチルセルロース、カルボキシメチルセ
ルロースのようなポリマー、界面活性剤、酸、キレート
剤等を分散助剤として用いてもよい。ポリエチレングリ
コールの分子量を変えることで、分散液の粘度が調節可
能となり、さらに剥がれにくい半導体層を形成したり、
半導体層の空隙率をコントロールできるので、ポリエチ
レングリコールを添加することは好ましい。
As the dispersion medium, water and various organic solvents (eg, methanol, ethanol, isopropyl alcohol, citronellol, terpineol, dichloromethane, acetone, acetonitrile, ethyl acetate, etc.) can be used. At the time of dispersion, a polymer such as polyethylene glycol, hydroxyethylcellulose, carboxymethylcellulose, a surfactant, an acid, a chelating agent and the like may be used as a dispersion aid, if necessary. By changing the molecular weight of polyethylene glycol, the viscosity of the dispersion can be adjusted, and a semiconductor layer that is hard to peel off can be formed,
It is preferable to add polyethylene glycol because the porosity of the semiconductor layer can be controlled.

【0067】塗布方法としては、アプリケーション系と
してローラ法、ディップ法等、メータリング系としてエ
アーナイフ法、ブレード法等、またアプリケーションと
メータリングを同一部分にできるものとして特公昭58-4
589号に開示されているワイヤーバー法、米国特許26812
94号、同2761419号、同2761791号等に記載のスライドホ
ッパー法、エクストルージョン法、カーテン法等が好ま
しい。また汎用機としてスピン法やスプレー法も好まし
い。湿式印刷方法としては、凸版、オフセット及びグラ
ビアの三大印刷法をはじめ、凹版、ゴム版、スクリーン
印刷等が好ましい。これらの中から、液粘度やウェット
厚さに応じて製膜方法を選択してよい。
The application method includes a roller method and a dipping method as an application system, an air knife method, a blade method, and the like as a metering system.
No. 589, the wire bar method disclosed in U.S. Pat.
The slide hopper method, extrusion method, curtain method and the like described in JP-A Nos. 94, 2761419, 2761791 and the like are preferable. As a general-purpose machine, a spin method or a spray method is also preferable. As the wet printing method, intaglio printing, rubber printing, screen printing and the like are preferable, including three major printing methods of letterpress, offset and gravure. From these, a film forming method may be selected according to the liquid viscosity and the wet thickness.

【0068】半導体微粒子層は単層に限らず、粒径の違
った半導体微粒子の分散液を多層塗布したり、種類が異
なる半導体微粒子(或いは異なるバインダー、添加剤)
を含有する塗布層を多層塗布したりすることもできる。
一度の塗布で膜厚が不足の場合にも多層塗布は有効であ
る。
The semiconductor fine particle layer is not limited to a single layer, but a multi-layered dispersion of semiconductor fine particles having different particle diameters may be applied, or semiconductor fine particles of different types (or different binders and additives) may be used.
Can be applied in multiple layers.
Multilayer coating is effective even when the film thickness is insufficient by one coating.

【0069】一般に半導体微粒子層の厚さ(感光層の厚
さと同じ)が厚くなるほど、単位投影面積当たりの担持
色素量が増えるため光の捕獲率が高くなるが、生成した
電子の拡散距離が増すため電荷再結合によるロスも大き
くなる。したがって、半導体微粒子層の好ましい厚さは
0.1〜100μmである。光電池に用いる場合、半導体微粒
子層の厚さは1〜30μmが好ましく、2〜25μmがより好
ましい。半導体微粒子の支持体1m2当たりの塗布量は0.
5〜100gが好ましく、3〜50gがより好ましい。
In general, as the thickness of the semiconductor fine particle layer (same as the thickness of the photosensitive layer) is increased, the amount of dye carried per unit projected area is increased, so that the light capture rate is increased, but the diffusion distance of generated electrons is increased. Therefore, the loss due to charge recombination also increases. Therefore, the preferred thickness of the semiconductor fine particle layer is
It is 0.1-100 μm. When used for a photovoltaic cell, the thickness of the semiconductor fine particle layer is preferably 1 to 30 μm, more preferably 2 to 25 μm. The coating amount per support 1 m 2 of the semiconductor fine particles 0.
5 to 100 g is preferable, and 3 to 50 g is more preferable.

【0070】半導体微粒子を導電性支持体上に塗布した
後で半導体微粒子同士を電子的に接触させるとともに、
塗膜強度の向上や支持体との密着性を向上させるため
に、加熱処理するのが好ましい。好ましい加熱温度の範
囲は40℃以上700℃以下であり、より好ましくは100℃以
上600℃以下である。また加熱時間は10分〜10時間程度
である。ポリマーフィルムのように融点や軟化点の低い
支持体を用いる場合、高温処理は支持体の劣化を招くた
め好ましくない。またコストの観点からもできる限り低
温(例えば50℃〜350℃)であるのが好ましい。低温化
は5nm以下の小さい半導体微粒子や鉱酸、金属酸化物プ
レカーサーの存在下での加熱処理等により可能となり、
また、紫外線、赤外線、マイクロ波等の照射や電界、超
音波を印加することにより行うこともできる。同時に不
要な有機物等を除去する目的で、上記の照射や印加のほ
か加熱、減圧、酸素プラズマ処理、純水洗浄、溶剤洗
浄、ガス洗浄等を適宜組み合わせて併用することが好ま
しい。
After applying the semiconductor fine particles on the conductive support, the semiconductor fine particles are brought into electronic contact with each other.
Heat treatment is preferably performed to improve the strength of the coating film and the adhesion to the support. A preferred heating temperature range is from 40 ° C to 700 ° C, more preferably from 100 ° C to 600 ° C. The heating time is about 10 minutes to 10 hours. When a support having a low melting point or softening point such as a polymer film is used, high-temperature treatment is not preferable because it causes deterioration of the support. From the viewpoint of cost, the temperature is preferably as low as possible (for example, 50 ° C. to 350 ° C.). Low temperature can be achieved by heat treatment in the presence of small semiconductor particles of 5 nm or less, mineral acids, and metal oxide precursors.
Further, the irradiation can be performed by irradiation of ultraviolet rays, infrared rays, microwaves, or the like, or by applying an electric field or ultrasonic waves. At the same time, for the purpose of removing unnecessary organic substances and the like, it is preferable to use a combination of heating, decompression, oxygen plasma treatment, pure water cleaning, solvent cleaning, gas cleaning and the like in addition to the above irradiation and application, as appropriate.

【0071】加熱処理後、半導体微粒子の表面積を増大
させたり、半導体微粒子近傍の純度を高め、色素から半
導体微粒子への電子注入効率を高める目的で、例えば四
塩化チタン水溶液を用いた化学メッキ処理や三塩化チタ
ン水溶液を用いた電気化学的メッキ処理を行ってもよ
い。また、半導体微粒子から電荷輸送層へ逆電流が流れ
るのを防止する目的で、粒子表面に色素以外の電子伝導
性の低い有機物を吸着させることも有効である。吸着さ
せる有機物としては疎水性基を持つものが好ましい。
After the heat treatment, for example, chemical plating using an aqueous solution of titanium tetrachloride may be performed to increase the surface area of the semiconductor fine particles, increase the purity near the semiconductor fine particles, and increase the efficiency of electron injection from the dye into the semiconductor fine particles. Electrochemical plating using an aqueous solution of titanium trichloride may be performed. In order to prevent a reverse current from flowing from the semiconductor fine particles to the charge transport layer, it is also effective to adsorb an organic substance having low electron conductivity other than the dye on the particle surface. The organic substance to be adsorbed preferably has a hydrophobic group.

【0072】半導体微粒子層は、多くの色素を吸着する
ことができるように大きい表面積を有することが好まし
い。半導体微粒子の層を支持体上に塗布した状態での表
面積は、投影面積に対して10倍以上であるのが好まし
く、さらに100倍以上であるのが好ましい。この上限は
特に制限はないが、通常1000倍程度である。
The semiconductor fine particle layer preferably has a large surface area so that many dyes can be adsorbed. The surface area in a state where the layer of the semiconductor fine particles is applied on the support is preferably 10 times or more, and more preferably 100 times or more with respect to the projected area. The upper limit is not particularly limited, but is usually about 1000 times.

【0073】(3)色素 感光層に用いる増感色素は、可視域や近赤外域に吸収を
有し、半導体を増感しうる化合物なら任意に用いること
ができるが、金属錯体色素、メチン色素、ポルフィリン
系色素又はフタロシアニン系色素が好ましい。また、光
電変換の波長域をできるだけ広くし、かつ変換効率を上
げるため、二種類以上の色素を併用又は混合して使用す
ることができる。この場合、目的とする光源の波長域と
強度分布に合わせるように、併用又は混合する色素とそ
の割合を選ぶことができる。
(3) Dye The sensitizing dye used in the photosensitive layer may be any compound that has absorption in the visible or near-infrared region and can sensitize a semiconductor. Examples thereof include metal complex dyes and methine dyes. And a porphyrin dye or a phthalocyanine dye. Further, in order to widen the wavelength range of photoelectric conversion as much as possible and increase the conversion efficiency, two or more dyes can be used in combination or in combination. In this case, the pigments to be used or mixed and the ratio thereof can be selected so as to match the wavelength range and the intensity distribution of the target light source.

【0074】こうした色素は半導体微粒子の表面に対し
て吸着能力の有る適当な結合基(interlocking group)
を有しているのが好ましい。好ましい結合基としては、
-COOH基、-OH基、-SO2H基、-P(O)(OH)2基及び-OP(O)(O
H)2基のような酸性基、並びにオキシム、ジオキシム、
ヒドロキシキノリン、サリチレート及びα-ケトエノレ
ートのようなπ伝導性を有するキレート化基が挙げられ
る。中でも-COOH基、-P(O)(OH)2基及び-OP(O)(OH)2基が
特に好ましい。これらの基はアルカリ金属等と塩を形成
していてもよく、また分子内塩を形成していてもよい。
またポリメチン色素の場合、メチン鎖がスクアリリウム
環やクロコニウム環を形成する場合のように酸性基を含
有するなら、この部分を結合基としてもよい。以下、感
光層に用いる好ましい増感色素を具体的に説明する。
Such a dye is formed by a suitable interlocking group having an adsorption ability to the surface of the semiconductor fine particles.
It is preferable to have Preferred linking groups include
-COOH group, -OH group, -SO 2 H group, -P (O) (OH) 2 group and -OP (O) (O
H) acidic group such as a 2 groups, as well as oxime, dioxime,
Π-conducting chelating groups such as hydroxyquinoline, salicylates and α-keto enolates. Among them, a —COOH group, a —P (O) (OH) 2 group and a —OP (O) (OH) 2 group are particularly preferable. These groups may form a salt with an alkali metal or the like, or may form an inner salt.
In the case of a polymethine dye, if the methine chain contains an acidic group as in the case of forming a squarylium ring or a croconium ring, this portion may be used as a bonding group. Hereinafter, preferred sensitizing dyes used in the photosensitive layer will be specifically described.

【0075】(a)金属錯体色素 色素が金属錯体色素である場合、金属フタロシアニン色
素、金属ポルフィリン色素又はルテニウム錯体色素が好
ましく、ルテニウム錯体色素が特に好ましい。ルテニウ
ム錯体色素としては、例えば米国特許4927721号、同468
4537号、同5084365号、同5350644号、同5463057号、同5
525440号、特開平7-249790号、特表平10-504512号、WO9
8/50393号、特開2000-26487号等に記載のものが挙げら
れる。
(A) Metal Complex Dye When the dye is a metal complex dye, a metal phthalocyanine dye, a metal porphyrin dye or a ruthenium complex dye is preferred, and a ruthenium complex dye is particularly preferred. Ruthenium complex dyes include, for example, U.S. Pat.
4537, 5084365, 5350644, 5463057, 5
525440, JP-A-7-249790, JP-T10-504512, WO9
8/50393 and JP-A-2000-26487.

【0076】本発明で用いるルテニウム錯体色素は下記
一般式(II): (A1)pRu(B-a)(B-b)(B-c) ・・・(II) により表されるのが好ましい。一般式(II)中、A1は1又
は2座の配位子を表し、好ましくはCl、SCN、H2O、Br、
I、CN、NCO、SeCN、β-ジケトン誘導体、シュウ酸誘導
体及びジチオカルバミン酸誘導体からなる群から選ばれ
た配位子である。pは0〜3の整数である。B-a、B-b及
びB-cはそれぞれ独立に下記式B-1〜B-10のいずれかによ
り表される有機配位子を表す。
The ruthenium complex dye used in the present invention is preferably represented by the following general formula (II): (A 1 ) p Ru (Ba) (Bb) (Bc) (II) In the general formula (II), A 1 represents a mono- or bidentate ligand, preferably Cl, SCN, H 2 O, Br,
It is a ligand selected from the group consisting of I, CN, NCO, SeCN, β-diketone derivative, oxalic acid derivative and dithiocarbamic acid derivative. p is an integer of 0 to 3. Ba, Bb and Bc each independently represent an organic ligand represented by any of the following formulas B-1 to B-10.

【0077】[0077]

【化16】 Embedded image

【0078】式B-1〜B-10中、R3はそれぞれ水素原子又
は置換基を表し、該置換基の例としてはハロゲン原子、
炭素原子数1〜12の置換又は無置換のアルキル基、炭素
原子数7〜12の置換又は無置換のアラルキル基、炭素原
子数6〜12の置換又は無置換のアリール基、前述の酸性
基(これらの酸性基は塩を形成していてもよい)及びキ
レート化基が挙げられる。ここで、アルキル基及びアラ
ルキル基のアルキル部分は直鎖状でも分岐状でもよく、
またアリール基及びアラルキル基のアリール部分は単環
でも多環(縮合環、環集合)でもよい。B-a、B-b及びB-
cは同一でも異なっていてもよく、いずれか1つ又は2
つでもよい。
In the formulas B-1 to B-10, R 3 represents a hydrogen atom or a substituent, and examples of the substituent include a halogen atom,
A substituted or unsubstituted alkyl group having 1 to 12 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 12 carbon atoms, a substituted or unsubstituted aryl group having 6 to 12 carbon atoms, the above-mentioned acidic group ( These acidic groups may form a salt) and chelating groups. Here, the alkyl portion of the alkyl group and the aralkyl group may be linear or branched,
The aryl group and the aryl moiety of the aralkyl group may be monocyclic or polycyclic (condensed ring, ring assembly). Ba, Bb and B-
c may be the same or different, and any one or two
One.

【0079】好ましい金属錯体色素の具体例を以下に示
すが、本発明はそれらに限定されるものではない。
Specific examples of preferable metal complex dyes are shown below, but the present invention is not limited thereto.

【0080】[0080]

【化17】 Embedded image

【0081】[0081]

【化18】 Embedded image

【0082】(b)メチン色素 本発明で使用できる好ましいメチン色素は、シアニン色
素、メロシアニン色素、スクワリリウム色素等のポリメ
チン色素である。好ましいポリメチン色素の例として
は、特開平11-35836号、特開平11-67285号、特開平11-8
6916号、特開平11-97725号、特開平11-158395号、特開
平11-163378号、特開平11-214730号、特開平11-214731
号、特開平11-238905号、特開2000-26487号、欧州特許8
92411号、同911841号及び同991092号に記載の色素が挙
げられる。好ましいメチン色素の具体例を以下に示す。
(B) Methine Dye Preferred methine dyes usable in the present invention are polymethine dyes such as cyanine dyes, merocyanine dyes, and squarylium dyes. Examples of preferred polymethine dyes, JP-A-11-35836, JP-A-11-67285, JP-A-11-8
No. 6916, JP-A-11-97725, JP-A-11-158395, JP-A-11-163378, JP-A-11-214730, JP-A-11-214731
No., JP-A-11-238905, JP-A-2000-26487, European Patent 8
The dyes described in Nos. 92411, 911841, and 991092 can be mentioned. Specific examples of preferred methine dyes are shown below.

【0083】[0083]

【化19】 Embedded image

【0084】[0084]

【化20】 Embedded image

【0085】(4)半導体微粒子への色素の吸着 半導体微粒子への色素の吸着は、色素の溶液中によく乾
燥した半導体微粒子層を有する導電性支持体を浸漬する
か、色素の溶液を半導体微粒子層に塗布する方法を用い
ることができる。前者の場合、浸漬法、ディップ法、ロ
ーラ法、エアーナイフ法等が使用可能である。浸漬法の
場合、色素の吸着は室温で行ってもよいし、特開平7-24
9790号に記載されているように加熱還流して行ってもよ
い。また後者の塗布方法としては、ワイヤーバー法、ス
ライドホッパー法、エクストルージョン法、カーテン
法、スピン法、スプレー法等がある。また、インクジェ
ット法等によって色素を画像状に塗布し、この画像その
ものを光電変換素子とすることもできる。
(4) Adsorption of Dye on Semiconductor Fine Particles The dye is adsorbed on the semiconductor fine particles by immersing a conductive support having a well-dried semiconductor fine particle layer in a dye solution or by dissolving the dye solution in the semiconductor fine particles. A method of applying to a layer can be used. In the former case, a dipping method, a dipping method, a roller method, an air knife method, or the like can be used. In the case of the immersion method, the dye may be adsorbed at room temperature or disclosed in JP-A-7-24.
It may be carried out by heating and refluxing as described in 9790. Examples of the latter coating method include a wire bar method, a slide hopper method, an extrusion method, a curtain method, a spin method, and a spray method. Alternatively, a dye may be applied in the form of an image by an inkjet method or the like, and the image itself may be used as a photoelectric conversion element.

【0086】色素の溶液(吸着液)に用いる溶媒は、好
ましくはアルコール類(メタノール、エタノール、t-ブ
タノール、ベンジルアルコール等)、ニトリル類(アセ
トニトリル、プロピオニトリル、3-メトキシプロピオニ
トリル等)、ニトロメタン、ハロゲン化炭化水素(ジク
ロロメタン、ジクロロエタン、クロロホルム、クロロベ
ンゼン等)、エーテル類(ジエチルエーテル、テトラヒ
ドロフラン等)、ジメチルスルホキシド、アミド類(N,
N-ジメチルホルムアミド、N,N-ジメチルアセタミド
等)、N-メチルピロリドン、1,3-ジメチルイミダゾリジ
ノン、3-メチルオキサゾリジノン、エステル類(酢酸エ
チル、酢酸ブチル等)、炭酸エステル類(炭酸ジエチ
ル、炭酸エチレン、炭酸プロピレン等)、ケトン類(ア
セトン、2-ブタノン、シクロヘキサノン等)、炭化水素
(へキサン、石油エーテル、ベンゼン、トルエン等)又
はこれらの混合溶媒である。
Solvents used for the dye solution (adsorption solution) are preferably alcohols (methanol, ethanol, t-butanol, benzyl alcohol, etc.) and nitriles (acetonitrile, propionitrile, 3-methoxypropionitrile, etc.) , Nitromethane, halogenated hydrocarbons (dichloromethane, dichloroethane, chloroform, chlorobenzene, etc.), ethers (diethyl ether, tetrahydrofuran, etc.), dimethyl sulfoxide, amides (N,
N-dimethylformamide, N, N-dimethylacetamide, etc.), N-methylpyrrolidone, 1,3-dimethylimidazolidinone, 3-methyloxazolidinone, esters (ethyl acetate, butyl acetate, etc.), carbonates ( Diethyl carbonate, ethylene carbonate, propylene carbonate, etc.), ketones (acetone, 2-butanone, cyclohexanone, etc.), hydrocarbons (hexane, petroleum ether, benzene, toluene, etc.) or a mixed solvent thereof.

【0087】色素の全吸着量は、半導体微粒子層の単位
面積(1m2)当たり0.01〜100mmolとするのが好まし
い。また色素の半導体微粒子に対する吸着量は、半導体
微粒子1g当たり0.01〜1mmolの範囲であるのが好まし
い。このような色素の吸着量とすることにより半導体に
おける増感効果が十分に得られる。これに対し、色素が
少なすぎると増感効果が不十分となり、また色素が多す
ぎると半導体に付着していない色素が浮遊し、増感効果
を低減させる原因となる。色素の吸着量を増大させるた
めには、吸着前に加熱処理を行うのが好ましい。加熱処
理後、半導体微粒子表面に水が吸着するのを避けるた
め、常温に戻さずに半導体微粒子層の温度が60〜150℃
の間で素早く色素の吸着操作を行うのが好ましい。
The total amount of the dye adsorbed is preferably 0.01 to 100 mmol per unit area (1 m 2 ) of the semiconductor fine particle layer. The amount of the dye adsorbed on the semiconductor fine particles is preferably in the range of 0.01 to 1 mmol per 1 g of the semiconductor fine particles. With such an amount of dye adsorbed, a sufficient sensitizing effect in the semiconductor can be obtained. On the other hand, if the amount of the dye is too small, the sensitizing effect becomes insufficient, and if the amount of the dye is too large, the dye not adhering to the semiconductor floats and causes a reduction in the sensitizing effect. In order to increase the amount of the dye adsorbed, it is preferable to perform a heat treatment before the adsorption. After the heat treatment, the temperature of the semiconductor fine particle layer is not returned to room temperature to avoid water adsorption on the surface of the semiconductor fine particles, and the temperature of the semiconductor fine particle layer is 60 to 150 ° C.
It is preferable to carry out the dye adsorption operation quickly between the steps.

【0088】色素間の凝集等の相互作用を低減するため
に、界面活性な性質を持つ無色の化合物を色素吸着液に
添加し、半導体微粒子に共吸着させてよい。このような
無色の化合物の例としては、カルボキシル基やスルホン
酸基を有するステロイド化合物(ケノデオキシコール
酸、タウロデオキシコール酸等)や、下記のようなスル
ホン酸塩類等が挙げられる。
In order to reduce the interaction such as aggregation between the dyes, a colorless compound having surface active properties may be added to the dye adsorbing solution and co-adsorbed to the semiconductor fine particles. Examples of such colorless compounds include steroid compounds having a carboxyl group or a sulfonic acid group (such as chenodeoxycholic acid and taurodeoxycholic acid), and the following sulfonates.

【0089】[0089]

【化21】 Embedded image

【0090】未吸着の色素は、吸着後速やかに洗浄によ
り除去するのが好ましい。洗浄は湿式洗浄槽を使い、ア
セトニトリル等の極性溶剤、アルコール系溶剤のような
有機溶媒等で行うのが好ましい。
It is preferable to remove unadsorbed dye by washing immediately after the adsorption. The washing is preferably performed using a wet washing tank with a polar solvent such as acetonitrile, an organic solvent such as an alcohol solvent, or the like.

【0091】色素を吸着した後にアミン類や4級アンモ
ニウム塩を用いて半導体微粒子の表面を処理してもよ
い。好ましいアミン類としてはピリジン、4-t-ブチルピ
リジン、ポリビニルピリジン等が挙げられる。好ましい
4級アンモニウム塩としてはテトラブチルアンモニウム
ヨージド、テトラヘキシルアンモニウムヨージド等が挙
げられる。これらは有機溶媒に溶解して用いてもよく、
液体の場合はそのまま用いてもよい。
After the dye is adsorbed, the surface of the semiconductor fine particles may be treated with amines or quaternary ammonium salts. Preferred amines include pyridine, 4-t-butylpyridine, polyvinylpyridine and the like. Preferred quaternary ammonium salts include tetrabutylammonium iodide, tetrahexylammonium iodide and the like. These may be used by dissolving in an organic solvent,
In the case of a liquid, it may be used as it is.

【0092】(D)対極 対極は前述の導電性支持体と同様に、導電性材料からな
る対極導電層の単層構造でもよいし、対極導電層と支持
基板から構成されていてもよい。対極導電層に用いる導
電材としては、金属(白金、金、銀、銅、アルミニウ
ム、マグネシウム、インジウム等)、炭素、及び導電性
金属酸化物(インジウム−スズ複合酸化物、フッ素ドー
プ酸化スズ等)が挙げられる。この中でも白金、金、
銀、銅、アルミニウム及びマグネシウムが好ましく使用
することができる。対極に用いる支持基板は、好ましく
はガラス基板又はプラスチック基板であり、これに上記
の導電材を塗布又は蒸着して用いる。対極導電層の厚さ
は特に制限されないが、3nm〜10μmが好ましい。対極
導電層の表面抵抗は低い程よい。好ましい表面抵抗の範
囲としては50Ω/□以下であり、さらに好ましくは20Ω
/□以下である。
(D) Counter electrode Like the above-mentioned conductive support, the counter electrode may have a single-layer structure of a counter electrode conductive layer made of a conductive material, or may be composed of a counter electrode conductive layer and a support substrate. Examples of the conductive material used for the counter electrode conductive layer include metals (platinum, gold, silver, copper, aluminum, magnesium, indium, etc.), carbon, and conductive metal oxides (indium-tin composite oxide, fluorine-doped tin oxide, etc.). Is mentioned. Among them, platinum, gold,
Silver, copper, aluminum and magnesium can be preferably used. The support substrate used for the counter electrode is preferably a glass substrate or a plastic substrate, and the above conductive material is applied or vapor-deposited on the substrate. The thickness of the counter electrode conductive layer is not particularly limited, but is preferably 3 nm to 10 μm. The lower the surface resistance of the counter electrode conductive layer, the better. The preferred range of the surface resistance is 50 Ω / □ or less, more preferably 20 Ω / □.
/ □ or less.

【0093】導電性支持体と対極のいずれか一方又は両
方から光を照射してよいので、感光層に光が到達するた
めには、導電性支持体と対極の少なくとも一方が実質的
に透明であればよい。発電効率の向上の観点からは、導
電性支持体を透明にして光を導電性支持体側から入射さ
せるのが好ましい。この場合、対極は光を反射する性質
を有するのが好ましい。このような対極としては、金属
又は導電性酸化物を蒸着したガラス又はプラスチック、
或いは金属薄膜を使用できる。
Since light may be irradiated from one or both of the conductive support and the counter electrode, at least one of the conductive support and the counter electrode is substantially transparent in order for the light to reach the photosensitive layer. I just need. From the viewpoint of improving the power generation efficiency, it is preferable that the conductive support is transparent and light is incident from the conductive support side. In this case, the counter electrode preferably has a property of reflecting light. As such a counter electrode, glass or plastic on which a metal or a conductive oxide is deposited,
Alternatively, a metal thin film can be used.

【0094】対極は電荷輸送層上に直接導電剤を塗布、
メッキ又は蒸着(PVD、CVD)するか、導電層を有する基
板の導電層側を貼り付ければよい。また、導電性支持体
の場合と同様に、特に対極が透明の場合には対極の抵抗
を下げる目的で金属リードを用いるのが好ましい。な
お、好ましい金属リードの材質及び設置方法、金属リー
ド設置による入射光量の低下等は導電性支持体の場合と
同じである。
As the counter electrode, a conductive agent is applied directly on the charge transport layer,
Plating or vapor deposition (PVD, CVD) may be performed, or a conductive layer side of a substrate having a conductive layer may be attached. Further, as in the case of the conductive support, it is preferable to use a metal lead for the purpose of reducing the resistance of the counter electrode, particularly when the counter electrode is transparent. In addition, the preferable material and the installation method of the metal lead, the decrease of the incident light amount by the installation of the metal lead, and the like are the same as those of the conductive support.

【0095】(E)その他の層 対極と導電性支持体の短絡を防止するため、導電性支持
体と感光層の間には、緻密な半導体の薄膜層を下塗り層
として予め塗設しておくことが好ましい。この下塗り層
により短絡を防止する方法は、電荷輸送層に電子輸送材
料や正孔輸送材料を用いる場合は特に有効である。下塗
り層は好ましくはTiO2、SnO2、Fe2O3、WO3、ZnO又はNb2
O5からなり、さらに好ましくはTiO2からなる。下塗り層
は、例えばElectrochim. Acta, 40, 643-652 (1995)に
記載されているスプレーパイロリシス法や、スパッタ法
等により塗設することができる。下塗り層の好ましい膜
厚は5〜1000nmであり、10〜500nmがさらに好ましい。
(E) Other layers In order to prevent a short circuit between the counter electrode and the conductive support, a dense semiconductor thin film layer is previously coated between the conductive support and the photosensitive layer as an undercoat layer. Is preferred. The method of preventing a short circuit by using the undercoat layer is particularly effective when an electron transporting material or a hole transporting material is used for the charge transporting layer. Undercoat layer is preferably TiO 2, SnO 2, Fe 2 O 3, WO 3, ZnO or Nb 2
Consist O 5, more preferably consists of TiO 2. The undercoat layer can be applied by, for example, a spray pyrolysis method described in Electrochim. Acta, 40, 643-652 (1995), a sputtering method, or the like. The preferred thickness of the undercoat layer is 5 to 1000 nm, more preferably 10 to 500 nm.

【0096】また、電極として作用する導電性支持体と
対極の一方又は両方の外側表面、導電層と基板の間又は
基板の中間に、保護層、反射防止層等の機能性層を設け
てもよい。これらの機能性層の形成には、その材質に応
じて塗布法、蒸着法、貼り付け法等を用いることができ
る。
A functional layer such as a protective layer or an antireflection layer may be provided on the outer surface of one or both of the conductive support serving as an electrode and the counter electrode, between the conductive layer and the substrate or in the middle of the substrate. Good. For forming these functional layers, a coating method, a vapor deposition method, a sticking method, or the like can be used depending on the material.

【0097】(F)光電変換素子の内部構造の具体例 上述のように、光電変換素子の内部構造は目的に合わせ
様々な形態が可能である。大きく2つに分ければ、両面
から光の入射が可能な構造と、片面からのみ可能な構造
が可能である。図2〜図9に本発明に好ましく適用でき
る光電変換素子の内部構造を例示する。
(F) Specific Example of Internal Structure of Photoelectric Conversion Element As described above, the internal structure of the photoelectric conversion element can take various forms according to the purpose. When roughly divided into two, a structure that allows light to enter from both sides and a structure that allows light to enter from only one side are possible. 2 to 9 exemplify an internal structure of a photoelectric conversion element which can be preferably applied to the present invention.

【0098】図2に示す構造は、透明導電層10aと透明
対極導電層40aとの間に、感光層20と電荷輸送層30とを
介在させたものであり、両面から光が入射する構造とな
っている。図3に示す構造は、透明基板50a上に一部金
属リード11を設け、その上に透明導電層10aを設け、下
塗り層60、感光層20、電荷輸送層30及び対極導電層40を
この順で設け、更に支持基板50を配置したものであり、
導電層側から光が入射する構造となっている。図4に示
す構造は、支持基板50上に導電層10を有し、下塗り層60
を介して感光層20を設け、更に電荷輸送層30と透明対極
導電層40aとを設け、一部に金属リード11を設けた透明
基板50aを金属リード11側を内側にして配置したもので
あり、対極側から光が入射する構造である。図5に示す
構造は、透明基板50a上に一部金属リード11を設け、更
に透明導電層10a(又は40a)を設けたもの1組の間に下
塗り層60、感光層20及び電荷輸送層30を介在させたもの
であり、両面から光が入射する構造である。図6に示す
構造は、透明基板50a上に透明導電層10a、下塗り層60、
感光層20、電荷輸送層30及び対極導電層40を設け、この
上に支持基板50を配置したものであり、導電層側から光
が入射する構造である。図7に示す構造は、支持基板50
上に導電層10を有し、下塗り層60を介して感光層20を設
け、更に電荷輸送層30及び透明対極導電層40aを設け、
この上に透明基板50aを配置したものであり、対極側か
ら光が入射する構造である。図8に示す構造は、透明基
板50a上に透明導電層10aを有し、下塗り層60を介して感
光層20を設け、更に電荷輸送層30及び透明対極導電層40
aを設け、この上に透明基板50aを配置したものであり、
両面から光が入射する構造となっている。図9に示す構
造は、支持基板50上に導電層10を設け、下塗り層60を介
して感光層20を設け、更に固体の電荷輸送層30を設け、
この上に一部対極導電層40又は金属リード11を有するも
のであり、対極側から光が入射する構造となっている。
The structure shown in FIG. 2 has a structure in which the photosensitive layer 20 and the charge transport layer 30 are interposed between the transparent conductive layer 10a and the transparent counter electrode conductive layer 40a. Has become. In the structure shown in FIG. 3, a metal lead 11 is partially provided on a transparent substrate 50a, a transparent conductive layer 10a is provided thereon, and an undercoat layer 60, a photosensitive layer 20, a charge transport layer 30, and a counter electrode conductive layer 40 are sequentially formed. Is provided, and further, a support substrate 50 is arranged,
Light is incident from the conductive layer side. The structure shown in FIG. 4 has the conductive layer 10 on the support substrate 50 and the undercoat layer 60.
A transparent substrate 50a provided with a charge transport layer 30 and a transparent counter electrode conductive layer 40a further provided with a metal lead 11 in a part thereof is disposed with the metal lead 11 side inside. , And light is incident from the counter electrode side. The structure shown in FIG. 5 has a structure in which a metal lead 11 is partially provided on a transparent substrate 50a, and a transparent conductive layer 10a (or 40a) is further provided. And a structure in which light is incident from both sides. The structure shown in FIG. 6 includes a transparent conductive layer 10a, an undercoat layer 60,
A photosensitive layer 20, a charge transport layer 30, and a counter electrode conductive layer 40 are provided, and a support substrate 50 is disposed thereon. In this structure, light enters from the conductive layer side. The structure shown in FIG.
Having the conductive layer 10 thereon, providing the photosensitive layer 20 via the undercoat layer 60, further providing the charge transport layer 30 and the transparent counter electrode conductive layer 40a,
A transparent substrate 50a is disposed thereon, and has a structure in which light is incident from the counter electrode side. The structure shown in FIG. 8 includes a transparent conductive layer 10a on a transparent substrate 50a, a photosensitive layer 20 provided with an undercoat layer 60 interposed therebetween, and further includes a charge transport layer 30 and a transparent counter electrode conductive layer 40.
a, on which a transparent substrate 50a is arranged,
Light is incident from both sides. In the structure shown in FIG. 9, the conductive layer 10 is provided on the support substrate 50, the photosensitive layer 20 is provided through the undercoat layer 60, and the solid charge transport layer 30 is further provided.
A part thereof has a counter electrode conductive layer 40 or a metal lead 11, and has a structure in which light is incident from the counter electrode side.

【0099】[2]光電池 本発明の光電池は、上記本発明の光電変換素子に外部負
荷で仕事をさせるようにしたものである。光電池のう
ち、本発明のように電荷輸送材料が主としてイオン輸送
材料からなる場合を特に光電気化学電池と呼び、また、
太陽光による発電を主目的とする場合を太陽電池と呼
ぶ。
[2] Photocell A photocell of the present invention is one in which the photoelectric conversion element of the present invention is made to work with an external load. Among photovoltaic cells, the case where the charge transport material is mainly composed of an ion transport material as in the present invention is particularly called a photoelectrochemical cell,
The case where the main purpose is power generation by sunlight is called a solar cell.

【0100】光電池の側面は、構成物の劣化や内容物の
揮散を防止するためにポリマーや接着剤等で密封するの
が好ましい。導電性支持体及び対極にリードを介して接
続する外部回路自体は公知のものでよい。
The side surface of the photovoltaic cell is preferably sealed with a polymer, an adhesive or the like in order to prevent deterioration of components and volatilization of the contents. The external circuit itself connected to the conductive support and the counter electrode via the lead may be a known one.

【0101】本発明の光電変換素子を太陽電池に適用す
る場合も、そのセル内部の構造は基本的に上述した光電
変換素子の構造と同じである。また、本発明の光電変換
素子を用いた色素増感型太陽電池は、従来の太陽電池モ
ジュールと基本的には同様のモジュール構造をとりう
る。太陽電池モジュールは、一般的には金属、セラミッ
ク等の支持基板の上にセルが構成され、その上を充填樹
脂や保護ガラス等で覆い、支持基板の反対側から光を取
り込む構造をとるが、支持基板に強化ガラス等の透明材
料を用い、その上にセルを構成してその透明の支持基板
側から光を取り込む構造とすることも可能である。具体
的には、スーパーストレートタイプ、サブストレートタ
イプ、ポッティングタイプと呼ばれるモジュール構造、
アモルファスシリコン太陽電池等で用いられる基板一体
型モジュール構造等が知られており、本発明の色素増感
型太陽電池も使用目的や使用場所及び環境により、適宜
モジュール構造を選択できる。具体的には、特開2000-2
68892号に記載の構造や態様とすることが好ましい。
When the photoelectric conversion device of the present invention is applied to a solar cell, the structure inside the cell is basically the same as that of the above-mentioned photoelectric conversion device. Further, the dye-sensitized solar cell using the photoelectric conversion element of the present invention can have a module structure basically similar to a conventional solar cell module. The solar cell module generally has a structure in which cells are formed on a supporting substrate such as a metal and a ceramic, and the cells are covered with a filling resin or a protective glass or the like, and light is taken in from the opposite side of the supporting substrate. It is also possible to adopt a structure in which a transparent material such as tempered glass is used for the support substrate, a cell is formed thereon, and light is taken in from the transparent support substrate side. Specifically, module structures called super straight type, substrate type, potting type,
A substrate-integrated module structure and the like used in an amorphous silicon solar cell and the like are known, and the module structure of the dye-sensitized solar cell of the present invention can be appropriately selected depending on the purpose of use, the place of use, and the environment. More specifically,
It is preferable to use the structure and embodiment described in 68892.

【0102】[0102]

【実施例】以下、本発明を実施例によって具体的に説明
するが、本発明はそれらに限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto.

【0103】1.酸化チタン分散液の調製 360gの水と12gの酢酸を混合した溶液に、25℃にて62gの
オルトチタン酸テトライソプロピル(和光純薬製)を一
気に添加し、1時間撹拌した。この溶液に80℃にて6ml
の濃硝酸を加え、更に4時間撹拌した。得られた酸化チ
タンゾルのうち50mlをステンレス製オートクレーブに移
し替え240℃で16時間撹拌した後、15000回転で30分間遠
心分離した。次いで、デカンテーションで上澄みを除
き、0.3gのポリエチレングリコール(分子量20000、和
光純薬製)及び11gの水を加えてよく撹拌し、更に1gの
エタノール及び0.4mlの濃硝酸を加え、酸化チタン分散
液を得た。この酸化チタン分散液の酸化チタン含有量は
15質量%であった。また、得られた酸化チタン分散液中
の酸化チタン粒子の平均粒径をX線回折法により求めた
ところ、16nmであった。
1. Preparation of Titanium Oxide Dispersion 62 g of tetraisopropyl orthotitanate (manufactured by Wako Pure Chemical Industries, Ltd.) was added at once to a mixed solution of 360 g of water and 12 g of acetic acid, and the mixture was stirred for 1 hour. . 6 ml at 80 ° C
Of concentrated nitric acid was added, and the mixture was further stirred for 4 hours. 50 ml of the obtained titanium oxide sol was transferred to a stainless steel autoclave, stirred at 240 ° C. for 16 hours, and then centrifuged at 15,000 rpm for 30 minutes. Next, the supernatant was removed by decantation, 0.3 g of polyethylene glycol (molecular weight: 20,000, manufactured by Wako Pure Chemical Industries) and 11 g of water were added, and the mixture was stirred well. Further, 1 g of ethanol and 0.4 ml of concentrated nitric acid were added, and titanium oxide was dispersed. A liquid was obtained. The titanium oxide content of this titanium oxide dispersion is
It was 15% by mass. The average particle size of the titanium oxide particles in the obtained titanium oxide dispersion was determined by X-ray diffraction, and was found to be 16 nm.

【0104】2.色素吸着酸化チタン電極の作製 フッ素をドープした酸化スズをコーティングした透明導
電性ガラス(日本板硝子製、表面抵抗:約10Ω/cm2
の導電面側に上記酸化チタン分散液をドクターブレード
を用いて塗布し、25℃で30分間乾燥した後、電気炉(ヤ
マト科学製「マッフル炉FP-32型」)を用いて450℃にて
30分間焼成し、酸化チタン電極を得た。焼成前後の質量
変化より単位面積当たりの酸化チタンの塗布量を求めた
ところ、塗布量は16.2g/m2であった。得られた酸化チタ
ン電極を下記色素R-Aを含有する色素吸着液に25℃で16
時間浸漬し、エタノール及びアセトニトリルで順次洗浄
して、色素吸着酸化チタン電極を作製した。なお、色素
吸着液は色素R-A及びエタノールとt-ブタノールとアセ
トニトリルの混合溶媒(エタノール:t-ブタノール:ア
セトニトリル=1:1:2(体積比))からなり、色素
吸着液中の色素R-Aの濃度は0.3mmol/lとした。
2. Preparation of dye-adsorbed titanium oxide electrode Transparent conductive glass coated with fluorine-doped tin oxide (Nippon Sheet Glass, surface resistance: about 10Ω / cm 2 )
The above titanium oxide dispersion was applied to the conductive surface side of the substrate using a doctor blade, dried at 25 ° C. for 30 minutes, and then heated at 450 ° C. using an electric furnace (“Muffle Furnace FP-32” manufactured by Yamato Scientific Co., Ltd.).
Firing was performed for 30 minutes to obtain a titanium oxide electrode. The amount of titanium oxide applied per unit area was determined from the change in mass before and after firing, and the amount applied was 16.2 g / m 2 . The obtained titanium oxide electrode was placed on a dye adsorption solution containing the following dye RA at 25 ° C for 16 hours.
It was immersed for a time and washed sequentially with ethanol and acetonitrile to prepare a dye-adsorbed titanium oxide electrode. The dye adsorbing solution is composed of the dye RA and a mixed solvent of ethanol, t-butanol and acetonitrile (ethanol: t-butanol: acetonitrile = 1: 1: 2 (volume ratio)), and the concentration of the dye RA in the dye adsorbing solution. Was set to 0.3 mmol / l.

【0105】[0105]

【化22】 Embedded image

【0106】3.光電変換素子の作製 上述のように得た色素吸着酸化チタン電極(2cm×2c
m)をこれと同じ大きさの白金蒸着ガラスと重ね合わせ
た。次に、両ガラスの隙間に毛細管現象を利用して電解
質組成物(ヨウ化1,3-ジメチルイミダゾリウム(0.65mo
l/l)、ヨウ素(0.05mol/l)及びt-ブチルピリジン(0.
1mol/l)のアセトニトリル溶液)をしみこませて酸化チ
タン電極中に導入し、比較用の光電変換素子C-1を得
た。
3. Preparation of photoelectric conversion element Dye-adsorbed titanium oxide electrode (2 cm × 2 c) obtained as described above
m) was overlaid with platinum-evaporated glass of the same size. Next, an electrolyte composition (1,3-dimethylimidazolium iodide (0.65 mol
l / l), iodine (0.05 mol / l) and t-butylpyridine (0.
(1 mol / l) acetonitrile solution) was impregnated and introduced into a titanium oxide electrode to obtain a photoelectric conversion element C-1 for comparison.

【0107】上記色素吸着酸化チタン電極(2cm×2c
m)に、下記表1に示す組成の電解質組成物を塗布し、
ドライルーム中、60℃減圧下で16時間静置して電解質組
成物を電極に十分に染み込ませた後、これに同じ大きさ
の白金蒸着ガラスを重ね合わせ、比較用の光電変換素子
D-1〜D-4、並びに塩(I)を用いた本発明の光電変換素子D
-5〜D-14をそれぞれ作製した。これらの光電変換素子
は、図10に示すような、導電性ガラス1(ガラス2上に
導電層3が設層されたもの)、色素吸着二酸化チタン層
4、電荷輸送層5、白金層6及びガラス7が順に積層さ
れた構造を有する。表1中に記載のヨウ化物塩(A)及び
(C)、並びに溶融塩(B)、(D)及び(E)の構造を以下に示
す。
The above dye-adsorbed titanium oxide electrode (2 cm × 2 c
m) was coated with an electrolyte composition having the composition shown in Table 1 below,
In a dry room, allowed to stand at 60 ° C. under reduced pressure for 16 hours to allow the electrolyte composition to sufficiently permeate the electrodes, and then overlaid platinum-deposited glass of the same size on this, and a photoelectric conversion element for comparison
D-1 to D-4, and the photoelectric conversion element D of the present invention using the salt (I)
-5 to D-14 were prepared. These photoelectric conversion elements include a conductive glass 1 (a conductive layer 3 provided on a glass 2), a dye-adsorbed titanium dioxide layer 4, a charge transport layer 5, a platinum layer 6, and a conductive glass 1, as shown in FIG. It has a structure in which the glass 7 is laminated in order. Iodide salt (A) described in Table 1 and
The structures of (C) and the molten salts (B), (D) and (E) are shown below.

【0108】[0108]

【表1】 [Table 1]

【0109】[0109]

【化23】 Embedded image

【0110】4.光電変換効率の測定 500Wのキセノンランプ(ウシオ製)の光を分光フィルタ
ー(Oriel社製「AM1.5」)を通すことにより模擬太陽光
を発生させた。この模擬太陽光の強度は垂直面において
88mW/cm2であった。各光電変換素子C-1及びD-1〜D-14の
導電性ガラスの端部に銀ペーストを塗布して負極とし、
この負極と白金蒸着ガラス(正極)を電流電圧測定装置
(ケースレーSMU238型)に接続した。各光電変換素子に
模擬太陽光を垂直に照射しながら電流電圧特性を測定し
光電変換効率を求めた。比較用の光電変換素子C-1及びD
-1〜D-4、並びに本発明の光電変換素子D-5〜D-14の初期
特性(短絡電流密度、開放電圧及び光電変換効率)を表
2に示す。また、各光電変換素子の保存安定性を評価す
るために、各光電変換素子を25℃で7日間放置した後、
同様に光電変換効率を測定した。7日間放置後の光電変
換効率及び光電変換効率の維持率(7日間放置後の光電
変換効率/初期の光電変換効率)を表2に併せて示す。
4. Measurement of Photoelectric Conversion Efficiency Simulated sunlight was generated by passing light of a 500 W xenon lamp (made by Ushio) through a spectral filter ("AM1.5" made by Oriel). The intensity of this simulated sunlight is
It was 88 mW / cm 2 . A silver paste was applied to the end of the conductive glass of each photoelectric conversion element C-1 and D-1 to D-14 to form a negative electrode,
The negative electrode and platinum-deposited glass (positive electrode) were connected to a current / voltage measuring device (Keithley SMU238 type). The current-voltage characteristics were measured while simulating sunlight was vertically irradiated on each photoelectric conversion element, and the photoelectric conversion efficiency was determined. Photoelectric conversion elements C-1 and D for comparison
Table 2 shows initial characteristics (short-circuit current density, open-circuit voltage, and photoelectric conversion efficiency) of -1 to D-4 and photoelectric conversion elements D-5 to D-14 of the present invention. Further, in order to evaluate the storage stability of each photoelectric conversion element, after leaving each photoelectric conversion element at 25 ° C. for 7 days,
Similarly, the photoelectric conversion efficiency was measured. The photoelectric conversion efficiency after standing for 7 days and the maintenance ratio of the photoelectric conversion efficiency (photoelectric conversion efficiency after standing for 7 days / initial photoelectric conversion efficiency) are also shown in Table 2.

【0111】[0111]

【表2】 [Table 2]

【0112】表2より、揮発性のアセトニトリル溶液か
らなる電解質組成物を用いた比較用の光電変換素子C-1
は保存安定性に劣ることがわかる。また、ジャーナル・
オブ・エレクトロケミカル・ソサエティー, 第143巻,
第10号, 3099〜3108頁に記載の電解質組成物を用いた比
較用の光電変換素子D-1、並びに比較用の光電変換素子D
-2〜D-4は優れた保存安定性を示したが、光電変換効率
が大幅に低下した。これに比較して、本発明の光電変換
素子D-5〜D-14は優れた保存安定性及び光電変換効率を
示した。また、本発明の光電変換素子D-5〜D-14の中で
も、一般式(I)におけるR1がパーフルオロアルキル基で
ある塩(I)を使用した光電変換素子D-5、D-8〜D-10及びD
-12〜D-14は高い光電変換効率を示した。更にこれらの
中でも、一般式(I)におけるQ+が1,3-ジアルキルイミダ
ゾリウムカチオンである塩(I)を用いた光電変換素子D-
5、D-9及びD-10は特に高い光電変換効率を示した。
From Table 2, it can be seen that the comparative photoelectric conversion element C-1 using the electrolyte composition comprising a volatile acetonitrile solution.
Indicates poor storage stability. Also, journals
Of the Electrochemical Society, Volume 143,
No. 10, a photoelectric conversion element D-1 for comparison using the electrolyte composition described on pages 3099 to 3108, and a photoelectric conversion element D for comparison
-2 to D-4 showed excellent storage stability, but the photoelectric conversion efficiency was significantly reduced. In comparison, the photoelectric conversion elements D-5 to D-14 of the present invention exhibited excellent storage stability and photoelectric conversion efficiency. Further, among the photoelectric conversion elements D-5 to D-14 of the present invention, photoelectric conversion elements D-5 and D-8 using a salt (I) in which R 1 in the general formula (I) is a perfluoroalkyl group. ~ D-10 and D
-12 to D-14 showed high photoelectric conversion efficiency. Moreover Among these, the general formula (I) photoelectric conversion using salt (I) is a Q + 1,3-dialkyl imidazolium cation in the element D-
5, D-9 and D-10 exhibited particularly high photoelectric conversion efficiencies.

【0113】[0113]

【発明の効果】以上詳述したように、本発明の色素増感
光電変換素子は優れた保存安定性及び光電変換効率を示
す。
As described in detail above, the dye-sensitized photoelectric conversion element of the present invention exhibits excellent storage stability and photoelectric conversion efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の好ましい光電変換素子の構造を示す
部分断面図である。
FIG. 1 is a partial sectional view showing the structure of a preferred photoelectric conversion element of the present invention.

【図2】 本発明の好ましい光電変換素子の構造を示す
部分断面図である。
FIG. 2 is a partial sectional view showing the structure of a preferred photoelectric conversion element of the present invention.

【図3】 本発明の好ましい光電変換素子の構造を示す
部分断面図である。
FIG. 3 is a partial sectional view showing the structure of a preferred photoelectric conversion element of the present invention.

【図4】 本発明の好ましい光電変換素子の構造を示す
部分断面図である。
FIG. 4 is a partial sectional view showing the structure of a preferred photoelectric conversion element of the present invention.

【図5】 本発明の好ましい光電変換素子の構造を示す
部分断面図である。
FIG. 5 is a partial sectional view showing the structure of a preferred photoelectric conversion element of the present invention.

【図6】 本発明の好ましい光電変換素子の構造を示す
部分断面図である。
FIG. 6 is a partial sectional view showing the structure of a preferred photoelectric conversion element of the present invention.

【図7】 本発明の好ましい光電変換素子の構造を示す
部分断面図である。
FIG. 7 is a partial sectional view showing the structure of a preferred photoelectric conversion element of the present invention.

【図8】 本発明の好ましい光電変換素子の構造を示す
部分断面図である。
FIG. 8 is a partial sectional view showing the structure of a preferred photoelectric conversion element of the present invention.

【図9】 本発明の好ましい光電変換素子の構造を示す
部分断面図である。
FIG. 9 is a partial sectional view showing the structure of a preferred photoelectric conversion element of the present invention.

【図10】 実施例で作製した光電変換素子の構造を示す
部分断面図である。
FIG. 10 is a partial cross-sectional view illustrating a structure of a photoelectric conversion element manufactured in an example.

【符号の説明】[Explanation of symbols]

10・・・導電層 10a・・・透明導電層 11・・・金属リード 20・・・感光層 21・・・半導体微粒子 22・・・色素 23・・・電荷輸送材料 30・・・電荷輸送層 40・・・対極導電層 40a・・・透明対極導電層 50・・・基板 50a・・・透明基板 60・・・下塗り層 1・・・導電性ガラス 2・・・ガラス 3・・・導電層 4・・・色素吸着二酸化チタン層 5・・・電荷輸送層 6・・・白金層 7・・・ガラス 10 ... Conductive layer 10a ... Transparent conductive layer 11 ... Metal lead 20 ... Photosensitive layer 21 ... Semiconductor fine particles 22 ... Dye 23 ... Charge transport material 30 ... Charge transport layer 40 ... counter electrode conductive layer 40a ... transparent counter electrode conductive layer 50 ... substrate 50a ... transparent substrate 60 ... undercoat layer 1 ... conductive glass 2 ... glass 3 ... conductive layer 4 ... Dye-adsorbed titanium dioxide layer 5 ... Charge transport layer 6 ... Platinum layer 7 ... Glass

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5F051 AA14 CB13 CB30 FA04 FA06 5H032 AA06 AS16 CC16 EE04 EE20 HH00  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5F051 AA14 CB13 CB30 FA04 FA06 5H032 AA06 AS16 CC16 EE04 EE20 HH00

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式(I)により表される塩を含有
する電荷輸送層を有することを特徴とする光電変換素
子。 【化1】 一般式(I)中、R1及びR2はそれぞれ独立にアルキル基、
アリール基又はアルコキシ基を表し、置換基を有してい
てもよい。W1はC(=O)、S(=O)、S(=O)2、P(=O)、トリア
ゾリル基又はテトラゾリル基を表し、W1がC(=O)、S(=O)
又はS(=O)2を表すときn1は1であり、W1がP(=O)を表す
ときn1は2であり、W1がトリアゾリル基又はテトラゾリ
ル基を表すときn1は0又は1である。W2はC(=O)、S(=
O)、P(=O)、トリアゾリル基又はテトラゾリル基を表
し、W2がC(=O)又はS(=O)を表すときn2は1であり、W2
P(=O)を表すときn2は2であり、W2がトリアゾリル基又
はテトラゾリル基を表すときn2は0又は1である。Q+
有機カチオンを表す。
1. A photoelectric conversion device comprising a charge transport layer containing a salt represented by the following general formula (I). Embedded image In the general formula (I), R 1 and R 2 are each independently an alkyl group,
Represents an aryl group or an alkoxy group, and may have a substituent. W 1 represents C (= O), S (= O), S (= O) 2 , P (= O), a triazolyl group or a tetrazolyl group, and W 1 is C (= O), S (= O)
Or S (= O) is n1 to represent a 2 a 1, n1 when W 1 represents a P (= O) is 2, the n1 when W 1 represents a triazolyl group or a tetrazolyl group 0 or 1 is there. W 2 is C (= O), S (=
O), P (= O) , represents a triazolyl group or tetrazolyl group, n2 when W 2 represents C (= O) or S (= O) is 1, W 2 is
N2 to represent a P (= O) is 2, the n2 when W 2 represents a triazolyl group or tetrazolyl group is 0 or 1. Q + represents an organic cation.
【請求項2】 請求項1に記載の光電変換素子におい
て、前記W1がS(=O)2であり、前記W2がC(=O)であること
を特徴とする光電変換素子。
2. The photoelectric conversion element according to claim 1, wherein said W 1 is S (= O) 2 , and said W 2 is C (= O).
【請求項3】 請求項1又は2に記載の光電変換素子に
おいて、前記R1がパーフルオロアルキル基であることを
特徴とする光電変換素子。
3. A photoelectric conversion device according to claim 1 or 2, a photoelectric conversion element, wherein the R 1 is a perfluoroalkyl group.
【請求項4】 請求項1〜3のいずれかに記載の光電変
換素子において、前記Q+が芳香族ヘテロ環4級カチオン
であることを特徴とする光電変換素子。
4. The photoelectric conversion device according to claim 1, wherein said Q + is an aromatic heterocyclic quaternary cation.
【請求項5】 請求項1〜4のいずれかに記載の光電変
換素子において、前記一般式(I)により表される塩の分
子量が1000以下であることを特徴とする光電変換素子。
5. The photoelectric conversion device according to claim 1, wherein the salt represented by the general formula (I) has a molecular weight of 1,000 or less.
【請求項6】 請求項1〜5のいずれかに記載の光電変
換素子からなる光電池。
6. A photovoltaic cell comprising the photoelectric conversion element according to claim 1.
JP2001180428A 2001-06-14 2001-06-14 Photoelectric conversion element and photocell Pending JP2002373712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001180428A JP2002373712A (en) 2001-06-14 2001-06-14 Photoelectric conversion element and photocell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001180428A JP2002373712A (en) 2001-06-14 2001-06-14 Photoelectric conversion element and photocell

Publications (1)

Publication Number Publication Date
JP2002373712A true JP2002373712A (en) 2002-12-26

Family

ID=19020849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001180428A Pending JP2002373712A (en) 2001-06-14 2001-06-14 Photoelectric conversion element and photocell

Country Status (1)

Country Link
JP (1) JP2002373712A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017102260A (en) * 2015-12-01 2017-06-08 東京応化工業株式会社 Resist composition, method for forming resist pattern, and compound
CN112993406A (en) * 2019-12-14 2021-06-18 中国科学院大连化学物理研究所 Electrolyte for fluorine ion battery
US12018000B2 (en) 2017-03-27 2024-06-25 HYDRO-QUéBEC Lithium salts of cyano-substituted imidazole for lithium ion batteries

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017102260A (en) * 2015-12-01 2017-06-08 東京応化工業株式会社 Resist composition, method for forming resist pattern, and compound
KR20170064477A (en) * 2015-12-01 2017-06-09 도오꾜오까고오교 가부시끼가이샤 Resist composition, method of forming resist pattern and compound
KR102612641B1 (en) * 2015-12-01 2023-12-11 도오꾜오까고오교 가부시끼가이샤 Resist composition, method of forming resist pattern and compound
US12018000B2 (en) 2017-03-27 2024-06-25 HYDRO-QUéBEC Lithium salts of cyano-substituted imidazole for lithium ion batteries
CN112993406A (en) * 2019-12-14 2021-06-18 中国科学院大连化学物理研究所 Electrolyte for fluorine ion battery
CN112993406B (en) * 2019-12-14 2022-02-11 中国科学院大连化学物理研究所 Electrolyte for fluorine ion battery

Similar Documents

Publication Publication Date Title
JP5081345B2 (en) Method for manufacturing photoelectric conversion element
JP4222466B2 (en) Charge transport material, photoelectric conversion element and photovoltaic cell using the same, and pyridine compound
JP4617014B2 (en) Method for manufacturing photoelectric conversion element
JP4500420B2 (en) Photoelectric conversion element and photovoltaic cell
JP2002105346A (en) Metal complex dye, photoelectric conversion element and photocell
JP2002008741A (en) Photoelectric conversion element and photocell
JP2003187881A (en) Photoelectric conversion element, method for manufacturing the same, and photoelectric cell
JP2003031270A (en) Electrolyte composition, photoelectric conversion element and photocell
JP4763120B2 (en) Photoelectric conversion element and photovoltaic cell using the same
JP2002222968A (en) Photoelectric converter and photoelectrochemical cell
JP2002025636A (en) Photoelectric transducer and photocell using the same
JP4772192B2 (en) Photoelectric conversion element, photovoltaic cell and complex dye
JP2002155142A (en) Electrolyte composition, photoelectric conversion element and photoelectric cell
JP4100491B2 (en) Semiconductor fine particle layer, photoelectric conversion element and photovoltaic cell
JP4247810B2 (en) Photoelectric conversion element and photovoltaic cell
JP4578695B2 (en) Method for creating photoelectric conversion element
JP2002261310A (en) Manufacturing method for titanium oxide fine particles, photoelectric conversion element and photocell
JP4649022B2 (en) Photoelectric conversion element and photovoltaic cell
JP2004238213A (en) Method of manufacturing titanium oxide particle and photoelectric conversion device using the same
JP4392781B2 (en) Method for producing photoelectric conversion element and photoelectric conversion element
JP5114536B2 (en) Method for producing photoelectric conversion element, photoelectric conversion element and photoelectrochemical cell
JP2003187882A (en) Photoelectric conversion element, method for manufacturing the same, and photoelectric cell
JP4937438B2 (en) Semiconductor for photoelectric conversion, photoelectric conversion element and photovoltaic cell
JP2002373712A (en) Photoelectric conversion element and photocell
JP4518365B2 (en) Method for producing photoelectric conversion element, photoelectric conversion element and photovoltaic cell