JP2002372382A - Temperature control method in high frequency heating - Google Patents

Temperature control method in high frequency heating

Info

Publication number
JP2002372382A
JP2002372382A JP2001181551A JP2001181551A JP2002372382A JP 2002372382 A JP2002372382 A JP 2002372382A JP 2001181551 A JP2001181551 A JP 2001181551A JP 2001181551 A JP2001181551 A JP 2001181551A JP 2002372382 A JP2002372382 A JP 2002372382A
Authority
JP
Japan
Prior art keywords
temperature
work
heating
high frequency
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001181551A
Other languages
Japanese (ja)
Other versions
JP4965031B2 (en
Inventor
Yasunori Kamiya
保徳 神谷
Hidetomo Sato
英知 佐藤
Tsuneya Tsuzuki
恒哉 都築
Hiroaki Kobayashi
弘明 小林
Akio Ota
昭男 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN AJAX MAGNETHERMIC CO Ltd
Taiho Kogyo Co Ltd
Original Assignee
JAPAN AJAX MAGNETHERMIC CO Ltd
Taiho Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN AJAX MAGNETHERMIC CO Ltd, Taiho Kogyo Co Ltd filed Critical JAPAN AJAX MAGNETHERMIC CO Ltd
Priority to JP2001181551A priority Critical patent/JP4965031B2/en
Publication of JP2002372382A publication Critical patent/JP2002372382A/en
Application granted granted Critical
Publication of JP4965031B2 publication Critical patent/JP4965031B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • General Induction Heating (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance temperature control accuracy of a work, i.e., a steel band sprayed with powder, when the temperature of the work is controlled by the atmospheric temperature at the time of high frequency heating. SOLUTION: When an work 7 including a steel band is subjected to high frequency heating with an output controlled not lower than the Curie point of the steel band while traveling in a heating furnace at a controlled speed, light radiated from the work 7 is received by a radation thermometer 12 and the temperature is measured. The measured temperature is compared with a reference temperature (3) and the high frequency output is corrected depending on the temperature difference (2).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高周波焼結、焼
戻、焼鈍、焼入などにおける温度制御方法に関するもの
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling temperature in induction sintering, tempering, annealing, quenching and the like.

【0002】[0002]

【従来の技術】実質的に鋼からなる裏金と該裏金に接合
された軸受合金焼結層とを含んでなるバイメタル状焼結
軸受合金の最も一般的な製造方法は焼結の全体を電気抵
抗加熱炉で行う方法である。銅合金焼結層の組成を有す
る粉末を裏金に積層し、銅合金粉末及び裏金をソレノイ
ドコイルにより高周波誘導加熱して裏金の鋼のキュリー
点近傍まで還元性雰囲気中で予備加熱し、続いて焼結温
度までの昇温を電気抵抗炉の還元性雰囲気中で行い銅合
金焼結層としかつこの層を前記裏金に接合することによ
る焼結方法は特公平7−26125号公報にて公知であ
る。この方法では高周波誘導加熱による急速昇温によっ
て焼結ライン全体の長さが短くなり、生産能率が上昇す
ることが期待されると述べられている。同様の方法は特
表平1−503150号でも提案されており、銅合金の
二次相である鉛相が微細になる効果が謳われている。ま
た、板厚が0.075インチの裏金を使用した焼結例で
は電気炉における焼結時間は5.1分である。
2. Description of the Related Art The most common method of producing a bimetallic sintered bearing alloy comprising a backing metal substantially made of steel and a bearing alloy sintered layer bonded to the backing metal is based on the fact that the entire sintering is performed by electric resistance. This is a method performed in a heating furnace. The powder having the composition of the copper alloy sintered layer is laminated on the backing metal, the copper alloy powder and the backing metal are induction-heated by a high frequency induction by a solenoid coil, and preheated to the vicinity of the Curie point of the steel of the backing metal in a reducing atmosphere, followed by firing. A sintering method by raising the temperature to a sintering temperature in a reducing atmosphere of an electric resistance furnace to form a copper alloy sintered layer and joining this layer to the back metal is known from Japanese Patent Publication No. Hei 7-26125. . In this method, it is stated that the entire length of the sintering line is expected to be shortened by rapid temperature rise by high-frequency induction heating, and that production efficiency is expected to be increased. A similar method has also been proposed in Japanese Patent Publication No. 1-503150, which states that the lead phase, which is the secondary phase of the copper alloy, is finely divided. In a sintering example using a back metal having a thickness of 0.075 inches, the sintering time in the electric furnace is 5.1 minutes.

【0003】本発明者らは、高周波焼結における測温方
法を種々試行し、(い)高周波誘導加熱では鋼板を直接
加熱するために雰囲気温度と鋼板温度が異なり、雰囲気
温度を熱電対で測定しても鋼板(ワーク)の温度管理は
できない、(ろ)ワークからの放射光は物理的には見か
けの温度を示すが、これを実際の温度に補正するために
は放射率もしくは放射率比を使用することができる;
(に)放射光センサは、ワークと非接触方式であり、高
周波誘導の影響を受けない位置に設置できるなどの事実
に着目し、図1に示す測温方法を考案した(平成12年
2月2日付け特願2000−25136(以下「先願」
と言う)。即ち、焼結炉体、コイルの図示を省略した図
1において、12が放射温度計であり、例えばCHIN
O社製の放射温度計(商品名IRC)を使用することが
できる。放射温度計はワーク7の表面部を測定するもの
12a、裏面の端部を測定するもの12b,12d、及
び裏面の中央部を測定するもの12cの合計4基を設け
ている。ワーク裏面測定放射温度計12b,12c,1
2dは裏金の温度を直接測定することができ、ワーク表
面測定放射温度計12aは粉末の温度を保護管22の窓
として設けられた石英ガラス等の耐熱ガラス15aを介
して測定することができる。放射温度計12b,c,d
は石英ガラス等の耐熱ガラス15dを介してワーク7か
らの放射光を受光する。
The present inventors have tried various methods of measuring the temperature in high-frequency sintering. (1) In high-frequency induction heating, the steel sheet temperature is different from the ambient temperature because the steel sheet is directly heated, and the ambient temperature is measured with a thermocouple. Even though the temperature of the steel plate (work) cannot be controlled, the light emitted from the work (ro) physically indicates the apparent temperature, but to correct this to the actual temperature, the emissivity or emissivity ratio Can be used;
(2) Focusing on the fact that the synchrotron radiation sensor is of a non-contact type with the workpiece and can be installed at a position that is not affected by high-frequency induction, the temperature measurement method shown in FIG. 1 was devised (February 2000). Japanese Patent Application No. 2000-25136 (hereinafter referred to as “first application”)
Say). That is, in FIG. 1 in which the illustration of the sintering furnace body and the coil is omitted, reference numeral 12 denotes a radiation thermometer.
A radiation thermometer (trade name: IRC) manufactured by Company O can be used. The radiation thermometer is provided with a total of four radiation thermometers 12a for measuring the front surface of the work 7, 12b and 12d for measuring the edge of the rear surface, and 12c for measuring the center of the rear surface. Backside measurement radiation thermometer 12b, 12c, 1
2d can directly measure the temperature of the back metal, and the work surface measurement radiation thermometer 12a can measure the temperature of the powder through a heat-resistant glass 15a such as quartz glass provided as a window of the protective tube 22. Radiation thermometers 12b, c, d
Receives radiated light from the work 7 through a heat-resistant glass 15d such as quartz glass.

【0004】通常の電気抵抗加熱では雰囲気温度の制御
によりワークの温度制御がなされる。一方、高周波加熱
では、被加熱物の寸法、比重、比熱、電気伝導率などの
物理的性質や焼結温度などにより高周波電力を予め設定
して加熱を行い測温する方法を本出願人は行ってきた。
従来の方法ではこのような設定と測温のデータを蓄積
し、修正する経験的方法を行っていた。
In normal electric resistance heating, the temperature of a work is controlled by controlling the ambient temperature. On the other hand, in the high-frequency heating, the present applicant performs a method of performing heating by setting high-frequency power in advance according to physical properties such as dimensions, specific gravity, specific heat, and electrical conductivity of the object to be heated, a sintering temperature, and the like. Have been.
In the conventional method, an empirical method of accumulating and correcting such setting and temperature measurement data was performed.

【0005】一方では、ワークの温度は、処理中に蓄熱
される雰囲気保護管の潜熱、季節変動を受ける炉内ガス
流などの上記以外の因子によっても影響され、±40℃
以上の温度変動が起こった。これらの因子によるワーク
の温度変動には従来の制御方法は対応することができな
かった。
On the other hand, the temperature of the work is also affected by factors other than the above, such as the latent heat of the atmosphere protective tube stored during processing and the gas flow in the furnace subject to seasonal fluctuation, and is ± 40 ° C.
The above temperature fluctuation occurred. The conventional control method could not cope with the temperature fluctuation of the work due to these factors.

【0006】[0006]

【発明が解決しようとする課題】本出願人が従来行って
きた高周波加熱方法では蓄積したデータにより高周波電
力が設定されていたので、外乱があった場合にはワーク
の温度が大きく変動した。
SUMMARY OF THE INVENTION In the high-frequency heating method which has been conventionally performed by the present applicant, high-frequency power is set based on accumulated data. Therefore, when there is a disturbance, the temperature of the work greatly fluctuates.

【0007】[0007]

【課題を解決するための手段】本発明に係る方法は、鋼
帯を含んでなる被加熱物を、制御された速度で加熱炉内
を走行させつつ、鋼帯のキュリー点以上を制御された出
力で高周波焼結する際に、前記被加熱物から放射される
赤外線を放射温度計で受光して測温し、測定温度と基準
温度とを比較し、温度差に応じて高周波電力の補正を行
うことを特徴とする高周波加熱における温度制御方法で
ある。
According to the method of the present invention, an object to be heated comprising a steel strip is controlled at a temperature above the Curie point of the steel strip while traveling through a heating furnace at a controlled speed. When performing high-frequency sintering at the output, infrared radiation radiated from the object to be heated is received by a radiation thermometer and measured for temperature.The measured temperature is compared with a reference temperature, and the high-frequency power is corrected according to the temperature difference. This is a temperature control method in high-frequency heating characterized by performing.

【0008】[0008]

【作用】先ず、高周波誘導加熱の方式としては、製品の
品番情報とは関係なく、絶えず温度制御を行う方法も可
能である。例えば、加熱装置仕様の100%の出力で急
速昇温し、所定加熱温度に達した後に、出力を落として
on-off制御する方法である。この方法は外乱が大きい場
合や、昇温度速度が速いキュリー点以下の温度域での加
熱制御では有効である。しかし、バイメタル状すべり軸
受などの焼結では昇温速度が10℃/秒程度であり、高
速ではなく、しかも高周波誘導加熱はワークを直接加熱
し、かつ被加熱物以外には高周波誘導される物はなく外
乱は比較的少ない。したがって、本発明では、キュリー
点温度以上の温度域では一定出力での高周波誘導加熱を
行う。この加熱条件では、長尺のコイルをあるいは多数
のコイルを連続的に高周波誘導加熱することにより保護
管が蓄熱すると、保護管が熱源になってワークを設定外
の熱量を与える経時変化が起こるので、制御の必要が生
じる。
First, as a method of high-frequency induction heating, a method of constantly controlling the temperature irrespective of product number information is also possible. For example, the temperature rises rapidly at 100% of the output of the heating device specification, and after reaching a predetermined heating temperature, the output is reduced.
This is a method of on-off control. This method is effective in the case of large disturbance or heating control in a temperature range below the Curie point where the temperature rise rate is high. However, in sintering such as bimetallic plain bearings, the temperature rise rate is about 10 ° C / sec, not high speed, and high-frequency induction heating directly heats the work, and high-frequency induction is applied to objects other than the object to be heated. And there is relatively little disturbance. Therefore, in the present invention, high-frequency induction heating with a constant output is performed in a temperature range equal to or higher than the Curie point temperature. Under these heating conditions, if the protection tube accumulates heat by successively applying high-frequency induction heating to a long coil or a large number of coils, the protection tube becomes a heat source, causing a change with time that gives the work an unspecified amount of heat. Need to be controlled.

【0009】鋼のキュリー点を超える温度では、キュリ
ー点未満と比較して加熱効率が低下するため一定出力で
の温度制御が困難になるから、本発明法では、キュリー
点以上の温度域を制御範囲とすることにより、制御が温
度変化に追従しかつ温度補償を可能にする。これに対し
てキュリー点未満ではワークの温度がキュリー点で飽和
するため制御の必要性は小さい。次に、例えば高周波出
力が増大しかつライン速度が低下するとの二つの現象が
同時に起こる状況では、設定上昇温度以上にワークの温
度が上昇するから、本発明においてはライン速度を一定
にすることにより制御に伴う温度変動を抑えることがで
きる。あるいは、ライン速度を可変にした方がよい場合
は、ライン速度を検出して高周波電力を調節することに
より、ワークを設定温度に保つこともできる。
At temperatures above the Curie point of steel, the heating efficiency is lower than at temperatures below the Curie point, making it difficult to control the temperature at a constant output. The range allows the control to follow temperature changes and allow for temperature compensation. On the other hand, if the temperature is lower than the Curie point, the temperature of the work is saturated at the Curie point, and thus the necessity of control is small. Next, for example, in a situation where two phenomena occur at the same time when the high-frequency output increases and the line speed decreases, since the temperature of the work rises above the set temperature increase, in the present invention, by keeping the line speed constant, Temperature fluctuation due to control can be suppressed. Alternatively, when it is desirable to make the line speed variable, the work can be maintained at the set temperature by detecting the line speed and adjusting the high-frequency power.

【0010】本発明におけるキュリー点以上の高周波誘
導加熱方法は特に限定されないが、図2に示されるトラ
ンスバースコイル10、20を採用することが好まし
い。以下、本発明の実施例を図3を参照して説明する。
The method of high-frequency induction heating above the Curie point in the present invention is not particularly limited, but it is preferable to employ the transverse coils 10 and 20 shown in FIG. Hereinafter, an embodiment of the present invention will be described with reference to FIG.

【0011】高周波誘導加熱の出力は、ワークの板厚、
板幅、焼結粉末厚さ、処理温度、通板速度などの品番情
報が、セットアップコンピュータ1から加熱制御装置2
に送信され、加熱制御装置2で、プログラムされている
計算式によりトランスバースコイル10に付与する高周
波電力を計算する。出力信号はトランス4の高周波電流
を設定し、整合器5を介してトランスバースコイル20
に計算された出力(Pc)の電流として流れる。即ちこの
設定出力の高周波電流が常時ワーク7に与えられてい
る。また通板速度が可変の場合は、エンコーダーなどの
通板速度センサーにより、通板速度を検出し、検出速度
と設定信号をセットアップコンピュータ1で比較する。
得られた比較信号により出力補正を行う。通常は、加熱
装置の設定出力の60〜80%の割合の高周波電力が常
時ワーク7に誘導されている。ワーク7の温度はトラン
スバースコイル10よりもワーク送り方向前方の所定の
位置で、放射温度計12が測定し、実測温度信号を温調
計8に送信する。鋼帯の最先端が通過した後、補正制御
システムが作動する。
The output of high-frequency induction heating depends on the thickness of the work,
The part number information such as sheet width, sintered powder thickness, processing temperature, sheet passing speed, etc.
The heating control device 2 calculates the high-frequency power to be applied to the transverse coil 10 by using a programmed calculation formula. The output signal sets the high-frequency current of the transformer 4 and passes through the matching coil 5 to the transverse coil 20.
Flows as the output (Pc) current calculated. That is, the high frequency current of the set output is always supplied to the work 7. When the passing speed is variable, the passing speed is detected by a passing speed sensor such as an encoder, and the detected speed is compared with a setting signal by the setup computer 1.
Output correction is performed using the obtained comparison signal. Normally, high-frequency power at a rate of 60 to 80% of the set output of the heating device is constantly guided to the work 7. The temperature of the work 7 is measured by the radiation thermometer 12 at a predetermined position ahead of the transverse coil 10 in the work feeding direction, and the measured temperature signal is transmitted to the temperature controller 8. After the leading edge of the steel strip has passed, the correction control system is activated.

【0012】温調計8では設定温度と実測温度の差を計
算し、PID制御した温調信号を加熱制御装置2に伝送す
る。加熱制御装置2では、温調信号(Pd)(−50〜
50%)に、設定した割合da(例えばda=0.05)を乗じ
て設定出力Pcを補正する。補正出力Paは例えばPa=da×P
d×Pc+Pcである。出力仕様の面からは20〜80%の余
裕があるのでPd×Pc+Pd=Paとすることもできるが、この
場合は、熱計算的にあり得ない熱変動がワークに及ぶこ
とがあるので、上記のように補正出力を低く抑えてい
る。
The temperature controller 8 calculates a difference between the set temperature and the actually measured temperature, and transmits a PID-controlled temperature control signal to the heating control device 2. In the heating control device 2, the temperature control signal (Pd) (−50 to
50%) is multiplied by a set ratio da (for example, da = 0.05) to correct the set output Pc. Correction output Pa is, for example, Pa = da × P
d × Pc + Pc. In terms of output specifications, there is a margin of 20 to 80%, so Pd × Pc + Pd = Pa can also be set. However, in this case, thermal fluctuations that cannot be calculated by heat may reach the work. As described above, the correction output is kept low.

【0013】補正出力での高周波誘導加熱を行い、引き
続き測温と制御を行うことにより、ワークの温度を高精
度で制御することができる。
By performing high-frequency induction heating with the corrected output, and subsequently performing temperature measurement and control, the temperature of the work can be controlled with high accuracy.

【0014】[0014]

【発明の効果】本発明によると、経時変化に対してワー
クを設定温度に高精度で保持することができる。例えば
900〜1000℃の範囲内の目標温度に対して1.5
トンコイルの温度変化を±5℃の範囲内に保つことがで
きる。外乱がない限り高周波出力は一定に保たれ、ワー
クの比熱、質量などに合致した条件で高周波誘導加熱が
行われる。炉に起こるあらゆる外乱は温度変化により検
出され、制御システムが作動するので、安定した生産が
実現される。
According to the present invention, it is possible to maintain a work at a set temperature with a high degree of accuracy with respect to aging. For example, 1.5 for a target temperature in the range of 900 to 1000 ° C.
The temperature change of the ton coil can be kept within a range of ± 5 ° C. As long as there is no disturbance, the high-frequency output is kept constant, and high-frequency induction heating is performed under conditions that match the specific heat and mass of the work. Any disturbance occurring in the furnace is detected by the temperature change and the control system is activated, so that stable production is realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 高周波誘導加熱炉において放射温度計で測温
する方法の説明図である。
FIG. 1 is an explanatory diagram of a method of measuring a temperature with a radiation thermometer in a high-frequency induction heating furnace.

【図2】 トランスバースコイルの説明図である。FIG. 2 is an explanatory diagram of a transverse coil.

【図3】 本発明法の一実施例の説明図である。FIG. 3 is an explanatory view of one embodiment of the method of the present invention.

【符号の説明】[Explanation of symbols]

1セットアップコンピュータ 2加熱制御装置 4 トランス 7ワーク 10 トランスバースコイル 12 放射温度計 20 トランスバースコイル 1 Setup computer 2 Heating control device 4 Transformer 7 Work 10 Transverse coil 12 Radiation thermometer 20 Transverse coil

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 英知 愛知県豊田市緑ヶ丘3丁目65番地 大豊工 業株式会社内 (72)発明者 都築 恒哉 愛知県豊田市緑ヶ丘3丁目65番地 大豊工 業株式会社内 (72)発明者 小林 弘明 愛知県豊田市緑ヶ丘3丁目65番地 大豊工 業株式会社内 (72)発明者 太田 昭男 東京都中央区日本橋小伝馬町13番4号 日 本アジャックス・マグネサーミック株式会 社 Fターム(参考) 3K059 AA01 AB19 AB26 AB28 AC33 AD03 AD15 BD01 CD02 CD14 CD18 CD40 CD64 CD73 CD75 4K018 DA26 4K034 AA09 DA06 DB02 4K056 BB07 CA02 FA12  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hidetomo Sato 3-65 Midorigaoka, Toyota-shi, Aichi Prefecture Inside Daitoyo Kogyo Co., Ltd. (72) Inventor Tsuneya Tsuzuki 3-65, Midorigaoka, Toyota-shi, Aichi Pref. (72) Inventor Hiroaki Kobayashi 3-65 Midorigaoka, Toyota City, Aichi Prefecture Inside Daitoyo Kogyo Co., Ltd. (72) Inventor Akio Ota 13-4 Kodenma-cho, Nihonbashi, Chuo-ku, Tokyo Japan Ajax Magnesamic Co., Ltd. F term (reference) 3K059 AA01 AB19 AB26 AB28 AC33 AD03 AD15 BD01 CD02 CD14 CD18 CD40 CD64 CD73 CD75 4K018 DA26 4K034 AA09 DA06 DB02 4K056 BB07 CA02 FA12

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鋼帯を含んでなる被加熱物を、制御され
た速度で加熱炉内を走行させつつ、鋼帯のキュリー点以
上で制御された出力で高周波加熱する際に、前記被加熱
物から放射される放射光を放射温度計で受光して測温
し、測定温度と基準温度とを比較し、温度差に応じて高
周波電力の補正を行うことを特徴とする高周波加熱にお
ける温度制御方法。
1. A method for heating an object to be heated comprising a steel strip in a heating furnace at a controlled speed while performing high-frequency heating at a controlled output above the Curie point of the steel strip. Temperature control in high-frequency heating, characterized by receiving radiation emitted from an object with a radiation thermometer, measuring the temperature, comparing the measured temperature with a reference temperature, and correcting the high-frequency power according to the temperature difference Method.
【請求項2】 前記放射光は赤外線である請求項1記載
の温度制御方法。
2. The temperature control method according to claim 1, wherein the emitted light is infrared light.
JP2001181551A 2001-06-15 2001-06-15 Temperature control method in high frequency heating Expired - Lifetime JP4965031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001181551A JP4965031B2 (en) 2001-06-15 2001-06-15 Temperature control method in high frequency heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001181551A JP4965031B2 (en) 2001-06-15 2001-06-15 Temperature control method in high frequency heating

Publications (2)

Publication Number Publication Date
JP2002372382A true JP2002372382A (en) 2002-12-26
JP4965031B2 JP4965031B2 (en) 2012-07-04

Family

ID=19021800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001181551A Expired - Lifetime JP4965031B2 (en) 2001-06-15 2001-06-15 Temperature control method in high frequency heating

Country Status (1)

Country Link
JP (1) JP4965031B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220408A (en) * 2005-01-17 2006-08-24 Omron Corp Temperature control method, temperature controller, heat treatment device and program
US8286455B2 (en) 2006-03-08 2012-10-16 Osaka University Transformable metal surface hardening method
JP2016069698A (en) * 2014-09-30 2016-05-09 トヨタ自動車株式会社 Heat treatment apparatus of steel material and heat treatment method of the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109631607B (en) * 2018-11-30 2020-05-01 中国地质大学(武汉) Intelligent sintering ignition temperature control method considering gas pressure fluctuation

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5578491A (en) * 1978-12-08 1980-06-13 Nippon Steel Corp Method of inductively controlling heat
JPS6484589A (en) * 1987-09-28 1989-03-29 Meidensha Electric Mfg Co Ltd Flat induction heater
JPH03193856A (en) * 1989-12-21 1991-08-23 Nisshin Steel Co Ltd Method and device for continuous hot dip coating of steel strip
JPH03281704A (en) * 1990-03-29 1991-12-12 Daido Metal Co Ltd Manufacture of bimetal for sliding bearing
JPH04147596A (en) * 1990-10-09 1992-05-21 Kitashiba Denki Kk Induction heating of metallic thin plate
JPH08246122A (en) * 1995-03-03 1996-09-24 Nippon Steel Corp Control method of induction heating alloying furnace
JPH11197990A (en) * 1997-02-10 1999-07-27 Kobe Steel Ltd Metal material original plate
JP2002012902A (en) * 2000-02-02 2002-01-15 Taiho Kogyo Co Ltd High-frequency sintering method for bimetal-like bearing alloy, method for measuring temperature during high- frequency sintering, and sintering apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5578491A (en) * 1978-12-08 1980-06-13 Nippon Steel Corp Method of inductively controlling heat
JPS6484589A (en) * 1987-09-28 1989-03-29 Meidensha Electric Mfg Co Ltd Flat induction heater
JPH03193856A (en) * 1989-12-21 1991-08-23 Nisshin Steel Co Ltd Method and device for continuous hot dip coating of steel strip
JPH03281704A (en) * 1990-03-29 1991-12-12 Daido Metal Co Ltd Manufacture of bimetal for sliding bearing
JPH04147596A (en) * 1990-10-09 1992-05-21 Kitashiba Denki Kk Induction heating of metallic thin plate
JPH08246122A (en) * 1995-03-03 1996-09-24 Nippon Steel Corp Control method of induction heating alloying furnace
JPH11197990A (en) * 1997-02-10 1999-07-27 Kobe Steel Ltd Metal material original plate
JP2002012902A (en) * 2000-02-02 2002-01-15 Taiho Kogyo Co Ltd High-frequency sintering method for bimetal-like bearing alloy, method for measuring temperature during high- frequency sintering, and sintering apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220408A (en) * 2005-01-17 2006-08-24 Omron Corp Temperature control method, temperature controller, heat treatment device and program
US8286455B2 (en) 2006-03-08 2012-10-16 Osaka University Transformable metal surface hardening method
JP2016069698A (en) * 2014-09-30 2016-05-09 トヨタ自動車株式会社 Heat treatment apparatus of steel material and heat treatment method of the same

Also Published As

Publication number Publication date
JP4965031B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
KR101057237B1 (en) Temperature measuring method and temperature measuring apparatus of steel sheet, and temperature control method of steel sheet
JP2002372382A (en) Temperature control method in high frequency heating
JP6769532B2 (en) Heat treatment equipment
JP2008277098A (en) Heating cooker
JP5510787B2 (en) Heating furnace plate temperature control method by radiant heating of cold-rolled steel sheet continuous annealing equipment
JP6631824B1 (en) Heating method of steel sheet and continuous annealing equipment in continuous annealing
JP6245208B2 (en) Temperature measuring device, plated steel plate heating device, plated steel plate pressing device, temperature measuring method, plated steel plate heating method, and plated steel plate pressing method
JP2023545822A (en) Method for estimating steel strip temperature and oxide thickness
US20010022803A1 (en) Temperature-detecting element
JPH0742515B2 (en) Induction heating control method for ERW pipe welds
JP3058403B2 (en) Cooling control method for hot rolled steel sheet
US20150352621A1 (en) Heating device for hot stamping
JP5328303B2 (en) Optical element manufacturing apparatus and manufacturing method thereof
JP4878234B2 (en) Steel plate temperature measuring method and temperature measuring device, and steel plate temperature control method
JP6327218B2 (en) Reflow processing method for continuous tinning line
JPH01219127A (en) Method for operating continuous annealing furnace
CN113894166B (en) Device for induction heating of strip steel
JPH06134517A (en) Die device for warm working
TW201741465A (en) Steel hot rolling system and temperature controlling method thereof
CN206094940U (en) A temperature control system for resistance furnace even heating
JP2006135126A (en) Heat treatment method of semiconductor substrate
JPS61173123A (en) Correcting method of emissivity of radiation thermometer
CN118139995A (en) Annealing method of hot rolled steel strip
JP2000256754A (en) Continuous heat treatment
JPH07278682A (en) Sheet temperature control method of continuous heating furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4965031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term