JP2002363664A - Foaming agent for producing foamed/porous metal - Google Patents

Foaming agent for producing foamed/porous metal

Info

Publication number
JP2002363664A
JP2002363664A JP2001169968A JP2001169968A JP2002363664A JP 2002363664 A JP2002363664 A JP 2002363664A JP 2001169968 A JP2001169968 A JP 2001169968A JP 2001169968 A JP2001169968 A JP 2001169968A JP 2002363664 A JP2002363664 A JP 2002363664A
Authority
JP
Japan
Prior art keywords
foaming agent
powder
porous metal
foamed
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001169968A
Other languages
Japanese (ja)
Other versions
JP3771463B2 (en
Inventor
Takashi Nakamura
崇 中村
Ryoichi Ishikawa
亮一 石川
Katsuhiro Shibata
勝弘 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2001169968A priority Critical patent/JP3771463B2/en
Publication of JP2002363664A publication Critical patent/JP2002363664A/en
Application granted granted Critical
Publication of JP3771463B2 publication Critical patent/JP3771463B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a foaming agent for producing inexpensive foamed/porous metal which has no danger of hydrogen explosion. SOLUTION: This foaming agent 20 for producing foamed/porous metal consists of foaming powder 13 consisting of CaCO3 powder or MgCO3 powder, and a fluoride coating layer 21 coating the surfaces of the foaming powder 13. The fluoride coating layer 21, e.g. consists of CaF2 or MgF2 .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は発泡/多孔質金属の
製造に用いる発泡剤に関する。
TECHNICAL FIELD The present invention relates to a foaming agent used for producing a foamed / porous metal.

【0002】[0002]

【従来の技術】溶融金属若しくは粉末金属に発泡剤を添
加し、これらを加熱するなどして発泡剤をガス化し、金
属中に無数の孔を形成することで発泡金属若しくは多孔
質金属を得る技術は知られている。狭義には発泡金属は
無数の孔にガスを封じ込め、多孔質金属はガスを放出す
る点で差があるが、無数の孔を有する点では同一である
から、発泡/多孔質金属と一括して呼ぶことにする。
2. Description of the Related Art A technique for obtaining a foamed metal or a porous metal by adding a foaming agent to a molten metal or a powdered metal and heating the gas to gasify the foaming agent and forming innumerable holes in the metal. Is known. In a narrow sense, foamed metal contains gas in a myriad of pores and porous metal has a difference in releasing gas, but it is the same in that it has a myriad of pores. I will call it.

【0003】この発泡/多孔質金属の製造方法には、例
えば特許第2898437号公報「発泡可能な金属体の
製造方法」が提案され、同公報の段落番号[0022]
第5行に「水素化チタン0.2重量%」や、同第19行
に「炭酸水素ナトリウム」のごとく発泡剤の具体例が記
載されている。
[0003] As a method for producing a foamed / porous metal, for example, Japanese Patent No. 2898437 proposes a "method for producing a foamable metal body", and the paragraph number [0022] of the publication is proposed.
The fifth line describes specific examples of the foaming agent, such as "0.2% by weight of titanium hydride" and the 19th line describes "sodium hydrogen carbonate".

【0004】[0004]

【発明が解決しようとする課題】酸素との結びつきが強
いアルミニウムを発泡させるには、還元力の強い水素を
含む水素化チタンや炭酸水素ナトリウムの使用が一般的
である。
In order to foam aluminum having a strong bond with oxygen, it is common to use titanium hydride or sodium hydrogen carbonate containing hydrogen having a strong reducing power.

【0005】しかし、水素化チタンや炭酸水素ナトリウ
ムは高価であり、発泡/多孔質金属の製造コストを押上
げるという課題がある。また、発生する水素ガスは爆発
しやすい気体であり、取扱いに十分な注意を払わなけれ
ばならず、作業者の負担は大きくなる。そこで、本発明
の目的は廉価で水素爆発の危険が無い発泡剤を提供する
ことにある。
[0005] However, titanium hydride and sodium hydrogen carbonate are expensive, and have a problem of raising the production cost of foamed / porous metal. In addition, the generated hydrogen gas is a gas that easily explodes, so that sufficient attention must be paid to its handling, and the burden on the operator increases. Therefore, an object of the present invention is to provide a foaming agent which is inexpensive and free from the danger of hydrogen explosion.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に請求項1は、発泡/多孔質金属を製造するときに用い
る発泡剤において、この発泡剤は、発泡性粉末と、この
粉末の表面を覆うフッ化物コーティング層とからなるこ
とを特徴とする。
In order to achieve the above object, a first aspect of the present invention relates to a foaming agent used for producing a foamed / porous metal, wherein the foaming agent comprises an expandable powder and a surface of the powder. And a fluoride coating layer covering the surface.

【0007】発泡/多孔質金属の製造過程で、フッ化物
はアルミニウムを覆う酸化膜を破壊する役割を果たす。
この結果、発泡剤は金属(アルミニウム)とのぬれ性が
高まり、溶融金属に良好に分散し、均一に孔が分布した
良質な発泡/多孔質金属を得ることができる。
In the process of producing the foamed / porous metal, fluoride plays a role in destroying an oxide film covering aluminum.
As a result, the foaming agent increases the wettability with the metal (aluminum), and is excellently dispersed in the molten metal, so that a good-quality foamed / porous metal having uniformly distributed pores can be obtained.

【0008】発泡剤は、発泡性粉末にフッ化物をコーテ
ィングしただけのものであるから、廉価であり、且つH
基を含まぬ発泡性粉末を用いた場合には、水素爆発の危
険も無い。
The foaming agent is inexpensive because it is obtained by simply coating a foamable powder with a fluoride.
There is no danger of hydrogen explosion when using effervescent powder containing no groups.

【0009】[0009]

【発明の実施の形態】本発明の実施の形態を添付図に基
づいて以下に説明する。まず、本発明に係る発泡剤製造
方法である共沈法を説明する。図1(a)〜(e)は本
発明に係る発泡剤の共沈法工程図である。(a)におい
て、容器10に入れたNaF水溶液11を加熱手段12
で約40℃まで加熱する。
Embodiments of the present invention will be described below with reference to the accompanying drawings. First, a coprecipitation method, which is a method for producing a blowing agent according to the present invention, will be described. 1 (a) to 1 (e) are co-precipitation process charts of a blowing agent according to the present invention. In (a), the NaF aqueous solution 11 put in the container 10 is heated by the heating means 12.
And heat to about 40 ° C.

【0010】(b)において、NaF水溶液11に発泡
性粉末13を入れる。この発泡性粉末13は、炭酸カル
シウム(CaCO3)や炭酸マグネシウム(MgCO3
などの炭酸塩が適当である。爆発の危険が無い炭酸ガス
(二酸化炭素ガス)を発生するからである。
[0010] In (b), an effervescent powder 13 is put into an aqueous NaF solution 11. This expandable powder 13 is made of calcium carbonate (CaCO 3 ) or magnesium carbonate (MgCO 3 ).
A carbonate such as is suitable. This is because it generates carbon dioxide gas (carbon dioxide gas) that does not have a risk of explosion.

【0011】なお、前記炭酸マグネシウム(MgC
3)は、入手が容易で、安定性に富む塩基性炭酸マグ
ネシウム(4MgCO3・Mg(OH2)・5H2O))
を脱水処理等を施すことにより生成することができる。
The magnesium carbonate (MgC)
O 3) is readily available, basic magnesium carbonate rich in stability (4MgCO 3 · Mg (OH 2 ) · 5H 2 O))
Can be produced by performing a dehydration treatment or the like.

【0012】(c)において、撹拌手段14にてNaF
水溶液11と発泡性粉末13とを十分に撹拌する。この
撹拌により次に示す反応が起こる。なお、撹拌は40分
〜60分程度続ける。その理由は後述する。
In (c), the stirring means 14
The aqueous solution 11 and the foamable powder 13 are sufficiently stirred. This stirring causes the following reaction. The stirring is continued for about 40 to 60 minutes. The reason will be described later.

【0013】[0013]

【化1】 Embedded image

【0014】(液)は液体(水溶液)を示し、(固)は
固体(粉末又は膜)を示す。NaF水溶液にCaCO3
の粉末を接触させると、CaにFが結合してCaF2
できるが、残りがNa2CO3(液体)となってNaF水
溶液に混じる。すなわち、CaCO3粉末の表面のCa
CO3がNaFに接触して、CO3がFに置き換り、フッ
化物であるCaF2の形でCaCO3粉末を覆う。
(Liquid) indicates a liquid (aqueous solution), and (solid) indicates a solid (powder or film). CaCO in NaF solution 3
When F powder is brought into contact with Ca, F binds to Ca to form CaF 2 , but the remainder becomes Na 2 CO 3 (liquid) and is mixed with the NaF aqueous solution. That is, Ca on the surface of CaCO 3 powder
And CO 3 is in contact with NaF, CO 3 is placed on F換Ri, covering the CaCO 3 powder in the form of CaF 2 is fluoride.

【0015】[0015]

【化2】 Embedded image

【0016】NaF水溶液にMgCO3の粉末を接触さ
せると、MgCO3粉末の表面のMgCO3がNaFに接
触して、CO3がFに置き換り、フッ化物であるMgF2
の形でMgCO3粉末を覆う。
When MgCO 3 powder is brought into contact with an aqueous solution of NaF, MgCO 3 on the surface of the MgCO 3 powder comes into contact with NaF, so that CO 3 is replaced by F and MgF 2 which is a fluoride
Cover the MgCO 3 powder in the form of

【0017】(d)において、濾紙等の濾材15にて混
合液を濾過する。このときに吸引することで濾過作業を
促す。(e)において、乾燥させることにより、所望の
発泡剤20を得る。
In (d), the mixture is filtered with a filter medium 15 such as filter paper. At this time, suction is performed to facilitate the filtering operation. In (e), the desired foaming agent 20 is obtained by drying.

【0018】図2は本発明に係る発泡剤の模型図であ
り、発泡剤20は、CaCO3粉末又はMgCO3粉末か
らなる発泡性粉末13と、この発泡性粉末13の表面を
覆うフッ化物コーティング層21とからなる。フッ化物
コーティング層21は例えばCaF2又はMgF2からな
る。
[0018] Figure 2 is a model view of a blowing agent according to the present invention, the blowing agent 20, a foamable powder 13 consisting of CaCO 3 powder or MgCO 3 powder, the fluoride coating covering the surface of the foamable powder 13 And a layer 21. The fluoride coating layer 21 is made of, for example, CaF 2 or MgF 2 .

【0019】以上の述べた構造の発泡剤20を用いた発
泡/多孔質金属の製造方法を次に説明する。図3(a)
〜(e)は本発明の発泡剤を用いた発泡/多孔質金属の
製造工程図である。(a)において、ルツボ31に7%
珪素を含むSi系アルミニウム合金32を入れ、ヒータ
33で約700℃に加熱して、金属を溶解する。なお、
真空溶解するときには真空炉内でこの処理及び以降の処
理を実施するが、ここでは真空炉は省略する。
A method for producing a foamed / porous metal using the foaming agent 20 having the above-described structure will be described below. FIG. 3 (a)
(E) is a production process diagram of a foamed / porous metal using the foaming agent of the present invention. (A) In crucible 31, 7%
The Si-based aluminum alloy 32 containing silicon is put in, and heated to about 700 ° C. by the heater 33 to dissolve the metal. In addition,
When performing vacuum melting, this processing and the subsequent processing are performed in a vacuum furnace, but the vacuum furnace is omitted here.

【0020】(b)において、撹拌手段34で溶湯35
を攪拌しつつ、溶湯35にCaやMgの粘度調整剤36
を投入して粘度を調整する。(c)において、溶湯35
にさらに発泡剤20を適量投入する。
In FIG. 2B, the molten metal 35 is stirred by the stirring means 34.
While stirring, a viscosity modifier 36 of Ca or Mg
To adjust the viscosity. In (c), the molten metal 35
Further, an appropriate amount of the foaming agent 20 is added.

【0021】(d)は発泡剤20がガス化したために溶
湯35が増量したことを示す。このままで、冷却を開始
する。(e)において、適当な温度でルツボから外し、
さらに冷却すれば、発泡/多孔質金属37を得る。
FIG. 3D shows that the amount of the molten metal 35 has increased due to the gasification of the foaming agent 20. In this state, cooling is started. In (e), remove from the crucible at an appropriate temperature,
Upon further cooling, a foamed / porous metal 37 is obtained.

【0022】図4は発泡/多孔質金属の密度と処理時間
との関係を調べたグラフであり、横軸の処理時間は図1
(b)〜(d)までの時間、すなわち、発泡性粉末がN
aF水溶液に接触している時間である。比較例1は従来
の代表的な発泡剤であるCaCO3でSi系アルミニウ
ム合金を発泡させた例を示し、得られた発泡/多孔質金
属の密度は、1.8Mg/m3であった。
FIG. 4 is a graph showing the relationship between the density of the foamed / porous metal and the processing time.
(B) to (d), that is, the expandable powder is N
This is the time of contact with the aF aqueous solution. Comparative Example 1 shows an example in which a Si-based aluminum alloy was foamed with CaCO 3 which is a conventional typical foaming agent, and the density of the foamed / porous metal obtained was 1.8 Mg / m 3 .

【0023】比較例2は従来の好ましい発泡剤であるT
iH2でSi系アルミニウム合金を発泡させた例を示
し、得られた発泡/多孔質金属の密度は、1.1Mg/
3であった。グラフの右に白抜き矢印で示した通り
に、密度が小さいほど発泡性は大きく、比較例2は比較
例1より遥に発泡性が大きいことが分かる。
Comparative Example 2 is a conventional preferred blowing agent, T
An example of foamed Si-based aluminum alloy iH 2, the density of the resulting foam / porous metal, 1.1 mg /
m 3 . As shown by the white arrow on the right side of the graph, it can be seen that the foamability increases as the density decreases, and that the foamability of Comparative Example 2 is much higher than that of Comparative Example 1.

【0024】これは比較例2で用いた発泡剤(Ti
2)に含まれるHがアルミニウム表面の酸化膜を破壊
し、アルミニウムと発泡剤とを円滑に接触させる。この
結果、発泡剤が溶融金属中に良好に分散し、均一に孔を
形成することができたことを意味する。
This is the same as the blowing agent (Ti
H contained in H 2 ) destroys an oxide film on the surface of aluminum and makes aluminum and the foaming agent come into smooth contact. As a result, the foaming agent was well dispersed in the molten metal, and the pores could be formed uniformly.

【0025】逆に、比較例1は安価で安全なCaCO3
を発泡剤に採用したが、アルミニウムの表面が酸化膜で
覆われ、アルミニウムと発泡剤とを十分に接触せず、こ
の結果、発泡剤が溶融金属中に不十分に分散し、孔の形
成が偏り、十分な数の孔を形成することができなかった
ことを意味する。
On the contrary, Comparative Example 1 is a cheap and safe CaCO 3
Was used as the foaming agent, but the surface of the aluminum was covered with an oxide film, and the aluminum and the foaming agent did not come into sufficient contact. As a result, the foaming agent was insufficiently dispersed in the molten metal, and the formation of pores occurred. This means that a sufficient number of holes could not be formed.

【0026】一方、本発明による実施例では横軸の処理
時間に、得られる発泡性が大きく依存することが分かっ
た。すなわち、処理時間が10分以内では比較例1と同
じであった。しかし、処理時間を40分以上に延ばすと
比較例2並みの発泡性が得られる。そこで、処理時間は
40〜60分程度とする。
On the other hand, in the examples according to the present invention, it was found that the foaming property obtained largely depends on the processing time on the horizontal axis. That is, the processing time was the same as Comparative Example 1 within 10 minutes. However, if the processing time is extended to 40 minutes or more, foaming properties comparable to Comparative Example 2 can be obtained. Therefore, the processing time is set to about 40 to 60 minutes.

【0027】処理時間を延ばせば、図2に示すフッ化物
コーティング層21が十分に成長して、その膜厚が増加
する。膜厚が増加すれば、発泡剤の保有するフッ化物の
量が比例的に増加し、このフッ化物がアルミニウム合金
表面の酸化膜を盛んに破壊するため、比較例2並みの良
好な結果が得られたと言える。ここで、重要なことは、
本発明の発泡剤はCaCO3粉末又はMgCO3粉末から
なる発泡性粉末と、この発泡性粉末の表面を覆うフッ化
物コーティング層とからなり、廉価であり、水素爆発の
危険性がないことである。
If the processing time is extended, the fluoride coating layer 21 shown in FIG. 2 grows sufficiently and the film thickness increases. As the film thickness increases, the amount of fluoride held by the foaming agent increases proportionally, and the fluoride vigorously destroys the oxide film on the surface of the aluminum alloy. It can be said that it was done. The important thing here is that
The foaming agent of the present invention comprises a foamable powder composed of CaCO 3 powder or MgCO 3 powder and a fluoride coating layer covering the surface of the foamable powder, and is inexpensive and has no danger of hydrogen explosion. .

【0028】図1に述べた共沈法の他、次に説明する蒸
発法でも本発明の発泡剤を製造することができる。図5
(a)〜(c)は本発明に係る発泡剤の蒸発法工程図で
ある。(a)において、容器10に入れたNaF水溶液
11へ発泡性粉末13を入れる。(b)において、加熱
手段12で加熱しつつ、NaF水溶液11と発泡性粉末
13とを攪拌する。この撹拌により次の反応が起こる。
In addition to the coprecipitation method shown in FIG. 1, the foaming agent of the present invention can be produced by an evaporation method described below. FIG.
(A)-(c) is a process diagram of the foaming agent evaporation method according to the present invention. In (a), an effervescent powder 13 is put into a NaF aqueous solution 11 put in a container 10. In (b), the NaF aqueous solution 11 and the foamable powder 13 are stirred while being heated by the heating means 12. The following reaction occurs by this stirring.

【0029】[0029]

【化3】 Embedded image

【0030】[0030]

【化4】 Embedded image

【0031】反応の詳細は、先に説明したので省略す
る。(c)において、容器10を加熱手段12で引続き
加熱することで水分を蒸発させ、結果として発泡剤20
を得る。この発泡剤20の断面構造は図2で説明した通
りである。
The details of the reaction have been described above and will not be described. In (c), the container 10 is continuously heated by the heating means 12 to evaporate water, and as a result, the foaming agent 20
Get. The cross-sectional structure of the foaming agent 20 is as described in FIG.

【0032】尚、発泡/多孔質金属はアルミニウム合金
を原則とするが、金属(含む合金)であれば種類は問わ
ず、例えばマグネシウム合金、鉄系合金、ステンレス鋼
などが挙げられる。
The foamed / porous metal is basically made of an aluminum alloy. However, any metal (including alloy) may be used, for example, a magnesium alloy, an iron-based alloy, and stainless steel.

【0033】また、発泡性粉末は炭酸塩が好適である
が、通常の発泡剤に用いられている材料であれば適宜使
用することができる。フッ化物はF基を含む化合物あ
り、その種類は問わない。
The foaming powder is preferably a carbonate, but any material used in a general foaming agent can be used as appropriate. Fluoride is a compound containing an F group, and its type is not limited.

【0034】[0034]

【発明の効果】本発明は上記構成により次の効果を発揮
する。請求項1の発泡剤は、発泡性粉末と、この粉末の
表面を覆うフッ化物コーティング層とからなる。フッ化
物コーティング層は発泡/多孔質金属の製造過程で、フ
ッ化物はアルミニウムなどの金属を覆う酸化膜を破壊す
る役割を果たす。この結果、発泡剤は溶融金属とのぬれ
性が高まり、溶融金属に良好に分散し、均一に孔が分布
した良質な発泡/多孔質金属を得ることができる。
According to the present invention, the following effects are exhibited by the above configuration. The foaming agent of claim 1 comprises a foamable powder and a fluoride coating layer covering the surface of the powder. The fluoride coating layer plays a role in destroying an oxide film covering a metal such as aluminum in the process of producing a foamed / porous metal. As a result, the foaming agent has improved wettability with the molten metal, and can be dispersed well in the molten metal to obtain a high-quality foamed / porous metal having uniformly distributed pores.

【0035】加えて、発泡剤は、発泡性粉末にフッ化物
をコーティングしただけのものであるから、廉価であ
り、且つH基を含まぬ発泡性粉末を用いた場合には、水
素爆発の危険も無い。
In addition, since the foaming agent is obtained by simply coating the foamable powder with a fluoride, the foaming agent is inexpensive and, if the foamable powder containing no H group is used, there is a danger of hydrogen explosion. Not even.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る発泡剤の共沈法工程図FIG. 1 is a process diagram of a co-precipitation method of a blowing agent according to the present invention.

【図2】本発明に係る発泡剤の模型図FIG. 2 is a schematic view of a foaming agent according to the present invention.

【図3】本発明の発泡剤を用いた発泡/多孔質金属の製
造工程図
FIG. 3 is a production process diagram of a foamed / porous metal using the foaming agent of the present invention.

【図4】発泡/多孔質金属の密度と処理時間との関係を
調べたグラフ
FIG. 4 is a graph showing the relationship between the density of foamed / porous metal and the processing time.

【図5】本発明に係る発泡剤の蒸発法工程図FIG. 5 is a process diagram of a blowing agent evaporation method according to the present invention.

【符号の説明】[Explanation of symbols]

13…発泡性粉末、20…発泡剤、21…フッ化物コー
ティング層、37…発泡/多孔質金属。
13: foamable powder, 20: foaming agent, 21: fluoride coating layer, 37: foamed / porous metal.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G076 AA05 AA16 AB09 BA24 BF05 CA02 DA30  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G076 AA05 AA16 AB09 BA24 BF05 CA02 DA30

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 発泡/多孔質金属を製造するときに用い
る発泡剤において、この発泡剤は、発泡性粉末と、この
粉末の表面を覆うフッ化物コーティング層とからなるこ
とを特徴とする発泡/多孔質金属製造用発泡剤。
1. A foaming agent used for producing a foamed / porous metal, wherein the foaming agent comprises a foamable powder and a fluoride coating layer covering the surface of the powder. Foaming agent for porous metal production.
JP2001169968A 2001-06-05 2001-06-05 Foaming agent for foaming / porous metal production Expired - Fee Related JP3771463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001169968A JP3771463B2 (en) 2001-06-05 2001-06-05 Foaming agent for foaming / porous metal production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001169968A JP3771463B2 (en) 2001-06-05 2001-06-05 Foaming agent for foaming / porous metal production

Publications (2)

Publication Number Publication Date
JP2002363664A true JP2002363664A (en) 2002-12-18
JP3771463B2 JP3771463B2 (en) 2006-04-26

Family

ID=19011968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001169968A Expired - Fee Related JP3771463B2 (en) 2001-06-05 2001-06-05 Foaming agent for foaming / porous metal production

Country Status (1)

Country Link
JP (1) JP3771463B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100439526C (en) * 2007-07-09 2008-12-03 东南大学 Foamed aluminium and aluminum alloy tackifying foaming preparation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100439526C (en) * 2007-07-09 2008-12-03 东南大学 Foamed aluminium and aluminum alloy tackifying foaming preparation method

Also Published As

Publication number Publication date
JP3771463B2 (en) 2006-04-26

Similar Documents

Publication Publication Date Title
US7410523B2 (en) Foaming agent for manufacturing a foamed or porous metal
TW461839B (en) Mixture of two particle phases used in the production of sinters that can be sintered at higher temperatures
JP2008540820A5 (en)
US5632319A (en) Method for manufacturing environmentally conscious foamed aluminum materials
WO2007016779A1 (en) Microporous metals and methods for hydrogen generation from water split reaction
HU204239B (en) Process for producing self-carrying ceramic products of composed structure first of all for large series
DK169993B1 (en) Ceramic foam and method for making ceramic articles
JP3747498B2 (en) Porous vapor deposition material and method for producing the same
JP3805694B2 (en) Method for producing foam / porous metal
JP2002363664A (en) Foaming agent for producing foamed/porous metal
EP1117366B1 (en) Bioactive composite materials and method of producing the same
US4138245A (en) Process for the removal of impurities from aluminum melts
JPH05339708A (en) Material for vacuum evaporation
JP3771488B2 (en) Foaming agent for producing foamed / porous metal and method for producing the same
US7132094B2 (en) Method of producing hollow alumina particle
NO128282B (en)
WO1992007793A1 (en) Process for preparing silicon dioxide coating
JP3986489B2 (en) Foaming agent for foaming / porous metal production
JPH04240166A (en) Slurry for producing porous ceramics and porous ceramics obtained by using this slurry
US5385710A (en) Diffusion resistant refractory for containment of fluorine-rich molten salt
JPH0211320A (en) Sound absorbing material made of foamed metal
RU1830055C (en) Method of fashioned ceramic article making
JP2004322143A (en) Method for manufacturing porous metallic body
JPS62182227A (en) Consumable electrode type arc melting method for active metal
JP3046119B2 (en) Lightweight magnesia coating material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees