JP2004322143A - Method for manufacturing porous metallic body - Google Patents

Method for manufacturing porous metallic body Download PDF

Info

Publication number
JP2004322143A
JP2004322143A JP2003119647A JP2003119647A JP2004322143A JP 2004322143 A JP2004322143 A JP 2004322143A JP 2003119647 A JP2003119647 A JP 2003119647A JP 2003119647 A JP2003119647 A JP 2003119647A JP 2004322143 A JP2004322143 A JP 2004322143A
Authority
JP
Japan
Prior art keywords
raw material
cooling
porous
metal body
porous metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003119647A
Other languages
Japanese (ja)
Other versions
JP4621938B2 (en
Inventor
Hideo Nakajima
中嶋英雄
Jokin Gen
丞均 玄
Original Assignee
Hideo Nakajima
中嶋 英雄
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hideo Nakajima, 中嶋 英雄 filed Critical Hideo Nakajima
Priority to JP2003119647A priority Critical patent/JP4621938B2/en
Publication of JP2004322143A publication Critical patent/JP2004322143A/en
Application granted granted Critical
Publication of JP4621938B2 publication Critical patent/JP4621938B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a porous metallic body, a method for forming pores in an accurate shape by safely controlling a metallic material in the direction, size, porosity and structure of the pores without using a specific hydrogen gas. <P>SOLUTION: Using a hermetically sealed container 100 equipped with a heating chamber 1 that can control pressure and a solidifying chamber 2 that has a casting mold 3 capable of adjusting moisture content and a cooling section 4, a porous metallic body is manufactured which is controlled in one direction by melting, cooling and solidifying a metallic material 200 under argon gas pressurization. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、多孔質金属体の製造方法に関するものである。詳しくは、一方向性形態を有する多孔質金属体の固有の大きな表面積又、一様に制御されたポア及びポリシティによる応用分野である。応用指向は、広いのであるが、現在、ヒートシンク、静圧軸受、フィルター、自動車・航空機部材及び各種工作機械等に開発が進められている。
【0002】
【従来の技術】
従来の一方向性を有する多孔質金属体の製造方法においては、水素ガス、窒素ガス及び酸素ガス等の加圧下において気泡の生成並び気泡の形成を可能とする製造方法であった。
【特許文献1】特開平10−88254号公報
【特許文献2】特開平2000−104130号公報
【0003】
【発明が解決しようとする課題】
本発明は、水素ガスの加圧下における作製に対して、水分を用いるか或は、不活性ガスの加圧下において水分を用いて金属原料を多孔質化することが可能である。したがって、従来の技術に対して比較的安全で、経済的である斬新な手法による製作方法を提供することを目的としている。
【0004】
【課題を解決するための手段】
本発明は、上記の課題を解決する手段として、図2の(a)、(b)及び(c)に示すように、鋳型の内側に水分を含むアルミナ混合物を塗布し、次に、溶解した金属原料を鋳込み、更に、溶融金属原料が冷却部により冷却凝固を始めて、一方向の気孔を形成する。前記の気孔形成は、アルミナ混合物に含まれた水分が溶融金属原料中に溶け込み、水素と酸素に分解する。分解した前記水素が溶解度ギヤップにより気泡となって、気孔を形成する。以上の関係は、図3、図4の(a)及び(b)によって明らかであり、有効な手段である。
【0005】
更にポアの形態、気孔径及び気孔率を制御するためにアルゴンガスの圧力と、水分量を調節して、図5の(a)〜(d)のような多種多様な構造に多孔質化が可能である。
【0006】
【発明の実施形態】
本発明は、加熱して、溶解した金属原料を鋳型内で冷却凝固させて、固体に変態させる過程において、鋳型の内側に塗布したアルミナ混合物に含まれる水分が水素と酸素に解離し、前記金属原料の固相内に析出するという性質を利用して、多孔質金属体を製作するものである。
【0007】
図1に示す本発明は、加熱手段である誘導加熱コイル7、るつぼ5及びストッパーロッド8等を有する加熱室1とその下部に冷却、凝固手段の鋳型3及び冷却部4を有する凝固室2を装着して、竪型に構成された密閉容器100であり、好ましい実施形態を示している。密閉容器100の構造は、金属原料200を所定の温度で溶融し、更にアルゴンガスの雰囲気下で所定の凝固温度と所定の凝固圧力を用いて、冷却凝固させるために、加熱室1及び凝固室2は、内部の気密性を保つようになっている。鋳型3は、溶融した金属原料200を流し込むところの内側にアルミナ粉末、珪酸ナトリウム溶液及び水等を所定の割合で混ぜたアルミナ混合物6を塗布している。
【0008】
るつぼ5内の金属原料200が誘導加熱コイル7によって溶融すると、密閉容器100内にガス注入パイプ9からアルゴンガスが注入され、所定の圧力下に保たれる。更に金属原料200が所定の溶融温度に達した時、スットパーロッド8が上昇して、導入ファンネル11を開き、溶融した金属原料200が下部の凝固室2に設けられた鋳型3に流れ込む。
【0009】
凝固室2の内部は、アルゴンガスによる所定の凝固圧力下に保たれ、冷却部4は冷却水流入パイプ12及び冷却水流入パイプ13を用いて、冷却水により冷却される。したがって、鋳型3に導入された金属原料200は底部の冷却面に接触した面から急速に凝固を始め、この凝固方向に対して平行にポアが成長する。凝固時における気孔の形成は、鋳型3の内側に塗布したアルミナ混合物6に含まれる水分が溶融金属原料200の中に溶け込み、水素と酸素に分解する。この凝固時において、前記水素が溶融金属と固体金属の溶解度差により気泡として析出し、一方向性の気孔に成長する。又前記酸素が凝固時に種々の酸化物を形成し、これらが不均一核生成サイトとなっていると考えられる。図2は、水分利用による気孔形成のモデルを示す。尚、雰囲気ガスであるアルゴンガスは、不活性ガスあるため、気泡の核生成には直接的には関係はないが、成長する気孔の気孔率や気孔径等を制御することに関係する。
(a)は、鋳型3内側にアルミナ混合物6を塗布し、溶融金属原料200は、未だ鋳込まれていない状態を示しており、アルミナ混合物6は、アルミナ粉末、珪酸ナトリウム及び水の溶液を乾燥したものである。
(b)は、鋳型3に鋳込まれた状態を示しており、溶融金属原料200の凝固が始まろうとする時点であるが、含有する水分が溶融金属200中に溶け込み、水素と酸素に分解する。この時、中に含まれる酸化物も溶け込む可能性がある。
(c)は、溶融金属原料200の凝固が行われて、気孔が形成され、気孔形態が成長を続けている状態を示しており、分解した水素が溶解度ギャップにより気泡となって、気孔に形成される。この時、金属中の酸化物、アルミナ及び珪酸ナトリウム等が不均一核生成サイトになっていると考えられる。
尚、冷却部を特定しなければ、球状のランダム分布の気孔が分散した多孔質金属体を作製することができる。
【実施例】
以下図5、図6に示す本発明の実施例について説明する。多孔質金属体の気孔の方向、気孔径、気孔率等の形成は、アルミナ混合物6に含まれる水分の量、溶融温度、冷却凝固の速度、不活性ガスの圧力等のパラメーターを制御して、決定することができる。
【0010】
図5は、不活性ガスとしてアルゴンを用い、0.3MPaの加圧下において作製した純ニッケルの多孔質金属体の縦断面を示す写真である。純ニッケルは、純度99.9%の電解ニッケルを使用し、アルゴンは、純度99.999%を用い、溶融温度1.873Kで鋳込む。溶融金属原料に溶解した水分は、円筒型に加工したモリブデン薄板を用い、その内側にアルミナ粉末、珪酸ナトリウム溶液及び水を8:2:5の割合のアルミナ混合物6を塗布して、その重量変化を測定した。
(a)は、上記の条件下で作製したニッケル多孔質体を放電加工機で縦中央を切断した実施例で、アルミナ混合物6中の水分量が0.0596gのものである。
(b)は、同じくニッケル多孔質体の実施例で、アルミナ混合物6中の水分量が0.0876gのものである。
(c)は、同じくニッケル多孔質体の実施例で、アルミナ混合物6中の水分量が1.1070gのものである。
(d)は、同じくニッケル多孔質体の実施例で、アルミナ混合物6中の水分量が0.1201gのものである。
[図6]は、上記の[図5]の(c)の実施例を冷却底面から4.5mmの位置を放電加工機で切断した横断面と縦断面の部分であり、気孔率は44.7%及び平均気孔径は105μmである。
【0011】
本発明は、以上に述べた実施の形態及び実施例によって限定されるものではなく、製造方法並びに気孔生成の形態の細部において様々な態様が可能である。
【0012】
【発明の効果】
本発明は、利用する水分中の水素と酸素が凝固時に解離し、その酸素が不均一核生成のサイトとなって、溶融金属原料中の気泡の核生成を促進し、一方その水素は、気泡に生成し、気孔に成長して、微細な多孔質金属体を形成するという点が特徴である。したがって、水素のガス圧力下で行われる従来の方法と比較して、低い雰囲気圧で高い気孔率を維持したまま、より微細な形態の多孔質金属体を得ることができる。尚、利用する水分量が増加するに従って、気孔率、気孔径ともに増大する傾向を示すこと、又、アルゴン雰囲気圧が0.3MPaでは気孔形態は繊維状になり、それ以上の圧力では、圧力が増大するに従って、気孔の生成及び成長が抑制される傾向を示すこと等から考えて、この製造方法は、十分な大きさの圧力に対応する密閉容器、水分発生及び調節システム、温度並びに圧力の制御システムがあれば、比較的安全で、しかも経済的な多孔質金属体の製造方法である。
【図面の簡単な説明】
【図1】本発明の方法のための装置として加熱室1及び凝固室2を内部に装着した密閉容器100を例示した概略図である。
【図2】本発明の方法の水分利用によるポア形成のモデル図である。
(a)は、冷却部4の上に装着したモリブデン薄板製の鋳型3で、内部にアルミナ混合物が塗布され、鋳込み前の状態を示す。
(b)は、溶融金属原料200を鋳込んだ状態を示す。
(c)は、鋳込んだ溶融金属原料200が冷却凝固する状態を示す。
【図3】純ニッケルを金属原料200に用いて、作製した図5(a)〜(d)の多孔質金属体の気孔率の変化をアルミナ混合物6中の水分量と冷却部4の底面からの距離との関係を表わすグラフである。
【図4】(a)は、純ニッケルを金属原料200に用いて、作製した図5(a)〜(d)の多孔質金属体のポア径の変化をアルミナ混合物6中の水分量と冷却部4の底面からの距離との関係を表わすグラフである。
(b)は、純ニッケルを金属原料200に用いて、作製した図5(a)〜(d)の多孔質金属体のポア数密度の変化をアルミナ混合物6中の水分量と冷却部4の底面からの距離との関係を表わすグラフである。
【図5】本発明の方法でアルゴン0.3MPaの加圧下において作製した純ニッケルの多孔質金属体の縦断面を表わす写真である。
(a)は、アルミナ混合物6中の水分量が0.0596gのものである。
(b)は、アルミナ混合物6中の水分量が0.0876gのものである。
(c)は、アルミナ混合物6中の水分量が0.1070gのものである。
(d)は、アルミナ混合物6中の水分量が0.1201gのものである。
【図6】[図5]の(c)の拡大写真で、冷却部4の底面から4.5mmの部分である。
気孔率:44.7%及び平均気孔径:105μmである。
(a)は、縦断面の写真である。
(b)は、横断面である。
【符号の説明】
1 加熱室
2 凝固室
3 鋳型
4 冷却部
5 るつぼ
6 アルミナ混合物
7 誘導加熱コイル
8 ストッパーロッド
9 ガス注入パイプ
10 ガス排出パイプ
11 導入ファンネル
12 冷却水流入パイプ
13 冷却水流出パイプ
100 密閉容器
200 金属原料
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a porous metal body. In particular, the inherently large surface area of a porous metal body having a unidirectional morphology, as well as applications with uniformly controlled pores and porosity. Although the application direction is wide, development is currently being progressed on heat sinks, hydrostatic bearings, filters, automobile / aircraft components, various machine tools, and the like.
[0002]
[Prior art]
In a conventional method for producing a porous metal body having one direction, the production method enables generation of bubbles and formation of bubbles under pressure of hydrogen gas, nitrogen gas, oxygen gas, or the like.
[Patent Document 1] JP-A-10-88254 [Patent Document 2] JP-A-2000-104130
[Problems to be solved by the invention]
According to the present invention, it is possible to make the metal raw material porous by using moisture for the production under the pressurization of the hydrogen gas or by using the moisture under the pressurization of the inert gas. Accordingly, it is an object of the present invention to provide a novel manufacturing method which is relatively safe and economical with respect to the prior art.
[0004]
[Means for Solving the Problems]
As a means for solving the above-mentioned problems, the present invention applies a water-containing alumina mixture to the inside of a mold as shown in FIGS. 2 (a), 2 (b) and 2 (c), and then melts the mixture. The metal raw material is cast, and further, the molten metal raw material starts cooling and solidifying by the cooling unit to form pores in one direction. In the pore formation, the water contained in the alumina mixture dissolves into the molten metal raw material and is decomposed into hydrogen and oxygen. The decomposed hydrogen becomes bubbles due to the solubility gap to form pores. The above relationship is clear from FIGS. 3 and 4 (a) and (b) and is an effective means.
[0005]
Further, by controlling the pressure of the argon gas and the amount of water in order to control the shape, pore diameter and porosity of the pores, various structures as shown in FIGS. 5A to 5D can be made porous. It is possible.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the process of heating and melting and solidifying a molten metal material in a mold by cooling and solidifying the same, the water contained in the alumina mixture applied inside the mold is dissociated into hydrogen and oxygen in the process of transforming into a solid, and the metal A porous metal body is manufactured by utilizing the property of being precipitated in a solid phase of a raw material.
[0007]
The present invention shown in FIG. 1 includes a heating chamber 1 having an induction heating coil 7, a crucible 5, a stopper rod 8 and the like as heating means, and a solidification chamber 2 having a mold 3 and a cooling unit 4 of a cooling and solidifying means below the heating chamber 1. It is a closed container 100 that is mounted and configured vertically, showing a preferred embodiment. The structure of the closed container 100 includes a heating chamber 1 and a coagulating chamber for melting the metal raw material 200 at a predetermined temperature and further cooling and solidifying under a argon gas atmosphere using a predetermined coagulation temperature and a predetermined coagulation pressure. 2 keeps the inside airtight. The mold 3 is coated with an alumina mixture 6 in which alumina powder, a sodium silicate solution, water and the like are mixed at a predetermined ratio on the inside where the molten metal raw material 200 is poured.
[0008]
When the metal raw material 200 in the crucible 5 is melted by the induction heating coil 7, argon gas is injected into the sealed container 100 from the gas injection pipe 9 and is kept under a predetermined pressure. Further, when the metal raw material 200 reaches a predetermined melting temperature, the stopper rod 8 rises, the introduction funnel 11 is opened, and the molten metal raw material 200 flows into the casting mold 3 provided in the lower solidification chamber 2.
[0009]
The inside of the coagulation chamber 2 is maintained under a predetermined coagulation pressure by argon gas, and the cooling unit 4 is cooled by cooling water using a cooling water inflow pipe 12 and a cooling water inflow pipe 13. Therefore, the metal raw material 200 introduced into the mold 3 starts to solidify rapidly from the surface in contact with the cooling surface at the bottom, and pores grow parallel to the solidification direction. The formation of pores during solidification is such that water contained in the alumina mixture 6 applied to the inside of the mold 3 dissolves into the molten metal raw material 200 and is decomposed into hydrogen and oxygen. During the solidification, the hydrogen is precipitated as bubbles due to the difference in solubility between the molten metal and the solid metal, and grows into unidirectional pores. Further, it is considered that the oxygen forms various oxides upon solidification, and these serve as heterogeneous nucleation sites. FIG. 2 shows a model of pore formation by use of moisture. Since the argon gas, which is an atmosphere gas, is an inert gas, it is not directly related to the nucleation of bubbles, but it is related to controlling the porosity and pore diameter of the growing pores.
(A) shows a state where the alumina mixture 6 is applied to the inside of the mold 3 and the molten metal raw material 200 is not yet cast. The alumina mixture 6 is obtained by drying a solution of alumina powder, sodium silicate and water. It was done.
(B) shows a state in which the molten metal material 200 has been cast into the mold 3, at which point the solidification of the molten metal raw material 200 is about to start, but the contained moisture dissolves in the molten metal 200 and is decomposed into hydrogen and oxygen. . At this time, the oxide contained therein may also dissolve.
(C) shows a state in which the molten metal raw material 200 is solidified, pores are formed, and the pore morphology continues to grow, and the decomposed hydrogen becomes bubbles due to the solubility gap and is formed in the pores. Is done. At this time, it is considered that oxides, alumina, sodium silicate, and the like in the metal have become heterogeneous nucleation sites.
If the cooling unit is not specified, a porous metal body in which spherical random distribution pores are dispersed can be produced.
【Example】
An embodiment of the present invention shown in FIGS. 5 and 6 will be described below. The formation of the pore direction, pore diameter, porosity, and the like of the porous metal body is controlled by controlling parameters such as the amount of water contained in the alumina mixture 6, the melting temperature, the rate of cooling and solidification, and the pressure of the inert gas. Can be determined.
[0010]
FIG. 5 is a photograph showing a vertical cross section of a porous metal body made of pure nickel manufactured using argon as an inert gas under a pressure of 0.3 MPa. Pure nickel uses electrolytic nickel of 99.9% purity, and argon uses 99.999% of purity and is cast at a melting temperature of 1.873K. Moisture dissolved in the molten metal raw material is obtained by applying an alumina mixture 6, an alumina powder, a sodium silicate solution, and water at a ratio of 8: 2: 5 using a molybdenum thin plate processed into a cylindrical shape. Was measured.
(A) is an example in which the nickel porous body produced under the above conditions was cut at the longitudinal center by an electric discharge machine, and the water content in the alumina mixture 6 was 0.0596 g.
(B) is an example of a nickel porous body in which the water content in the alumina mixture 6 is 0.0876 g.
(C) is an example of a nickel porous body in which the water content in the alumina mixture 6 is 1.1070 g.
(D) is an example of a nickel porous body in which the amount of water in the alumina mixture 6 is 0.1201 g.
[FIG. 6] is a cross section and a vertical cross section obtained by cutting the position of 4.5 mm from the cooling bottom surface with the electric discharge machine in the example of (c) in FIG. 5 described above, and the porosity is 44. 7% and the average pore size is 105 μm.
[0011]
The present invention is not limited to the above-described embodiments and examples, and various aspects are possible in the details of the production method and the mode of pore generation.
[0012]
【The invention's effect】
In the present invention, the hydrogen and oxygen in the water used dissociate during solidification, and the oxygen becomes a site for heterogeneous nucleation, and promotes the nucleation of bubbles in the molten metal raw material, while the hydrogen forms bubbles in the molten metal material. It is characterized in that it is formed in the pores and grows into pores to form a fine porous metal body. Therefore, a finer porous metal body can be obtained while maintaining a high porosity at a low atmospheric pressure, as compared with the conventional method performed under a gas pressure of hydrogen. In addition, as the amount of water used increases, the porosity and the pore diameter both tend to increase.In addition, when the argon atmosphere pressure is 0.3 MPa, the pore form becomes fibrous. In view of the tendency that pore generation and growth tend to be suppressed as the size increases, this manufacturing method is applied to a closed container corresponding to a sufficiently large pressure, a moisture generation and regulation system, temperature and pressure control. A system is a relatively safe and economical way to produce porous metal bodies.
[Brief description of the drawings]
FIG. 1 is a schematic view illustrating a sealed container 100 in which a heating chamber 1 and a coagulation chamber 2 are mounted as an apparatus for the method of the present invention.
FIG. 2 is a model diagram of pore formation by utilizing water in the method of the present invention.
(A) is a mold 3 made of a thin molybdenum plate mounted on the cooling unit 4, in which an alumina mixture is applied inside, and shows a state before casting.
(B) shows a state where the molten metal raw material 200 is cast.
(C) shows a state in which the cast molten metal raw material 200 is cooled and solidified.
FIG. 3 shows the change in porosity of the porous metal body shown in FIGS. 5A to 5D prepared using pure nickel as the metal raw material 200, based on the amount of water in the alumina mixture 6 and the bottom surface of the cooling unit 4. 6 is a graph showing the relationship between the distance and the distance.
FIG. 4 (a) shows the change in the pore diameter of the porous metal body shown in FIGS. 5 (a) to 5 (d) produced by using pure nickel as the metal raw material 200, with the water content in the alumina mixture 6 and the cooling. 9 is a graph showing a relationship between a distance from a bottom surface of a part 4 and a part.
5B is a graph showing the change in the pore number density of the porous metal body shown in FIGS. 5A to 5D using pure nickel as the metal raw material 200 and the water content in the alumina mixture 6 and the cooling unit 4. It is a graph showing the relationship with the distance from the bottom.
FIG. 5 is a photograph showing a longitudinal section of a porous metal body of pure nickel produced under a pressure of 0.3 MPa of argon by the method of the present invention.
In (a), the amount of water in the alumina mixture 6 is 0.0596 g.
In (b), the water content in the alumina mixture 6 is 0.0876 g.
In (c), the amount of water in the alumina mixture 6 is 0.1070 g.
In (d), the water content in the alumina mixture 6 is 0.1201 g.
FIG. 6 is an enlarged photograph of (c) of FIG. 5 and is a portion 4.5 mm from the bottom surface of the cooling unit 4;
The porosity is 44.7% and the average pore diameter is 105 μm.
(A) is a photograph of a longitudinal section.
(B) is a cross section.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Heating room 2 Solidification room 3 Mold 4 Cooling part 5 Crucible 6 Alumina mixture 7 Induction heating coil 8 Stopper rod 9 Gas injection pipe 10 Gas exhaust pipe 11 Introduction funnel 12 Cooling water inflow pipe 13 Cooling water outflow pipe 100 Closed vessel 200 Metal raw material

Claims (4)

下記の工程備えた多孔質金属体の製造方法:
(1)密閉容器内において、金属原料を溶融させる工程;
(2)上記密閉容器内の溶融金属の温度を制御しつつ、水分を含む鋳型の中で溶融金属を冷却凝固させることにより、多孔質金属体を形成させる工程。
A method for producing a porous metal body comprising the following steps:
(1) a step of melting a metal raw material in a closed container;
(2) A step of forming a porous metal body by cooling and solidifying the molten metal in a mold containing moisture while controlling the temperature of the molten metal in the closed container.
金属が鉄、銅、ニッケル、マグネシウム、チタン、クロム、コバルト、タングステン、マンガン、モリブデン、ベリウム、アルミニウム、ウラン及びこれら金属の少なくとも1種を含む合金からなる群れから選ばれる請求項1に記載の多孔質金属体の製造方法。The porosity according to claim 1, wherein the metal is selected from the group consisting of iron, copper, nickel, magnesium, titanium, chromium, cobalt, tungsten, manganese, molybdenum, beryllium, aluminum, uranium, and alloys containing at least one of these metals. Method for manufacturing a porous metal body. 上記密閉容器内において不活性ガスを用いて、加圧下に金属原料を溶融、冷却凝固させることにより多孔質金属体を形成させる請求項1ないし2に記載の多項質金属体の製造方法。3. The method according to claim 1, wherein the porous metal body is formed by melting and cooling and solidifying a metal raw material under pressure using an inert gas in the closed vessel. 上記工程(1)及び工程(2)において使用される不活性ガスの加圧条件が0.01MPa〜10MPaの範囲内にある請求項3に記載の多孔質金属体の製造方法。The method for producing a porous metal body according to claim 3, wherein the pressure of the inert gas used in the step (1) and the step (2) is in a range of 0.01 MPa to 10 MPa.
JP2003119647A 2003-04-24 2003-04-24 Method for producing porous metal body Expired - Fee Related JP4621938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003119647A JP4621938B2 (en) 2003-04-24 2003-04-24 Method for producing porous metal body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003119647A JP4621938B2 (en) 2003-04-24 2003-04-24 Method for producing porous metal body

Publications (2)

Publication Number Publication Date
JP2004322143A true JP2004322143A (en) 2004-11-18
JP4621938B2 JP4621938B2 (en) 2011-02-02

Family

ID=33498817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003119647A Expired - Fee Related JP4621938B2 (en) 2003-04-24 2003-04-24 Method for producing porous metal body

Country Status (1)

Country Link
JP (1) JP4621938B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102328066A (en) * 2011-08-31 2012-01-25 中国科学院金属研究所 Vacuum-positive pressure smelting and solidifying equipment
US9382601B2 (en) 2013-12-13 2016-07-05 Hyundai Motor Company Method of producing porous aluminum
CN113444912A (en) * 2021-04-27 2021-09-28 山东高速高新材料科技有限公司 Quick integrated foamed aluminum production equipment based on electromagnetic induction

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09241780A (en) * 1996-03-11 1997-09-16 Shinko Kosen Kogyo Kk Manufacture of metallic foamed body
JP2000239760A (en) * 1999-02-22 2000-09-05 Hideo Nakajima Apparatus for producing lotus root-shaped porous metal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09241780A (en) * 1996-03-11 1997-09-16 Shinko Kosen Kogyo Kk Manufacture of metallic foamed body
JP2000239760A (en) * 1999-02-22 2000-09-05 Hideo Nakajima Apparatus for producing lotus root-shaped porous metal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102328066A (en) * 2011-08-31 2012-01-25 中国科学院金属研究所 Vacuum-positive pressure smelting and solidifying equipment
US9382601B2 (en) 2013-12-13 2016-07-05 Hyundai Motor Company Method of producing porous aluminum
CN113444912A (en) * 2021-04-27 2021-09-28 山东高速高新材料科技有限公司 Quick integrated foamed aluminum production equipment based on electromagnetic induction
CN113444912B (en) * 2021-04-27 2022-06-21 山东高速高新材料科技有限公司 Quick integrated foamed aluminum production equipment based on electromagnetic induction

Also Published As

Publication number Publication date
JP4621938B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
JP5398260B2 (en) Method for producing porous body
JP2635817B2 (en) Manufacturing method of metal foam reinforced with particles
WO1992019400A1 (en) Method and apparatus for manufacturing porous articles
JP4176975B2 (en) Manufacturing method of foam metal
RU2400552C2 (en) Foam aluminium obtaining method
JPS61104002A (en) Sintering method
CN102912172B (en) Method and device for manufacturing foam metal by assistance of magnetic field
JP4924997B2 (en) Lotus shape porous metal manufacturing equipment
US5725042A (en) Method for producing hydrogen-absorbing alloy
CN111850327B (en) Preparation method of porous NiTi alloy based on selective dissolution and product
JP4621938B2 (en) Method for producing porous metal body
EP1281780B1 (en) Method of grain refining cast magnesium alloy
JPH10158761A (en) Production of foam having directional pore
CN114672744B (en) Endogenetic porous titanium reinforced magnesium-based amorphous composite material and preparation method thereof
JPH09137239A (en) Method for molding half-molten metal
JPH03170630A (en) Manufacture of foamed metal
JP2000104130A (en) Manufacture of porous metal
JPH0987768A (en) Production of half-melted hypereutectic al-si alloy
JPH10128516A (en) Formation of semi-molten metal
JPH08325652A (en) Method for molding semisolid metal
JP2008501855A (en) Recycling method for light metal parts
Onishi et al. Effect of hydrogen pressure on moisture-based fabrication of lotus-type porous nickel
JPH10158760A (en) Production of foam
WO1998011264A1 (en) Production of cast products with controlled density by controlling gas concentration in a material
JP2022122172A (en) Method for manufacturing metal foam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060421

A977 Report on retrieval

Effective date: 20080819

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Effective date: 20081022

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Effective date: 20090130

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Effective date: 20090130

Free format text: JAPANESE INTERMEDIATE CODE: A523

A072 Dismissal of procedure

Effective date: 20090825

Free format text: JAPANESE INTERMEDIATE CODE: A073

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Effective date: 20091110

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Effective date: 20100512

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Effective date: 20100512

Free format text: JAPANESE INTERMEDIATE CODE: A523

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101013

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20131112

LAPS Cancellation because of no payment of annual fees