JP3771463B2 - Foaming agent for foaming / porous metal production - Google Patents

Foaming agent for foaming / porous metal production Download PDF

Info

Publication number
JP3771463B2
JP3771463B2 JP2001169968A JP2001169968A JP3771463B2 JP 3771463 B2 JP3771463 B2 JP 3771463B2 JP 2001169968 A JP2001169968 A JP 2001169968A JP 2001169968 A JP2001169968 A JP 2001169968A JP 3771463 B2 JP3771463 B2 JP 3771463B2
Authority
JP
Japan
Prior art keywords
foaming agent
powder
porous metal
foaming
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001169968A
Other languages
Japanese (ja)
Other versions
JP2002363664A (en
Inventor
崇 中村
亮一 石川
勝弘 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2001169968A priority Critical patent/JP3771463B2/en
Publication of JP2002363664A publication Critical patent/JP2002363664A/en
Application granted granted Critical
Publication of JP3771463B2 publication Critical patent/JP3771463B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は発泡/多孔質金属の製造に用いる発泡剤に関する。
【0002】
【従来の技術】
溶融金属若しくは粉末金属に発泡剤を添加し、これらを加熱するなどして発泡剤をガス化し、金属中に無数の孔を形成することで発泡金属若しくは多孔質金属を得る技術は知られている。狭義には発泡金属は無数の孔にガスを封じ込め、多孔質金属はガスを放出する点で差があるが、無数の孔を有する点では同一であるから、発泡/多孔質金属と一括して呼ぶことにする。
【0003】
この発泡/多孔質金属の製造方法には、例えば特許第2898437号公報「発泡可能な金属体の製造方法」が提案され、同公報の段落番号[0022]第5行に「水素化チタン0.2重量%」や、同第19行に「炭酸水素ナトリウム」のごとく発泡剤の具体例が記載されている。
【0004】
【発明が解決しようとする課題】
酸素との結びつきが強いアルミニウムを発泡させるには、還元力の強い水素を含む水素化チタンや炭酸水素ナトリウムの使用が一般的である。
【0005】
しかし、水素化チタンや炭酸水素ナトリウムは高価であり、発泡/多孔質金属の製造コストを押上げるという課題がある。
また、発生する水素ガスは爆発しやすい気体であり、取扱いに十分な注意を払わなければならず、作業者の負担は大きくなる。
そこで、本発明の目的は廉価で水素爆発の危険が無い発泡剤を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するために請求項1は、発泡/多孔質金属を製造するときに用いる発泡剤において、この発泡剤は、発泡性粉末と、この粉末の表面を覆うフッ化物コーティング層とからなることを特徴とする。
【0007】
発泡/多孔質金属の製造過程で、フッ化物はアルミニウムを覆う酸化膜を破壊する役割を果たす。この結果、発泡剤は金属(アルミニウム)とのぬれ性が高まり、溶融金属に良好に分散し、均一に孔が分布した良質な発泡/多孔質金属を得ることができる。
【0008】
発泡剤は、発泡性粉末にフッ化物をコーティングしただけのものであるから、廉価であり、且つH基を含まぬ発泡性粉末を用いた場合には、水素爆発の危険も無い。
【0009】
【発明の実施の形態】
本発明の実施の形態を添付図に基づいて以下に説明する。
まず、本発明に係る発泡剤製造方法である共沈法を説明する。
図1(a)〜(e)は本発明に係る発泡剤の共沈法工程図である。
(a)において、容器10に入れたNaF水溶液11を加熱手段12で約40℃まで加熱する。
【0010】
(b)において、NaF水溶液11に発泡性粉末13を入れる。この発泡性粉末13は、炭酸カルシウム(CaCO3)や炭酸マグネシウム(MgCO3)などの炭酸塩が適当である。爆発の危険が無い炭酸ガス(二酸化炭素ガス)を発生するからである。
【0011】
なお、前記炭酸マグネシウム(MgCO3)は、入手が容易で、安定性に富む塩基性炭酸マグネシウム(4MgCO3・Mg(OH2)・5H2O))を脱水処理等を施すことにより生成することができる。
【0012】
(c)において、撹拌手段14にてNaF水溶液11と発泡性粉末13とを十分に撹拌する。この撹拌により次に示す反応が起こる。なお、撹拌は40分〜60分程度続ける。その理由は後述する。
【0013】
【化1】

Figure 0003771463
【0014】
(液)は液体(水溶液)を示し、(固)は固体(粉末又は膜)を示す。
NaF水溶液にCaCO3の粉末を接触させると、CaにFが結合してCaF2ができるが、残りがNa2CO3(液体)となってNaF水溶液に混じる。すなわち、CaCO3粉末の表面のCaCO3がNaFに接触して、CO3がFに置き換り、フッ化物であるCaF2の形でCaCO3粉末を覆う。
【0015】
【化2】
Figure 0003771463
【0016】
NaF水溶液にMgCO3の粉末を接触させると、MgCO3粉末の表面のMgCO3がNaFに接触して、CO3がFに置き換り、フッ化物であるMgF2の形でMgCO3粉末を覆う。
【0017】
(d)において、濾紙等の濾材15にて混合液を濾過する。このときに吸引することで濾過作業を促す。
(e)において、乾燥させることにより、所望の発泡剤20を得る。
【0018】
図2は本発明に係る発泡剤の模型図であり、発泡剤20は、CaCO3粉末又はMgCO3粉末からなる発泡性粉末13と、この発泡性粉末13の表面を覆うフッ化物コーティング層21とからなる。フッ化物コーティング層21は例えばCaF2又はMgF2からなる。
【0019】
以上の述べた構造の発泡剤20を用いた発泡/多孔質金属の製造方法を次に説明する。
図3(a)〜(e)は本発明の発泡剤を用いた発泡/多孔質金属の製造工程図である。
(a)において、ルツボ31に7%珪素を含むSi系アルミニウム合金32を入れ、ヒータ33で約700℃に加熱して、金属を溶解する。なお、真空溶解するときには真空炉内でこの処理及び以降の処理を実施するが、ここでは真空炉は省略する。
【0020】
(b)において、撹拌手段34で溶湯35を攪拌しつつ、溶湯35にCaやMgの粘度調整剤36を投入して粘度を調整する。
(c)において、溶湯35にさらに発泡剤20を適量投入する。
【0021】
(d)は発泡剤20がガス化したために溶湯35が増量したことを示す。このままで、冷却を開始する。
(e)において、適当な温度でルツボから外し、さらに冷却すれば、発泡/多孔質金属37を得る。
【0022】
図4は発泡/多孔質金属の密度と処理時間との関係を調べたグラフであり、横軸の処理時間は図1(b)〜(d)までの時間、すなわち、発泡性粉末がNaF水溶液に接触している時間である。
比較例1は従来の代表的な発泡剤であるCaCO3でSi系アルミニウム合金を発泡させた例を示し、得られた発泡/多孔質金属の密度は、1.8Mg/m3であった。
【0023】
比較例2は従来の好ましい発泡剤であるTiH2でSi系アルミニウム合金を発泡させた例を示し、得られた発泡/多孔質金属の密度は、1.1Mg/m3であった。
グラフの右に白抜き矢印で示した通りに、密度が小さいほど発泡性は大きく、比較例2は比較例1より遥に発泡性が大きいことが分かる。
【0024】
これは比較例2で用いた発泡剤(TiH2)に含まれるHがアルミニウム表面の酸化膜を破壊し、アルミニウムと発泡剤とを円滑に接触させる。この結果、発泡剤が溶融金属中に良好に分散し、均一に孔を形成することができたことを意味する。
【0025】
逆に、比較例1は安価で安全なCaCO3を発泡剤に採用したが、アルミニウムの表面が酸化膜で覆われ、アルミニウムと発泡剤とを十分に接触せず、この結果、発泡剤が溶融金属中に不十分に分散し、孔の形成が偏り、十分な数の孔を形成することができなかったことを意味する。
【0026】
一方、本発明による実施例では横軸の処理時間に、得られる発泡性が大きく依存することが分かった。すなわち、処理時間が10分以内では比較例1と同じであった。しかし、処理時間を40分以上に延ばすと比較例2並みの発泡性が得られる。そこで、処理時間は40〜60分程度とする。
【0027】
処理時間を延ばせば、図2に示すフッ化物コーティング層21が十分に成長して、その膜厚が増加する。膜厚が増加すれば、発泡剤の保有するフッ化物の量が比例的に増加し、このフッ化物がアルミニウム合金表面の酸化膜を盛んに破壊するため、比較例2並みの良好な結果が得られたと言える。
ここで、重要なことは、本発明の発泡剤はCaCO3粉末又はMgCO3粉末からなる発泡性粉末と、この発泡性粉末の表面を覆うフッ化物コーティング層とからなり、廉価であり、水素爆発の危険性がないことである。
【0028】
図1に述べた共沈法の他、次に説明する蒸発法でも本発明の発泡剤を製造することができる。
図5(a)〜(c)は本発明に係る発泡剤の蒸発法工程図である。
(a)において、容器10に入れたNaF水溶液11へ発泡性粉末13を入れる。
(b)において、加熱手段12で加熱しつつ、NaF水溶液11と発泡性粉末13とを攪拌する。この撹拌により次の反応が起こる。
【0029】
【化3】
Figure 0003771463
【0030】
【化4】
Figure 0003771463
【0031】
反応の詳細は、先に説明したので省略する。
(c)において、容器10を加熱手段12で引続き加熱することで水分を蒸発させ、結果として発泡剤20を得る。この発泡剤20の断面構造は図2で説明した通りである。
【0032】
尚、発泡/多孔質金属はアルミニウム合金を原則とするが、金属(含む合金)であれば種類は問わず、例えばマグネシウム合金、鉄系合金、ステンレス鋼などが挙げられる。
【0033】
また、発泡性粉末は炭酸塩が好適であるが、通常の発泡剤に用いられている材料であれば適宜使用することができる。
フッ化物はF基を含む化合物あり、その種類は問わない。
【0034】
【発明の効果】
本発明は上記構成により次の効果を発揮する。
請求項1の発泡剤は、発泡性粉末と、この粉末の表面を覆うフッ化物コーティング層とからなる。フッ化物コーティング層は発泡/多孔質金属の製造過程で、フッ化物はアルミニウムなどの金属を覆う酸化膜を破壊する役割を果たす。この結果、発泡剤は溶融金属とのぬれ性が高まり、溶融金属に良好に分散し、均一に孔が分布した良質な発泡/多孔質金属を得ることができる。
【0035】
加えて、発泡剤は、発泡性粉末にフッ化物をコーティングしただけのものであるから、廉価であり、且つH基を含まぬ発泡性粉末を用いた場合には、水素爆発の危険も無い。
【図面の簡単な説明】
【図1】本発明に係る発泡剤の共沈法工程図
【図2】本発明に係る発泡剤の模型図
【図3】本発明の発泡剤を用いた発泡/多孔質金属の製造工程図
【図4】発泡/多孔質金属の密度と処理時間との関係を調べたグラフ
【図5】本発明に係る発泡剤の蒸発法工程図
【符号の説明】
13…発泡性粉末、20…発泡剤、21…フッ化物コーティング層、37…発泡/多孔質金属。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a foaming agent used in the production of foam / porous metal.
[0002]
[Prior art]
A technique for obtaining a foam metal or a porous metal by adding a foaming agent to a molten metal or a powder metal and gasifying the foaming agent by heating them to form countless holes in the metal is known. . In the narrow sense, foam metal contains gas in countless pores and porous metal has a difference in releasing gas, but it is the same in that it has countless pores. I will call it.
[0003]
As this foaming / porous metal production method, for example, Japanese Patent No. 2898437 “Method for producing foamable metal body” is proposed. Specific examples of foaming agents such as “2% by weight” and “sodium bicarbonate” are described in the 19th line.
[0004]
[Problems to be solved by the invention]
In order to foam aluminum that is strongly bound to oxygen, it is common to use titanium hydride or sodium hydrogen carbonate containing hydrogen having a strong reducing power.
[0005]
However, titanium hydride and sodium hydrogen carbonate are expensive, and there is a problem of raising the production cost of the foamed / porous metal.
In addition, the generated hydrogen gas is a gas that tends to explode, and sufficient care must be taken in handling, increasing the burden on the operator.
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a foaming agent that is inexpensive and has no danger of hydrogen explosion.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, claim 1 provides a foaming agent used when producing a foam / porous metal, the foaming agent comprising a foamable powder and a fluoride coating layer covering the surface of the powder. It is characterized by that.
[0007]
In the production process of the foam / porous metal, the fluoride plays a role of destroying the oxide film covering the aluminum. As a result, the foaming agent has improved wettability with the metal (aluminum), can be well dispersed in the molten metal, and a high-quality foamed / porous metal with uniformly distributed pores can be obtained.
[0008]
Since the foaming agent is simply a foamed powder coated with fluoride, it is inexpensive and there is no danger of hydrogen explosion when using foaming powder that does not contain H groups.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings.
First, the coprecipitation method which is a foaming agent manufacturing method according to the present invention will be described.
FIG. 1 (a)-(e) is a coprecipitation method process drawing of the blowing agent according to the present invention.
In (a), the NaF aqueous solution 11 put in the container 10 is heated to about 40 ° C. by the heating means 12.
[0010]
In (b), the foamable powder 13 is put into the NaF aqueous solution 11. The foamable powder 13 is suitably a carbonate such as calcium carbonate (CaCO 3 ) or magnesium carbonate (MgCO 3 ). This is because carbon dioxide gas (carbon dioxide gas) is generated without risk of explosion.
[0011]
The magnesium carbonate (MgCO 3 ) is easily obtained and produced by subjecting basic magnesium carbonate (4MgCO 3 · Mg (OH 2 ) · 5H 2 O), which is highly stable, to a dehydration treatment or the like. Can do.
[0012]
In (c), the NaF aqueous solution 11 and the foamable powder 13 are sufficiently stirred by the stirring means 14. The following reaction occurs by this stirring. Stirring is continued for about 40 to 60 minutes. The reason will be described later.
[0013]
[Chemical 1]
Figure 0003771463
[0014]
(Liquid) indicates a liquid (aqueous solution), and (solid) indicates a solid (powder or film).
When CaCO 3 powder is brought into contact with the NaF aqueous solution, F binds to Ca to form CaF 2 , but the remainder becomes Na 2 CO 3 (liquid) and is mixed with the NaF aqueous solution. That, CaCO 3 CaCO 3 powder surface in contact with NaF,換Ri CO 3 is placed on F, cover the CaCO 3 powder in the form of CaF 2 is fluoride.
[0015]
[Chemical 2]
Figure 0003771463
[0016]
When contacting the powder MgCO 3 to NaF solution, in contact MgCO 3 powder surface MgCO 3 is a NaF,換Ri CO 3 is placed on F, cover the MgCO 3 powder in the form of MgF 2 is fluoride .
[0017]
In (d), the mixed solution is filtered with a filter medium 15 such as filter paper. At this time, suctioning is facilitated by a filtering operation.
In (e), the desired foaming agent 20 is obtained by drying.
[0018]
FIG. 2 is a model diagram of a foaming agent according to the present invention. The foaming agent 20 includes a foamable powder 13 made of CaCO 3 powder or MgCO 3 powder, and a fluoride coating layer 21 covering the surface of the foamable powder 13. Consists of. The fluoride coating layer 21 is made of, for example, CaF 2 or MgF 2 .
[0019]
Next, a method for producing a foamed / porous metal using the foaming agent 20 having the above-described structure will be described.
FIGS. 3A to 3E are production process diagrams of foam / porous metal using the foaming agent of the present invention.
In (a), Si-based aluminum alloy 32 containing 7% silicon is put in crucible 31 and heated to about 700 ° C. by heater 33 to melt the metal. In addition, although this process and subsequent processes are implemented in a vacuum furnace when melting in vacuum, the vacuum furnace is omitted here.
[0020]
In (b), while stirring the molten metal 35 with the stirring means 34, the viscosity adjusting agent 36 of Ca or Mg is introduced into the molten metal 35 to adjust the viscosity.
In (c), an appropriate amount of the blowing agent 20 is further added to the molten metal 35.
[0021]
(D) shows that the amount of the molten metal 35 was increased because the foaming agent 20 was gasified. In this state, cooling is started.
In (e), the foam / porous metal 37 is obtained by removing from the crucible at an appropriate temperature and further cooling.
[0022]
FIG. 4 is a graph showing the relationship between the density of the foamed / porous metal and the treatment time. The treatment time on the horizontal axis is the time from FIG. 1B to FIG. 1D, that is, the foamable powder is an NaF aqueous solution. It is time to touch.
Comparative Example 1 shows an example in which a Si-based aluminum alloy was foamed with CaCO 3 , which is a typical representative foaming agent, and the density of the obtained foam / porous metal was 1.8 Mg / m 3 .
[0023]
Comparative Example 2 shows an example in which a Si-based aluminum alloy was foamed with TiH 2 which is a conventional preferred foaming agent, and the density of the obtained foam / porous metal was 1.1 Mg / m 3 .
As shown by the white arrow on the right side of the graph, it can be seen that the smaller the density, the greater the foamability, and Comparative Example 2 has a much greater foamability than Comparative Example 1.
[0024]
This is because H contained in the foaming agent (TiH 2 ) used in Comparative Example 2 destroys the oxide film on the aluminum surface, and makes the aluminum and the foaming agent contact smoothly. As a result, this means that the foaming agent was well dispersed in the molten metal and the pores could be formed uniformly.
[0025]
Conversely, in Comparative Example 1, inexpensive and safe CaCO 3 was used as the foaming agent, but the surface of aluminum was covered with an oxide film, and the aluminum and the foaming agent were not sufficiently contacted. As a result, the foaming agent was melted. It means that it was insufficiently dispersed in the metal, the formation of holes was uneven, and a sufficient number of holes could not be formed.
[0026]
On the other hand, in the Example by this invention, it turned out that the foamability obtained largely depends on the processing time of a horizontal axis. That is, the processing time was the same as Comparative Example 1 within 10 minutes. However, if the treatment time is extended to 40 minutes or more, the foamability equivalent to that of Comparative Example 2 can be obtained. Therefore, the processing time is about 40 to 60 minutes.
[0027]
If the processing time is extended, the fluoride coating layer 21 shown in FIG. 2 is sufficiently grown and the film thickness is increased. As the film thickness increases, the amount of fluoride held by the foaming agent increases proportionally, and this fluoride actively destroys the oxide film on the surface of the aluminum alloy. It can be said that.
Here, it is important that the foaming agent of the present invention comprises a foamable powder made of CaCO 3 powder or MgCO 3 powder and a fluoride coating layer covering the surface of the foamable powder, which is inexpensive and has a hydrogen explosion. There is no danger.
[0028]
In addition to the coprecipitation method described in FIG. 1, the foaming agent of the present invention can also be produced by the evaporation method described below.
5 (a) to 5 (c) are process diagrams for the method of evaporating the foaming agent according to the present invention.
In (a), the foamable powder 13 is put into the NaF aqueous solution 11 put in the container 10.
In (b), the NaF aqueous solution 11 and the foamable powder 13 are stirred while being heated by the heating means 12. The following reaction occurs by this stirring.
[0029]
[Chemical 3]
Figure 0003771463
[0030]
[Formula 4]
Figure 0003771463
[0031]
The details of the reaction have been described above and will be omitted.
In (c), the container 10 is continuously heated by the heating means 12 to evaporate the moisture, and as a result, the foaming agent 20 is obtained. The cross-sectional structure of the foaming agent 20 is as described in FIG.
[0032]
The foam / porous metal is basically an aluminum alloy, but any metal (including alloy) may be used, and examples thereof include magnesium alloy, iron-based alloy, and stainless steel.
[0033]
Moreover, although carbonate is suitable for foamable powder, if it is the material used for the normal foaming agent, it can use suitably.
Fluoride is a compound containing an F group, and the kind thereof is not limited.
[0034]
【The invention's effect】
The present invention exhibits the following effects by the above configuration.
The foaming agent according to claim 1 comprises a foamable powder and a fluoride coating layer covering the surface of the powder. The fluoride coating layer is a process for producing a foam / porous metal, and the fluoride plays a role in destroying an oxide film covering a metal such as aluminum. As a result, the foaming agent has improved wettability with the molten metal, and it is possible to obtain a high-quality foamed / porous metal in which the pores are uniformly dispersed and uniformly distributed in the molten metal.
[0035]
In addition, since the foaming agent is only a foamed powder coated with fluoride, it is inexpensive and there is no danger of hydrogen explosion when foaming powder containing no H group is used.
[Brief description of the drawings]
FIG. 1 Process diagram of co-precipitation method of foaming agent according to the present invention. FIG. 2 Model diagram of foaming agent according to the present invention. FIG. 3 Process diagram of manufacturing foam / porous metal using the foaming agent of the present invention. FIG. 4 is a graph showing the relationship between the density of the foamed / porous metal and the treatment time. FIG. 5 is a process diagram of the evaporation method of the foaming agent according to the present invention.
13 ... foaming powder, 20 ... foaming agent, 21 ... fluoride coating layer, 37 ... foam / porous metal.

Claims (1)

発泡/多孔質金属を製造するときに用いる発泡剤において、この発泡剤は、発泡性粉末と、この粉末の表面を覆うフッ化物コーティング層とからなることを特徴とする発泡/多孔質金属製造用発泡剤。A foaming agent used for producing a foam / porous metal, wherein the foaming agent comprises a foamable powder and a fluoride coating layer covering the surface of the powder. Blowing agent.
JP2001169968A 2001-06-05 2001-06-05 Foaming agent for foaming / porous metal production Expired - Fee Related JP3771463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001169968A JP3771463B2 (en) 2001-06-05 2001-06-05 Foaming agent for foaming / porous metal production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001169968A JP3771463B2 (en) 2001-06-05 2001-06-05 Foaming agent for foaming / porous metal production

Publications (2)

Publication Number Publication Date
JP2002363664A JP2002363664A (en) 2002-12-18
JP3771463B2 true JP3771463B2 (en) 2006-04-26

Family

ID=19011968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001169968A Expired - Fee Related JP3771463B2 (en) 2001-06-05 2001-06-05 Foaming agent for foaming / porous metal production

Country Status (1)

Country Link
JP (1) JP3771463B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100439526C (en) * 2007-07-09 2008-12-03 东南大学 Foamed aluminium and aluminum alloy tackifying foaming preparation method

Also Published As

Publication number Publication date
JP2002363664A (en) 2002-12-18

Similar Documents

Publication Publication Date Title
JP5128036B2 (en) A mixture of two particulate phases used in the production of green compacts that can be fired at high temperatures
SU1676457A3 (en) Ceramic material and method of its manufacture
WO2007016779A1 (en) Microporous metals and methods for hydrogen generation from water split reaction
JP2003508885A (en) Porous carbon body with improved wettability to water
US6689716B2 (en) Method for producing catalyst structures
TW200406270A (en) Metallic nickel powder and process for production thereof
DK169618B1 (en) Process for preparing a self-supporting ceramic product with another polycrystalline ceramic material incorporated in at least part of the porosity
DK169993B1 (en) Ceramic foam and method for making ceramic articles
EP1422302B1 (en) Foaming agent for manufacturing a foamed metal
JP3771463B2 (en) Foaming agent for foaming / porous metal production
JP3771488B2 (en) Foaming agent for producing foamed / porous metal and method for producing the same
JP3805694B2 (en) Method for producing foam / porous metal
JP3747498B2 (en) Porous vapor deposition material and method for producing the same
US4138245A (en) Process for the removal of impurities from aluminum melts
US7132094B2 (en) Method of producing hollow alumina particle
JP3986489B2 (en) Foaming agent for foaming / porous metal production
Byakova et al. Effect of CaCO3 foaming agent at formation and stabilization of Al-based foams fabricated by powder compact technique
WO1992007793A1 (en) Process for preparing silicon dioxide coating
CN114150303A (en) Tantalum surface calcium-doped sodium tantalate bioactive layer and preparation method thereof
JPS6133041B2 (en)
JP3698892B2 (en) Iron powder for oxygen scavenger, method for producing the same, and sheet or film using the same
JP4074897B2 (en) Method for producing iron powder for oxygen scavenger
RU1830055C (en) Method of fashioned ceramic article making
US4306906A (en) Method of making metallic amalgam
JPH0440313B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees