JP2002356769A - Method and apparatus for plasma treatment - Google Patents

Method and apparatus for plasma treatment

Info

Publication number
JP2002356769A
JP2002356769A JP2001161606A JP2001161606A JP2002356769A JP 2002356769 A JP2002356769 A JP 2002356769A JP 2001161606 A JP2001161606 A JP 2001161606A JP 2001161606 A JP2001161606 A JP 2001161606A JP 2002356769 A JP2002356769 A JP 2002356769A
Authority
JP
Japan
Prior art keywords
processing
substrate
time
plasma processing
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001161606A
Other languages
Japanese (ja)
Other versions
JP2002356769A5 (en
Inventor
Masahiro Yamamoto
昌裕 山本
Isamu Aokura
勇 青倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001161606A priority Critical patent/JP2002356769A/en
Publication of JP2002356769A publication Critical patent/JP2002356769A/en
Publication of JP2002356769A5 publication Critical patent/JP2002356769A5/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the highest temperature of a substrate. SOLUTION: Plasma treatment in a vacuum treatment chamber 1 is performed a plurality of times while cooling the substrate during rest time between the treatments. When continuously performing the treatments in a plurality of treatment chambers, the temperature of the substrate is increased by performing the treatments together except a treatment in the treatment chambers reaching the highest temperature, a radiation heat is increased thereby, and the treatment is performed a plurality of times in the treatment chamber reaching the highest temperature. In order to prevent a target 4 and a wall surface of the treatment chamber from hindering the radiation heat, a shielding plate 8 is provided between the substrate 7 and the target 4 or the wall surface of the treatment chamber 1 to increase the radiation heat from the substrate 7 during the waiting time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スパッタリング、
CVD、ドライエッチングなどのプラズマを用いて処理
を行うプラズマ処理方法及び装置に関するものである。
TECHNICAL FIELD The present invention relates to sputtering,
The present invention relates to a plasma processing method and apparatus for performing processing using plasma such as CVD and dry etching.

【0002】[0002]

【従来の技術】減圧雰囲気の処理室でプラズマを発生さ
せて基板を処理する技術として、スパッタリングやCV
Dやドライエッチングなどがある。以下、プラズマ処理
装置の一例として、スパッタリング装置について、図
5、図6を参照して説明する。
2. Description of the Related Art As a technique for processing a substrate by generating plasma in a processing chamber in a reduced pressure atmosphere, sputtering or CV
D and dry etching. Hereinafter, a sputtering apparatus will be described as an example of a plasma processing apparatus with reference to FIGS.

【0003】図5において、11は真空処理室、12は
排気口、13はスパッタリングガスを導入するガス導入
口、14はターゲット、15は高電圧電源、16はター
ゲット14の裏面に配置されたマグネトロン磁石、17
は真空処理室11内にターゲット14の表面と対向する
ように設置された基板である。
In FIG. 5, 11 is a vacuum processing chamber, 12 is an exhaust port, 13 is a gas inlet for introducing a sputtering gas, 14 is a target, 15 is a high voltage power supply, and 16 is a magnetron arranged on the back surface of the target 14. Magnet, 17
Is a substrate set in the vacuum processing chamber 11 so as to face the surface of the target 14.

【0004】真空処理室11内に基板17を設置し、真
空処理室11内を真空排気しつつスパッタリングガスを
導入し、ターゲット14に高電圧電源15より電力を供
給すると、スパッタ用の高密度プラズマが発生する。こ
のとき、マグネトロン磁石16にてターゲット14の表
面上で閉じるように磁力線を生じさせていることで、よ
り高密度なプラズマが発生して高速に成膜することがで
きる。このプラズマ中のイオンがターゲット14の表面
にぶつかると、ターゲット14の原子がスパッタされ、
基板17の向かい合った表面に付着し、薄膜が形成され
る。
When a substrate 17 is set in the vacuum processing chamber 11, a sputtering gas is introduced while evacuating the vacuum processing chamber 11, and power is supplied from a high-voltage power supply 15 to the target 14, a high-density plasma for sputtering is formed. Occurs. At this time, since the lines of magnetic force are generated by the magnetron magnet 16 so as to close on the surface of the target 14, a higher-density plasma is generated and a film can be formed at a high speed. When the ions in the plasma hit the surface of the target 14, atoms of the target 14 are sputtered,
The thin film is formed by adhering to the opposing surfaces of the substrate 17.

【0005】通常は、図6に示すように、成膜は一度の
放電によって行われ、基板17が搬出されるまでの時間
は待機時間となる。
Normally, as shown in FIG. 6, film formation is performed by one discharge, and the time until the substrate 17 is carried out is a standby time.

【0006】[0006]

【発明が解決しようとする課題】ところで、成膜時間中
は、真空処理室11内にプラズマが発生しており、プラ
ズマ中の荷電粒子が基板17に流入することや、高温に
なったターゲット14や真空処理室11の壁面からの輻
射熱によって基板17の温度が上昇する。このため、放
電期間中には、基板17の温度が一気に上昇し、膜特性
に影響を及ぼす可能性があり、好ましくない。また、基
板17に樹脂等の耐熱性の低い素材を用いている場合に
は、基板17自身が変形、溶融してしまう恐れもある。
By the way, during the film formation time, plasma is generated in the vacuum processing chamber 11, and charged particles in the plasma flow into the substrate 17, and the temperature of the target 14 becomes high. Also, the temperature of the substrate 17 rises due to radiant heat from the wall surface of the vacuum processing chamber 11. For this reason, during the discharge period, the temperature of the substrate 17 rises at a stretch and may affect the film characteristics, which is not preferable. When a material having low heat resistance such as resin is used for the substrate 17, the substrate 17 itself may be deformed or melted.

【0007】このような問題を解決する手段として、従
来は基板17の裏面、あるいは基板17を固定する基板
ホルダを冷却し、基板17の温度上昇を防止している
が、基板17の裏面からの冷却であり、基板表面の温度
上昇を低減する効果は十分ではないという問題がある。
特に、基板17が樹脂等の熱伝導性の悪いものを使用し
た場合は、基板17の表面と裏面で温度勾配がついてし
まい、歪み等の問題を生じる場合がある。また、冷却効
率を高めようとして基板ホルダと基板17を接触させて
成膜した場合は基板ホルダに付着した異物等により基板
17を傷つけてしまう恐れもある。
As a means for solving such a problem, conventionally, the back surface of the substrate 17 or a substrate holder for fixing the substrate 17 is cooled to prevent the temperature of the substrate 17 from rising. There is a problem that cooling is not enough to reduce the temperature rise on the substrate surface.
In particular, when the substrate 17 is made of a material having poor thermal conductivity such as a resin, a temperature gradient is formed between the front surface and the rear surface of the substrate 17, which may cause a problem such as distortion. Further, when the film is formed by bringing the substrate holder into contact with the substrate 17 in order to increase the cooling efficiency, there is a possibility that the substrate 17 may be damaged by foreign substances or the like attached to the substrate holder.

【0008】このように基板17への荷電粒子の流入
や、ターゲット14や真空処理室11の壁面等からの輻
射熱によって基板17の温度が上昇し、基板17の変形
や溶解を生じたり、膜質の悪化をもたらす恐れがあると
いう問題があった。
As described above, the temperature of the substrate 17 rises due to the flow of the charged particles into the substrate 17 and the radiant heat from the target 14 and the wall surface of the vacuum processing chamber 11, and the substrate 17 is deformed or dissolved, and the quality of the film is reduced. There was a problem that it could cause deterioration.

【0009】本発明は、上記従来の問題に鑑み、基板の
最高到達温度を低減できるプラズマ処理方法及び装置を
提供することを目的としている。
The present invention has been made in view of the above-mentioned conventional problems, and has as its object to provide a plasma processing method and apparatus capable of reducing the maximum temperature of a substrate.

【0010】[0010]

【課題を解決するための手段】本発明のプラズマ処理方
法は、一つの処理室における処理時間を複数に分割し、
各処理の間に待機時間をあけるものであり、待機時間中
に放熱を行いながら処理を行うため、基板の到達最高温
度を低く抑えることができる。
According to the plasma processing method of the present invention, the processing time in one processing chamber is divided into a plurality of processing times.
A waiting time is provided between each processing, and the processing is performed while radiating heat during the waiting time, so that the maximum temperature of the substrate can be kept low.

【0011】また、各処理の間の待機時間を不均等に設
定し、また各処理の時間を不均等に設定すると、基板の
最高到達温度に応じて処理時間を適当に設定し、その処
理による基板の温度上昇に応じて待機時間を設定するこ
とにより、基板の到達最高温度をより低く抑えることが
できる。
If the waiting time between each processing is set unequally, and the time of each processing is set unequal, the processing time is set appropriately according to the maximum temperature of the substrate, and the processing time is set. By setting the standby time in accordance with the rise in the temperature of the substrate, the ultimate temperature of the substrate can be kept lower.

【0012】また、各処理の時間のうち、n番目の時間
をtn とし、(n+1)番目の時間をt(n+1) として、
n >t(n+1) に設定し、また、各処理の間の待機時間
のうち、n番目の時間をTn とし、(n+1)番目の時
間をT(n+1) として、Tn >T(n+1) に設定することに
より、基板温度を最高到達温度に近い温度でほぼ一定に
保ち、輻射熱の総量を大きくして基板の到達最高温度を
より低く抑えることができる。
Further, of the processing times, the n-th time is defined as t n and the (n + 1) -th time is defined as t (n + 1) .
t n > t (n + 1) , and among the standby times between the processes, the n-th time is T n , the (n + 1) -th time is T (n + 1) , and By setting n > T (n + 1) , the substrate temperature can be kept almost constant at a temperature close to the maximum attained temperature, the total amount of radiant heat can be increased, and the maximum attainable temperature of the substrate can be suppressed lower.

【0013】また、各処理の時間のうち、n番目の時間
をtn とし、m番目の時間をtm とし、各処理の間の待
機時間のうち、n番目の時間をTn とし、m番目の時間
をT m として、tn >tm の関係を満たすnとmのすべ
ての組み合わせについて、T n >Tm の関係を満たすこ
とにより、基板温度を最高到達温度に近い温度でほぼ一
定に保ち、輻射熱の総量を大きくして基板の到達最高温
度をより低く抑えることができる。
Further, of the processing times, the n-th time
To tnAnd the m-th time is tmAnd wait between each process
T is the nth time in the machine timenAnd m-th time
To T mAs tn> TmAll of n and m satisfying the relationship
T for all combinations n> TmSatisfy the relationship
And the substrate temperature is almost equal to the maximum temperature.
And maintain the maximum temperature of the substrate by increasing the total amount of radiant heat.
The degree can be kept lower.

【0014】また、各処理において投入される電力のう
ち、n番目の電力をPn とし、(n+1)番目の時間を
(n+1) として、Pn >P(n+1) に設定することによ
り、基板温度を最高到達温度に近い温度でほぼ一定に保
つことができ、輻射熱の総量を大きくして基板の最高到
達温度をより低く抑えることができる。
Further, among the power input in each process, the n-th power is set to P n , the (n + 1) -th time is set to P (n + 1) , and P n > P (n + 1) is set. By doing so, the substrate temperature can be kept almost constant at a temperature close to the maximum attainable temperature, and the total amount of radiant heat can be increased to lower the maximum attainable temperature of the substrate.

【0015】また、複数の処理室でプラズマ処理を行う
とともに、各処理室にて連続してプラズマ処理を行うプ
ラズマ処理方法において、一度で連続処理すると基板温
度が最高許容温度以上になる処理室におけるプラズマ処
理について、上記プラズマ処理方法を用いると、基板温
度を最高許容温度以下の最高到達温度に近い温度でほぼ
一定に保つことができ、輻射熱の総量を大きくして基板
の最高到達温度をより低く抑えることができる。
Further, in a plasma processing method in which plasma processing is performed in a plurality of processing chambers and plasma processing is continuously performed in each processing chamber, the plasma processing method may be such that the substrate temperature becomes higher than the maximum allowable temperature if the continuous processing is performed once. Regarding the plasma processing, when the above-described plasma processing method is used, the substrate temperature can be kept almost constant at a temperature close to the maximum attainable temperature equal to or lower than the maximum allowable temperature, and the maximum amount of radiant heat is increased to lower the maximum attainable temperature of the substrate. Can be suppressed.

【0016】また、複数の処理室でプラズマ処理を行う
とともに、各処理室にて連続してプラズマ処理を行うプ
ラズマ処理方法において、一度に連続処理すると基板温
度が最高許容温度以上になる処理室におけるプラズマ処
理について、上記プラズマ処理方法を用い、かつそれ以
外の処理室におけるプラズマ処理については個々の処理
室における処理時間を複数に分割しないことにより、基
板温度を最高許容温度以下の最高到達温度に近い温度で
ほぼ一定に保つことができ、輻射熱の総量を大きくして
基板の最高到達温度をより低く抑えることができる。
Further, in a plasma processing method in which plasma processing is performed in a plurality of processing chambers and plasma processing is continuously performed in each processing chamber, the plasma processing method may be such that the substrate temperature becomes equal to or higher than the maximum allowable temperature if continuous processing is performed at once. For the plasma processing, the above-described plasma processing method is used, and for the plasma processing in the other processing chambers, the processing time in each processing chamber is not divided into a plurality of times, so that the substrate temperature is close to the maximum attainable temperature equal to or lower than the maximum allowable temperature. The temperature can be kept almost constant, and the total amount of radiant heat can be increased to lower the maximum temperature of the substrate.

【0017】また、複数の処理室でプラズマ処理を行う
とともに、各処理室にて連続してプラズマ処理を行うプ
ラズマ処理方法において、複数の連続した処理室におい
て同じ処理を行う場合に、複数の処理室のうちで、少な
くとも何れかの後続する処理室における合計処理時間
を、先行する処理室における合計処理時間よりも短くす
ると、基板温度を最高到達温度に近い温度でほぼ一定に
保つことができ、輻射熱の総量を大きくして基板の最高
到達温度をより低く抑えることができる。
In a plasma processing method in which plasma processing is performed in a plurality of processing chambers and plasma processing is performed continuously in each processing chamber, when the same processing is performed in a plurality of continuous processing chambers, a plurality of processing Among the chambers, when the total processing time in at least any one of the subsequent processing chambers is shorter than the total processing time in the preceding processing chamber, the substrate temperature can be kept almost constant at a temperature close to the highest reached temperature, By increasing the total amount of radiant heat, the maximum temperature of the substrate can be kept lower.

【0018】また、本発明のプラズマ処理装置は、処理
室内にプラズマを発生させて基板を処理するプラズマ処
理装置において、プラズマ処理によって高温になるター
ゲットや処理室壁面と基板との間に挿入可能な遮蔽板を
設け、この遮蔽板はAl、Ni、Znのうち少なくとも
一つの材料からなるものであり、待機時間中に遮蔽板を
ターゲットや処理室壁面と基板との間に挿入することに
より、基板からの放熱量を大きくすることができるた
め、基板の最高到達温度をより低く抑えることができ
る。
Further, the plasma processing apparatus of the present invention is a plasma processing apparatus for processing a substrate by generating plasma in a processing chamber. A shielding plate is provided, and the shielding plate is made of at least one of Al, Ni, and Zn. By inserting the shielding plate between the target and the processing chamber wall surface and the substrate during the standby time, Since the amount of heat radiation from the substrate can be increased, the maximum temperature of the substrate can be suppressed lower.

【0019】また、遮蔽板の基板に対向する面と反対側
の面のうち、少なくとも一方の面を研磨面または鏡面に
すると、遮蔽板の温度上昇を抑制して基板からの放熱量
を大きくし、基板の最高到達温度をより低く抑えること
ができる。
When at least one of the surfaces of the shielding plate opposite to the surface facing the substrate is polished or mirrored, the temperature rise of the shielding plate is suppressed and the amount of heat radiation from the substrate is increased. Thus, the maximum temperature of the substrate can be kept lower.

【0020】また、処理室内にプラズマを発生させて基
板を処理するプラズマ処理装置において、プラズマ処理
によって高温になるターゲットや処理室壁面と基板との
間に挿入可能な遮蔽板を設け、かつ遮蔽板の基板に対向
する面と反対側の面のうち、少なくとも一方の面を研磨
面または鏡面にすると、基板からの放熱量を大きくする
ことができるため、基板の最高到達温度をより低く抑え
ることができる。
Further, in a plasma processing apparatus for processing a substrate by generating plasma in a processing chamber, a shielding plate which can be inserted between a target or a processing chamber wall surface and the substrate which is heated by the plasma processing is provided. If at least one of the surfaces opposite to the surface facing the substrate is a polished surface or a mirror surface, the amount of heat released from the substrate can be increased, so that the maximum temperature of the substrate can be suppressed lower. it can.

【0021】[0021]

【発明の実施の形態】以下、本発明のプラズマ処理方法
及び装置の一実施形態について、図1〜図3を参照して
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the plasma processing method and apparatus of the present invention will be described below with reference to FIGS.

【0022】図1において、1は真空処理室、2は排気
口、3はスパッタリングガスを導入するガス導入口、4
はターゲット、5はターゲット4の裏面に高圧電力を供
給する高周波または直流の電源、6はターゲット4の裏
面に配置されたマグネトロン磁石、7は真空処理室1内
にターゲット4の表面と対向するように設置された基
板、8は基板7とターゲット4やプラズマに晒される真
空処理室1の壁面との間に介在可能な遮蔽板である。遮
蔽板8の出し入れは、図中に矢印で示すような回転機構
を用いた方式でもよいし、直進の前後運動によっても良
く、その駆動手段はエアアクチュエータやモータを使用
すればよい。
In FIG. 1, 1 is a vacuum processing chamber, 2 is an exhaust port, 3 is a gas inlet for introducing a sputtering gas, 4
Is a target, 5 is a high-frequency or DC power supply for supplying high-voltage power to the back surface of the target 4, 6 is a magnetron magnet arranged on the back surface of the target 4, 7 is inside the vacuum processing chamber 1 so as to face the surface of the target 4. Is a shielding plate which can be interposed between the substrate 7 and the target 4 or the wall surface of the vacuum processing chamber 1 exposed to plasma. The shield plate 8 may be taken in and out by a method using a rotation mechanism as indicated by an arrow in the figure, or by a straight forward / backward movement, and the driving means may be an air actuator or a motor.

【0023】以上の構成において、真空処理室1内を真
空排気しながらスパッタリングガスを導入し、電源5に
てターゲット4に電圧を印加することによって真空処理
室1内にプラズマが発生する。このとき、スパッタリン
グガスとしては、一般的にArやXeが用いられる。プ
ラズマ中に存在するイオンが、ターゲット4に引き込ま
れてスパッタリング現象を生じ、ターゲット4からはじ
き出されたスパッタ粒子が基板7に付着して薄膜を形成
する。しかし、この時に同時に、荷電粒子がプラズマか
ら基板7に流入することで基板7の温度が上昇する。ひ
とつの真空処理室1における成膜を一度に行うのではな
く、図2に示すように、複数回に分割する基板7の最高
到達温度を低く抑えることができる。
In the above configuration, a plasma is generated in the vacuum processing chamber 1 by introducing a sputtering gas while evacuating the vacuum processing chamber 1 and applying a voltage to the target 4 by the power supply 5. At this time, Ar or Xe is generally used as a sputtering gas. Ions present in the plasma are attracted to the target 4 to cause a sputtering phenomenon, and sputter particles repelled from the target 4 adhere to the substrate 7 to form a thin film. However, at the same time, the temperature of the substrate 7 rises because charged particles flow into the substrate 7 from the plasma. Rather than performing film formation in one vacuum processing chamber 1 at a time, as shown in FIG. 2, the maximum temperature of the substrate 7 divided into a plurality of times can be suppressed.

【0024】詳しく説明すると、真空処理室1の中に基
板7を導入し、プラズマを用いた処理を行ったのちに基
板7を取り出す処理を行う場合、一般的にタクトタイム
に比して処理時間が短く、図6に示すように、処理を実
施する前後に待機時間をとることができる。したがっ
て、図2に示すように、真空処理室1における成膜を複
数回に分けて、それぞれの成膜の間にプラズマを生じさ
せない待機時間をとることができる。
More specifically, in the case where the substrate 7 is introduced into the vacuum processing chamber 1 and the substrate 7 is removed after performing the process using plasma, the processing time is generally shorter than the tact time. 6, a waiting time can be taken before and after the processing is performed, as shown in FIG. Therefore, as shown in FIG. 2, the film formation in the vacuum processing chamber 1 can be divided into a plurality of times, and a standby time during which no plasma is generated between the film formations can be taken.

【0025】タクトタイムに対して余裕がない場合は、
例えばターゲット4への投入電力を増して成膜速度を向
上することで、待機時間を確保することも可能である。
If there is no room for the tact time,
For example, the standby time can be ensured by increasing the power supplied to the target 4 to increase the film forming speed.

【0026】基板温度は、成膜中には上昇するが、待機
時間には輻射熱によって熱が逃げるため、温度が低下し
て行く。同じ厚さの膜を形成するためには、1回で成膜
を行う場合も、複数回に分けて成膜を行う場合も、基板
7に流入する熱量は概ね同じである。よって、基板7の
到達最高温度を低く抑えるためには、図2に示すように
成膜を複数回に分割し、待機時間に放熱を行いながら成
膜を行う方が有利であり、到達最高温度を低く抑えるこ
とができる。
The substrate temperature rises during film formation, but decreases during the standby time because heat is released by radiant heat. In order to form a film having the same thickness, the amount of heat flowing into the substrate 7 is substantially the same regardless of whether the film is formed once or in a plurality of times. Therefore, in order to keep the maximum temperature attained by the substrate 7 low, it is more advantageous to divide the film into a plurality of times as shown in FIG. Can be kept low.

【0027】また、基板7からの熱輻射量は、ステファ
ン−ボルツマンの法則に従って、基板温度の4乗に比例
するため、基板7からの放熱量を大きくするためには、
基板7の温度を高く保つ方が良い。つまり、複数回に成
膜を分割する場合に、最初の成膜時間を長くとって基板
7の温度を最高到達温度付近まで上昇させてから、待機
時間を長くとって輻射による熱放出で基板7を冷却し、
以降の成膜時間と待機時間を順に短くして行くことで、
基板温度を最高到達温度に近い温度でほぼ一定に保つこ
とができ、輻射熱の総量を大きくして基板7の最高到達
温度を低く抑えることができる。また、基板温度の変化
を小さく抑えることができるため、基板7の熱歪み等の
悪影響も低減することができる。
The amount of heat radiation from the substrate 7 is proportional to the fourth power of the substrate temperature in accordance with the Stefan-Boltzmann law.
It is better to keep the temperature of the substrate 7 high. In other words, when the film formation is divided into a plurality of times, the initial film formation time is increased to raise the temperature of the substrate 7 to near the maximum temperature, and then the standby time is increased to release the substrate 7 by radiation of heat. Cool and
By sequentially shortening the film formation time and the standby time,
The substrate temperature can be kept almost constant at a temperature close to the maximum attained temperature, and the total amount of radiant heat can be increased to keep the maximum attained temperature of the substrate 7 low. Further, since the change in the substrate temperature can be suppressed to a small value, adverse effects such as thermal distortion of the substrate 7 can also be reduced.

【0028】また、本実施形態では、基板7とターゲッ
ト4や真空処理室1の壁面の高温部との間に遮蔽板8を
配設し、成膜時にはスパッタ粒子を妨げない位置に移動
され、成膜後の待機時間中のみターゲット4と基板7の
間に挿入されるようにしているので、待機時間中の基板
7からの放熱量を大きくすることができる。すなわち、
基板7の周辺に高温の物体があると基板7からの効果的
な熱輻射を妨げ、スパッタリング装置の場合は基板7に
対向する位置にあるターゲット4や真空処理室1の壁面
が基板7からの熱輻射を妨げることになるが、遮蔽板8
を設けることで熱輻射による放熱が効果的に行われ、基
板7の最高到達温度を低くすることができる。
Further, in this embodiment, a shielding plate 8 is provided between the substrate 7 and the target 4 or the high-temperature portion of the wall surface of the vacuum processing chamber 1, and is moved to a position that does not hinder sputtered particles during film formation. Since it is inserted between the target 4 and the substrate 7 only during the standby time after the film formation, the amount of heat radiation from the substrate 7 during the standby time can be increased. That is,
When there is a high-temperature object around the substrate 7, effective heat radiation from the substrate 7 is hindered. In the case of a sputtering apparatus, the target 4 or the wall surface of the vacuum processing chamber 1 at a position facing the substrate 7 causes Although it will hinder heat radiation, the shielding plate 8
Is provided, heat radiation by heat radiation is effectively performed, and the maximum temperature of the substrate 7 can be reduced.

【0029】また、遮蔽板8の材料には放熱率の低いも
のを用いれば遮蔽板8自身が温度上昇して基板7の放熱
を妨げることがなくて良い。具体的には、Al、Ni、
Zn等が酸化しても放射率が低くてよい。あるいは、母
材には鉄やステンレス等の材料を用いて表面にNi、Z
n等のメッキ層を形成してもよい。また、放射率は表面
の状態によっても変化し、放射率を低く抑えるためには
表面を平滑にすると良く、研磨面や鏡面に仕上げればよ
い。
Further, if a material having a low heat radiation rate is used as the material of the shielding plate 8, the temperature of the shielding plate 8 itself does not have to hinder the heat radiation of the substrate 7. Specifically, Al, Ni,
Even if Zn or the like is oxidized, the emissivity may be low. Alternatively, a material such as iron or stainless steel is used as a base material, and Ni, Z
A plating layer such as n may be formed. The emissivity also changes depending on the state of the surface. In order to keep the emissivity low, the surface may be smoothed, and may be polished or mirror-finished.

【0030】以下、相変化書き換え型光ディスク用スパ
ッタ装置における一つの真空処理室における成膜を説明
する。直径203mmのターゲット4を用いて、直径1
20mmのポリカーボネート製の基板に成膜を行う。保
護膜として使用されるZnS・SiO2 は高周波スパッ
タリングにより成膜を行い、50〜200nmの膜厚を
5〜20sで成膜するために、基板温度が非常に高温に
なる。
The film formation in one vacuum processing chamber in the phase change rewritable optical disk sputtering apparatus will be described below. Using a target 4 having a diameter of 203 mm,
A film is formed on a 20 mm polycarbonate substrate. ZnS · SiO 2 which is used as a protective film performs the film formation by RF sputtering, to deposit a film thickness of 50~200nm at 5~20S, the substrate temperature is very hot.

【0031】本発明による基板温度上昇の低減効果を示
すために、基板温度の変化をシミュレーションした結果
を図3に示す。計算条件は、厚さ0.6mm、直径12
0mmのポリカーボネート製基板に対して、ZnS・S
iO2 ターゲットを58mm離して配置し、高周波電力
3.4kWを合計10s間印加して、およそ100nm
のZnS・SiO2 膜を成膜した場合とした。基板への
熱の流入量は、基板温度の実測値との比較より、430
0W とした。また、ポリカーボネートの比重は1.
2、比熱は1.26J/kg、放射率は0.9として、
輻射はステファン−ボルツマンの法則に従うものとして
計算した。タクトタイムは20sを想定して、成膜開始
から20s後の基板温度と、基板の到達最高温度の2つ
の観点から比較した。
FIG. 3 shows a result of simulating a change in the substrate temperature in order to show the effect of reducing the increase in the substrate temperature according to the present invention. The calculation conditions are as follows: thickness 0.6 mm, diameter 12
For a 0 mm polycarbonate substrate, ZnS
An iO 2 target is arranged at a distance of 58 mm, a high-frequency power of 3.4 kW is applied for a total of 10 s, and the
Was formed when a ZnS.SiO 2 film was formed. The amount of heat flowing into the substrate was 430 from the comparison with the measured value of the substrate temperature.
0W And The specific gravity of polycarbonate is 1.
2. The specific heat is 1.26 J / kg and the emissivity is 0.9.
Radiation was calculated as obeying Stefan-Boltzmann's law. Assuming a tact time of 20 s, comparison was made from two viewpoints: the substrate temperature 20 s after the start of film formation and the maximum temperature reached by the substrate.

【0032】図3に示すように、成膜を1回で行った成
膜パターンAの場合は、基板の最高到達温度が72.4
℃と最も高くなる。しかし、基板温度が高くなるために
基板からの熱輻射量が大きくなり、結果として20s後
の基板温度は64.7℃と最も低くなる。一方、成膜を
2分割した成膜パターンBの場合は、基板の最高到達温
度を69.4℃と低く保つことができる反面、20s後
の温度は65.7℃と逆に高くなる。また、基板の到達
最高温度をさらに低く抑えるためには、最初の成膜時間
とその後の冷却時間を長くとり、次の成膜時間と冷却時
間を短くとる成膜パターンCが効果的であり、最高到達
温度は66.9℃となる。
As shown in FIG. 3, in the case of the film formation pattern A in which the film formation is performed once, the maximum temperature of the substrate is 72.4.
° C and the highest. However, the amount of heat radiation from the substrate increases because the substrate temperature increases, and as a result, the substrate temperature after 20 s is the lowest at 64.7 ° C. On the other hand, in the case of the film formation pattern B in which the film formation is divided into two, the maximum temperature of the substrate can be kept as low as 69.4 ° C., but the temperature after 20 s is higher than 65.7 ° C. Further, in order to further reduce the maximum temperature reached by the substrate, a film forming pattern C in which the first film forming time and the subsequent cooling time are long, and the next film forming time and the cooling time are short is effective. The highest temperature reached is 66.9 ° C.

【0033】次に、複数の成膜室で連続して積層膜を成
膜する場合について説明する。この場合、各層の材料や
膜厚などによって基板が最高温度に達する成膜室が決ま
るので、最高温度に達する成膜室における成膜は複数回
に分割して基板の最高到達温度を低く抑え、最高温度に
達する成膜室以外では、基板からの熱輻射量を大きくと
るためには、基板温度を高くする方が良いため、成膜を
分割することなく1回で行うことにより、基板温度を上
昇させて輻射を大きくし、放熱量を大きくとることがで
き、基板の到達最高温度を低く抑えることができる。
Next, a case where a laminated film is continuously formed in a plurality of film forming chambers will be described. In this case, the film formation chamber where the substrate reaches the maximum temperature is determined by the material and film thickness of each layer, so that the film formation in the film formation chamber where the maximum temperature is reached is divided into a plurality of times and the maximum temperature of the substrate is suppressed low. It is better to raise the substrate temperature in order to increase the amount of heat radiation from the substrate except in the film forming chamber where the temperature reaches the maximum temperature. By increasing the temperature, the radiation can be increased, the heat radiation amount can be increased, and the maximum temperature of the substrate can be kept low.

【0034】この積層膜を成膜する具体例として、相変
化書き換え型光ディスクの成膜時について説明する。相
変化書き換え型光ディスクは、相変化を起こす記録層の
他に、反射層や保護層といった膜の積層膜からなる。そ
のうちで、保護層であるZnS・SiO2 を高周波スパ
ッタで成膜する成膜室で基板温度が最高温度に達する。
表1に、ZnS・SiO2 の成膜時間を分割することに
よって基板の到達最高温度を低減した例を示す。
As a specific example of forming this laminated film, a description will be given of the case of forming a phase change rewritable optical disk. A phase-change rewritable optical disk is composed of a laminated layer of films such as a reflective layer and a protective layer, in addition to a recording layer that causes a phase change. Among them, the substrate temperature reaches a maximum temperature in a film forming chamber for forming a protective layer of ZnS.SiO 2 by high frequency sputtering.
Table 1 shows an example in which the ultimate temperature of the substrate is reduced by dividing the deposition time of ZnS.SiO 2 .

【0035】[0035]

【表1】 表1において、タクトタイム24sで積層膜を成膜する
場合に、ZnS・SiO2 を高周波電力5kWで成膜し
た場合は成膜時間が9.7sとなる。この場合、成膜を
1回で行うと基板の最高到達温度が92.6℃であった
のを、合計9.7sを2回に分け、その際に等分に分け
て、4.85s成膜−7.15s休止−4.85s成膜
−7.15休止に分割すると、87.4℃に低減するこ
とができ、さらに最初に成膜時間及び休止時間が長くな
るように不均等に分けて、7.2s成膜−11.3s休
止−2.5s成膜−3.0休止に分割すると83.7℃
に低減することができる。
[Table 1] In Table 1, when a laminated film is formed with a tact time of 24 s, the film forming time is 9.7 s when ZnS.SiO 2 is formed with a high frequency power of 5 kW. In this case, if the maximum temperature of the substrate was 92.6 ° C. when the film formation was performed once, the total of 9.7 s was divided into two times, and at that time, divided into 4.85 s. By dividing into film-7.15s pause-4.85s film formation-7.15 pause, the temperature can be reduced to 87.4 ° C, and firstly, the film formation time and the pause time are unequally divided so as to be longer. 83.7 ° C. when divided into 7.2 s film formation—11.3 s pause—2.5 s film formation—3.0 pause
Can be reduced.

【0036】次に、本発明のプラズマ処理方法及び装置
の他の実施形態について、図4を参照して説明する。
Next, another embodiment of the plasma processing method and apparatus of the present invention will be described with reference to FIG.

【0037】上記実施形態では、単一の真空処理室1で
の処理を対象としたが、本実施形態では、複数の真空処
理室1(1a〜1e)で連続して処理を行うように構成
されている。図4において、基板を順次移載する移載手
段9aが配設された多角形状の移載室9の一辺に基板7
を外部との間で受け渡すロードロック室10が配置さ
れ、その他の辺にそれぞれ上記実施形態で説明した構成
の真空処理室1(1a〜1e)が配設されている。
In the above embodiment, the processing is performed in a single vacuum processing chamber 1, but in this embodiment, the processing is performed continuously in a plurality of vacuum processing chambers 1 (1a to 1e). Have been. In FIG. 4, a substrate 7 is provided on one side of a polygonal transfer chamber 9 in which transfer means 9a for sequentially transferring substrates is provided.
And a vacuum processing chamber 1 (1a to 1e) having the configuration described in the above embodiment are disposed on the other sides.

【0038】この真空処理装置においては、基板7が各
真空処理室1(1a〜1e)に順次送り込まれ、同一又
は異なった処理が順次連続的に行われる。その際に、一
度に連続処理すると基板温度が最高許容温度以上になる
真空処理室におけるプラズマ処理について、上記実施形
態のように処理時間を複数に分割して冷却期間を設定
し、それ以外の処理室におけるプラズマ処理については
個々の処理室における処理時間を複数に分割しないこと
により、各真空処理室1a〜1eで処理中の基板7の温
度を最高許容温度以下の最高到達温度に近い温度でほぼ
一定に保つことができ、それによって輻射熱の総量を大
きくでき、その結果基板7の最高到達温度をより低く抑
えることができる。
In this vacuum processing apparatus, the substrate 7 is sequentially fed into each of the vacuum processing chambers 1 (1a to 1e), and the same or different processing is successively performed. At that time, for the plasma processing in the vacuum processing chamber where the substrate temperature becomes equal to or higher than the maximum allowable temperature when the continuous processing is performed at once, the cooling time is set by dividing the processing time into a plurality of times as in the above embodiment, and other processing is performed. In the plasma processing in the chambers, the temperature of the substrate 7 being processed in each of the vacuum processing chambers 1a to 1e is substantially equal to or lower than the maximum allowable temperature by not dividing the processing time in each processing chamber into a plurality. It can be kept constant, so that the total amount of radiant heat can be increased, and as a result, the maximum temperature of the substrate 7 can be kept lower.

【0039】また、上記複数の処理室1(1a〜1e)
で同じ処理を行う場合には、後続する処理室では既に先
行する処理で基板7の温度が上昇しているので、複数の
処理室のうちで、少なくとも何れかの後続する処理室に
おける合計処理時間を、先行する処理室における合計処
理時間よりも短くすることにより、基板7温度を最高到
達温度に近い温度でほぼ一定に保つことができ、輻射熱
の総量を大きくして基板7の最高到達温度をより低く抑
えることができる。
The plurality of processing chambers 1 (1a to 1e)
When the same processing is performed in the subsequent processing chambers, the temperature of the substrate 7 has already risen in the preceding processing, so that the total processing time in at least one of the following processing chambers among the plurality of processing chambers Is shorter than the total processing time in the preceding processing chamber, the temperature of the substrate 7 can be kept almost constant at a temperature close to the maximum attained temperature, and the total amount of radiant heat is increased to increase the maximum attainable temperature of the substrate 7. It can be kept lower.

【0040】[0040]

【発明の効果】本発明のプラズマ処理方法及び装置によ
れば、以上のように基板に対するプラズマ処理を複数回
に分けて行い、処理の間の休止時間に基板を冷却しなが
ら処理を行うことで基板の最高到達温度を低く抑えるこ
とができる。
According to the plasma processing method and apparatus of the present invention, the plasma processing for the substrate is performed in a plurality of times as described above, and the processing is performed while cooling the substrate during the downtime during the processing. The maximum temperature of the substrate can be kept low.

【0041】また、複数の処理室において連続して処理
する場合に、一度に連続処理すると基板温度が最高許容
温度以上になる処理室では処理を複数回に分けることで
基板の最高到達温度を低く抑え、それ以外の処理室では
一度に処理を行って基板温度を上昇させて輻射熱を大き
くすることで、基板の最高到達温度を低く抑えることが
できる。
Further, when processing is continuously performed in a plurality of processing chambers, in a processing chamber where the substrate temperature becomes higher than the maximum allowable temperature if the continuous processing is performed at once, the maximum temperature of the substrate can be lowered by dividing the processing into a plurality of times. In the other processing chambers, the maximum temperature of the substrate can be suppressed by performing the processing at once and raising the substrate temperature to increase the radiant heat.

【0042】また、基板とターゲットや処理室の壁面の
間に遮蔽板を設け、ターゲットや処理室の壁面が基板か
らの熱輻射を妨げるのを防止することで待機時間中の基
板からの放熱量を大きくでき、基板の最高到達温度を低
く抑えることができる。
Further, a shield plate is provided between the substrate and the target or the wall of the processing chamber to prevent the target or the wall of the processing chamber from obstructing the heat radiation from the substrate, so that the amount of heat radiated from the substrate during the standby time is reduced. And the maximum temperature of the substrate can be kept low.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のプラズマ処理装置をスパッタリング装
置に適用した一実施形態の概略構成図である。
FIG. 1 is a schematic configuration diagram of an embodiment in which a plasma processing apparatus of the present invention is applied to a sputtering apparatus.

【図2】同実施形態における成膜工程の一例の説明図で
ある。
FIG. 2 is an explanatory diagram of an example of a film forming process in the embodiment.

【図3】同実施形態における各種成膜工程による基板の
最高到達温度の低減効果を示す説明図である。
FIG. 3 is an explanatory diagram showing a reduction effect of a maximum temperature of a substrate by various film forming steps in the embodiment.

【図4】本発明のプラズマ処理装置の他の実施形態の概
略構成を示す平面図である。
FIG. 4 is a plan view showing a schematic configuration of another embodiment of the plasma processing apparatus of the present invention.

【図5】従来例のスパッタリング装置の概略構成図であ
る。
FIG. 5 is a schematic configuration diagram of a conventional sputtering apparatus.

【図6】同従来例における成膜工程の説明図である。FIG. 6 is an explanatory diagram of a film forming process in the conventional example.

【符号の説明】[Explanation of symbols]

1 真空処理室 4 ターゲット 7 基板 8 遮蔽板 1 vacuum processing chamber 4 target 7 substrate 8 shielding plate

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G075 AA22 BC02 BC04 BC06 CA47 EB31 EB37 FB02 4K029 BA46 BA51 BB02 BD12 CA05 DA00 EA06 EA09 5D112 FA04 FA09 FA10 GA20 GA22 5D121 AA04 EE03 EE20 EE30  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G075 AA22 BC02 BC04 BC06 CA47 EB31 EB37 FB02 4K029 BA46 BA51 BB02 BD12 CA05 DA00 EA06 EA09 5D112 FA04 FA09 FA10 GA20 GA22 5D121 AA04 EE03 EE20 EE30

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 一つの処理室における処理時間を複数に
分割し、各処理の間に待機時間をあけることを特徴とす
るプラズマ処理方法。
1. A plasma processing method, wherein a processing time in one processing chamber is divided into a plurality of times, and a standby time is provided between each processing.
【請求項2】 各処理の時間を不均等に設定することを
特徴とする請求項1記載のプラズマ処理方法。
2. The plasma processing method according to claim 1, wherein the time of each processing is set unequally.
【請求項3】 各処理の間の待機時間を不均等に設定す
ることを特徴とする請求項1又は2記載のプラズマ処理
方法。
3. The plasma processing method according to claim 1, wherein a standby time between each processing is set unequally.
【請求項4】 各処理の時間のうち、n番目の時間をt
n とし、(n+1)番目の時間をt(n+1) として、tn
>t(n+1) に設定することを特徴とする請求項2記載の
プラズマ処理方法。
4. An n-th time of each processing time is represented by t
n , and the (n + 1) th time is t (n + 1) , and t n
3. The plasma processing method according to claim 2, wherein the value is set to> t (n + 1) .
【請求項5】 各処理の間の待機時間のうち、n番目の
時間をTn とし、(n+1)番目の時間をT(n+1) とし
て、Tn >T(n+1) に設定することを特徴とする請求項
3記載のプラズマ処理方法。
5. The standby time between the processes is set such that the n-th time is T n , the (n + 1) -th time is T (n + 1) , and T n > T (n + 1) The plasma processing method according to claim 3, wherein the plasma processing is performed.
【請求項6】 各処理の時間のうち、n番目の時間をt
n とし、m番目の時間をtm とし、各処理の間の待機時
間のうち、n番目の時間をTn とし、m番目の時間をT
m として、tn >tm の関係を満たすnとmのすべての
組み合わせについて、Tn >Tm の関係を満たすことを
特徴とする請求項2又は3記載のプラズマ処理方法。
6. An n-th time of each processing time is represented by t
n , the m-th time is t m, and the n-th time is T n , and the m-th time is T
As m, t n> for all combinations of n and m that satisfy a relation of t m, plasma processing method according to claim 2 or 3, wherein the satisfying the relation T n> T m.
【請求項7】 各処理において投入される電力のうち、
n番目の電力をPnとし、(n+1)番目の時間をP
(n+1) として、Pn >P(n+1) に設定することを特徴と
する請求項1記載のプラズマ処理方法。
7. The power input in each process,
Let the n-th power be P n and the (n + 1) -th time be P n
2. The plasma processing method according to claim 1, wherein (n + 1) is set to satisfy Pn > P (n + 1) .
【請求項8】 複数の処理室でプラズマ処理を行うとと
もに、各処理室にて連続してプラズマ処理を行うプラズ
マ処理方法において、一度に連続処理すると基板温度が
最高許容温度以上になる処理室におけるプラズマ処理に
ついて、請求項1〜7の何れかに記載のプラズマ処理方
法を用いることを特徴とするプラズマ処理方法。
8. A plasma processing method in which plasma processing is performed in a plurality of processing chambers and plasma processing is continuously performed in each of the processing chambers. A plasma processing method using the plasma processing method according to any one of claims 1 to 7 for the plasma processing.
【請求項9】 複数の処理室でプラズマ処理を行うとと
もに、各処理室にて連続してプラズマ処理を行うプラズ
マ処理方法において、一度に連続処理すると基板温度が
最高許容温度以上になる処理室におけるプラズマ処理に
ついて、請求項1〜7の何れかに記載のプラズマ処理方
法を用い、かつそれ以外の処理室におけるプラズマ処理
については個々の処理室における処理時間を複数に分割
しないことを特徴とするプラズマ処理方法。
9. A plasma processing method in which plasma processing is performed in a plurality of processing chambers and plasma processing is continuously performed in each of the processing chambers. The plasma processing, wherein the plasma processing method according to any one of claims 1 to 7 is used, and the plasma processing in the other processing chamber does not divide the processing time in each processing chamber into a plurality of pieces. Processing method.
【請求項10】 複数の処理室でプラズマ処理を行うと
ともに、各処理室にて連続してプラズマ処理を行うプラ
ズマ処理方法において、複数の連続した処理室において
同じ処理を行う場合に、複数の処理室のうちで、少なく
とも何れかの後続する処理室における合計処理時間を、
先行する処理室における合計処理時間よりも短くするこ
とを特徴とするプラズマ処理方法。
10. A plasma processing method in which plasma processing is performed in a plurality of processing chambers and the plasma processing is performed continuously in each of the processing chambers. Of the chambers, the total processing time in at least one of the subsequent processing chambers,
A plasma processing method, wherein the total processing time is shorter than a total processing time in a preceding processing chamber.
【請求項11】 処理室内にプラズマを発生させて基板
を処理するプラズマ処理装置において、プラズマ処理に
よって高温になるターゲットや処理室壁面と基板との間
に挿入可能な遮蔽板を設け、この遮蔽板はAl、Ni、
Znのうち少なくとも一つの材料からなることを特徴と
するプラズマ処理装置。
11. A plasma processing apparatus for processing a substrate by generating plasma in a processing chamber, wherein a shielding plate that can be inserted between a target or a processing chamber wall surface and the substrate that is heated by the plasma processing is provided. Are Al, Ni,
A plasma processing apparatus comprising at least one material of Zn.
【請求項12】 遮蔽板の基板に対向する面と反対側の
面のうち、少なくとも一方の面を研磨面または鏡面にし
たことを特徴とする請求項11記載のプラズマ処理装
置。
12. The plasma processing apparatus according to claim 11, wherein at least one of the surfaces of the shielding plate opposite to the surface facing the substrate is polished or mirrored.
【請求項13】 処理室内にプラズマを発生させて基板
を処理するプラズマ処理装置において、プラズマ処理に
よって高温になるターゲットや処理室壁面と基板との間
に挿入可能な遮蔽板を設け、かつ遮蔽板の基板に対向す
る面と反対側の面のうち、少なくとも一方の面を研磨面
または鏡面にしたことを特徴とするプラズマ処理装置。
13. A plasma processing apparatus for processing a substrate by generating plasma in a processing chamber, wherein a shielding plate which can be inserted between a target or a processing chamber wall surface and the substrate, which is heated by the plasma processing, is provided. A plasma processing apparatus characterized in that at least one of the surfaces opposite to the surface facing the substrate has a polished surface or a mirror surface.
JP2001161606A 2001-05-30 2001-05-30 Method and apparatus for plasma treatment Pending JP2002356769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001161606A JP2002356769A (en) 2001-05-30 2001-05-30 Method and apparatus for plasma treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001161606A JP2002356769A (en) 2001-05-30 2001-05-30 Method and apparatus for plasma treatment

Publications (2)

Publication Number Publication Date
JP2002356769A true JP2002356769A (en) 2002-12-13
JP2002356769A5 JP2002356769A5 (en) 2007-12-27

Family

ID=19004858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001161606A Pending JP2002356769A (en) 2001-05-30 2001-05-30 Method and apparatus for plasma treatment

Country Status (1)

Country Link
JP (1) JP2002356769A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013519794A (en) * 2010-02-17 2013-05-30 アイクストロン、エスイー Coating apparatus and method of operating a coating apparatus having a shielding plate

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933032B1 (en) * 1969-08-29 1974-09-04
JPS6376871A (en) * 1986-09-19 1988-04-07 Hitachi Ltd Method and apparatus for forming thin film
JPH01142453U (en) * 1988-03-22 1989-09-29
JPH04210473A (en) * 1990-11-30 1992-07-31 Fujitsu Ltd Production of semiconductor device
JPH05230628A (en) * 1992-02-18 1993-09-07 Fujitsu Ltd Metal film forming device and metal recovery method in metal film forming device
JPH0644836A (en) * 1992-07-22 1994-02-18 Tonen Corp Manufacture of transparent conductive thin film and its device
JPH06330308A (en) * 1993-05-20 1994-11-29 Canon Inc Sputtering method, production of optical recording medium and optical recording medium
JPH07173624A (en) * 1993-12-16 1995-07-11 Ricoh Co Ltd Production of magneto-optical recording medium
JP2000045063A (en) * 1998-07-28 2000-02-15 Teijin Ltd Film with transparent conductive thin film and its production
JP2000285530A (en) * 1999-04-01 2000-10-13 Ricoh Co Ltd Apparatus for production of optical disk

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933032B1 (en) * 1969-08-29 1974-09-04
JPS6376871A (en) * 1986-09-19 1988-04-07 Hitachi Ltd Method and apparatus for forming thin film
JPH01142453U (en) * 1988-03-22 1989-09-29
JPH04210473A (en) * 1990-11-30 1992-07-31 Fujitsu Ltd Production of semiconductor device
JPH05230628A (en) * 1992-02-18 1993-09-07 Fujitsu Ltd Metal film forming device and metal recovery method in metal film forming device
JPH0644836A (en) * 1992-07-22 1994-02-18 Tonen Corp Manufacture of transparent conductive thin film and its device
JPH06330308A (en) * 1993-05-20 1994-11-29 Canon Inc Sputtering method, production of optical recording medium and optical recording medium
JPH07173624A (en) * 1993-12-16 1995-07-11 Ricoh Co Ltd Production of magneto-optical recording medium
JP2000045063A (en) * 1998-07-28 2000-02-15 Teijin Ltd Film with transparent conductive thin film and its production
JP2000285530A (en) * 1999-04-01 2000-10-13 Ricoh Co Ltd Apparatus for production of optical disk

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013519794A (en) * 2010-02-17 2013-05-30 アイクストロン、エスイー Coating apparatus and method of operating a coating apparatus having a shielding plate

Similar Documents

Publication Publication Date Title
TW584669B (en) Method of making low magnetic permeability cobalt sputter targets
US20030183518A1 (en) Concave sputtering apparatus
EP2484800B1 (en) Film-forming apparatus and film-forming method
US6676810B2 (en) Method of coating insulative substrates
WO2019131010A1 (en) Sputtering method and sputtering device
JP2001335927A (en) Sputtering system
JP2002356769A (en) Method and apparatus for plasma treatment
TWI795492B (en) Deposition processing systems having active temperature control and associated methods
US6620298B1 (en) Magnetron sputtering method and apparatus
JPH03183778A (en) Method and device for forming deposited film
JPH05295538A (en) Film forming method and device by both side sputtering
JP2878165B2 (en) Wafer holding mechanism
JP4074672B2 (en) Sputtering method
KR102107446B1 (en) Coating Apparatus, Coating Method And Coating Layer manufactured using the same method
US6342132B1 (en) Method of controlling gas density in an ionized physical vapor deposition apparatus
JP2002004043A (en) Structure having curved surface, and its manufacturing method
CN113699499B (en) Target structure and manufacturing method thereof
TWI225103B (en) Sputtering target backplate
JPH04116160A (en) Film forming device
JP3949304B2 (en) Sputtering processing method and apparatus
JP4313480B2 (en) Substrate heating chamber, substrate processing apparatus for information recording disk provided with this substrate heating chamber, and substrate heating apparatus
JPH01119667A (en) Sputtered film-forming apparatus
WO1998047178A2 (en) Method and apparatus for thin film aluminum planarization
JP5185678B2 (en) Sputtering apparatus and method
JP2006124767A (en) Sputtering method and sputtering system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090622

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100608