JP2002350338A - Blood sugar level meter - Google Patents

Blood sugar level meter

Info

Publication number
JP2002350338A
JP2002350338A JP2001201477A JP2001201477A JP2002350338A JP 2002350338 A JP2002350338 A JP 2002350338A JP 2001201477 A JP2001201477 A JP 2001201477A JP 2001201477 A JP2001201477 A JP 2001201477A JP 2002350338 A JP2002350338 A JP 2002350338A
Authority
JP
Japan
Prior art keywords
light
light source
blood
emitted
glucose meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001201477A
Other languages
Japanese (ja)
Inventor
Kazuo Sasaki
和雄 佐々木
Takashi Watanabe
隆 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Astem Corp
Original Assignee
Astem Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Astem Corp filed Critical Astem Corp
Priority to JP2001201477A priority Critical patent/JP2002350338A/en
Publication of JP2002350338A publication Critical patent/JP2002350338A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a means utilizing other light sources such as a laser diode, etc., which are not conventionally used as the light source in a spectroscopic apparatus, particularly an optical blood sugar level nondestructive measuring apparatus. SOLUTION: The method that a spectroscopic characteristic of the light source is reflected in an analytical curve by using a reference material, overcomes a problem that the spectroscopic characteristic depends on the environment. The use of an optical product such as an optical fiber, etc., overcomes a problem that a plurality of light paths from a plurality of the light sources are different per light source.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光学的手法によ
り、人体から採血した血液から、あるいは採血をせずに
直接、人体から、血液中の糖度(血糖値)を測定する、
血糖値計に関する。
[0001] The present invention relates to a method for measuring the sugar content (blood sugar level) in blood from optically collected blood from a human body or directly from a human body without blood collection.
It relates to a blood glucose meter.

【0002】[0002]

【従来の技術】ある物質のある成分の濃度を光学的手法
により求める方法に、分光分析がある。何種類かの波長
を含む光を測定したい試料(人体を含む)に照射させ、
透過光、あるいは反射光の光量を計測し、試料の内部を
透過する際にどの波長の光がどれだけ吸収されたかを計
算することにより、前もって用意した演算方法を用いて
試料のある特定の成分の濃度を求める方法である。
2. Description of the Related Art Spectroscopic analysis is a method of determining the concentration of a certain component of a substance by an optical method. Irradiate the sample (including the human body) to be measured with light containing several wavelengths,
By measuring the amount of transmitted light or reflected light and calculating how much light of which wavelength is absorbed when passing through the inside of the sample, a specific component of the sample is calculated using a previously prepared calculation method. This is a method for determining the concentration of

【0003】分光分析を使って、血糖値を非侵襲で測定
する研究を野田光彦らが進めている(特許第30938
71号)。
[0003] Mitsuhiko Noda and his colleagues are researching noninvasively measuring blood glucose levels using spectroscopic analysis (Japanese Patent No. 30938).
No. 71).

【0004】将来的には、光学的血糖値非破壊測定装置
を糖尿病の患者一人一人が携帯し、必要な時に手軽に精
度良く測定できるようになることが望まれている。
In the future, it is desired that an optical blood glucose level non-destructive measuring device be carried by each diabetic patient and be easily and accurately measured when necessary.

【0005】[0005]

【発明が解決しようとする問題】しかしながら、現在知
られている方法では、光源にハロゲンランプが用いられ
ており、小型化、低価格化、低消費電力化の面で限界が
あり、携帯可能な仕様での製品化は実現していない。
However, in the currently known method, a halogen lamp is used as a light source, which is limited in terms of miniaturization, low cost, low power consumption, and is portable. No commercialization by specification has been realized.

【0006】[0006]

【課題を解決するための手段】この問題を解決するため
に、本発明の血糖値計では、光源に、レーザダイオー
ド、発光ダイオードなどのように、発光する光の波長の
幅が狭い光源を用いた。レーザダイオード、発光ダイオ
ードなどは小型、低価格、低消費電力であるから、携帯
型血糖値計の製品化に最適である。
In order to solve this problem, in the blood glucose meter of the present invention, a light source having a narrow wavelength range of emitted light, such as a laser diode or a light emitting diode, is used as a light source. Was. Laser diodes, light-emitting diodes, and the like are small, low-priced, and have low power consumption, and thus are optimal for commercialization of portable blood glucose meters.

【0007】ただし、この場合、光源について、発光し
た光の波長、あるいは発光した光の出力などの分光特性
が、光源自体の状態、あるいは光源の置かれた環境に依
存するので、光源が発光した光の分光特性を何らかの形
で反映させなければいけない。
However, in this case, since the spectral characteristics of the light source, such as the wavelength of the emitted light or the output of the emitted light, depend on the state of the light source itself or the environment where the light source is placed, the light source emits light. The spectral properties of light must be reflected in some way.

【0008】この問題は、光源の発光する光の出力が波
長に依存しないように出力一定回路を用意し、光源が発
光した光を試料に照射すると同時に、あるいは瞬間的に
切り替えて、なだらかな吸収スペクトルを持つ参照用物
質(たとえば、フッ化樹脂などの樹脂系材料)にも照射
し、吸収量を計測するという手段で解決できる。波長が
変化すれば、参照用物質による吸収量が変化するので、
変化量から、波長がどのくらい変化したか推定する。
The problem is that a constant output circuit is prepared so that the output of the light emitted from the light source does not depend on the wavelength, and the light emitted from the light source is applied to the sample or switched instantaneously to smoothly absorb the light. The problem can be solved by irradiating a reference substance having a spectrum (for example, a resin-based material such as a fluororesin) and measuring the absorption amount. If the wavelength changes, the amount of absorption by the reference substance changes,
From the amount of change, it is estimated how much the wavelength has changed.

【0009】また、ハロゲンランプを使った場合のよう
に、測定に必要な全波長の光を一つの光源でまかなうこ
とはできないため、複数の光源が必要になり、そのため
に物理的に離れた光源から照射された光はその光路を試
料に照射されるまでに共通のものにしなければならな
い。
[0009] Further, unlike a case where a halogen lamp is used, light of all wavelengths required for measurement cannot be covered by one light source, so that a plurality of light sources are required. The light emitted from the light source must have a common optical path before being irradiated on the sample.

【0010】この問題は、光ファイバやハーフミラーな
ど光学製品を使うことで解決できる。光ファイバを使う
方法としては、多数の細い光ファイバを束ねたものを、
複数の光源それぞれの光路上に配置し、光源から照射さ
れた光をそれぞれの束ねられた光ファイバに入射させ
る。その複数の束ねられた光ファイバを、出射側でラン
ダムに1本の光ファイバに束ねなおせばよい。
[0010] This problem can be solved by using an optical product such as an optical fiber or a half mirror. As a method of using an optical fiber, a bundle of many thin optical fibers is used.
A plurality of light sources are arranged on respective optical paths, and light emitted from the light sources is made incident on the bundled optical fibers. The plurality of bundled optical fibers may be randomly bundled into one optical fiber on the emission side.

【0011】以上の方法を使えば、従来の分光分析を使
った計測器は、レーザダイオード、発光ダイオードなど
のハロゲンランプ以外の光源を利用することができる。
By using the above method, a conventional measuring instrument using spectroscopic analysis can use a light source other than a halogen lamp, such as a laser diode or a light emitting diode.

【0012】[0012]

【実施例】本発明の実施方法の一例を、図面を用いて説
明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG.

【0013】図1は、光を指先に照射し、その透過光を
計測し、血液中のグルコース濃度を測定する様子であ
る。その際、照射光は複数のレーザダイオードや発光ダ
イオードなどの光源2から短時間のうちに順に発光さ
れ、その光は出力一定回路1によってそれぞれ出力を一
定に保たれている。光ファイバ3によって共通化された
光路は、光源の波長、出力などの分光特性の変化に対し
て補正を行うために、2本の光ファイバに分割され、試
料である指先4だけでなく、参照用物質5にも照射され
ている。透過光は受光素子6によって計測される。
FIG. 1 shows a state in which light is applied to a fingertip, the transmitted light is measured, and the glucose concentration in blood is measured. At that time, the irradiation light is sequentially emitted from the light sources 2 such as a plurality of laser diodes and light emitting diodes in a short time, and the output of the light is kept constant by the output constant circuit 1. The optical path shared by the optical fiber 3 is divided into two optical fibers in order to correct for changes in spectral characteristics such as the wavelength and output of the light source. Material 5 is also irradiated. The transmitted light is measured by the light receiving element 6.

【0014】光源から出射される、出力が一定に保たれ
た光は、温度などの環境変化により、波長が変化する
が、参照用物質による吸収量の変化によって波長の変化
は推測できる。このようにして受光素子から得られた計
測値を多変量解析の手法で、前もって用意した方程式
(検量線)に代入すれば、濃度を算出される。
The light emitted from the light source and having a constant output changes its wavelength due to a change in environment such as temperature. The change in the wavelength can be estimated by a change in the amount of absorption by the reference substance. By substituting the measurement values obtained from the light receiving elements in this way into a previously prepared equation (calibration curve) by a multivariate analysis technique, the concentration is calculated.

【0015】出力一定回路を使わない場合、波長に応じ
て出力自体も変化するが、そのことを考慮して検量線が
作成できれば、それでもよい。
When the constant output circuit is not used, the output itself changes according to the wavelength. However, if a calibration curve can be created in consideration of the change, this may be used.

【0016】光源の波長の変化は、光源の温度に大きく
依存していることが多いので、光源の種類によっては、
温度センサによっても波長の変化が精度良く推測できる
場合がある。
Since the change in the wavelength of the light source often largely depends on the temperature of the light source, depending on the type of the light source,
In some cases, a change in wavelength can be estimated with high accuracy even by a temperature sensor.

【0017】別々の光源からの光の光路を共通のものに
する方法は、上記の光ファイバ以外にも、ハーフミラー
など光学製品を使えば実現できる。
The method of making the optical paths of light from different light sources common can be realized by using an optical product such as a half mirror in addition to the above-mentioned optical fiber.

【0018】血糖値計に関しては、指先だけでなく、耳
たぶなど他の身体部分の透過光、あるいは反射光からで
も測定できる。
A blood glucose meter can be measured not only from a fingertip but also from transmitted light or reflected light from another body part such as an earlobe.

【0019】[0019]

【発明の効果】以上のように、この発明によれば、ハロ
ゲンランプしか光源として考えられていなかった血糖値
計に関して、レーザダイオードや発光ダイオードなど、
周囲温度などの環境に依存してしまう光源も使用できる
ようになる。発光する光の波長の幅が狭い光源を使え
ば、分光の仕組みが必要なくなる。
As described above, according to the present invention, with respect to a blood glucose meter in which only a halogen lamp was considered as a light source, a laser diode, a light emitting diode, etc.
Light sources that depend on the environment, such as ambient temperature, can also be used. If a light source having a narrow wavelength range of emitted light is used, a spectroscopic mechanism is not required.

【0020】その結果、小型化、低価格化、低消費電力
化が実現され、血糖値計の携帯化が実現可能となる。
As a result, downsizing, low cost, and low power consumption are realized, and portability of the blood glucose meter can be realized.

【0021】また、採血した血液をセルなどに入れて測
定する場合は、糖の光吸収を複雑にする要素が無視でき
るので、それ以上の効果が期待できるのは明らかであ
る。
When blood is collected and measured in a cell or the like, factors that complicate the light absorption of sugar can be neglected, and it is clear that further effects can be expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】指先に対して透過法を使った血糖値計の概念図FIG. 1 is a conceptual diagram of a blood glucose meter using a transmission method for a fingertip.

【符号の説明】[Explanation of symbols]

1・・・出力一定回路 2・・・レーザダイオードや発光ダイオードなどの光源 3・・・光ファイバ 4・・・試料(指先) 5・・・参照用物質 6・・・受光素子 7・・・検量線を含む演算回路 Reference Signs List 1 constant output circuit 2 light source such as laser diode or light emitting diode 3 optical fiber 4 sample (fingertip) 5 reference substance 6 light receiving element 7 Arithmetic circuit including calibration curve

フロントページの続き Fターム(参考) 2G045 AA01 CA25 DA31 FA12 2G059 AA01 BB13 CC16 EE01 EE02 FF08 GG01 GG02 JJ17 JJ22 KK01 MM12 MM14 NN01 NN02 4C038 KK10 KL05 KL07 KM00 KX02 KY01 KY03 KY04 Continued on the front page F term (reference) 2G045 AA01 CA25 DA31 FA12 2G059 AA01 BB13 CC16 EE01 EE02 FF08 GG01 GG02 JJ17 JJ22 KK01 MM12 MM14 NN01 NN02 4C038 KK10 KL05 KL07 KM00 KX02 KY01 KY03 KY03

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】光学的手法により、採血した血液中の糖
度、あるいはグルコース濃度を測定する血糖値計におい
て、発光する光の波長の幅が狭い光源を2つ以上有する
ことを特徴とする血糖値計。
1. A blood glucose meter for measuring a sugar content or a glucose concentration in blood collected by an optical method, comprising at least two light sources having a narrow wavelength range of emitted light. Total.
【請求項2】光学的手法により、採血した血液中の糖
度、あるいはグルコース濃度を測定する血糖値計におい
て、レーザダイオードや発光ダイオードを2つ以上有す
ることを特徴とする血糖値計。
2. A blood glucose meter for measuring a sugar content or a glucose concentration in blood collected by an optical method, comprising two or more laser diodes and light emitting diodes.
【請求項3】光学的手法により、採血した血液中の糖
度、あるいはグルコース濃度を測定する血糖値計におい
て、発光した光の波長、あるいは発光した光の出力など
の分光特性が光源自体の状態、あるいは光源の置かれた
環境に依存する光源を有することを特徴とする血糖値
計。
3. A blood glucose meter for measuring a sugar content or a glucose concentration in blood collected by an optical method, wherein a spectral characteristic such as a wavelength of emitted light or an output of the emitted light indicates a state of the light source itself, Alternatively, a blood glucose meter having a light source depending on an environment where the light source is placed.
【請求項4】光学的手法により、人体の血液中の糖度、
あるいはグルコース濃度を採血することなく測定する血
糖値計において、発光する光の波長の幅が狭い光源を2
つ以上有することを特徴とする非侵襲血糖値計。
4. The method according to claim 1, wherein the sugar content in the blood of the human body is determined by an optical method.
Alternatively, in a blood glucose meter that measures glucose concentration without collecting blood, a light source with a narrow wavelength range of emitted light is used.
A noninvasive blood glucose meter characterized by having at least one.
【請求項5】光学的手法により、人体の血液中の糖度、
あるいはグルコース濃度を採血することなく測定する血
糖値計において、レーザダイオードや発光ダイオードを
2つ以上有することを特徴とする非侵襲血糖値計。
5. The method according to claim 1, wherein the sugar content in the blood of the human body is determined by an optical method.
Alternatively, a non-invasive blood glucose meter that measures two or more laser diodes or light-emitting diodes in a blood glucose meter that measures glucose concentration without collecting blood.
【請求項6】光学的手法により、人体の血液中の糖度、
あるいはグルコース濃度を採血することなく測定する血
糖値計において、発光した光の波長、あるいは発光した
光の出力などの分光特性が光源自体の状態、あるいは光
源の置かれた環境に依存する光源を有することを特徴と
する非侵襲血糖値計。
6. The sugar content in the blood of a human body by an optical method,
Alternatively, a blood glucose meter that measures glucose concentration without collecting blood has a light source whose spectral characteristics, such as the wavelength of emitted light or the output of emitted light, depend on the state of the light source itself or the environment where the light source is placed. A non-invasive blood glucose meter characterized by the following.
【請求項7】光源の波長、出力などの分光特性の変化に
対して補正を行う手段を有することを特徴とする請求項
1〜6のいずれか1項に記載の血糖値計。
7. The blood glucose meter according to claim 1, further comprising means for correcting a change in spectral characteristics such as a wavelength and an output of a light source.
【請求項8】複数ある光源の発光した光が測定部に照射
される際の光路を共通化するための手段を有することを
特徴とする請求項1〜6のいずれか1項に記載の血糖値
計。
8. The blood sugar according to claim 1, further comprising means for sharing an optical path when light emitted from a plurality of light sources is emitted to the measuring unit. Value meter.
【請求項9】光源の波長、出力などの分光特性の変化に
対して補正を行う手段と、複数ある光源の発光した光が
測定部に照射される際の光路を共通化するための手段
と、を有することを特徴とする請求項1〜6のいずれか
1項に記載の血糖値計。
9. A means for correcting a change in spectral characteristics such as a wavelength and an output of a light source, and a means for sharing an optical path when light emitted from a plurality of light sources is applied to a measurement unit. The blood glucose meter according to any one of claims 1 to 6, comprising:
【請求項10】光源の波長、出力などの分光特性の変化
を検知する手段として、光の波長に応じて吸収量の違う
物質を有することを特徴とする請求項7または9記載の
血糖値計。
10. The blood glucose meter according to claim 7, wherein a means for detecting a change in spectral characteristics such as a wavelength and an output of the light source includes a substance having a different absorption amount according to the wavelength of the light. .
【請求項11】光源の波長、出力などの分光特性の変化
を検知する手段として、光源自体の温度、あるいは光源
の周囲温度を計測するセンサを有することを特徴とする
請求項7または9記載の血糖値計。
11. A device according to claim 7, further comprising a sensor for measuring a temperature of the light source itself or an ambient temperature of the light source as means for detecting a change in spectral characteristics such as a wavelength and an output of the light source. Blood glucose meter.
【請求項12】複数ある光源の発光した光が測定部に照
射される際の光路を共通化するための手段として、光フ
ァイバ、あるいはハーフミラーなどの光学製品を有する
ことを特徴とする請求項8または9記載の血糖値計。
12. An optical product such as an optical fiber or a half mirror as means for sharing an optical path when light emitted from a plurality of light sources is emitted to a measuring unit. 10. The blood glucose meter according to 8 or 9.
【請求項13】光学的手法により、ある物質のある成分
の濃度を測定する計測器において、レーザダイオードや
発光ダイオードを2つ以上と、光源の波長、出力などの
分光特性の変化に対して補正を行う手段と、複数ある光
源の発光した光が測定部に照射される際の光路を共通化
するための手段と、を有することを特徴とする分光計測
器。
13. A measuring instrument for measuring the concentration of a certain component of a substance by an optical method, wherein two or more laser diodes or light emitting diodes are used, and correction is made for changes in spectral characteristics such as the wavelength and output of the light source. And a means for sharing an optical path when light emitted from a plurality of light sources is emitted to a measurement unit.
JP2001201477A 2001-05-29 2001-05-29 Blood sugar level meter Pending JP2002350338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001201477A JP2002350338A (en) 2001-05-29 2001-05-29 Blood sugar level meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001201477A JP2002350338A (en) 2001-05-29 2001-05-29 Blood sugar level meter

Publications (1)

Publication Number Publication Date
JP2002350338A true JP2002350338A (en) 2002-12-04

Family

ID=19038429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001201477A Pending JP2002350338A (en) 2001-05-29 2001-05-29 Blood sugar level meter

Country Status (1)

Country Link
JP (1) JP2002350338A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015212688A (en) * 2014-04-18 2015-11-26 Drc株式会社 Light irradiation device and method for measuring light transmission characteristic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015212688A (en) * 2014-04-18 2015-11-26 Drc株式会社 Light irradiation device and method for measuring light transmission characteristic

Similar Documents

Publication Publication Date Title
US5365066A (en) Low cost means for increasing measurement sensitivity in LED/IRED near-infrared instruments
EP3326521B1 (en) Compact spectrometer system for non-invasive measurement of absorption and transmission spectra in biological tissue samples
TWI468688B (en) Optical sensor for determining the concentration of an analyte
CN101346097B (en) System for non-invasive measurement of blood glucose concentration
US6741875B1 (en) Method for determination of analytes using near infrared, adjacent visible spectrum and an array of longer near infrared wavelengths
CA2383727A1 (en) Method for determination of analytes using near infrared, adjacent visible spectrum and an array of longer near infrared wavelengths
EP1123039A4 (en) Method for non-invasive blood analyte measurement with improved optical interface
JPH11183377A (en) Optical content meter
JP2008113891A (en) Optical measurement unit
JP6230017B2 (en) Component concentration analyzer using light emitting diode
JP2008104751A (en) Blood-sugar level measuring instrument and method
JPH09308623A (en) Non-invasive biochemical measuring instrument
JP3620798B2 (en) Nondestructive spectrometer
JP2004313554A (en) Non-invasive measurement device for blood sugar level
JP2004219322A (en) Non-destructive spectrophotometric instrument
JP2002350338A (en) Blood sugar level meter
JP2004317381A (en) Apparatus for nondestructively measuring sugar content of fruits and vegetables
KR100883153B1 (en) Instrument for noninvasively measuring blood sugar level
JPH11248622A (en) Urinalysis device
JP2003114191A (en) Method and instrument for nondestructively measuring sugar content of vegetable and fruit
WO2021090891A1 (en) Blood-component-concentration measurement device
Yoon et al. Optical measurement of glucose levels in scattering media
WO2006037985A2 (en) Sensing device
JP5070387B2 (en) Non-destructive measuring device for light scatterers
Yoon et al. Spectrophotometry and optical biosensor