JP2002343754A - Polishing apparatus and method and semiconductor device manufacturing method using the same - Google Patents

Polishing apparatus and method and semiconductor device manufacturing method using the same

Info

Publication number
JP2002343754A
JP2002343754A JP2001144286A JP2001144286A JP2002343754A JP 2002343754 A JP2002343754 A JP 2002343754A JP 2001144286 A JP2001144286 A JP 2001144286A JP 2001144286 A JP2001144286 A JP 2001144286A JP 2002343754 A JP2002343754 A JP 2002343754A
Authority
JP
Japan
Prior art keywords
polished
polishing
wafer
light
polishing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001144286A
Other languages
Japanese (ja)
Other versions
JP2002343754A5 (en
JP4858798B2 (en
Inventor
Hirochika Shinjo
啓慎 新城
Yutaka Hayashi
豊 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2001144286A priority Critical patent/JP4858798B2/en
Publication of JP2002343754A publication Critical patent/JP2002343754A/en
Publication of JP2002343754A5 publication Critical patent/JP2002343754A5/ja
Application granted granted Critical
Publication of JP4858798B2 publication Critical patent/JP4858798B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a polishing apparatus that can precisely detect the polishing end point in a wafer that is being polished and machined. SOLUTION: This polishing apparatus 1 has a wafer holder 12 that sucks and retains a wafer W on an upper surface, a head member 22 that is positioned at the upper portion of the wafer holder and has a polishing pad 21 on a lower surface, and an optical measurement section 30 that measures the surface state of the wafer W. The wafer W is retained by the wafer holder 12 for rotating and driving, and is flatly polished and machined by the CMP operation of slurry at a portion to the polishing pad 21 that is crimped to the surface to be polished of the wafer for relative movement. Probe light from the optical measurement section 30 is irradiated to the rotary center (specific position) of the wafer W, and variation in the intensity of reflection signal light during polishing and machining is measured. In this configuration, a measurement position is constantly the same even if the wafer W is rotated, thus precisely judging a polishing end point in the wafer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体ウェハや石
英基板、ガラス基板等の研磨対象物を研磨加工する研磨
装置および研磨方法に関し、特に半導体ウェハの被研磨
面を精密に平坦研磨する研磨加工に適した研磨装置、研
磨方法およびこの研磨装置を用いた半導体デバイス製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polishing apparatus and a polishing method for polishing an object to be polished, such as a semiconductor wafer, a quartz substrate, and a glass substrate, and more particularly to a polishing method for precisely and flatly polishing a surface to be polished of a semiconductor wafer. The present invention relates to a polishing apparatus, a polishing method, and a semiconductor device manufacturing method using the polishing apparatus.

【0002】[0002]

【従来の技術】上記のような研磨対象物を研磨加工する
のに好適な研磨装置としてCMP装置がある。CMP装
置は従来からシリコン研磨ウェハ製造工程の最終工程で
ある鏡面研磨加工に用いられており、ウェハ表面を化学
的機械研磨(Chemical Mechanical Polishing :CM
P)処理により平坦に鏡面研磨する研磨装置として用い
られいる。一方、半導体デバイス製造工程では集積回路
の高度集積化に伴い回路パターンの微細化や多層化が進
みデバイス表面が平坦でなくなってきている。また、集
積回路の線幅を狭小化して集積度を上げるため、光リソ
グラフィに用いる光源波長の短波長化が進んでおり、半
導体露光装置の焦点深度が実質的に浅くなってきてい
る。このため、近年では立体的な多層の回路パターンを
形成する過程で、半導体ウェハの表面を平坦に研磨加工
するCMP(Chemical Mechanical Planarization :機械
化学的平坦化、とも称される)処理が集積度向上に有望
な手段と考えられており、このような研磨加工に適した
CMP装置が求められている。
2. Description of the Related Art A CMP apparatus is a polishing apparatus suitable for polishing an object to be polished as described above. Conventionally, a CMP apparatus has been used for mirror polishing, which is the final step of the silicon polishing wafer manufacturing process, and the wafer surface is subjected to chemical mechanical polishing (CM).
P) It is used as a polishing device for flat mirror polishing by processing. On the other hand, in the semiconductor device manufacturing process, as the integration degree of the integrated circuit becomes higher, the circuit pattern becomes finer and multilayered, and the device surface becomes less flat. Further, in order to increase the degree of integration by reducing the line width of an integrated circuit, the wavelength of a light source used for optical lithography has been shortened, and the depth of focus of a semiconductor exposure apparatus has been substantially reduced. For this reason, in recent years, in the process of forming a three-dimensional multilayer circuit pattern, the CMP (Chemical Mechanical Planarization) process for polishing and flattening the surface of a semiconductor wafer has been improved in integration degree. Therefore, there is a demand for a CMP apparatus suitable for such a polishing process.

【0003】従来用いられてきたCMP装置は、その基
本構成を図8に模式的に示すように、上面に研磨パッド
121が取り付けられた研磨定盤122と、下面にウェ
ハを吸着保持するウェハ保持部材112とを備えて構成
される。研磨定盤122は下方に垂直に延びる定盤駆動
軸123に支持され、図示しない駆動機構で水平面内に
回転駆動される。ウェハ保持部材112は上方に垂直に
延びるウェハ回転軸113に保持されており、図示しな
い回転機構で水平面内に回転駆動される。またウェハ保
持部材112は図示しない揺動機構で研磨定盤122の
径方向に揺動される。
As shown in FIG. 8, the basic structure of a conventionally used CMP apparatus is a polishing platen 122 having a polishing pad 121 mounted on an upper surface, and a wafer holding device for suction-holding a wafer on a lower surface. And a member 112. The polishing table 122 is supported by a table driving shaft 123 that extends vertically downward, and is driven to rotate in a horizontal plane by a driving mechanism (not shown). The wafer holding member 112 is held by a wafer rotation shaft 113 extending vertically upward, and is driven to rotate in a horizontal plane by a rotation mechanism (not shown). The wafer holding member 112 is swung in the radial direction of the polishing platen 122 by an unillustrated swing mechanism.

【0004】このように構成されるCMP装置101で
は、ウェハWの研磨加工は研磨定盤122とウェハ保持
部材112を同一方向または反対方向に回転させ、研磨
パッド121のパッド面にスラリーを供給しながらウェ
ハ保持部材112を下降させてウェハWをパッド面に圧
接し、さらにウェハ保持部材112を研磨定盤122の
径方向に往復揺動させることで行う。これにより、パッ
ド面と当接しながら相対移動されるウェハWの被研磨面
が、パッド面との間に介在するスラリーの機械的および
化学的研磨作用を受けて平坦に研磨加工(CMP処理)
される。
In the CMP apparatus 101 configured as described above, the polishing of the wafer W is performed by rotating the polishing platen 122 and the wafer holding member 112 in the same direction or the opposite direction, and supplying the slurry to the pad surface of the polishing pad 121. By lowering the wafer holding member 112 while pressing the wafer W against the pad surface, the wafer holding member 112 is further reciprocatedly oscillated in the radial direction of the polishing platen 122. As a result, the surface to be polished of the wafer W relatively moved while being in contact with the pad surface is polished flat by the mechanical and chemical polishing action of the slurry interposed between the wafer W and the pad surface (CMP process).
Is done.

【0005】研磨加工中には、その研磨状態を in-situ
計測して研磨終点を検出する終点検出が行われる。従来
から行われてきた終点検出方法としてトルク検出法があ
る。これは、ウェハWと研磨パッド121との間の摩擦
係数変化を、研磨定盤122を回転駆動するモータまた
はウェハ保持部材112を回転駆動するモータのトルク
電流値の変化を検出することで間接的に検出するもので
ある。
During polishing, the polishing state is changed in-situ.
End point detection for measuring and detecting the polishing end point is performed. As a conventional end point detection method, there is a torque detection method. This is because the change in the coefficient of friction between the wafer W and the polishing pad 121 is indirectly detected by detecting the change in the torque current value of the motor that rotationally drives the polishing platen 122 or the motor that rotationally drives the wafer holding member 112. Is to be detected.

【0006】しかしながらトルク検出法が有効に機能す
るのは、メタルCMPのように研磨終点近傍で摩擦抵抗
が大きく変化するCMPプロセスに限定され、層間絶縁
膜CMPのようにストッパを用いないCMPプロセスに
適用することができない。また、この方法で間接的に検
出される情報は被研磨面全体の平均化された摩擦抵抗で
あるため、研磨のばらつきが大きいときには信号変化が
明確に現れず、研磨終点を検出できない場合があるとい
う問題があった。
However, the torque detection method effectively functions only in a CMP process in which the frictional resistance greatly changes near the polishing end point, such as metal CMP, and in a CMP process, such as an interlayer insulating film CMP, which does not use a stopper. Cannot be applied. Further, since the information indirectly detected by this method is the averaged frictional resistance of the entire polished surface, when the variation in polishing is large, a signal change does not clearly appear, and the polishing end point may not be detected. There was a problem.

【0007】そこで、近年ではウェハWの表面状態を直
接光学的に計測して終点検出を行う研磨装置が考案され
ている。この研磨装置102は図9に略示するように、
研磨定盤122の一部に孔部を設けるとともに、研磨パ
ッド121に透光部125を設け、研磨定盤122の裏
側に配設した光学測定装置130からウェハWの被研磨
面にプローブ光を照射し、反射光を検出してその強度変
化やスペクトル分布から終点検出を行うものである。
Therefore, in recent years, a polishing apparatus for directly measuring the surface state of the wafer W optically and detecting the end point has been devised. This polishing apparatus 102 is schematically shown in FIG.
A hole is provided in a part of the polishing platen 122, and a light-transmitting portion 125 is provided in the polishing pad 121. Irradiation, reflected light is detected, and end point detection is performed from the intensity change and spectrum distribution.

【0008】このような研磨装置によれば、メタルCM
PやSTI−CMPのみならず層間絶縁膜CMPのよう
にストッパを用いないCMPプロセスに対しても終点検
出を行うことが可能である。また、この方法で検出され
る情報は被研磨面全体の平均化された情報ではなく、プ
ローブ光が照射するスポット領域の情報であるため、確
実に研磨終点を検出できると考えられていた。
According to such a polishing apparatus, the metal CM
The end point can be detected not only for P and STI-CMP but also for a CMP process that does not use a stopper, such as an interlayer insulating film CMP. In addition, since the information detected by this method is not the averaged information of the entire surface to be polished but the information of the spot area irradiated by the probe light, it has been considered that the polishing end point can be reliably detected.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上述し
た研磨装置102で種々のウェハについて繰り返し研磨
加工を実施してみると、ウェハごとに研磨終了点がわず
かずつ異なっていることが見出されてきた。すなわち、
理想とする研磨終了状態に対して過剰研磨や研磨不足の
ウェハが見出されるのである。これは、終点検出の判定
が理想的な研磨終了点に対してばらついていることを意
味し、このばらつきを抑制して判定精度を向上させるこ
とが、CMPプロセスの効率的な管理およびCMP装置
のスループットを向上させるうえで重要な技術的課題に
なっていた。
However, when repeatedly polishing various kinds of wafers with the above-described polishing apparatus 102, it has been found that the polishing end point is slightly different for each wafer. . That is,
Over-polishing and under-polishing wafers are found with respect to the ideal polishing end state. This means that the determination of the end point detection is varied with respect to the ideal polishing end point, and suppressing this variation to improve the determination accuracy requires efficient management of the CMP process and the CMP apparatus. This has been an important technical issue in improving throughput.

【0010】本発明は、上記課題に鑑みて成されたもの
であり、研磨加工中に高精度に研磨終了点を判定するこ
とができる研磨方法および研磨装置を提供することを目
的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to provide a polishing method and a polishing apparatus capable of determining a polishing end point with high accuracy during polishing.

【0011】本発明はさらに、このような研磨装置を用
いた半導体デバイスの製造方法を提供することを目的と
する。
Another object of the present invention is to provide a method for manufacturing a semiconductor device using such a polishing apparatus.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するた
め、発明者はまず終点検出の判定が理想的な研磨終了点
に対してばらつく理由について検討し、以下の要因を見
出した。第1の要因は、ウェハにおけるダイ領域(チッ
プ領域)の位置やダイ領域内のパターン位置によって成
膜状態や研磨レートが異なることである。すなわち、ウ
ェハに形成されたダイ領域(チップ領域)には描画密度や
精細度が異なる様々なパターンが存在しており、このパ
ターンの疎密に応じて研磨レートが異なっている。ま
た、比較的均一なパターンを有する場合であっても、ウ
ェハ上におけるダイ領域の位置によって成膜厚さや研磨
レートが異なる場合があるのである。
Means for Solving the Problems In order to solve the above-mentioned problems, the inventor first examined the reason why the judgment of the end point detection varies from an ideal polishing end point, and found the following factors. The first factor is that the film formation state and the polishing rate differ depending on the position of the die region (chip region) on the wafer and the pattern position in the die region. That is, various patterns having different writing densities and finenesses exist in the die area (chip area) formed on the wafer, and the polishing rate differs according to the density of the pattern. In addition, even when the pattern has a relatively uniform pattern, the film thickness and the polishing rate may differ depending on the position of the die region on the wafer.

【0013】なお、本明細書にいう「ダイ領域(チップ
領域)」とは、ウェハ上にストリートで区画され形成さ
れたデバイスパターンの形成領域をいい、ダイシング後
に一つのダイ(チップ)を構成する領域をいう。
The "die area (chip area)" in this specification refers to an area where a device pattern is formed on a wafer and divided into streets, and forms one die (chip) after dicing. Refers to the area.

【0014】第2の要因は、光学測定装置130で測定
した表面状態がどの位置の表面状態であるか明確でない
点である。すなわち、測定位置がウェハ面上におけるど
のダイ領域であるのか、またダイ領域におけるどのパタ
ーン位置であるのかが従来では不明であった点である。
The second factor is that it is not clear which position the surface state measured by the optical measuring device 130 is. That is, it is conventionally unknown which die area on the wafer surface the measurement position is and which pattern position in the die area.

【0015】このため、従来の研磨装置では光学測定装
置130が研磨レートが速い位置(ダイ領域やパターン
位置)を測定したときには研磨終了点が早まり、その結
果として全体的に研磨不足が生じ、逆に研磨レートが遅
い位置を測定したときには研磨終了点が遅れて全体的に
過剰研磨が生じていたのである。以上の検討結果から発
明者は前記目的を達成するため以下に示す解決手段を発
明した。
For this reason, in the conventional polishing apparatus, when the optical measuring device 130 measures a position where the polishing rate is high (die area or pattern position), the polishing end point is advanced, and as a result, insufficient polishing occurs as a whole, When the position where the polishing rate was slower was measured, the polishing end point was delayed and excessive polishing occurred as a whole. From the above examination results, the inventor has invented the following means to achieve the above object.

【0016】本発明は、研磨対象物(例えば実施形態に
おけるウェハW)を保持する対象物保持部(例えば実施
形態におけるウェハホルダ12)と研磨対象物を研磨す
る研磨部材(例えば実施形態における研磨パッド)とを
備え、研磨部材を対象物保持部に保持された研磨対象物
に当接させながら研磨部材と研磨対象物とを相対移動さ
せて研磨対象物の被研磨面の研磨加工を行うように構成
された研磨装置において、被研磨面の表面状態を光学的
に測定する光学測定部を有し、光学測定部が被研磨面の
研磨加工中に被研磨面における特定位置の表面状態を測
定するように研磨装置を構成する。
According to the present invention, an object holder (for example, the wafer holder 12 in the embodiment) for holding a polishing object (for example, the wafer W in the embodiment) and a polishing member (for example, a polishing pad in the embodiment) for polishing the object to be polished. A configuration in which the polishing member and the polishing target are relatively moved while the polishing member is in contact with the polishing target held by the target holding portion to perform a polishing process on the polished surface of the polishing target. In the polishing apparatus has an optical measurement unit for optically measuring the surface state of the surface to be polished, the optical measurement unit measures the surface state of a specific position on the surface to be polished during the polishing process of the surface to be polished. A polishing apparatus is configured.

【0017】上記構成の研磨装置には、被研磨面の表面
状態を光学的に測定する光学測定部が設けられており、
この光学測定部は研磨加工中に被研磨面の特定位置の表
面状態を測定する。ここで、「被研磨面の特定位置」と
は、被研磨面上に特定される所定の位置をいい、例えば
上述した半導体ウェハの例においては、ウェハ面上にお
ける特定(特定番地)のダイ領域や、特定のダイ領域内に
おける特定のパターン位置、あるいはダイ領域外に設け
た特定の基準領域等をいう。本構成によれば、光学測定
部が常に被研磨面上の特定位置の表面状態を測定するた
め、被研磨面の表面状態の変化を的確に捉えることがで
き、従って、研磨加工中に高精度に研磨終了点を判定可
能な研磨装置を得ることができる。
The polishing apparatus having the above configuration is provided with an optical measuring section for optically measuring the surface condition of the surface to be polished,
The optical measuring unit measures the surface condition of a specific position on the surface to be polished during polishing. Here, the "specific position of the surface to be polished" refers to a predetermined position specified on the surface to be polished, for example, in the example of the semiconductor wafer described above, a specific (specific address) die area on the wafer surface Or a specific pattern position in a specific die area, or a specific reference area provided outside the die area. According to this configuration, since the optical measurement unit always measures the surface state at a specific position on the surface to be polished, it is possible to accurately capture the change in the surface state of the surface to be polished, and therefore, high precision during polishing. Thus, a polishing apparatus capable of determining the polishing end point can be obtained.

【0018】なお、対象物保持部は回転中心において被
研磨面と直交する回転軸(例えば実施形態における回転
軸A)のまわりに研磨対象物を回転可能に構成され、光
学測定部は、プローブ光を被研磨面に照射する照明部と
被研磨面からの反射または透過信号光検出する光検出部
とを備え、前記被研磨面の回転中心位置にプローブ光を
照射して得られる信号光を検出することにより、特定位
置の表面状態を測定するように研磨装置を構成してもよ
い。
The object holding section is configured to be able to rotate the object to be polished around a rotation axis (for example, the rotation axis A in the embodiment) orthogonal to the surface to be polished at the center of rotation. A illuminating unit that irradiates the surface to be polished with light and a light detecting unit that detects signal light reflected or transmitted from the surface to be polished, and detects signal light obtained by irradiating probe light to the rotation center position of the surface to be polished. By doing so, the polishing apparatus may be configured to measure the surface condition at a specific position.

【0019】研磨対象物が対象物保持部に保持されて回
転駆動される研磨装置では、回転周上にある各位置が研
磨対象物の回転に伴って回転移動する。しかし、回転中
心位置だけはその回転駆動によって移動変化しない。本
構成ではこの移動変化しない回転中心位置を特定位置と
して規定し、光学測定部がこの特定位置にプローブ光を
照射して表面状態を測定する。従って、上記構成によれ
ば、極めて簡明な構成で被研磨面の表面状態の変化を的
確に捉えることができる。
In a polishing apparatus in which an object to be polished is held and held by an object holder, each position on a rotating circumference is rotated with the rotation of the object to be polished. However, only the rotation center position does not change due to the rotation drive. In this configuration, the rotation center position that does not change in movement is defined as a specific position, and the optical measurement unit irradiates the specific position with probe light to measure the surface state. Therefore, according to the above configuration, a change in the surface state of the surface to be polished can be accurately detected with a very simple configuration.

【0020】また、対象物保持部は被研磨面と交わる回
転軸のまわりに研磨対象物を回転可能に構成され、研磨
対象物の回転角度位置および対象物保持部の回転角度位
置の少なくともいずれか一方を検出する角度位置検出部
を有し、光学測定部は、プローブ光を被研磨面に照射す
る照明部と被研磨面からの反射または透過信号光検出す
る光検出部とを備え、角度位置検出部からの検出信号に
基づいて特定される位置にプローブ光を照射して得られ
る信号光を検出することにより、特定位置の表面状態を
測定するように研磨装置を構成しても良い。
The object holding portion is configured to be capable of rotating the object to be polished around a rotation axis intersecting with the surface to be polished, and at least one of a rotation angle position of the object to be polished and a rotation angle position of the object holding portion. An optical measuring unit includes an illuminating unit that irradiates the surface to be polished with probe light and a light detecting unit that detects signal light reflected or transmitted from the surface to be polished. The polishing apparatus may be configured to measure a surface state at a specific position by detecting a signal light obtained by irradiating a position specified based on a detection signal from the detection unit with probe light.

【0021】上記構成の研磨装置では、角度位置検出部
が研磨対象物の回転角度位置および対象物保持部の回転
角度位置の少なくともいずれか一方を検出し、光学測定
部が角度位置検出部からの検出信号に基づいて特定され
る特定位置の表面状態を測定する。このため、上記構成
の研磨装置によれば、プローブ光が照射される同一円周
上において、回転角度位置を特定することにより常に一
定位置を特定することができ、このように特定される特
定位置の表面状態の変化を的確に捉えることができる。
In the polishing apparatus having the above structure, the angular position detecting section detects at least one of the rotation angle position of the object to be polished and the rotation angle position of the object holding section, and the optical measuring section detects the rotation angle position from the angle position detecting section. The surface condition at a specific position specified based on the detection signal is measured. Therefore, according to the polishing apparatus having the above-described configuration, it is possible to always specify a fixed position by specifying the rotation angle position on the same circumference on which the probe light is irradiated, and to specify the specified position thus specified. The change in the surface state of the object can be accurately grasped.

【0022】なお、上記角度位置検出部は研磨対象物に
形成された特定指標を光学的に検出して研磨対象物の回
転角度位置を検出し、光学測定部は角度位置検出部によ
って検出される特定指標の検出信号に基づいて被研磨面
における特定位置の表面状態を測定するように研磨装置
を構成することができる。
The angular position detecting section optically detects a specific index formed on the object to be polished to detect the rotational angle position of the object to be polished, and the optical measuring section is detected by the angle position detecting section. The polishing apparatus can be configured to measure the surface condition of a specific position on the surface to be polished based on the detection signal of the specific index.

【0023】ここで、「研磨対象物に形成された特定指
標」とは、例えば、半導体ウェハにおけるオリエンテー
ションフラット(Orientation flat)やノッチ(Notc
h)、アライメントマーク(Alignment mark)等の指標
をいい、ダイ領域外に新たに設けた位置検出用の指標
(例えば光学反射領域等)であっても良い。このような
構成の研磨装置によれば、研磨対象物に形成された特定
指標を角度位置の基準として直接利用するため、被研磨
面上の位置の特定を容易に行い、且つ特定位置の位置精
度を向上させることができる。また角度位置検出用に他
の被検出部を設ける必要がないため、研磨装置を簡明化
することができる。
Here, the “specific index formed on the object to be polished” is, for example, an orientation flat or notch (Notc) on a semiconductor wafer.
h), refers to an index such as an alignment mark, and may be an index for position detection newly provided outside the die area (for example, an optical reflection area or the like). According to the polishing apparatus having such a configuration, since the specific index formed on the object to be polished is directly used as the reference of the angular position, the position on the surface to be polished can be easily specified, and the positional accuracy of the specific position is improved. Can be improved. Further, since there is no need to provide another detected portion for detecting the angular position, the polishing apparatus can be simplified.

【0024】さらに、プローブ光の被研磨面への照射位
置を被研磨面の径方向に相対移動可能にするとともに、
照射による反射または透過信号光を移動経路において受
光可能とすることにより、被研磨面の回転角度位置およ
び半径方向位置を特定した特定位置の表面状態を測定す
るように研磨装置を構成することも好ましい。
Further, the irradiation position of the probe light on the surface to be polished can be relatively moved in the radial direction of the surface to be polished,
It is also preferable that the polishing apparatus is configured to measure a surface state of a specific position in which a rotation angle position and a radial position of the surface to be polished are specified by allowing a reflected or transmitted signal light by irradiation to be received in a movement path. .

【0025】上記構成によれば、被研磨面が回転軸まわ
りに回転されて同一周上の特定位置の表面状態を測定可
能なほか、測定位置が被研磨満の径方向に相対移動可能
に構成されて、被研磨面の回転角度位置および半径方向
位置を特定した特定位置の表面状態を測定する。このた
め、一定の回転円周のみならず被研磨面上の任意の位置
を特定して当該特定位置の表面状態の変化を的確に捉え
ることができる。
According to the above configuration, the surface to be polished is rotated around the rotation axis so that the surface condition at a specific position on the same circumference can be measured, and the measurement position can be relatively moved in the radial direction of the polished surface. Then, the surface state of the specific position in which the rotational angle position and the radial position of the polished surface are specified is measured. For this reason, not only a constant rotation circumference but also an arbitrary position on the surface to be polished can be specified, and a change in the surface state at the specific position can be accurately grasped.

【0026】なお、研磨部材は研磨部材を研磨対象物の
径方向に移動可能に支持する移動機構を介して研磨装置
に取り付けられ、上記照明部と光検出部とが移動機構に
支持されて研磨対象物の径方向に移動可能に研磨装置を
構成することができる。このような構成によれば照明部
と光検出部とを移動させる移動機構を別個独立して設け
ることなく被研磨面上の任意位置を特定して測定可能な
上記研磨装置を構成することができる。
The polishing member is attached to the polishing apparatus via a moving mechanism that supports the polishing member so as to be movable in the radial direction of the object to be polished, and the illumination unit and the light detection unit are supported by the moving mechanism to perform polishing. The polishing apparatus can be configured to be movable in the radial direction of the object. According to such a configuration, it is possible to configure the polishing apparatus capable of specifying and measuring an arbitrary position on the surface to be polished without separately providing a moving mechanism for moving the illumination unit and the light detection unit. .

【0027】なお、光検出部は被研磨面で反射された反
射光のうち0次光成分のみを選択的に取り出して被研磨
面の表面状態を測定するように研磨装置を構成すること
が好ましい。
It is preferable that the polishing apparatus be configured so that the light detecting section selectively extracts only the zero-order light component from the reflected light reflected by the surface to be polished and measures the surface condition of the surface to be polished. .

【0028】また、本発明に係る研磨方法は、対象物保
持部に保持された研磨対象物を研磨部材に当接させなが
ら対象物保持部と研磨部材とを相対移動させて研磨対象
物の被研磨面の研磨加工を行う研磨方法において、被研
磨面の表面状態を光学的に測定する光学測定部を用いて
被研磨面の研磨加工中に被研磨面における特定位置の表
面状態の変化を測定し、測定される特定位置の表面状態
の測定結果に基づいて研磨加工を制御する。
In the polishing method according to the present invention, the object holding portion and the polishing member are relatively moved while the object held by the object holding portion is in contact with the polishing member, and the object to be polished is polished. In a polishing method for polishing a polished surface, a change in the surface state at a specific position on the polished surface is measured during the polishing of the polished surface using an optical measurement unit that optically measures the surface state of the polished surface. Then, the polishing process is controlled based on the measurement result of the surface state at the specific position to be measured.

【0029】以上のように構成された研磨装置による研
磨対象物としては半導体ウェハがあり、本発明に係る半
導体デバイス製造方法は、以上のような構成の研磨装置
を用いて半導体ウェハの表面を平坦化する工程を有して
構成される。
An object to be polished by the polishing apparatus constructed as described above is a semiconductor wafer, and the method for manufacturing a semiconductor device according to the present invention uses the polishing apparatus having the above-mentioned structure to flatten the surface of the semiconductor wafer. It is comprised including the process of changing.

【0030】[0030]

【発明の実施の形態】以下、図面を参照して本発明の好
ましい実施形態について説明する。説明では、まずダマ
シンプロセス(Damascene process)において埋め込ん
だ金属膜をメタルCMPで平坦化し電極配線を形成する
場合について説明する。本発明の第1実施形態に係るC
MP装置1はその概要構成を図1に示すように、上面に
ウェハWを吸着保持するウェハテーブル10と、その上
方に位置して下面に研磨パッド21が取り付けられる研
磨ヘッド20と、ウェハWの表面状態を測定する光学測
定部30とを備えて構成され、ウェハWの中心位置の表
面状態を測定して研磨加工を行うCMP装置である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. In the description, first, a case will be described in which a metal film embedded in a damascene process is flattened by metal CMP to form an electrode wiring. C according to the first embodiment of the present invention
As shown in FIG. 1, the MP apparatus 1 has a schematic configuration as shown in FIG. 1, a wafer table 10 for adsorbing and holding a wafer W on an upper surface, a polishing head 20 on which a polishing pad 21 is mounted on a lower surface, and This is a CMP apparatus that includes an optical measurement unit 30 that measures a surface state, and that performs a polishing process by measuring the surface state at the center position of the wafer W.

【0031】ウェハテーブル10は、ウェハホルダ12
とこのウェハホルダ12から下方に垂直に延びてウェハ
ホルダ12を支持するホルダ駆動軸13とを有して構成
され、図示しない回転駆動機構によりホルダ駆動軸13
の回転軸Aまわりに回転駆動される。ウェハホルダ12
の上面には、ウェハWを背面側から吸着保持する保持機
構が設けられるとともに、ウェハWの中心をウェハホル
ダ12の回転軸Aに一致させるリテーナリングが設けら
れている(ともに不図示)。これによりウェハWはその
中心位置が回転軸Aと一致するように吸着保持され、回
転駆動機構により所定の回転速度で水平に回転される。
The wafer table 10 includes a wafer holder 12
And a holder drive shaft 13 that extends vertically downward from the wafer holder 12 and supports the wafer holder 12. The holder drive shaft 13 is rotated by a rotation drive mechanism (not shown).
Is rotated around the rotation axis A. Wafer holder 12
Is provided with a holding mechanism for sucking and holding the wafer W from the back side, and a retainer ring for aligning the center of the wafer W with the rotation axis A of the wafer holder 12 (both are not shown). As a result, the wafer W is suction-held so that its center position coincides with the rotation axis A, and is horizontally rotated at a predetermined rotation speed by the rotation drive mechanism.

【0032】研磨ヘッド20は、下面に研磨パッド21
が取り付けられるヘッド部材22と、このヘッド部材2
2を支持して上方に垂直に延びるスピンドル軸23とを
有して構成され、スピンドル軸23が図示しない回転駆
動機構により回転軸Bまわりに回転駆動されて、下端に
取り付けられた研磨パッド21を所定の回転速度で水平
面に回転させる。
The polishing head 20 has a polishing pad 21 on the lower surface.
A head member 22 to which the head member 2 is attached
And a spindle shaft 23 that extends vertically upward and supports the spindle 2. The spindle shaft 23 is driven to rotate around a rotation axis B by a rotation drive mechanism (not shown), and the polishing pad 21 attached to the lower end is rotated. Rotate in a horizontal plane at a predetermined rotation speed.

【0033】ウェハWの研磨加工はウェハホルダ12と
ヘッド部材22を同一方向または反対方向に回転させ、
研磨パッド21の中心からスラリーを供給しながら研磨
ヘッド20を下降させて研磨パッド21をウェハWの被
研磨面に圧接し、さらに研磨ヘッド20をウェハWの中
心部と外周部との間を半径方向に往復揺動させることで
行う。これにより、ウェハWの被研磨面がパッド面との
間に介在するスラリーの機械的および化学的研磨作用を
受けて平坦に研磨加工される。
In the polishing of the wafer W, the wafer holder 12 and the head member 22 are rotated in the same direction or opposite directions,
The polishing head 20 is lowered while supplying the slurry from the center of the polishing pad 21 to press the polishing pad 21 against the surface to be polished of the wafer W, and further, the polishing head 20 is moved radially between the central portion and the outer peripheral portion of the wafer W. It is performed by swinging back and forth in the direction. Thereby, the polished surface of the wafer W is polished flat by the mechanical and chemical polishing action of the slurry interposed between the wafer W and the pad surface.

【0034】このCMP装置1では、図示するように研
磨パッド21の直径をウェハWの直径よりも小さく構成
している。このため、このような形態のCMP装置によ
れば、前述した従来のCMP装置に比べて装置全体を小
型に構成することができる。また、このようなCMP装
置では研磨パッド21が研磨加工を行っている領域を除
いてウェハWの被研磨面が露出される。このため、ヘッ
ド部材22(従来技術における研磨定盤122)に孔を
設けたり研磨パッドに透光部を設けたりすることなく、
被研磨面の表面状態を測定することができる。
In the CMP apparatus 1, the diameter of the polishing pad 21 is smaller than the diameter of the wafer W as shown in the figure. Therefore, according to the CMP apparatus having such a configuration, the entire apparatus can be configured to be smaller in size than the conventional CMP apparatus described above. Further, in such a CMP apparatus, the polished surface of the wafer W is exposed except for a region where the polishing pad 21 is performing polishing. For this reason, without providing a hole in the head member 22 (polishing platen 122 in the prior art) or providing a light-transmitting portion in the polishing pad,
The surface condition of the polished surface can be measured.

【0035】第1実施形態に係るCMP装置1では、ウ
ェハ上の特定位置を計測する手段としてウェハWの回転
中心位置の表面状態を光学測定部30で測定する。
In the CMP apparatus 1 according to the first embodiment, the surface state of the rotation center position of the wafer W is measured by the optical measurement unit 30 as means for measuring a specific position on the wafer.

【0036】光学測定部30は、光源31、ビームスプ
リッタ32、反射光検出器33および図示しないレンズ
光学系などからなり、光源31から射出されたプローブ
光を回転軸Aに沿ってウェハWの中心位置に照射し、被
研磨面上に所定スポット径(例えばφ100μm〜数百μ
m程度)の円形のビームスポットを形成する。ウェハW
からの反射信号光はビームスプリッタ32で反射され、
反射光検出器33で受光される。光学測定部30は、反
射光検出器33で検出される反射信号光の光強度と図示
しないプローブ光検出器で検出されるプローブ光の信号
強度からプローブ光に対する反射信号光の光強度の比、
すなわち被研磨面の反射率を測定する。
The optical measuring unit 30 includes a light source 31, a beam splitter 32, a reflected light detector 33, a lens optical system (not shown), and the like, and converts the probe light emitted from the light source 31 to the center of the wafer W along the rotation axis A. And irradiate the surface with a predetermined spot diameter (for example, φ100 μm to several hundred μ)
m) is formed. Wafer W
Is reflected by the beam splitter 32,
The light is received by the reflected light detector 33. The optical measuring unit 30 calculates the ratio of the light intensity of the reflected signal light to the probe light based on the light intensity of the reflected signal light detected by the reflected light detector 33 and the signal intensity of the probe light detected by the probe light detector (not shown);
That is, the reflectance of the polished surface is measured.

【0037】ウェハWは、前述したリテーナの作用によ
りウェハWの中心位置が回転軸Aと一致するように位置
決めされてウェハホルダ12に吸着保持されている。こ
のため、光源31から射出されるプローブ光は、ウェハ
Wの着脱を行っても必ずウェハWの中心位置に照射さ
れ、またプローブ光が回転軸A上に照射されるため、ウ
ェハWが回転駆動されてもウェハ面上における測定スポ
ット位置が変化することがない。従って、このような手
段によりウェハWの中心位置を特定してその表面状態の
変化を測定することができる。
The wafer W is positioned by the action of the retainer so that the center position of the wafer W coincides with the rotation axis A, and is held by the wafer holder 12 by suction. For this reason, the probe light emitted from the light source 31 is always irradiated to the center position of the wafer W even when the wafer W is attached and detached, and the probe light is irradiated on the rotation axis A. Even if the measurement is performed, the measurement spot position on the wafer surface does not change. Therefore, it is possible to specify the center position of the wafer W and measure the change in the surface state by such means.

【0038】ここで、ダマシンプロセスにおけるメタル
CMPで、一定の配線パターンを有するウェハを連続し
て研磨加工したときに上記同様の光学測定部30で検出
される反射率Rの変化を図5に示す。研磨加工を開始し
た当初のウェハ表面には全面に金属層が形成されてお
り、光学測定部30で検出される反射率は高い値RM
状態でほとんど変化しない。一方、一定程度金属層の研
磨加工が進むと、徐々に下地のバリア層(ストッパ層)
が露出してくるため、検出される反射率は研磨加工の進
行に伴い徐々に小さくなって行く。そして余分な金属層
が除去されると金属電極の面積が変化しなくなるため、
反射信号光の反射率も低い値RBで変化しなくなる。従
って、このように検出される反射率Rを検出してその変
化を測定することにより、反射率が所定の反射率(例え
ば、図におけるRB)に到達したときに研磨加工の終了
点すなわち研磨終点を判定することができる。
FIG. 5 shows a change in the reflectance R detected by the optical measurement unit 30 similar to the above when a wafer having a fixed wiring pattern is continuously polished by metal CMP in the damascene process. . The original wafer surface that initiated the polishing is entirely the metal layer is formed, the reflectance detected by the optical measuring unit 30 hardly changes in the state of high value R M. On the other hand, as the polishing of the metal layer progresses to a certain extent, the barrier layer (stopper layer) as an underlayer gradually increases.
Is exposed, and the detected reflectance gradually decreases as the polishing process progresses. And if the extra metal layer is removed, the area of the metal electrode will not change,
The reflectance of the reflective signal light is also not change at low R B. Therefore, by detecting the reflectance R detected in this way and measuring the change, when the reflectance reaches a predetermined reflectance (for example, R B in the figure), the end point of the polishing process, that is, the polishing is finished. An end point can be determined.

【0039】本実施形態に係るCMP装置1において
は、光学測定部30はウェハの中心位置が研磨ヘッド2
0の揺動により研磨パッド21で覆われている間を除
き、同一位置(ウェハ中心位置のダイ領域、特定ダイ領
域内のパターン位置)の表面状態を連続して計測してい
る。従って、光学測定部30で検出される反射率の変化
特性は、ウェハの中心位置が研磨パッド21で覆われて
いる間を除き上記図5に示した特性と相似する特性とな
る。
In the CMP apparatus 1 according to the present embodiment, the optical measuring unit 30 is configured such that the center position of the wafer is the polishing head 2
The surface state at the same position (the die area at the wafer center position, the pattern position in the specific die area) is continuously measured except during the time when the polishing pad 21 is covered by the swing of 0. Accordingly, the change characteristic of the reflectance detected by the optical measurement unit 30 is similar to the characteristic shown in FIG. 5 except that the center position of the wafer is covered with the polishing pad 21.

【0040】また、光学測定部30が測定している被研
磨面上のパターンは、ウェハ中心位置のパターンとして
特定されるため、当該パターンにおいて研磨終点に相当
する反射率の値RBも既知である。従って、予め光学測
定部30に上記反射率の値RBを判定基準値として設定
しておくことにより、ウェハWを着脱交換しても的確か
つ高精度に研磨終点を判定することができる。
Further, the pattern on the surface to be polished to the optical measuring unit 30 is measured, because it is specified as a pattern of the wafer center position, the value R B of the reflectance corresponding to the polishing end point in the pattern also known is there. Therefore, by setting the value R B of the reflectance as a criterion value in advance in the optical measurement chamber 30, it is possible to determine the polishing endpoint accurately and highly accurately be detachably replace the wafer W.

【0041】このようにして判定された研磨終点は、C
MP装置1の作動を制御する作動制御装置80に出力さ
れ、作動制御装置80はこの判定信号に基づいて研磨加
工を終了させる。従って、このようなCMP装置によっ
て研磨加工されたウェハには研磨終了状態のばらつきが
なく、CMPプロセスを効率的に管理してCMP装置の
スループットを向上させることができる。
The polishing end point determined in this way is C
It is output to an operation control device 80 that controls the operation of the MP device 1, and the operation control device 80 ends the polishing based on this determination signal. Therefore, the wafer polished by such a CMP apparatus has no variation in the polishing end state, and the CMP process can be efficiently managed to improve the throughput of the CMP apparatus.

【0042】次に、本発明の第2実施形態に係るCMP
装置について図2を参照して説明する。このCMP装置
2は、上面にウェハWを吸着保持するウェハテーブル1
0と、その上方に位置して下面に研磨パッド21が取り
付けられる研磨ヘッド20と、ウェハWの表面状態を測
定する光学測定部30と、ウェハWの回転角度位置を検
出する角度位置検出部40とを備えて構成され、ウェハ
W中心から一定半径上にある特定位置の表面状態を測定
して研磨加工するCMP装置である。
Next, the CMP according to the second embodiment of the present invention
The apparatus will be described with reference to FIG. The CMP apparatus 2 includes a wafer table 1 for holding a wafer W by suction on an upper surface thereof.
0, a polishing head 20 on which a polishing pad 21 is mounted on the lower surface, an optical measuring unit 30 for measuring the surface state of the wafer W, and an angular position detecting unit 40 for detecting the rotational angle position of the wafer W This is a CMP apparatus configured to measure the surface state of a specific position on a certain radius from the center of the wafer W and perform polishing.

【0043】なお、本実施形態におけるウェハテーブル
10と研磨ヘッド20の構成、および光学測定部30の
内部構成は前述の第1実施形態と同一であるため、同一
部分に同一番号を付して重複説明を省略する。
Since the configuration of the wafer table 10 and the polishing head 20 and the internal configuration of the optical measuring section 30 in the present embodiment are the same as those in the first embodiment, the same portions are assigned the same numbers and duplicated. Description is omitted.

【0044】このCMP装置2では、光学測定部30の
プローブ光照射位置がウェハホルダ12の回転軸A上で
はなく、回転軸Aから所定の半径距離r1だけ離れた位
置に設定されている。従って、光学測定部30から照射
されるプローブ光は、ウェハホルダ12が回転駆動され
たときに、ウェハWの中心位置から半径r1の同一円周
上に位置するダイ領域およびパターンをトレースする。
[0044] In the CMP apparatus 2, the probe light irradiation position of the optical measuring unit 30 is not on the rotational axis A of the wafer holder 12 is set to away from the rotation axis A by a predetermined radial distance r 1 position. Therefore, the probe light emitted from the optical measurement unit 30 traces the die region and the pattern located on the same circumference with the radius r 1 from the center position of the wafer W when the wafer holder 12 is rotationally driven.

【0045】このため、ウェハWの回転(測定位置の変
化)に伴って検出される反射率は変化し、その周期はウ
ェハWの1回転を周期として変化する周期的な信号(ミ
クロな変化信号)になる。一方、研磨加工中には、研磨
加工の進展に伴って被研磨面の各位置の反射率がそれぞ
れ図5に示すように変化する(マクロな変化信号)。こ
の変化はウェハWの被研磨面全体で同様に生じることか
ら、研磨加工中に連続測定を行ったときには、図5に示
すマクロな反射率変化特性に上記ミクロな変化信号を付
加したような反射率変化信号になる。
For this reason, the detected reflectance changes with the rotation of the wafer W (change of the measurement position), and the period of the reflectance changes with a period of one rotation of the wafer W (micro-change signal). )become. On the other hand, during the polishing, the reflectance at each position on the surface to be polished changes as shown in FIG. 5 (macro change signal) as the polishing progresses. Since this change similarly occurs on the entire surface to be polished of the wafer W, when continuous measurement is performed during the polishing process, the reflection is such that the micro change signal is added to the macro reflectivity change characteristic shown in FIG. It becomes a rate change signal.

【0046】このようにして検出される反射率の変化信
号は、上記マクロな変化特性の集合体であることから、
半径r1の回転円周上の位置(ダイ領域またはパターン
位置)を特定して当該特定された位置の信号のみを抜き
出すことにより、その特定位置の反射率変化特性(図5
同様のマクロな反射率変化特性)を得ることができる。
角度位置検出部40はウェハWの回転角度θを特定する
ことによりr1,θでウェハ面上の位置を特定するため
の装置である。
The change signal of the reflectance detected in this manner is an aggregate of the above-described macro change characteristics.
By specifying a position (die region or pattern position) on the rotation circumference of the radius r 1 and extracting only a signal at the specified position, the reflectance change characteristic at the specified position (FIG. 5)
A similar macro reflectance change characteristic) can be obtained.
The angular position detecting unit 40 is a device for specifying the position on the wafer surface by r 1 and θ by specifying the rotation angle θ of the wafer W.

【0047】角度位置検出部40は、光源41とこの光
源41からの光を検出する検出器42とを有して構成さ
れる。光源41から射出された光は所定の入射角度でウ
ェハ表面の外周縁部に入射するように照射され、照射位
置にウェハWがあるときにウェハ表面で反射された反射
光が検出器42に入射し、照射位置にウェハWが無いと
きに検出器42に光源41からの光が入射しない(また
は検出強度が低くなる)ようにアライメントされてい
る。
The angular position detector 40 includes a light source 41 and a detector 42 for detecting light from the light source 41. The light emitted from the light source 41 is irradiated so as to be incident on the outer peripheral edge of the wafer surface at a predetermined incident angle, and when the wafer W is located at the irradiation position, the reflected light reflected on the wafer surface is incident on the detector 42. The alignment is performed so that the light from the light source 41 does not enter the detector 42 when the wafer W is not located at the irradiation position (or the detection intensity decreases).

【0048】このため、ウェハホルダ12にウェハWが
保持されて回転駆動されると、照射位置をウェハWが通
過している間は検出器42で反射光が検出され、照射位
置をウェハWに形成されたノッチまたはオリエンテーシ
ョンフラットが通過している間には反射光が検出されな
い。従って、検出器42で検出される光強度を計測する
ことで、ウェハWのノッチ等が通過する瞬間を検出する
ことができ、この検出信号によりウェハWの角度位置を
特定することができる。角度位置検出部40で検出され
る信号は光学測定部30に出力される。
Therefore, when the wafer W is held by the wafer holder 12 and driven to rotate, the reflected light is detected by the detector 42 while the wafer W passes through the irradiation position, and the irradiation position is formed on the wafer W. The reflected light is not detected while the notch or the orientation flat passes. Therefore, by measuring the light intensity detected by the detector 42, the moment when the notch or the like of the wafer W passes can be detected, and the angular position of the wafer W can be specified by the detection signal. The signal detected by the angular position detection unit 40 is output to the optical measurement unit 30.

【0049】光学測定部30では、角度位置検出部40
から入力される信号をトリガとして用い、半径r1の回
転円周上の角度位置θを特定する。例えば、光学測定部
30の測定位置と角度位置検出部40の検出位置とが回
転軸Aを含む同一直線上にあり、角度位置検出部40が
ノッチを検出したとき(例えば検出器42の信号の立下
がりまたは立上がり時)のウェハWの角度位置をθ=0
度と規定すれば、このノッチの検出時に光学測定部30
が計測する反射率Rは、半径r1、角度位置θ=0度の
位置(r10で特定される特定位置)のパターンの反
射率である。
In the optical measuring section 30, the angular position detecting section 40
Is used as a trigger to specify the angular position θ on the rotation circle having the radius r 1 . For example, when the measurement position of the optical measurement unit 30 and the detection position of the angle position detection unit 40 are on the same straight line including the rotation axis A, and the angle position detection unit 40 detects a notch (for example, The angle position of the wafer W at the time of falling or rising) is θ = 0.
When the notch is detected, the optical measurement unit 30
Is the reflectance of the pattern at the position of the radius r 1 and the angular position θ = 0 degrees (the specific position specified by r 1 and θ 0 ).

【0050】光学測定部30では、反射光検出器31で
検出される反射率変化信号から、このようにして特定さ
れる特定位置(r1,θ0)の反射率信号のみを取り出し
て当該特定位置の反射率の変化を測定する。この場合
に、得られる特定位置の測定データは、ウェハ1回転に
つき1回のサンプリングであるため離散的な反射率変化
データとなるが、反射率が変化する領域の時間幅(図5
において反射率がRMからRBに変化する時間幅)に対し
てサンプリング間隔が充分に短いため、実質的に図5と
同様の反射率変化特性を得ることができる。
The optical measuring unit 30 extracts only the reflectance signal at the specific position (r 1 , θ 0 ) specified from the reflectance change signal detected by the reflected light detector 31 and performs the identification. Measure the change in reflectivity at the location. In this case, the obtained measurement data of the specific position is discrete reflectance change data because sampling is performed once per wafer rotation, but the time width of the area where the reflectance changes (FIG. 5)
Reflectance is short enough sampling interval relative to the time width) that varies from R M to R B, it is possible to obtain substantially the same reflectance change characteristics Figure 5 in.

【0051】また、ノッチの検出信号から一回転周期内
の所定の遅延時間t(ディレイ)をおいて計測される反
射率は、ウェハWの半径r1上においてθ=0の角度位
置から当該ディレイに相当する回転角度分回転した角度
位置θtのパターンの反射率である。従って、反射光検
出器31で検出される反射率変化信号から、特定位置
(r1,θt)の反射率信号のみを取り出すことで、ウェ
ハWの半径r1上の任意の位置を特定して当該特定位置
の反射率の変化を測定することができる。
The reflectivity measured after a predetermined delay time t (delay) within one rotation cycle from the notch detection signal is calculated from the angular position of θ = 0 on the radius r 1 of the wafer W. Is the reflectance of the pattern at the angular position θ t rotated by the rotation angle corresponding to Accordingly, by extracting only the reflectance signal at the specific position (r 1 , θ t ) from the reflectance change signal detected by the reflected light detector 31, an arbitrary position on the radius r 1 of the wafer W is specified. Thus, the change in reflectance at the specific position can be measured.

【0052】光学測定部30は、このようにして得た特
定位置の反射率変化特性から前述の実施例と同様にして
研磨終点を判定する。従って、以上のように構成される
CMP装置2によれば、所定の半径上に位置する任意の
位置(ダイ領域やパターン位置)を単数または複数特定
して的確に研磨終点を判定することができる。
The optical measuring section 30 determines the polishing end point from the reflectance change characteristics of the specific position thus obtained in the same manner as in the above embodiment. Therefore, according to the CMP apparatus 2 configured as described above, one or more arbitrary positions (die regions or pattern positions) located on a predetermined radius can be specified to accurately determine the polishing end point. .

【0053】また、CMP装置2では光学測定部30で
ウェハWの中心位置をモニターする必要がない。従っ
て、研磨ヘッド20の揺動範囲以外の適宜な半径位置を
測定することで、光学測定部30の測定スポットが研磨
パッド21で覆われることがなく、反射率測定が中断さ
れることがない。このため、研磨加工中の膜厚変化をよ
り細かくリアルタイムで測定することができ、高精度の
終点検出を行うことができる。これにより、研磨終了状
態にばらつきのないウェハを生産することができ、CM
Pプロセスを効率的に管理してスループットを向上させ
ることができる。
Further, in the CMP apparatus 2, it is not necessary to monitor the center position of the wafer W by the optical measuring unit 30. Therefore, by measuring an appropriate radial position other than the swing range of the polishing head 20, the measurement spot of the optical measurement unit 30 is not covered with the polishing pad 21, and the reflectance measurement is not interrupted. For this reason, the change in film thickness during the polishing process can be more finely measured in real time, and highly accurate end point detection can be performed. As a result, it is possible to produce a wafer having a uniform polishing end state,
Throughput can be improved by efficiently managing the P process.

【0054】なお、以上説明した実施例では、ウェハW
の角度位置を検出する手段として、角度位置検出部40
でウェハWのノッチまたはオリエンテーションフラット
を検出する実施例を開示したが、角度位置検出手段はウ
ェハWの角度位置θを特定可能であればよく、ウェハホ
ルダ12の回転角度位置から間接的にウェハの角度位置
を特定するものであっても良い。
In the embodiment described above, the wafer W
The angle position detecting unit 40 is used as a means for detecting the angular position of
Although the embodiment in which the notch or the orientation flat of the wafer W is detected is disclosed, the angular position detecting means only needs to be able to specify the angular position θ of the wafer W, and the angle of the wafer is indirectly obtained from the rotational angle position of the wafer holder 12. The position may be specified.

【0055】例えば、ウェハWのノッチ位置と一定の関
係を有するウェハホルダ12の上面位置や裏面位置、外
周面等に小型のミラーを取り付け、このミラーの回転周
上を角度位置検出部40でモニターするように構成すれ
ば、ウェハホルダ12の回転によりミラーが光源41の
照射位置を通過するときに反射光の強度が高くなるた
め、この反射信号をトリガとして用いることで上述の実
施例と同様に構成することができる。また、角度位置検
出手段は、近接センサや磁気センサ等を用いて構成する
ものでも良く、ウェハホルダ12の回転角度をロータリ
エンコーダ等で検出するものであっても良い。
For example, a small mirror is mounted on the upper surface position, the lower surface position, the outer peripheral surface, and the like of the wafer holder 12 having a fixed relationship with the notch position of the wafer W, and the rotation position of the mirror is monitored by the angular position detector 40. With such a configuration, the intensity of the reflected light increases when the mirror passes through the irradiation position of the light source 41 due to the rotation of the wafer holder 12, so that the configuration is similar to that of the above-described embodiment by using this reflected signal as a trigger. be able to. Further, the angular position detecting means may be configured using a proximity sensor, a magnetic sensor, or the like, or may be configured to detect the rotation angle of the wafer holder 12 with a rotary encoder or the like.

【0056】次に、本発明の第3実施形態に係るCMP
装置について図3を参照して説明する。このCMP装置
3は、ウェハテーブル10、研磨ヘッド20、光学測定
部30およびウェハ角度位置検出部40を備えるCMP
装置2に対して、光学測定部30を研磨ヘッド20に取
り付けることでウェハWの半径方向に移動可能に設け、
この移動経路上にある特定位置の表面状態を測定して研
磨加工するCMP装置である。
Next, the CMP according to the third embodiment of the present invention will be described.
The apparatus will be described with reference to FIG. The CMP apparatus 3 includes a wafer table 10, a polishing head 20, an optical measuring unit 30, and a wafer angular position detecting unit 40.
The optical measurement unit 30 is attached to the polishing head 20 so as to be movable in the radial direction of the wafer W with respect to the apparatus 2,
This is a CMP apparatus that measures the surface state of a specific position on this movement path and performs polishing.

【0057】すなわち、CMP装置3では光学測定部3
0が連結部材26を介して研磨ヘッド20に取り付けら
れており、研磨ヘッド20の揺動作動に伴ってウェハW
の半径方向に往復移動(揺動)可能に構成されている。
研磨ヘッド20の揺動作動範囲は、光学測定部30の測
定スポットがウェハWの中心(半径r=0)と外周縁部
(r=rE)との間を往復移動するように設定される。
研磨ヘッド20の揺動機構にはヘッドの揺動位置を検出
する揺動位置検出部が設けられており、この検出部で検
出された揺動位置検出信号が光学測定部30に入力され
る。
That is, in the CMP apparatus 3, the optical measurement unit 3
0 is attached to the polishing head 20 via the connecting member 26, and the wafer W
Is configured to be able to reciprocate (swing) in the radial direction.
The swing operation range of the polishing head 20 is set so that the measurement spot of the optical measurement unit 30 reciprocates between the center (radius r = 0) of the wafer W and the outer peripheral edge (r = r E ). .
The swinging mechanism of the polishing head 20 is provided with a swinging position detecting unit for detecting the swinging position of the head, and a swinging position detection signal detected by this detecting unit is input to the optical measuring unit 30.

【0058】光学測定部30は、揺動位置検出部から入
力される揺動位置検出信号から、ウェハWに対する測定
スポットの半径方向位置rを求めるとともに、角度位置
検出部40から入力されるノッチの検出信号を基準とし
て測定スポットの角度位置θを定める。ウェハW上にあ
るすべてのダイ領域およびダイ領域内のパターン位置
は、上記二つの検出信号rとθとから、例えば(r0
θ)や(r1,θt)のように特定され、反射光検出器3
1で検出される反射率変化信号から、このようにして特
定される特定位置の反射率信号を取り出すことで、ウェ
ハW上の任意の位置を特定して当該特定位置の反射率の
変化を測定することができる。
The optical measuring section 30 obtains the radial position r of the measurement spot with respect to the wafer W from the swing position detection signal input from the swing position detecting section, and detects the notch of the notch input from the angular position detecting section 40. The angle position θ of the measurement spot is determined based on the detection signal. From the above two detection signals r and θ, for example, (r 0 ,
θ) and (r 1 , θ t ), and the reflected light detector 3
By extracting the reflectance signal of the specific position specified in this manner from the reflectance change signal detected in step 1, an arbitrary position on the wafer W is specified, and the change in the reflectance of the specific position is measured. can do.

【0059】CMP装置3では、光学測定部30が研磨
ヘッド20とともに揺動移動し、その移動経路r0〜rE
上を通過するパターンの反射率を計測する。従って、ウ
ェハホルダ12の回転速度をヘッド部材22の揺動移動
速度よりも充分大きくし、あるいはこれらを同期制御す
ることで、任意半径上にある同一位置(ダイ領域やパタ
ーン位置)を特定して反射率変化を測定することができ
る。このように特定される特定位置は光学測定部30の
移動範囲に複数設けることができ、ウェハ上の複数の半
径位置で反射率の変化特性を測定することができる。
In the CMP apparatus 3, the optical measuring section 30 swings together with the polishing head 20, and its movement paths r 0 to r E.
The reflectivity of the pattern passing above is measured. Therefore, by making the rotation speed of the wafer holder 12 sufficiently higher than the swing movement speed of the head member 22 or controlling them synchronously, the same position (die region or pattern position) on an arbitrary radius is specified and reflected. The rate change can be measured. A plurality of specific positions specified in this manner can be provided in the movement range of the optical measurement unit 30, and the change characteristic of the reflectance can be measured at a plurality of radial positions on the wafer.

【0060】ウェハWを回転させて研磨加工を行う回転
系の研磨装置では、被研磨面の研磨膜厚のばらつきは、
前述した配線パターンの違いによるばらつきの他に、一
般的にウェハの半径方向位置に関連した同心円状のばら
つきが存在する。
In a rotary polishing apparatus that performs polishing by rotating the wafer W, the variation in the thickness of the polished film on the surface to be polished is as follows.
In addition to the above-described variation due to the difference in the wiring pattern, there is generally a concentric variation related to the radial position of the wafer.

【0061】CMP装置3では、異なる半径距離にある
複数の特定位置の反射率計測が可能なため、上記同心円
状の膜厚のばらつきまで測定することができる。従っ
て、被研磨面全体の膜厚のばらつきを考慮した的確な研
磨終点の判定を行うことが可能になり、研磨品質の高い
ウェハを生産することができる。これにより、CMPプ
ロセスを効率的に管理してスループットを向上させるこ
とができる。
The CMP apparatus 3 can measure the reflectance at a plurality of specific positions at different radial distances, so that it is possible to measure even the concentric film thickness variation. Therefore, it is possible to accurately determine the polishing end point in consideration of the variation in the film thickness of the entire surface to be polished, and it is possible to produce a wafer with high polishing quality. Thereby, the throughput can be improved by efficiently managing the CMP process.

【0062】次に、本発明の第4実施形態に係るCMP
装置について図4を参照して説明する。このCMP装置
4は、上述した第3実施形態のCMP装置3と異なり、
光学測定部30を独立した揺動機構によりウェハWの半
径方向に移動可能に設けて、この移動経路上にある特定
位置の表面状態を測定して研磨加工するCMP装置であ
る。なお、ウェハテーブル10、研磨ヘッド20、光学
測定部30の内部構成およびウェハ角度位置検出部40
等は既述した各実施例と同様である。
Next, the CMP according to the fourth embodiment of the present invention will be described.
The apparatus will be described with reference to FIG. This CMP apparatus 4 is different from the above-described CMP apparatus 3 of the third embodiment,
The optical measuring unit 30 is provided so as to be movable in the radial direction of the wafer W by an independent swinging mechanism, and measures the surface condition of a specific position on the moving path to perform polishing. The internal configuration of the wafer table 10, the polishing head 20, the optical measuring unit 30, and the wafer angular position detecting unit 40
And the like are the same as in the above-described embodiments.

【0063】CMP装置4では光学測定部30が、図示
しない揺動機構によりウェハWの半径方向に往復移動
(揺動)可能に構成されており、光学測定部30の測定
スポットがウェハWの中心(半径r=0)と外周縁部
(r=rE)との間を適宜な移動条件で往復移動可能に
配設されている。揺動機構には光学測定部30の移動位
置を検出する移動位置検出部が備えられており、その検
出信号が光学測定部30に入力されている。
In the CMP apparatus 4, the optical measuring unit 30 is configured to be able to reciprocate (oscillate) in the radial direction of the wafer W by a swing mechanism (not shown), and the measurement spot of the optical measuring unit 30 is set at the center of the wafer W. It is arranged so as to be able to reciprocate between (radius r = 0) and the outer peripheral edge (r = r E ) under appropriate moving conditions. The swing mechanism is provided with a movement position detection unit that detects the movement position of the optical measurement unit 30, and a detection signal is input to the optical measurement unit 30.

【0064】光学測定部30は移動位置検出部から入力
される検出信号から、ウェハW上における測定スポット
の半径方向位置rを求め、またウェハ角度位置検出部か
ら入力されるノッチの検出信号を基準として測定スポッ
トの角度位置θを定める。前述したように、ウェハW上
にあるすべてのダイ領域およびダイ領域内のパターン位
置は、上記二つの検出信号rとθとから(r,θ)とし
て特定され、反射光検出器31で検出される反射率変化
信号から、このようにして特定される特定位置の反射率
信号を取り出すことで、ウェハ上の任意の位置を特定し
て当該特定位置の反射率の変化を測定することができ
る。
The optical measuring section 30 determines the radial position r of the measurement spot on the wafer W from the detection signal input from the moving position detecting section, and uses the notch detection signal input from the wafer angular position detecting section as a reference. Is determined as the angular position θ of the measurement spot. As described above, all the die regions on the wafer W and the pattern positions in the die regions are specified as (r, θ) from the two detection signals r and θ, and are detected by the reflected light detector 31. By extracting the reflectance signal at the specific position specified in this manner from the reflectance change signal, an arbitrary position on the wafer can be specified and the change in the reflectance at the specific position can be measured.

【0065】CMP装置4では、光学測定部30が独自
の移動機構を有しているため、その移動速度や停止位置
を任意に設定することができる。このため、ウェハホル
ダ12の回転速度と研磨ヘッド20の揺動速度との関係
(研磨条件)等に左右されることなく、別個独立した測
定条件を設定することができる。例えば、光学測定部3
0の移動をウェハホルダの回転速度と同期させて移動計
測を行い、あるいは光学測定部30を断続的に移動させ
て同一半径上の多点計測や同一特定位置の複数回サンプ
リングを行うこと、所定の半径範囲に対して重み付けし
た計測を行うこと、などが可能である。
In the CMP apparatus 4, since the optical measuring section 30 has its own moving mechanism, its moving speed and stop position can be set arbitrarily. Therefore, independent measurement conditions can be set without being influenced by the relationship (polishing conditions) between the rotation speed of the wafer holder 12 and the swing speed of the polishing head 20. For example, the optical measurement unit 3
The movement measurement is performed by synchronizing the movement of 0 with the rotation speed of the wafer holder, or the optical measurement unit 30 is intermittently moved to perform multi-point measurement on the same radius or sampling a plurality of times at the same specific position. For example, it is possible to perform weighted measurement on the radius range.

【0066】このため、独立した駆動系を有するCMP
装置4によれば、研磨加工と並行して別個独立にウェハ
上の任意位置の反射率計測が可能なため、前述したCM
P装置3と同様にウェハ全面の反射率を計測して同心円
状の膜厚のばらつきを測定することができ、さらに、残
膜厚の厚い部分について反射率をモニターしながら重点
的に研磨加工させる等、よりきめ細かな加工制御を行う
ことができる。従って、被研磨面全体の膜厚のばらつき
を補正しつつ的確な研磨終点の判定を行うことが可能な
研磨装置を構成でき、研磨品質の高いウェハを生産する
ことができる。また、これにより、CMPプロセスを効
率的に管理して高スループットのCMP装置を提供する
ことができる。
Therefore, a CMP having an independent drive system
According to the apparatus 4, since the reflectance of an arbitrary position on the wafer can be measured separately and independently in parallel with the polishing, the CM
As in the case of the P apparatus 3, the concentric circle thickness variation can be measured by measuring the reflectance of the entire surface of the wafer, and the polishing process is intensively performed while monitoring the reflectance for the portion having a large remaining film thickness. For example, more detailed processing control can be performed. Therefore, it is possible to configure a polishing apparatus capable of accurately determining the polishing end point while correcting the variation in the film thickness of the entire polished surface, and it is possible to produce a wafer with high polishing quality. In addition, a high-throughput CMP apparatus can be provided by efficiently managing the CMP process.

【0067】なお、以上の各実施例では、研磨対象物と
して半導体ウェハを例示し、このウェハを平坦に研磨加
工する場合について説明したが、研磨対象物は他の基
板、例えば石英基板やガラス基板等であっても良く、ま
た被研磨面の形状は回転対称であれば曲面(例えば凸断
面や凹断面の曲面)であっても良い。
In each of the above embodiments, a semiconductor wafer is exemplified as the object to be polished, and the case where the wafer is polished flat is described. However, the object to be polished is another substrate such as a quartz substrate or a glass substrate. The shape of the surface to be polished may be a curved surface (for example, a curved surface having a convex cross section or a concave cross section) as long as it is rotationally symmetric.

【0068】また、CMP装置として、ヘッド部材22
の直径がウェハホルダ22の直径よりも小さく、ウェハ
の被研磨面が上方に開いて位置する形態の研磨装置を例
示したが、本発明はかかる形態の研磨装置に限定される
ものではなく、例えば、上下の配置や大きさ等が逆であ
っても良く、また図9に示したような従来の研磨装置に
ついても適用可能である。
The head member 22 is used as a CMP apparatus.
Is smaller than the diameter of the wafer holder 22, and the polishing apparatus in which the surface to be polished of the wafer is open upward is illustrated. However, the present invention is not limited to such a polishing apparatus. The arrangement and size of the upper and lower portions may be reversed, and the present invention is also applicable to a conventional polishing apparatus as shown in FIG.

【0069】また以上の各実施形態では、メタルCMP
の研磨プロセスについて、光学測定部30が被研磨面の
反射率を測定することにより研磨終点を検出する例を説
明したが、本発明の研磨装置は係る研磨プロセスに限定
されるものではなく、層間絶縁膜や素子分離(Shallow
Trench Isolation : STI)の絶縁膜を平坦化する絶
縁膜CMPの研磨プロセスについても適用可能である。
In each of the above embodiments, the metal CMP
In the above polishing process, an example in which the optical measuring unit 30 detects the polishing end point by measuring the reflectance of the surface to be polished has been described. However, the polishing apparatus of the present invention is not limited to such a polishing process. Insulation film and element isolation (Shallow
The present invention is also applicable to a polishing process of an insulating film CMP for planarizing an insulating film of Trench Isolation (STI).

【0070】図6は、絶縁膜CMPの研磨プロセスにお
いて被研磨面の絶縁膜の膜厚を測定して研磨終点を検出
するのに好適な光学測定部50の構成例を示しており、
これまでに説明したCMP装置1〜4の光学測定部30
に代えて、または光学測定部30に加えて配設すること
により、絶縁膜CMPの終点検出を的確に行うことがで
きるCMP装置を構成する。
FIG. 6 shows an example of the configuration of an optical measuring unit 50 suitable for detecting the polishing end point by measuring the thickness of the insulating film on the surface to be polished in the polishing process of the insulating film CMP.
The optical measuring unit 30 of the CMP apparatuses 1 to 4 described so far.
Instead of or in addition to the optical measurement unit 30, a CMP apparatus capable of accurately detecting the end point of the insulating film CMP is configured.

【0071】光学測定部を置き換えた場合のCMP装置
の全体構成および作動状態は、以上説明したCMP装置
1〜4と同様となるため重複説明を省略し、以下、光学
測定部50の構成および作用について説明する。
The overall configuration and operating state of the CMP apparatus when the optical measuring section is replaced are the same as those of the above-described CMP apparatuses 1 to 4, and therefore, duplicate explanations are omitted. Will be described.

【0072】光学測定部50は、光源51、光源から射
出されたプローブ光をウェハW上に導く照明系のレンズ
52,53,54、光源51から射出されたプローブ光
を透過しウェハWからの反射信号光を反射させるビーム
スプリッタ55、ビームスプリッタで折り返された反射
信号光を導く測定系のレンズおよびミラー61,62,
63,65、スリット64、回折格子66、反射信号光
の強度分布を検出するリニアセンサ67およびリニアセ
ンサ67から検出信号を受けて演算処理する演算処理装
置68などから構成される。
The optical measuring unit 50 transmits the probe light emitted from the light source 51 through the light source 51, the lenses 52, 53, and 54 of the illumination system for guiding the probe light emitted from the light source onto the wafer W. A beam splitter 55 for reflecting the reflected signal light, a lens of a measuring system for guiding the reflected signal light returned by the beam splitter, and mirrors 61 and 62;
63, 65, a slit 64, a diffraction grating 66, a linear sensor 67 for detecting the intensity distribution of the reflected signal light, and an arithmetic processing device 68 for receiving and processing the detection signal from the linear sensor 67.

【0073】光源51は多波長成分をもつ白色光源であ
り、キセノンランプやハロゲンランプ等のランプや白色
LED等を用いることができる。光源51から射出され
たプローブ光はレンズ52でコリメートされ、レンズ5
3およびビームスプリッタ55を透過した後、レンズ5
4で略平行光にコリメートされ、ウェハWに垂直入射し
てウェハ面上に所定スポット径(例えばφ200μm〜数
mm程度)のビームスポットを形成する。
The light source 51 is a white light source having a multi-wavelength component, and a lamp such as a xenon lamp or a halogen lamp, a white LED, or the like can be used. The probe light emitted from the light source 51 is collimated by a lens 52,
3 and the beam 5 after passing through the beam splitter 55.
In 4, the beam is collimated into substantially parallel light, is perpendicularly incident on the wafer W, and forms a beam spot having a predetermined spot diameter (for example, about 200 μm to several mm) on the wafer surface.

【0074】ウェハWからの反射信号光のうち、正反射
光(0次光)はレンズ54を透過してビームスプリッタ
55で反射され、正反射光をコリメートするレンズ61
でほぼ平行光にされ、ミラー62,レンズ63を介して
スリット64を通り、レンズ65で再びコリメートされ
た後回折格子66に入射する。回折格子66では波長に
応じた回折角で回折され、リニアセンサ67に入射す
る。
Of the signal light reflected from the wafer W, specularly reflected light (0th-order light) passes through the lens 54, is reflected by the beam splitter 55, and is collimated by the lens 61.
The light is converted into substantially parallel light, passes through a slit 64 through a mirror 62 and a lens 63, is collimated again by a lens 65, and then enters a diffraction grating 66. In the diffraction grating 66, the light is diffracted at a diffraction angle corresponding to the wavelength and enters the linear sensor 67.

【0075】さて、デバイスパターンが形成されたウェ
ハからの反射信号光について考えると、反射信号光には
正反射光以外に光量的に無視できない多数の回折スポッ
トが存在する。回折スポットは、パターンのピッチ(微
細構造周期)d、光の波長λおよび回折次数n(n=0,
1,2,…)に応じて、次式で示される回折角度θ方向に発
生する。
Considering the reflected signal light from the wafer on which the device pattern is formed, the reflected signal light has many diffraction spots other than the specularly reflected light that cannot be ignored in terms of light quantity. The diffraction spot has a pattern pitch (fine structure period) d, a light wavelength λ, and a diffraction order n (n = 0,
1, 2,...) In the diffraction angle θ direction represented by the following equation.

【0076】[0076]

【数1】dsinθ=nλ## EQU1 ## dsinθ = nλ

【0077】光学測定部50では、回折光は正反射光
(0次光)と異なる角度θをもってウェハWから反射す
るため、正反射光と異なる入射角でレンズ63に入射
し、レンズ63の焦点と異なる方向に屈折される。スリ
ット64は正反射光が結ぶレンズ63の焦点位置に配設
されており、正反射光以外の反射光はこのスリット64
により遮光される。このため、回折光は回折格子66に
到達することができず、回折格子66には正反射光のみ
が入射し、その波長に応じた回折角で回折される。
In the optical measuring section 50, the diffracted light is reflected from the wafer W at an angle θ different from the specularly reflected light (zero-order light). Is refracted in a different direction. The slit 64 is provided at the focal position of the lens 63 to which the specularly reflected light is connected.
Is shielded from light. For this reason, the diffracted light cannot reach the diffraction grating 66, and only the regular reflection light enters the diffraction grating 66 and is diffracted at a diffraction angle corresponding to the wavelength.

【0078】このようにしてリニアセンサ67に入射す
る正反射光は、回折格子66で波長に応じて回折され分
光されているため、波長成分ごとの光強度、すなわち分
光強度分布が検出され、演算処理装置68に入力され
る。この分光強度分布からは回折光が除去されており、
パターンのピッチによる影響を考慮しなくても良いので
演算処理が簡単になる。
The specularly reflected light incident on the linear sensor 67 in this manner is diffracted according to the wavelength by the diffraction grating 66 and is separated, so that the light intensity for each wavelength component, that is, the spectral intensity distribution is detected and calculated. The data is input to the processing device 68. Diffracted light has been removed from this spectral intensity distribution,
Since it is not necessary to consider the influence of the pattern pitch, the arithmetic processing is simplified.

【0079】演算処理装置68は入力される分光強度分
布から膜厚を求める。例えば、ウェハWの表面にSiO2
の層間絶縁膜が形成されている場合についてみると、こ
の層間絶縁膜で反射される白色光の反射率は膜厚に応じ
た分散特性を持ち、各膜厚に対する分光強度分布の特性
は既知である。演算処理装置68は予め設定された膜厚
に対する分光強度分布の特性データと、リニアセンサ6
7から入力される分光強度分布とを比較してフィッティ
ングする演算処理を行い、層間絶縁膜の膜厚を求める。
この際に予め計測された光源51の分散強度情報が参酌
される。
The arithmetic processing unit 68 obtains the film thickness from the input spectral intensity distribution. For example, when the surface of the wafer W is SiO 2
In the case where the interlayer insulating film is formed, the reflectance of white light reflected by the interlayer insulating film has dispersion characteristics according to the film thickness, and the characteristics of the spectral intensity distribution for each film thickness are known. is there. The arithmetic processing unit 68 stores the characteristic data of the spectral intensity distribution with respect to the film thickness set in advance and the linear sensor 6.
Calculation processing for fitting is performed by comparing the spectral intensity distribution input from FIG. 7 and the thickness of the interlayer insulating film is obtained.
At this time, dispersion intensity information of the light source 51 measured in advance is taken into consideration.

【0080】従って、このようにして求められるウェハ
Wの膜厚変化をモニターすることでウェハが所定量研磨
されて加工終点に達したか否かを判定することができ、
これにより層間絶縁膜の平坦化すなわち絶縁膜CMPに
ついても、前述したメタルCMPと同様に実施すること
ができる。
Therefore, by monitoring the change in the film thickness of the wafer W thus determined, it can be determined whether or not the wafer has been polished by a predetermined amount and has reached the processing end point.
Thus, the planarization of the interlayer insulating film, that is, the insulating film CMP can be performed in the same manner as the above-described metal CMP.

【0081】次に、本発明に係る半導体デバイスの製造
方法の実施例について説明する。図7は半導体デバイス
の製造プロセスを示すフローチャートである。半導体製
造プロセスをスタートすると、まずステップS200で
次に挙げるステップS201〜S204の中から適切な
処理工程を選択し、いずれかのステップに進む。
Next, an embodiment of a method for manufacturing a semiconductor device according to the present invention will be described. FIG. 7 is a flowchart showing a semiconductor device manufacturing process. When the semiconductor manufacturing process is started, first, in step S200, an appropriate processing step is selected from the following steps S201 to S204, and the process proceeds to any one of the steps.

【0082】ここで、ステップS201はウェハの表面
を酸化させる酸化工程である。ステップS202はCV
D等によりウェハ表面に絶縁膜や誘電体膜を形成するC
VD工程である。ステップS203はウェハに電極を蒸
着等により形成する電極形成工程である。ステップS2
04はウェハにイオンを打ち込むイオン打ち込み工程で
ある。
Here, step S201 is an oxidation step for oxidizing the surface of the wafer. Step S202 is CV
C to form insulating film and dielectric film on wafer surface by D
This is a VD process. Step S203 is an electrode forming step of forming electrodes on the wafer by vapor deposition or the like. Step S2
Reference numeral 04 denotes an ion implantation step of implanting ions into the wafer.

【0083】CVD工程(S202)もしくは電極形成工
程(S203)の後で、ステップS206に進み、CMP
工程を行うかどうか判断する。行わない場合にはステッ
プS207に進むが、行う場合にはステップS205に
進む。ステップS205はCMP工程である。CMP工
程では本発明による研磨装置(CMP装置)により、層
間絶縁膜の平坦化や半導体デバイス表面の金属膜の研磨
によるダマシンの形成等が行われる。
After the CVD step (S202) or the electrode forming step (S203), the process proceeds to step S206, where the CMP
Determine whether to perform the process. If not, the process proceeds to step S207; otherwise, the process proceeds to step S205. Step S205 is a CMP process. In the CMP step, the polishing apparatus (CMP apparatus) according to the present invention performs planarization of an interlayer insulating film, formation of a damascene by polishing a metal film on the surface of a semiconductor device, and the like.

【0084】CMP工程(S205)もしくは酸化工程
(S201)の後でステップS207に進む。ステップS
207はフォトリソグラフィ工程である。この工程では
ウェハへのレジストの塗布、露光装置を用いた露光によ
るウェハへの回路パターンの焼き付け、露光したウェハ
の現像が行われる。さらに、次のステップS208は現
像したレジスト像以外の部分をエッチングにより削り、
その後レジスト剥離が行われ、エッチングが済んで不要
となったレジストを取り除くエッチング工程である。
The CMP step (S205) or the oxidation step
After (S201), the process proceeds to step S207. Step S
Reference numeral 207 denotes a photolithography process. In this step, a resist is applied to the wafer, a circuit pattern is printed on the wafer by exposure using an exposure device, and the exposed wafer is developed. Further, in the next step S208, portions other than the developed resist image are removed by etching,
Thereafter, the resist is removed, and this is an etching step of removing unnecessary resist after etching.

【0085】次に、ステップS209で必要な全工程が
完了したかを判断し、完了していなければステップS2
00に戻り、先のステップを繰り返してウェハ上に回路
パターンが形成される。ステップS209で全工程が完
了したと判断されればエンドとなる。
Next, it is determined in step S209 whether all necessary processes have been completed, and if not, step S2
Returning to step 00, the previous steps are repeated to form a circuit pattern on the wafer. If it is determined in step S209 that all steps have been completed, the process ends.

【0086】本発明による半導体デバイス製造方法で
は、CMP工程において本発明にかかる研磨装置を用い
ているため、CMP工程のスループットが向上する。こ
れにより、従来の半導体デバイス製造方法に比べて低コ
ストで半導体デバイスを製造することができるという効
果がある。なお、上記半導体デバイス製造プロセス以外
の半導体デバイス製造プロセスのCMP工程に本発明に
よる研磨装置を用いても良い。また、本発明による半導
体デバイス製造方法により製造された半導体デバイス
は、高スループットで製造されるので低コストの半導体
デバイスとなる。
In the method of manufacturing a semiconductor device according to the present invention, since the polishing apparatus according to the present invention is used in the CMP process, the throughput of the CMP process is improved. As a result, there is an effect that a semiconductor device can be manufactured at a lower cost than a conventional semiconductor device manufacturing method. Note that the polishing apparatus according to the present invention may be used in a CMP step of a semiconductor device manufacturing process other than the semiconductor device manufacturing process. Further, the semiconductor device manufactured by the semiconductor device manufacturing method according to the present invention is manufactured at a high throughput, so that it is a low-cost semiconductor device.

【0087】[0087]

【発明の効果】以上説明したように、本発明に係る研磨
装置によれば、被研磨面の表面状態を光学的に測定する
光学測定部を有し、この光学測定部が研磨加工中に被研
磨面に特定された特定位置の表面状態を測定するため、
被研磨面の表面状態の変化を的確に捉えることができ
る。従って、研磨加工中に高精度に研磨終了点を判定可
能な研磨装置を得ることができ、これにより、CMPプ
ロセスを効率的に管理して高いスループット有する研磨
装置を提供することができる。
As described above, according to the polishing apparatus of the present invention, there is provided an optical measuring section for optically measuring the surface condition of the surface to be polished, and this optical measuring section is used during polishing. To measure the surface condition at a specific position specified on the polished surface,
The change in the surface state of the polished surface can be accurately grasped. Therefore, it is possible to obtain a polishing apparatus capable of determining the polishing end point with high accuracy during the polishing process, thereby providing a polishing apparatus having a high throughput by efficiently managing the CMP process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態に係る研磨装置を示す概
要構成図である。
FIG. 1 is a schematic configuration diagram showing a polishing apparatus according to a first embodiment of the present invention.

【図2】本発明の第2実施形態に係る研磨装置を示す概
要構成図である。
FIG. 2 is a schematic configuration diagram illustrating a polishing apparatus according to a second embodiment of the present invention.

【図3】本発明の第3実施形態に係る研磨装置を示す概
要構成図である。
FIG. 3 is a schematic configuration diagram illustrating a polishing apparatus according to a third embodiment of the present invention.

【図4】本発明の第4実施形態に係る研磨装置を示す概
要構成図である。
FIG. 4 is a schematic configuration diagram illustrating a polishing apparatus according to a fourth embodiment of the present invention.

【図5】メタルCMPプロセスにおいて研磨加工時に検
出される被研磨面の反射率変化特性を示す説明図であ
る。
FIG. 5 is an explanatory diagram showing a reflectance change characteristic of a polished surface detected during polishing in a metal CMP process.

【図6】上記各研磨装置における光学測定部の他の実施
形態を示す構成図である。
FIG. 6 is a configuration diagram showing another embodiment of the optical measurement unit in each of the polishing apparatuses.

【図7】本発明に係る半導体製造プロセスを示すフロー
チャートである。
FIG. 7 is a flowchart showing a semiconductor manufacturing process according to the present invention.

【図8】従来の研磨装置を示す概要構成図である。FIG. 8 is a schematic configuration diagram showing a conventional polishing apparatus.

【図9】従来の研磨装置の他の構成例を示す概要構成図
である。
FIG. 9 is a schematic configuration diagram showing another configuration example of a conventional polishing apparatus.

【符号の説明】[Explanation of symbols]

W ウェハ(研磨対象物) 1,2,3,4 CMP装置(研磨装置) 10 ウェハテーブル 12 ウェハホルダ(対象物保持部) 20 研磨ヘッド 21 研磨パッド(研磨部材) 30 光学測定部 31 光源(照明部) 33 反射光検出器(光検出部) 40 角度位置検出部 50 光学測定部 51 光源(照明部) 67 リニアセンサ(光検出部) W Wafer (object to be polished) 1, 2, 3, 4 CMP apparatus (polishing apparatus) 10 Wafer table 12 Wafer holder (object holding part) 20 Polishing head 21 Polishing pad (polishing member) 30 Optical measuring part 31 Light source (Lighting part) 33) Reflected light detector (light detector) 40 Angular position detector 50 Optical measuring unit 51 Light source (illuminator) 67 Linear sensor (light detector)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // G01B 11/30 102 G01B 11/30 102Z Fターム(参考) 2F065 AA50 BB03 CC19 FF44 HH04 3C034 AA08 AA13 BB93 CA05 3C058 AA07 AC02 BA01 BA07 CA01 CA06 CB01 CB03 DA17 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) // G01B 11/30 102 G01B 11/30 102Z F term (reference) 2F065 AA50 BB03 CC19 FF44 HH04 3C034 AA08 AA13 BB93 CA05 3C058 AA07 AC02 BA01 BA07 CA01 CA06 CB01 CB03 DA17

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 研磨対象物を保持する対象物保持部と前
記研磨対象物を研磨する研磨部材とを備え、前記研磨部
材を前記対象物保持部に保持された前記研磨対象物に当
接させながら前記研磨部材と前記研磨対象物とを相対移
動させて前記研磨対象物の被研磨面の研磨加工を行うよ
うに構成された研磨装置において、 前記被研磨面の表面状態を光学的に測定する光学測定部
を有し、 前記光学測定部は前記被研磨面の研磨加工中に前記被研
磨面における特定位置の表面状態を測定することを特徴
とする研磨装置。
An object holding section for holding an object to be polished, and a polishing member for polishing the object to be polished, wherein the polishing member is brought into contact with the object to be polished held by the object holding section. A polishing apparatus configured to relatively move the polishing member and the object to be polished to perform a polishing process on the surface to be polished of the object to be polished, wherein the surface state of the surface to be polished is optically measured. A polishing apparatus, comprising: an optical measuring unit, wherein the optical measuring unit measures a surface state of a specific position on the polished surface during polishing of the polished surface.
【請求項2】 前記対象物保持部は回転中心において前
記被研磨面と直交する回転軸のまわりに前記研磨対象物
を回転可能に構成され、 前記光学測定部は、プローブ光を前記被研磨面に照射す
る照明部と前記被研磨面からの反射または透過信号光検
出する光検出部とを備え、前記被研磨面の前記回転中心
位置にプローブ光を照射して得られる前記信号光を検出
することにより、前記特定位置の表面状態を測定するこ
とを特徴とする請求項1に記載の研磨装置。
2. The object holding section is configured to be able to rotate the object to be polished around a rotation axis orthogonal to the surface to be polished at a center of rotation, and the optical measuring section is configured to transmit probe light to the surface to be polished. And an optical detector for detecting signal light reflected or transmitted from the surface to be polished, and detecting the signal light obtained by irradiating the rotation center position of the surface to be polished with probe light. The polishing apparatus according to claim 1, wherein a surface state of the specific position is measured.
【請求項3】 前記対象物保持部は前記被研磨面と交わ
る回転軸のまわりに前記研磨対象物を回転可能に構成さ
れ、 前記研磨対象物の回転角度位置および前記対象物保持部
の回転角度位置の少なくともいずれか一方を検出する角
度位置検出部を有し、 前記光学測定部は、プローブ光を前記被研磨面に照射す
る照明部と前記被研磨面からの反射または透過信号光検
出する光検出部とを備え、前記角度位置検出部からの検
出信号に基づいて特定される位置にプローブ光を照射し
て得られる前記信号光を検出することにより、前記特定
位置の表面状態を測定することを特徴とする請求項1に
記載の研磨装置。
3. The object holding section is configured to be able to rotate the object to be polished around a rotation axis intersecting with the surface to be polished, and the rotation angle position of the object to be polished and the rotation angle of the object holding section An optical position measurement unit configured to irradiate probe light to the surface to be polished, and a light to detect a reflected or transmitted signal light from the surface to be polished; A detecting unit, and measuring the surface state of the specific position by detecting the signal light obtained by irradiating a position specified based on a detection signal from the angular position detecting unit with probe light. The polishing apparatus according to claim 1, wherein:
【請求項4】 前記角度位置検出部は前記研磨対象物に
形成された特定指標を光学的に検出して前記研磨対象物
の回転角度位置を検出し、 前記光学測定部は、前記角度位置検出部によって検出さ
れる前記特定指標の検出信号に基づいて前記被研磨面に
おける特定位置の表面状態を測定することを特徴とする
請求項3に記載の研磨装置。
4. The angular position detecting section optically detects a specific index formed on the object to be polished to detect a rotational angle position of the object to be polished, and the optical measuring section detects the angular position. The polishing apparatus according to claim 3, wherein a surface state of a specific position on the polished surface is measured based on a detection signal of the specific index detected by a unit.
【請求項5】 さらに前記プローブ光の前記被研磨面へ
の照射位置を前記被研磨面の径方向に相対移動可能にす
るとともに、前記照射による前記反射または透過信号光
を移動経路において受光可能とすることにより、前記被
研磨面の回転角度位置および半径方向位置を特定した特
定位置の表面状態を測定することを特徴とする請求項3
または請求項4に記載の研磨装置。
5. An irradiation position of the probe light on the surface to be polished can be relatively moved in a radial direction of the surface to be polished, and the reflected or transmitted signal light by the irradiation can be received on a movement path. The surface state at a specific position where the rotational angle position and the radial position of the surface to be polished are specified is measured.
Alternatively, the polishing apparatus according to claim 4.
【請求項6】 前記研磨部材は前記研磨部材を前記研磨
対象物の径方向に移動可能に支持する移動機構を介して
前記研磨装置に取り付けられており、 前記照明部と前記光検出部とが前記移動機構に支持され
て前記研磨対象物の径方向に移動可能であることを特徴
とする請求項5に記載の研磨装置。
6. The polishing member is attached to the polishing apparatus via a moving mechanism that supports the polishing member movably in a radial direction of the object to be polished, wherein the illumination unit and the light detection unit are connected to each other. The polishing apparatus according to claim 5, wherein the polishing apparatus is supported by the moving mechanism and is movable in a radial direction of the polishing target.
【請求項7】 前記光検出部は前記被研磨面で反射され
た反射光のうち0次光成分のみを選択的に取り出して前
記被研磨面の表面状態を測定することを特徴とする請求
項2から請求項6のいずれか一項に記載の研磨装置。
7. The apparatus according to claim 1, wherein the light detector selectively extracts only the zero-order light component from the light reflected on the surface to be polished and measures the surface condition of the surface to be polished. The polishing apparatus according to any one of claims 2 to 6.
【請求項8】 対象物保持部に保持された研磨対象物を
研磨部材に当接させながら前記対象物保持部と前記研磨
部材とを相対移動させて前記研磨対象物の被研磨面の研
磨加工を行う研磨方法において、 前記被研磨面の表面状態を光学的に測定する光学測定部
を用いて前記被研磨面の研磨加工中に前記被研磨面にお
ける特定位置の表面状態の変化を測定し、 前記測定される特定位置の表面状態の測定結果に基づい
て研磨加工を制御することを特徴とする研磨方法。
8. A polishing process for a surface to be polished of the object to be polished by moving the object holding part and the polishing member relatively while bringing the object to be polished held by the object holding part into contact with a polishing member. In the polishing method, measuring the change in the surface state of the specific position in the polished surface during the polishing process of the polished surface using an optical measurement unit that optically measures the surface state of the polished surface, A polishing method, comprising: controlling a polishing process based on a measurement result of a surface state at a specific position to be measured.
【請求項9】 研磨対象物は半導体ウェハであり、 請求項1〜請求項7のいずれか一項に記載の研磨装置を
用いて前記半導体ウェハの表面を平坦化する工程を有す
ることを特徴とする半導体デバイス製造方法。
9. An object to be polished is a semiconductor wafer, comprising a step of flattening the surface of the semiconductor wafer by using the polishing apparatus according to claim 1. Description: Semiconductor device manufacturing method.
JP2001144286A 2001-05-15 2001-05-15 Polishing apparatus, polishing method, and semiconductor device manufacturing method using the polishing apparatus Expired - Lifetime JP4858798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001144286A JP4858798B2 (en) 2001-05-15 2001-05-15 Polishing apparatus, polishing method, and semiconductor device manufacturing method using the polishing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001144286A JP4858798B2 (en) 2001-05-15 2001-05-15 Polishing apparatus, polishing method, and semiconductor device manufacturing method using the polishing apparatus

Publications (3)

Publication Number Publication Date
JP2002343754A true JP2002343754A (en) 2002-11-29
JP2002343754A5 JP2002343754A5 (en) 2008-06-19
JP4858798B2 JP4858798B2 (en) 2012-01-18

Family

ID=18990261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001144286A Expired - Lifetime JP4858798B2 (en) 2001-05-15 2001-05-15 Polishing apparatus, polishing method, and semiconductor device manufacturing method using the polishing apparatus

Country Status (1)

Country Link
JP (1) JP4858798B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6640151B1 (en) 1999-12-22 2003-10-28 Applied Materials, Inc. Multi-tool control system, method and medium
US6708074B1 (en) 2000-08-11 2004-03-16 Applied Materials, Inc. Generic interface builder
JP2008062353A (en) * 2006-09-08 2008-03-21 Disco Abrasive Syst Ltd Grinding method and grinding device
US7698012B2 (en) 2001-06-19 2010-04-13 Applied Materials, Inc. Dynamic metrology schemes and sampling schemes for advanced process control in semiconductor processing
JP2010253627A (en) * 2009-04-27 2010-11-11 Ebara Corp Polishing method and device, and method of monitoring substrate
US7848839B2 (en) 2004-10-08 2010-12-07 Applied Materials, Inc. System, method, and medium for an endpoint detection scheme for copper low-dielectric damascene structures for improved dielectric and copper loss
US7966087B2 (en) 2002-11-15 2011-06-21 Applied Materials, Inc. Method, system and medium for controlling manufacture process having multivariate input parameters
US8005634B2 (en) 2002-03-22 2011-08-23 Applied Materials, Inc. Copper wiring module control
JP2011235388A (en) * 2010-05-10 2011-11-24 Disco Corp Method for measuring thickness of ground material to be processed, and grinding device
US8070909B2 (en) 2001-06-19 2011-12-06 Applied Materials, Inc. Feedback control of chemical mechanical polishing device providing manipulation of removal rate profiles
CN102554757A (en) * 2010-12-30 2012-07-11 中芯国际集成电路制造(上海)有限公司 Chemical mechanical grinding device
JP2013107167A (en) * 2011-11-21 2013-06-06 Ebara Corp Polishing end point detection method and polishing apparatus
US8504620B2 (en) 2000-11-30 2013-08-06 Applied Materials, Inc. Dynamic subject information generation in message services of distributed object systems
WO2014002467A1 (en) * 2012-06-25 2014-01-03 株式会社Sumco Method for polishing work and work polishing device
JP2016059991A (en) * 2014-09-17 2016-04-25 株式会社荏原製作所 Polishing device and polishing method
KR20160080155A (en) * 2014-12-29 2016-07-07 주식회사 엘지실트론 Wafer's final polishing apparatus and final polishing method by it
KR20180102012A (en) 2017-03-06 2018-09-14 가부시키가이샤 에바라 세이사꾸쇼 Polishing method, polishing apparatus, and substrate processing system
CN110871298A (en) * 2018-09-03 2020-03-10 株式会社迪思科 Maintenance method for machining device and machining device
JP2020136348A (en) * 2019-02-14 2020-08-31 株式会社ディスコ Processing method of wafer and processing device of wafer
JP2020138264A (en) * 2019-02-27 2020-09-03 株式会社荏原製作所 Polishing device, polishing method, and memory medium storing program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6947135B2 (en) * 2018-04-25 2021-10-13 信越半導体株式会社 Polishing equipment, wafer polishing method, and wafer manufacturing method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074921A (en) * 1993-04-06 1995-01-10 Toshiba Corp Film-thickness measuring apparatus and polishing apparatus
JPH0752032A (en) * 1993-08-10 1995-02-28 Sumitomo Metal Mining Co Ltd Wafer polishing method and device therefor
JPH0985611A (en) * 1995-07-20 1997-03-31 Ebara Corp Polishing device
JPH09298176A (en) * 1996-05-09 1997-11-18 Canon Inc Polishing method and device therefor
JPH09298174A (en) * 1996-05-09 1997-11-18 Canon Inc Polishing method and device therefor
JPH10264017A (en) * 1997-03-24 1998-10-06 Fujikoshi Mach Corp Polishing end detection device and polishing method for wafer
JPH10294297A (en) * 1997-04-18 1998-11-04 Nikon Corp Polishing device
JPH113877A (en) * 1997-06-10 1999-01-06 Canon Inc Grinding method and grinder using the same
JP2000186917A (en) * 1998-10-12 2000-07-04 Nikon Corp Detection method, detecting device and polishing device
JP2001300847A (en) * 2000-04-24 2001-10-30 Nikon Corp Polishing device and method of manufacturing semiconductor device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074921A (en) * 1993-04-06 1995-01-10 Toshiba Corp Film-thickness measuring apparatus and polishing apparatus
JPH0752032A (en) * 1993-08-10 1995-02-28 Sumitomo Metal Mining Co Ltd Wafer polishing method and device therefor
JPH0985611A (en) * 1995-07-20 1997-03-31 Ebara Corp Polishing device
JPH09298176A (en) * 1996-05-09 1997-11-18 Canon Inc Polishing method and device therefor
JPH09298174A (en) * 1996-05-09 1997-11-18 Canon Inc Polishing method and device therefor
JPH10264017A (en) * 1997-03-24 1998-10-06 Fujikoshi Mach Corp Polishing end detection device and polishing method for wafer
JPH10294297A (en) * 1997-04-18 1998-11-04 Nikon Corp Polishing device
JPH113877A (en) * 1997-06-10 1999-01-06 Canon Inc Grinding method and grinder using the same
JP2000186917A (en) * 1998-10-12 2000-07-04 Nikon Corp Detection method, detecting device and polishing device
JP2001300847A (en) * 2000-04-24 2001-10-30 Nikon Corp Polishing device and method of manufacturing semiconductor device

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6640151B1 (en) 1999-12-22 2003-10-28 Applied Materials, Inc. Multi-tool control system, method and medium
US6708074B1 (en) 2000-08-11 2004-03-16 Applied Materials, Inc. Generic interface builder
US8504620B2 (en) 2000-11-30 2013-08-06 Applied Materials, Inc. Dynamic subject information generation in message services of distributed object systems
US7698012B2 (en) 2001-06-19 2010-04-13 Applied Materials, Inc. Dynamic metrology schemes and sampling schemes for advanced process control in semiconductor processing
US7725208B2 (en) 2001-06-19 2010-05-25 Applied Materials, Inc. Dynamic metrology schemes and sampling schemes for advanced process control in semiconductor processing
US7783375B2 (en) 2001-06-19 2010-08-24 Applied Materials, Inc. Dynamic metrology schemes and sampling schemes for advanced process control in semiconductor processing
US8070909B2 (en) 2001-06-19 2011-12-06 Applied Materials, Inc. Feedback control of chemical mechanical polishing device providing manipulation of removal rate profiles
US8694145B2 (en) 2001-06-19 2014-04-08 Applied Materials, Inc. Feedback control of a chemical mechanical polishing device providing manipulation of removal rate profiles
US8005634B2 (en) 2002-03-22 2011-08-23 Applied Materials, Inc. Copper wiring module control
US7966087B2 (en) 2002-11-15 2011-06-21 Applied Materials, Inc. Method, system and medium for controlling manufacture process having multivariate input parameters
US7848839B2 (en) 2004-10-08 2010-12-07 Applied Materials, Inc. System, method, and medium for an endpoint detection scheme for copper low-dielectric damascene structures for improved dielectric and copper loss
JP2008062353A (en) * 2006-09-08 2008-03-21 Disco Abrasive Syst Ltd Grinding method and grinding device
US8398456B2 (en) 2009-04-27 2013-03-19 Ebara Corporation Polishing method, polishing apparatus and method of monitoring a substrate
JP2010253627A (en) * 2009-04-27 2010-11-11 Ebara Corp Polishing method and device, and method of monitoring substrate
JP2011235388A (en) * 2010-05-10 2011-11-24 Disco Corp Method for measuring thickness of ground material to be processed, and grinding device
CN102554757A (en) * 2010-12-30 2012-07-11 中芯国际集成电路制造(上海)有限公司 Chemical mechanical grinding device
JP2013107167A (en) * 2011-11-21 2013-06-06 Ebara Corp Polishing end point detection method and polishing apparatus
WO2014002467A1 (en) * 2012-06-25 2014-01-03 株式会社Sumco Method for polishing work and work polishing device
US9289876B2 (en) 2012-06-25 2016-03-22 Sumco Corporation Method and apparatus for polishing work
JP2016059991A (en) * 2014-09-17 2016-04-25 株式会社荏原製作所 Polishing device and polishing method
KR20160080155A (en) * 2014-12-29 2016-07-07 주식회사 엘지실트론 Wafer's final polishing apparatus and final polishing method by it
KR101679131B1 (en) 2014-12-29 2016-11-23 주식회사 엘지실트론 Wafer's final polishing apparatus and final polishing method by it
US10062574B2 (en) 2014-12-29 2018-08-28 Sk Siltron Co., Ltd. Wafer polishing apparatus and method
KR20180102012A (en) 2017-03-06 2018-09-14 가부시키가이샤 에바라 세이사꾸쇼 Polishing method, polishing apparatus, and substrate processing system
US10854473B2 (en) 2017-03-06 2020-12-01 Ebara Corporation Polishing method, polishing apparatus, and substrate processing system
KR20230137857A (en) 2017-03-06 2023-10-05 가부시키가이샤 에바라 세이사꾸쇼 Polishing method, polishing apparatus, and substrate processing system
CN110871298A (en) * 2018-09-03 2020-03-10 株式会社迪思科 Maintenance method for machining device and machining device
CN110871298B (en) * 2018-09-03 2024-03-29 株式会社迪思科 Maintenance method for machining device and machining device
JP2020136348A (en) * 2019-02-14 2020-08-31 株式会社ディスコ Processing method of wafer and processing device of wafer
JP2020138264A (en) * 2019-02-27 2020-09-03 株式会社荏原製作所 Polishing device, polishing method, and memory medium storing program
JP7265885B2 (en) 2019-02-27 2023-04-27 株式会社荏原製作所 Polishing device, polishing method, storage medium storing program

Also Published As

Publication number Publication date
JP4858798B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
JP4858798B2 (en) Polishing apparatus, polishing method, and semiconductor device manufacturing method using the polishing apparatus
KR100254875B1 (en) Polishing method and apparatus
US6794206B2 (en) Method of polishing a film
JP3932836B2 (en) Thin film thickness measuring method and apparatus, and device manufacturing method using the same
KR100282680B1 (en) Polishing method and polishing apparatus using the same
US6489624B1 (en) Apparatus and methods for detecting thickness of a patterned layer
KR100305537B1 (en) Polishing method and polishing device using it
US7981309B2 (en) Method for detecting polishing end in CMP polishing device, CMP polishing device, and semiconductor device manufacturing method
JP3327175B2 (en) Detection unit and wafer polishing apparatus provided with the detection unit
JP2000009437A (en) Method and apparatus for measuring thickness of thin film, and method and apparatus for manufacturing thin film device using the same
JP2002343754A5 (en)
JP3360610B2 (en) Detection method, detection device, and polishing device
JP4427767B2 (en) Measuring method
JPH09298176A (en) Polishing method and device therefor
JPH10294297A (en) Polishing device
JP2003249472A (en) Method and device for film thickness measurement and manufacturing method of thin film device
JP2001225261A (en) Polishing device
JP2000077371A (en) Detecting method, detector and polishing device
TW202208111A (en) Film thickness measurement apparatus, polishing apparatus, and film thickness measurement method
TW200300992A (en) Method and device for measuring film layer state, polishing device, and method of manufacturing semiconductor device
JP2001225262A (en) Polishing state measuring device and measuring method
JP2001284298A (en) Monitoring method for polishing state, polishing device and manufacturing method of semiconductor device
JPH09298174A (en) Polishing method and device therefor
JP3550594B2 (en) Apparatus for measuring thickness of multilayer sample and polishing apparatus having the same
JPH09298175A (en) Polishing method and device therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111020

R150 Certificate of patent or registration of utility model

Ref document number: 4858798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term