JP2001225262A - Polishing state measuring device and measuring method - Google Patents

Polishing state measuring device and measuring method

Info

Publication number
JP2001225262A
JP2001225262A JP2000040476A JP2000040476A JP2001225262A JP 2001225262 A JP2001225262 A JP 2001225262A JP 2000040476 A JP2000040476 A JP 2000040476A JP 2000040476 A JP2000040476 A JP 2000040476A JP 2001225262 A JP2001225262 A JP 2001225262A
Authority
JP
Japan
Prior art keywords
polishing
light
measuring
measurement
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000040476A
Other languages
Japanese (ja)
Inventor
Hirochika Shinjo
啓慎 新城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2000040476A priority Critical patent/JP2001225262A/en
Publication of JP2001225262A publication Critical patent/JP2001225262A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a measuring device capable of stably measuring a polishing state with high accuracy by solving low accuracy and unstability in measuring the polishing state such as measuring residual film thickness and detecting a polishing end point under the influence of residual film thickness distribution of the polished surface of the wafer, inherent in a CMP device in a conventional measuring device used for a CMP process. SOLUTION: As shown in the figure 1, a first measuring device enlarges a measuring area from conventional C to D by controlling the signal acquisition time of probe light irradiated to a waver face, and a second measuring device enlarges a measuring area by adjusting a light shielding slit to adjust an irradiation area on the wafer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、研磨対象物上の薄
膜の除去プロセス、例えばULSI等の半導体デバイス
を製造するプロセスにおいて実施される半導体素子の平
坦化研磨を行うCMP用研磨装置で研磨状態を測定する
のに好適な測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polishing process for removing a thin film on an object to be polished, for example, a CMP polishing apparatus for flattening and polishing a semiconductor element which is carried out in a process for manufacturing a semiconductor device such as ULSI. The present invention relates to a measuring device suitable for measuring the measurement.

【0002】[0002]

【従来の技術】半導体集積回路の高集積化、微細化に伴
って半導体製造プロセスの工程が増加し複雑になってき
ている。これに伴い、半導体デバイスの表面は必ずしも
平坦ではなくなってきている。表面に於ける段差の存在
は配線の段切れ、局所的な抵抗の増大などを招き、断線
や電気容量の低下をもたらす。また、絶縁膜では耐電圧
劣化やリークの発生にもつながる。
2. Description of the Related Art As the degree of integration and miniaturization of semiconductor integrated circuits increases, the number of steps in a semiconductor manufacturing process increases and becomes more complicated. Along with this, the surface of a semiconductor device is not necessarily flat. The presence of a step on the surface causes disconnection of the wiring, an increase in local resistance, etc., resulting in disconnection and a decrease in electric capacity. In addition, in the case of an insulating film, withstand voltage degradation and leakage may occur.

【0003】一方、半導体集積回路の高集積化、微細化
に伴って光リソグラフィの光源波長は短くなり、また開
口数いわゆるNAが大きくなってきていることに伴い、
半導体露光装置の焦点深度が実質的に浅くなってきてい
る。焦点深度が浅くなることに対応するためには、今ま
で以上に半導体素子表面の平坦化が要求されている。こ
のような半導体表面を平坦化する方法としては、化学的
機械的研磨(ChemicalMechanical Polishing又はChemica
l Mechanical Planarization 、以下CMPと呼ぶ) 技
術が有望な方法である。
On the other hand, the light source wavelength of photolithography has been shortened with the increase in the degree of integration and miniaturization of semiconductor integrated circuits, and the numerical aperture (NA) has been increasing.
The depth of focus of a semiconductor exposure apparatus has been substantially reduced. In order to cope with the shallower depth of focus, the surface of the semiconductor element is required to be flatter than ever. As a method of flattening such a semiconductor surface, chemical mechanical polishing (Chemical Mechanical Polishing or Chemica
l Mechanical Planarization (hereinafter referred to as CMP) technology is a promising method.

【0004】図11は従来のCMP装置を示す図であ
る。図11で2は研磨パッド、7は定盤、3は研磨対象
物保持部( ホルダ) 、4は研磨対象物( ウェハ)、5は
研磨剤供給部、6は研磨剤(スラリー)である。研磨パ
ッドとしては、発泡ポリウレタンよりなるシート状のも
の、あるいは表面に溝構造を有した無発泡樹脂からなる
ものが使用されている。ホルダ3は不図示の手段により
軸Aを中心に矢印100の方向に回転し、また定盤7は
不図示の手段により軸Bを中心に矢印101の方向に回
転する。更に軸Aは、軸Bに直線的に近づいたり離れた
りという揺動をする。これらの過程でウェハ4は、研磨
剤6と研磨パッド2の化学的作用と機械的作用によりそ
の被研磨面が研磨される。
FIG. 11 is a view showing a conventional CMP apparatus. In FIG. 11, 2 is a polishing pad, 7 is a platen, 3 is an object holding part (holder), 4 is an object to be polished (wafer), 5 is an abrasive supply section, and 6 is an abrasive (slurry). As the polishing pad, a sheet made of foamed polyurethane or a non-foamed resin having a groove structure on its surface is used. The holder 3 is rotated about the axis A in the direction of arrow 100 by means not shown, and the platen 7 is rotated about the axis B in the direction of arrow 101 by means not shown. Further, the axis A swings linearly approaching and leaving the axis B. In these processes, the surface to be polished of the wafer 4 is polished by the chemical action and the mechanical action of the polishing agent 6 and the polishing pad 2.

【0005】上記研磨過程においてウェハ表面が所定量
研磨されて平坦化したかどうかを、つまり研磨状態を検
出して残膜厚や研磨終了点等を知る方法として、光学的
な測定方法がその高い測定精度の理由で注目されてい
る。この測定方法はウェハ4へ光を照射しその反射光に
より測定を行なうものである。図11において8は測定
装置、10は透光窓である。この測定のために測定装置
8から出射したプローブ光は透光窓10を透過してウェ
ハ4の被研磨面に照射され、被研磨面からの反射信号光
は透光窓を逆向きに透過して測定装置により検出され
る。図11を見れば分かるように、透光窓10は定盤7
と一緒に回転101しているので、透光窓10がプロー
ブ光と反射信号光の透過する位置に回転して来たときに
測定が行なわれる。
As a method for detecting whether or not the wafer surface has been polished by a predetermined amount in the above-mentioned polishing process and flattened, that is, a method of detecting a polishing state to know a remaining film thickness, a polishing end point, and the like, an optical measurement method is high. Attention has been paid for measurement accuracy. In this measuring method, the wafer 4 is irradiated with light, and the measurement is performed by the reflected light. In FIG. 11, reference numeral 8 denotes a measuring device, and 10 denotes a light transmitting window. For this measurement, the probe light emitted from the measuring device 8 passes through the light transmitting window 10 and irradiates the surface to be polished of the wafer 4, and the signal light reflected from the surface to be polished transmits through the light transmitting window in the opposite direction. Detected by the measuring device. As can be seen from FIG.
And the rotation 101, the measurement is performed when the light transmitting window 10 is rotated to a position where the probe light and the reflected signal light are transmitted.

【0006】[0006]

【発明が解決しようとする課題】図12は図11のCM
P装置の概要図中に示された測定装置8の光学系の部分
を詳しく示したものである。図12にて11は光源、2
0、21はレンズ、12はビームスプリッタ、22はレ
ンズ、4はウェハ、23はレンズ、13は光検出器、3
0は信号処理装置である。光源11を出射したプローブ
光はレンズ20、21およびビームスプリッタ(以下、
BSと呼ぶ)12を透過する。BS12を透過したプロ
ーブ光はレンズ22を透過し、ウェハ4にほぼ垂直に入
射する。このときウェハ4に照射されるビームスポット
の大きさは約1mmφである。ウェハ4で反射された反
射信号光はレンズ22を透過し、BS12でその反射光
の一部が反射される。BS12で反射された信号光はレ
ンズ23で集光され、検出器13に入射する。検出器1
3で反射信号光は光電変換され、反射光信号として信号
処理装置30によりその強度の変化が測定される。いま
図9に示すような金属電極膜の埋め込みのための金属電
極薄膜の研磨工程を考えると、金属電極薄膜積層後の余
分な金属薄膜が研磨により除去されていくため、金属薄
膜表面からの反射光は小さくなっていく。余分な金属薄
膜が除去されると金属電極薄膜の面積は変化しなくなる
ため、反射信号光の強度も変化しなくなる。このような
反射信号光の強度変化をモニタすることで、ウェハの研
磨終点の検出を行うことが出来る。
FIG. 12 shows the CM shown in FIG.
FIG. 3 shows in detail the optical system of the measuring device 8 shown in the schematic diagram of the P device. In FIG. 12, 11 is a light source, 2
0 and 21 are lenses, 12 is a beam splitter, 22 is a lens, 4 is a wafer, 23 is a lens, 13 is a photodetector, 3
0 is a signal processing device. The probe light emitted from the light source 11 is transmitted to lenses 20, 21 and a beam splitter (hereinafter, referred to as beam splitter).
12). The probe light transmitted through the BS 12 transmits through the lens 22 and is incident on the wafer 4 almost perpendicularly. At this time, the size of the beam spot irradiated on the wafer 4 is about 1 mmφ. The reflected signal light reflected by the wafer 4 passes through the lens 22, and a part of the reflected light is reflected by the BS 12. The signal light reflected by the BS 12 is collected by the lens 23 and enters the detector 13. Detector 1
At 3, the reflected signal light is photoelectrically converted, and the change in the intensity is measured by the signal processing device 30 as a reflected light signal. Considering the polishing process of the metal electrode thin film for embedding the metal electrode film as shown in FIG. 9, since the excess metal thin film after the lamination of the metal electrode thin film is removed by polishing, the reflection from the surface of the metal thin film is considered. Light is getting smaller. When the excess metal thin film is removed, the area of the metal electrode thin film does not change, so that the intensity of the reflected signal light does not change. By monitoring such a change in the intensity of the reflected signal light, it is possible to detect the polishing end point of the wafer.

【0007】しかしながら従来のCMP装置は、膜の研
磨速度がウェハ面内に於いて完全には均一でなく、その
ためにウェハ内の残膜厚分布に不均一性が生じることが
あった。図12の従来の測定装置は、この残膜厚分布の
不均一性の対策がなされていなかった。
However, in the conventional CMP apparatus, the polishing rate of the film is not completely uniform in the wafer surface, and therefore, the distribution of the remaining film thickness in the wafer sometimes becomes non-uniform. The conventional measuring apparatus shown in FIG. 12 does not take measures against the nonuniformity of the residual film thickness distribution.

【0008】一般に研磨対象のウェハは複数のダイ(ウ
ェハの切断後、各ダイから1個の半導体デバイスが製造
される)を具える。この不均一性には、一つのウェハ内
に於ける各ダイ間の残膜厚分布(即ち残膜厚むら)と各
ダイ内での残膜厚分布とがある。
Generally, a wafer to be polished includes a plurality of dies (one semiconductor device is manufactured from each die after the wafer is cut). The non-uniformity includes the distribution of the remaining film thickness between the dies in one wafer (that is, the unevenness of the remaining film thickness) and the distribution of the remaining film thickness in each of the dies.

【0009】各ダイ間の残膜厚分布は、ウェハの平面度
誤差や、研磨パッドの平面度誤差、ダイ間の研磨圧分
布、それにダイと研磨パッドとの相対速度の各ダイ間で
の分布、等がその発生の原因である。そのために、一つ
のダイを測定して金属層が除去され、そのダイの下地の
バリア層が露出して研磨終了点を検出した場合でも、他
の多数のダイは、金属層が削り切れずまだ残っており、
研磨終了点のタイミングに達していない場合や、この逆
に他の多数のダイは、金属層が削り過ぎている場合など
さまざまである。
The distribution of the remaining film thickness between the dies includes a flatness error of the wafer, a flatness error of the polishing pad, a polishing pressure distribution between the dies, and a distribution between the dies of a relative speed between the dies and the polishing pad. , Etc. are the causes of the occurrence. Therefore, even if the metal layer is removed by measuring one die, and the barrier layer under the die is exposed and the polishing end point is detected, many other dies still do not have the metal layer completely cut off. Remains
There are various cases where the timing of the polishing end point has not been reached, and conversely, for many other dies, the metal layer is excessively ground.

【0010】また、各ダイ内での残膜厚分布は、各ダイ
内のさまざまなパターン種、即ちさまざまなパターン密
度の、或いはさまざまな精細度の、或いはさまざまなパ
ターン密度で且つさまざまな精細度のパターンの存在が
その発生の原因である。ここで、さまざまな精細度は、
例えば、さまざまな電極線の線幅の大きさに対応してい
る。パターン密度が異なれば、そのパターン上に成膜さ
れる薄膜はパターンに倣って成膜されるのでパターン位
置に対応する凸部と凹部との比率も異なるために凸部と
凹部とを平均した平均研磨速度が異なるために残膜厚分
布を生じる。また、パターンの精細度が異なれば、その
パターン上に成膜される薄膜はパターンに倣って成膜さ
れるので凸部と凹部とが形成するパターンの精細度が異
なり、これによりスラリーとの接触面積の差異などに依
って化学的研磨作用の大きさ等が異なるために残膜厚分
布を生じる。そのために、一つのダイ内でも、例えば金
属層が研磨により削れている所と残っている所がある。
[0010] The distribution of the remaining film thickness in each die may be different pattern types in each die, that is, different pattern densities, or different definitions, or different pattern densities and different definitions. Is the cause of the occurrence. Where the different degrees of definition are
For example, it corresponds to the size of the line width of various electrode lines. If the pattern density is different, the thin film formed on the pattern is formed according to the pattern, so the ratio of the convex portion and the concave portion corresponding to the pattern position is also different, so the average of the convex portion and the concave portion is averaged. Since the polishing rates are different, a residual film thickness distribution occurs. In addition, if the fineness of the pattern is different, the thin film formed on the pattern is formed according to the pattern, so that the fineness of the pattern formed by the convex portions and the concave portions is different. The residual film thickness distribution occurs because the magnitude of the chemical polishing action and the like differ depending on the area difference and the like. For this reason, even in one die, for example, there are places where the metal layer is cut by polishing and places where the metal layer remains.

【0011】以上のように、従来のCMP装置で研磨さ
れるウェハ上の金属電極膜には残膜厚分布があるため、
測定スポットが当たっている場所により反射信号光の強
度が変化する。このことは、ウェハ全体の研磨の進行に
よる反射信号光の強度の変化の中にウェハ上の測定場所
の違いによる反射信号光の強度の変化の無視できない大
きさの成分が含まれることを意味し、反射信号光の強度
変化により残膜厚や研磨終了点、等の研磨状態を正確に
測定することを困難としている。
As described above, the metal electrode film on the wafer polished by the conventional CMP apparatus has a residual film thickness distribution.
The intensity of the reflected signal light changes depending on the location where the measurement spot hits. This means that the change in the intensity of the reflected signal light due to the difference in the measurement location on the wafer includes a component of a magnitude that cannot be ignored in the change in the intensity of the reflected signal light due to the progress of the polishing of the entire wafer. In addition, it is difficult to accurately measure a polishing state such as a remaining film thickness and a polishing end point due to a change in intensity of the reflected signal light.

【0012】本発明では上記ウェハ内の残膜厚分布がC
MP装置の研磨状態の測定精度の悪化に及ぼす影響を低
減し、高精度に研磨状態の測定が可能な測定装置を提供
することを課題としている。
According to the present invention, the remaining film thickness distribution in the wafer is C
It is an object of the present invention to provide a measuring apparatus capable of measuring the polishing state with high accuracy by reducing the influence of the MP apparatus on the measurement accuracy of the polishing state.

【0013】[0013]

【課題を解決するための手段】上記課題を解決するため
に本発明は、第一に、表面に薄膜を有する研磨対象物と
研磨体との間に研磨剤を介在させた状態で前記研磨体と
前記研磨対象物とを相対移動させることにより前記薄膜
を研磨により除去しながら、プローブ光を被研磨面であ
る前記薄膜上に照射して得られる反射信号光により研磨
状態を測定する装置であり、前記プローブ光を発する光
源と、前記反射信号光を受光する光検出器と、前記光検
出器から出力する反射光信号を信号処理して研磨状態を
出力する信号処理部と、前記被研磨面上での測定領域の
調節手段とを具えることを特徴とする測定装置を提供す
る。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention firstly provides a method for polishing a polishing object with a polishing agent interposed between a polishing object having a thin film on its surface and a polishing object. And an apparatus for measuring a polishing state by a reflected signal light obtained by irradiating a probe light on the thin film which is a surface to be polished while removing the thin film by polishing by relatively moving the object and the object to be polished. A light source that emits the probe light, a photodetector that receives the reflected signal light, a signal processing unit that processes a reflected light signal output from the photodetector to output a polishing state, and the polished surface. And a means for adjusting the measurement area.

【0014】第二に、前記測定領域の調節手段が、前記
信号処理部に具えられた反射光信号の取得時間の制御部
であることを特徴とする請求項1記載の測定装置を提供
する。
Secondly, there is provided the measuring apparatus according to claim 1, wherein the adjusting means of the measuring area is a control section of the signal processing section for controlling the acquisition time of the reflected light signal.

【0015】第三に、前記測定領域の調節手段が、被研
磨面への前記プローブ光の照射領域の大きさを調節する
ための遮光スリットから成ることを特徴とする請求項1
記載の測定装置を提供する。
Third, the means for adjusting the measurement area comprises a light-shielding slit for adjusting the size of the irradiation area of the probe light on the surface to be polished.
A measurement device is provided.

【0016】第四に、前記光源から発する前記プローブ
光が、複数の波長成分を有し、前記反射信号光の分光特
性の変化から研磨状態を測定することを特徴とする請求
項1〜3何れか1項記載の測定装置を提供する。
Fourthly, the probe light emitted from the light source has a plurality of wavelength components, and a polishing state is measured from a change in a spectral characteristic of the reflected signal light. 3. A measuring device according to claim 1.

【0017】第五に、前記光検出器が、前記反射信号光
の正反射成分のみを検出し、1次以上の回折光成分を検
出しないことを特徴とする請求項1〜4何れか1項記載
の測定装置を提供する。
Fifth, the photodetector detects only a regular reflection component of the reflected signal light and does not detect a first-order or higher-order diffracted light component. A measurement device is provided.

【0018】第六に、前記研磨状態の測定が、薄膜の残
膜厚の測定または研磨終了点の測定の片方または両方で
あることを特徴とする請求項1〜5何れか1項記載の測
定装置を提供する。
Sixth, the measurement according to any one of claims 1 to 5, wherein the measurement of the polishing state is one or both of the measurement of the remaining film thickness of the thin film and the measurement of the polishing end point. Provide equipment.

【0019】第七に、表面に薄膜を有する研磨対象物と
研磨体との間に研磨剤を介在させた状態で前記研磨体と
前記研磨対象物とを相対移動させることにより前記薄膜
を研磨により除去しながら、プローブ光を被研磨面であ
る前記薄膜上に照射して得られる反射信号光により研磨
状態を測定する測定方法であり、前記プローブ光を被研
磨面に照射する段階と、前記プローブ光の照射スポット
を前記被研磨面上で残膜厚分布の影響を軽減するために
空間的に走査する段階と、前記走査をしながら前記反射
信号光を受光する段階と、前記受光して得られた反射光
信号の取得時間を制御する段階と、を具えることを特徴
とする測定方法を提供する。
Seventhly, the thin film is polished by relatively moving the polishing body and the polishing object in a state where an abrasive is interposed between the polishing object and the polishing object having a thin film on the surface. A measuring method of measuring a polishing state by a reflected signal light obtained by irradiating a probe light on the thin film which is a surface to be polished while removing the probe light; Spatially scanning the light irradiation spot on the surface to be polished to reduce the influence of the residual film thickness distribution; receiving the reflected signal light while performing the scanning; Controlling the acquisition time of the reflected light signal obtained.

【0020】第八に、表面に薄膜を有する研磨対象物と
研磨体との間に研磨剤を介在させた状態で前記研磨体と
前記研磨対象物とを相対移動させることにより前記薄膜
を研磨により除去しながら、プローブ光を被研磨面であ
る前記薄膜上に照射して得られる反射信号光により研磨
状態を測定する測定方法であり、残膜厚分布の影響を軽
減するために前記プローブ光のスポット径を調節する段
階と、前記プローブ光を被研磨面に照射する段階と、前
記反射信号光を受光する段階と、を具えることを特徴と
する測定方法を提供する。
Eighth, the thin film is polished by relatively moving the polishing body and the polishing object in a state in which an abrasive is interposed between the polishing object and the polishing object having a thin film on the surface. This is a measuring method of measuring a polishing state by a reflected signal light obtained by irradiating a probe light on the thin film which is a surface to be polished while removing, and reducing the influence of the probe light to reduce the influence of the residual film thickness distribution. A measuring method comprising: adjusting a spot diameter; irradiating the surface to be polished with the probe light; and receiving the reflected signal light.

【0021】第九に、前記研磨状態の測定が、薄膜の残
膜厚の測定または研磨終了点の測定の片方または両方で
あることを特徴とする請求項7、8何れか1項記載の測
定方法を提供する。
Ninth, the measurement of the polishing state is one or both of the measurement of the remaining film thickness of the thin film and the measurement of the polishing end point. Provide a way.

【0022】第十に、前記研磨対象物が、表面に半導体
デバイスの薄膜が形成された半導体ウェハであることを
特徴とする請求項7〜9何れか1項記載の測定方法を提
供する。
Tenthly, there is provided the measuring method according to any one of claims 7 to 9, wherein the object to be polished is a semiconductor wafer having a thin film of a semiconductor device formed on a surface thereof.

【0023】[0023]

【発明の実施の形態】[実施形態1]図1は本実施形態
の測定装置のプローブ光の照射領域と研磨対象物(ウェ
ハ)の被研磨面との関係を示し、図2は本実施形態の測
定装置の概要図である。本発明の測定装置が研磨状態を
測定する対象のCMP装置の概要を図7に示す。このC
MP装置自体は、図11に示した従来例の装置と全く同
じであるので、詳しい動作説明は省略する。また、図2
の測定装置は、図12に示した従来の測定装置とは、信
号処理装置8に信号取得の制御部を具え、信号取得のタ
イミングを制御する点でのみ異なるので、光学系の動作
説明は冗長さを避けるため省略する。図2の測定装置
は、光検出器13から出力する反射光信号を信号処理装
置50に入力し、反射光信号の取得時間の制御部が以下
のように信号の取得を制御する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [Embodiment 1] FIG. 1 shows a relationship between a probe light irradiation area of a measuring apparatus of the present embodiment and a surface to be polished of an object to be polished (wafer), and FIG. FIG. 3 is a schematic diagram of a measuring device. FIG. 7 shows an outline of a CMP apparatus for which the measuring apparatus of the present invention measures a polishing state. This C
The MP device itself is exactly the same as the device of the prior art shown in FIG. FIG.
Is different from the conventional measuring device shown in FIG. 12 only in that the signal processing device 8 includes a signal acquisition control unit and controls the timing of signal acquisition. Therefore, the operation of the optical system is redundant. It is omitted to avoid the problem. In the measuring device of FIG. 2, the reflected light signal output from the photodetector 13 is input to the signal processing device 50, and the control unit for the acquisition time of the reflected light signal controls the signal acquisition as follows.

【0024】一般に、光検出器は数msecで反射光信
号を取得することができる。従来はこの数msecで取
得された信号を用いて研磨状態の測定をしていた。この
数msecの間にウェハは回転100をしているが、こ
の間の移動距離は一般に短いので、照射領域(測定領
域)はプローブ光のスポット径の領域とはほぼ同じであ
り、図1に示されるように径が約1mmφでCのような
形状をしており、これは一般にダイのサイズよりも小さ
かった。このため測定位置がダイ内で少しずれただけで
ダイ内の残膜厚むらにより反射光が変化した。また、測
定位置が大きくずれて他のダイを測定してしまう場合
は、ダイ間の残膜厚分布が加わって反射信号光がさらに
大きく変化してしまう。これらの反射信号光の変化は測
定結果を不正確にする原因となっていた。本発明はこの
反射光信号の取得時間の制御部を具え、研磨の残膜厚分
布(残膜厚むら)の影響を低減するために、光検出器1
3からの反射光信号の取得時間を制御する。我々は、図
7のCMP装置を用いる場合、反射光信号は、回転する
透光窓が反射信号光を横切る間、継続して取得すること
が可能であることに着目した。反射光信号の取得の間に
図7のCMP装置で研磨されるウェハ4は回転100し
ているので、この間、プローブ光のスポットが32の位
置から始まり、複数のダイを横切り、33の位置までウ
ェハ上を走査するので、領域Dで示されるように測定領
域を拡大することが出来る。図1にて4は研磨対象物
(ウェハ)であり、斜線の部分(CまたはD)が照射領
域である。Cは従来の反射信号の取得時間が短い場合の
照射領域に対応し、Dは本発明の反射信号の取得時間が
長い場合の照射領域に対応する。また、点線で分割され
た各々の矩形がダイ31に対応する。この測定領域の最
大値は、透光窓10の有効径と定盤の回転速度とウェハ
の回転速度とで決まる。領域Dに於ける測定モードには
2種類ある。第一のモードは、領域D内で複数の組の反
射信号を個別に取得する方法である。具体的には、最初
の位置32から最後の位置33まで数msec毎に反射
光信号を個別に取得し、これら複数の信号を処理する方
法であり、第二のモードは、領域D内で最初の位置32
から最後の位置33まで反射光信号を連続的に取得し、
これら取得信号の積分値を一つの信号として処理する方
法である。
In general, a photodetector can obtain a reflected light signal in a few milliseconds. Conventionally, the polishing state has been measured using the signal acquired in this several msec. During this few msec, the wafer rotates 100. However, since the moving distance during this period is generally short, the irradiation area (measurement area) is almost the same as the area of the spot diameter of the probe light, and is shown in FIG. The diameter was about 1 mmφ and had a C-like shape, which was generally smaller than the size of the die. For this reason, even if the measurement position was slightly shifted in the die, the reflected light changed due to unevenness in the remaining film thickness in the die. Further, when the measurement position is largely shifted and another die is measured, the distribution of the remaining film thickness between the dies is added, so that the reflected signal light further changes. These changes in the reflected signal light have caused the measurement results to be inaccurate. The present invention includes a controller for controlling the acquisition time of the reflected light signal, and reduces the influence of the remaining film thickness distribution (remaining film thickness non-uniformity) of polishing by the photodetector 1.
3 to control the acquisition time of the reflected light signal. We have noted that when using the CMP apparatus of FIG. 7, the reflected light signal can be continuously acquired while the rotating translucent window crosses the reflected signal light. Since the wafer 4 polished by the CMP apparatus in FIG. 7 during the acquisition of the reflected light signal is rotating 100, during this time, the probe light spot starts at the position 32, crosses a plurality of dies, and reaches the position 33. Since the scanning is performed on the wafer, the measurement area can be enlarged as indicated by the area D. In FIG. 1, reference numeral 4 denotes an object to be polished (wafer), and a hatched portion (C or D) is an irradiation area. C corresponds to the irradiation area when the conventional acquisition time of the reflection signal is short, and D corresponds to the irradiation area when the acquisition time of the reflection signal of the present invention is long. Each rectangle divided by a dotted line corresponds to the die 31. The maximum value of the measurement area is determined by the effective diameter of the light transmitting window 10, the rotation speed of the platen, and the rotation speed of the wafer. There are two types of measurement modes in the area D. The first mode is a method of individually acquiring a plurality of sets of reflected signals in the area D. Specifically, it is a method of individually acquiring the reflected light signal every several msec from the first position 32 to the last position 33 and processing these plural signals. Position 32
From the last position 33 to the reflected light signal continuously,
In this method, the integrated values of these acquired signals are processed as one signal.

【0025】この第二のモードは、プローブ光のスポッ
ト形状をDのような長細い形状にしたことと等価である
ので、ウェハ4内のCよりも広い領域Dでの平均情報を
測定することができ、残膜厚むらによる反射信号光の変
化を平均化する効果がある。このように測定領域を拡大
することにより、多少測定位置がずれても残膜厚むらに
よる反射信号光の強度変化は小さくなり、その結果、測
定結果がより適切にウェハ全体の研磨状態を示すように
なる。本測定装置を例えば図9に示すような金属電極膜
の余分な金属膜を除去する研磨プロセスに適用すると、
反射光信号の強度変化がより適切にウェハ全体の研磨の
進行を示すようになり、より適切に、且つより正確にウ
ェハ全体の平均の残膜厚を測定でき、またより正確に安
定して研磨終了点の判定をすることができる。
This second mode is equivalent to making the spot shape of the probe light into an elongated shape like D, so that it is necessary to measure average information in an area D wider than C in the wafer 4. This has the effect of averaging the change in the reflected signal light due to the remaining film thickness unevenness. By enlarging the measurement area in this way, even if the measurement position is slightly shifted, the change in the intensity of the reflected signal light due to the unevenness of the remaining film thickness is reduced, and as a result, the measurement result more appropriately indicates the polishing state of the entire wafer. become. When this measuring apparatus is applied to a polishing process for removing an extra metal film of a metal electrode film as shown in FIG. 9, for example,
The change in the intensity of the reflected light signal indicates the progress of polishing of the entire wafer more appropriately, and the average remaining film thickness of the entire wafer can be measured more appropriately and more accurately, and the polishing can be more accurately and stably performed. An end point can be determined.

【0026】また第一のモードは、プローブ光の照射領
域Dに於いて複数の反射光信号を取得する。各信号は残
膜厚むらのために一般に異なる反射信号光強度を示すの
で、各反射信号光に対して測定される各残膜厚も各々異
なり、このモードを用いれば、これら異なる複数の残膜
厚の統計処理により領域Dの残膜厚を求めることができ
る。統計処理の好ましい方法としては算術平均処理があ
る。また、領域Dが研磨終了点に達したかどうかは、個
別に測定された各測定点の残膜厚から判断される研磨終
了点の各測定点の判定結果の論理演算により判定するこ
とができる。例えば、二つ以上の測定点の研磨終了点信
号(研磨終了点に達していればYES、達していなけれ
ばNO)の論理積がYES(研磨終了点に達している)
のときに研磨を終了すると判定する。
In the first mode, a plurality of reflected light signals are acquired in the irradiation area D of the probe light. Since each signal generally shows a different reflected signal light intensity due to uneven remaining film thickness, each of the remaining film thicknesses measured for each reflected signal light is also different. The remaining film thickness of the region D can be obtained by statistical processing of the thickness. A preferred method of statistical processing is arithmetic averaging. Whether or not the region D has reached the polishing end point can be determined by a logical operation of the determination result of each measurement point of the polishing end point determined from the remaining film thickness of each measurement point individually measured. . For example, the logical product of the polishing end point signals of two or more measurement points (YES if the polishing end point has been reached, NO if not reached) is YES (the polishing end point has been reached).
It is determined that the polishing is finished when.

【0027】本実施形態の反射信号光の強度測定から研
磨終了点を検出する測定装置8は、特に図9に示すよう
な金属層研磨プロセスに好ましく適用することが出来る
が、これに限定されるわけではなくこのほかにも図10
示すような素子分離(Shallow Trench Isolation)や図
8に示すような層間絶縁膜の平坦化プロセスの研磨終了
点検出にも利用することが出来る。
The measuring apparatus 8 of the present embodiment for detecting the polishing end point from the intensity measurement of the reflected signal light can be preferably applied particularly to a metal layer polishing process as shown in FIG. 9, but is not limited to this. This is not the only thing
It can also be used for element isolation (Shallow Trench Isolation) as shown in the drawings and detection of the polishing end point in the process of flattening the interlayer insulating film as shown in FIG.

【0028】本実施形態では、残膜厚の測定及び研磨終
了点の検出を反射信号光の強度測定により行なったが、
反射信号光を分光した分光反射信号光を用いて測定する
のは好ましい方法であり、これを以下の実施形態2で説
明する。 [実施形態2]図1は本実施形態の測定装置のプローブ
光の照射領域と研磨対象物(ウェハ)の被研磨面との関
係を示し、図3は本実施形態の測定装置の概要図であ
る。本実施形態の測定装置の説明のための、研磨状態を
測定する対象のCMP装置の概要を図7に示す。図1は
実施形態1とプローブ光が単色でなく多波長成分を含む
点でのみ異なる。また、図7のCMP装置自体は実施形
態1の装置と全く同じであるので、冗長さを避けるため
に説明を省く。図3の測定装置にて、18は多波長成分
を持つ白色光源であり、好ましくはキセノンランプやハ
ロゲンランプを使用することが出来る。また、白色LE
Dも使用可能である。光源18から出射したプローブ光
はレンズ20、21およびBS12を透過し、レンズ2
2でほぼ平行光にされ、研磨対象物(ウェハ)4に垂直
に入射する。ウェハ4からの反射信号光はレンズ22を
透過し、BS12でその一部が反射される。BS12で
反射された測定光はレンズ23でほぼ平行光にされ、ミ
ラー14で反射され、レンズ24、25を透過する。レ
ンズ25を透過した光は回折格子16で分光され、異な
る波長の光は異なる角度に回折され、異なる角度に対応
する複数の分離された微小な光検出素子を具えたリニア
センサ17に入射することにより分光反射信号光が測定
される。ここで半導体デバイスパターンが存在するウェ
ハからの反射信号光について考えると、この反射信号光
には正反射光(0次光)以外に、光量的に無視できない
1次以上の回折光(回折スポット)が一般に多数存在す
る。この回折光はウェハの半導体デバイスパターンのピ
ッチの変化に依存して反射信号光に異なる影響を与える
ので、反射信号光から得られた反射光信号から正確な残
膜厚を計算することを複雑にまたは困難にし、その結
果、残膜厚の測定誤差、そして残膜厚から研磨終了点の
検出をする際の誤差を大きくする。そこで、本実施形態
ではこの回折光を除去した。この回折光の除去は以下の
ようにして行なった。
In this embodiment, the measurement of the remaining film thickness and the detection of the polishing end point are performed by measuring the intensity of the reflected signal light.
It is a preferable method to measure the reflected signal light using the spectrally reflected signal light obtained by spectrally separating the reflected signal light, which will be described in a second embodiment below. [Embodiment 2] FIG. 1 shows a relationship between an irradiation area of a probe light of a measuring apparatus of the present embodiment and a surface to be polished of an object to be polished (wafer), and FIG. 3 is a schematic diagram of the measuring apparatus of the present embodiment. is there. FIG. 7 shows an outline of a CMP apparatus for measuring a polishing state for explaining the measuring apparatus of the present embodiment. FIG. 1 differs from the first embodiment only in that the probe light is not monochromatic but contains multiple wavelength components. Further, since the CMP apparatus in FIG. 7 is exactly the same as the apparatus in the first embodiment, the description is omitted to avoid redundancy. In the measuring apparatus shown in FIG. 3, reference numeral 18 denotes a white light source having a multi-wavelength component, preferably a xenon lamp or a halogen lamp. Also, white LE
D can also be used. The probe light emitted from the light source 18 passes through the lenses 20, 21 and BS12,
At 2, the light is converted into substantially parallel light, and is perpendicularly incident on the polishing object (wafer) 4. The reflected signal light from the wafer 4 passes through the lens 22 and a part thereof is reflected by the BS 12. The measurement light reflected by the BS 12 is made substantially parallel by the lens 23, reflected by the mirror 14, and transmitted through the lenses 24 and 25. The light transmitted through the lens 25 is split by the diffraction grating 16, the light of different wavelengths is diffracted at different angles, and is incident on a linear sensor 17 having a plurality of separated minute light detecting elements corresponding to different angles. Thereby measuring the spectral reflection signal light. Here, considering the reflected signal light from the wafer on which the semiconductor device pattern exists, the reflected signal light includes not only specularly reflected light (zero-order light) but also first-order or higher-order diffracted light (diffraction spot) that cannot be ignored in terms of light quantity. Are generally present in large numbers. Since this diffracted light has a different effect on the reflected signal light depending on the change in the pitch of the semiconductor device pattern on the wafer, it is complicated to calculate an accurate remaining film thickness from the reflected light signal obtained from the reflected signal light. Or, it becomes difficult, and as a result, the measurement error of the remaining film thickness and the error in detecting the polishing end point from the remaining film thickness are increased. Therefore, in this embodiment, the diffracted light is removed. The removal of the diffracted light was performed as follows.

【0029】一般に、回折スポットはデバイスパターン
のピッチ(微細構造周期)dおよびプローブ光の波長λ
に応じて、以下の式(1)で示される回折角度θ方向に
n次の回折スポットが生じる。
In general, the diffraction spot has a pitch (microstructure period) d of the device pattern and a wavelength λ of the probe light.
, An n-th order diffraction spot is generated in the diffraction angle θ direction represented by the following equation (1).

【0030】dsin θ=nλ (1) 式(1)が示すように、ウェハから反射される反射信号
光のうち、正反射光(0次光)はウェハの被研磨面の法
線方向に反射されるが、n次回折光は、正反射光と異な
る角度θ方向に反射される。従って、n次回折光は、正
反射光とは異なる角度でレンズ22に入射し、異なる角
度でBS12に入射し、異なる角度でレンズ23に入射
し、異なる角度でミラー14に入射し、異なる角度でレ
ンズ24に入射し、異なる角度でレンズ24の光軸から
外れた場所に屈折され結像する。本実施形態の測定装置
は、光軸上の焦点位置に適当な径の開口部を有する遮光
スリット19を具える。この遮光スリット19は、正反
射光は開口部を通過するが、1次以上の回折光はこの開
口部を通過できないように開口部の位置と径が決められ
ている。このために1次以上の回折光は遮光スリット1
9により遮光され、リニアセンサ17には入射しない。
リニアセンサ17では入射した正反射光のそれぞれの波
長に対する反射光強度を測定し、この分光反射光信号は
信号処理装置50に入力する。この分光反射光信号から
はこのように1次以上の回折光の寄与分が除去されてい
るためにデバイスパターンのピッチによる影響を考慮し
なくても良いので、信号処理のための計算も簡単にな
る。いま、図8に示すように、ウェハ上にSiO2 の層
間絶縁膜41が形成された場合について考える。層間絶
縁膜を有するウェハ上で反射された白色光の反射率は、
層間絶縁膜の残膜厚に応じた分散特性、即ち分光反射特
性を持つ。この分光反射特性から解析的に残膜厚を算出
することは一般に容易なことではない。そのために、残
膜厚の測定のために、予め種々の残膜厚に対して分光反
射特性を参照値として取得しておく。この参照値は事前
測定された他の周知の膜厚測定方法で測定された種々の
残膜厚に対して測定された分光反射特性でも、シミュレ
ーション計算された分光反射特性でもどちらでも良い。
これらの参照値と分光反射特性の相似度の比較により残
膜厚が測定されるのである。この相似度の比較のために
参照値と測定された分光反射特性とのフィッティングが
行われる。フィッティングの方法は特に限定されない
が、参照値の分光反射特性と測定分光反射特性との相互
相関係数を計算し、その値を最も大きくする分光反射特
性に対応する膜厚を測定膜厚とする方法、または最小二
乗法による測定法が好ましい方法である。この相似性の
比較による残膜厚測定方法については、特願平11−1
89388に詳しく開示されている。測定される分光反
射特性は、残膜厚分布に応じて変動するので、プローブ
光の照射位置の変動に依存して分光反射特性は変動す
る。その結果、測定される残膜厚が変動し、検出される
研磨終了点の判定のタイミングが変動する。これを防ぐ
ために、実施形態1と同様に本実施形態でも図1で示す
ように、信号処理装置に具えられた反射光信号の取得時
間の制御部の働きにより、反射信号光の取得時間を長く
した照射領域Dから反射信号光を取得する。本実施形態
の場合、領域D内で複数の組の分光反射光信号を取得す
る第一のモードが特に好ましい。実施形態1の場合と同
様に、最初の位置32から最後の位置33まで測定領域
D内で数msec毎に分光反射光信号を取得し、これら
複数の分光反射光信号から得られた結果(残膜厚または
研磨終了点の判定の片方または両方)を以下のように処
理する。
Dsin θ = nλ (1) As shown by the equation (1), among the reflected signal lights reflected from the wafer, the specularly reflected light (0-order light) is reflected in the normal direction of the polished surface of the wafer. However, the nth-order diffracted light is reflected in an angle θ direction different from the specularly reflected light. Therefore, the nth-order diffracted light enters the lens 22 at an angle different from that of the regular reflection light, enters the BS 12 at a different angle, enters the lens 23 at a different angle, enters the mirror 14 at a different angle, and enters the mirror 14 at a different angle. The light enters the lens 24 and is refracted at a position different from the optical axis of the lens 24 at a different angle to form an image. The measuring device of the present embodiment includes a light-shielding slit 19 having an opening having an appropriate diameter at a focal position on the optical axis. The position and diameter of the light-shielding slit 19 are determined so that specularly reflected light passes through the opening but diffracted light of the first or higher order cannot pass through the opening. For this purpose, the first or higher order diffracted light is blocked
9 and is not incident on the linear sensor 17.
The linear sensor 17 measures the reflected light intensity for each wavelength of the incident regular reflected light, and inputs the spectral reflected light signal to the signal processing device 50. Since the contribution of the first-order or higher-order diffracted light is thus removed from the spectral reflected light signal, it is not necessary to consider the influence of the pitch of the device pattern. Become. Now, consider a case where an interlayer insulating film 41 of SiO 2 is formed on a wafer as shown in FIG. The reflectance of white light reflected on a wafer having an interlayer insulating film is
It has a dispersion characteristic according to the remaining film thickness of the interlayer insulating film, that is, a spectral reflection characteristic. It is generally not easy to analytically calculate the remaining film thickness from the spectral reflection characteristics. Therefore, in order to measure the remaining film thickness, the spectral reflection characteristics for various remaining film thicknesses are obtained in advance as reference values. This reference value may be either a spectral reflection characteristic measured for various remaining film thicknesses measured by other well-known film thickness measurement methods measured in advance, or a spectral reflection characteristic calculated by simulation.
The remaining film thickness is measured by comparing the similarity between the reference values and the spectral reflection characteristics. For comparison of the similarity, fitting of the reference value and the measured spectral reflection characteristic is performed. Although the fitting method is not particularly limited, the cross-correlation coefficient between the reference spectral reflection characteristic and the measured spectral reflection characteristic is calculated, and the film thickness corresponding to the spectral reflection characteristic that maximizes the value is defined as the measured film thickness. The method or the least squares measurement method is a preferred method. The method of measuring the remaining film thickness by comparing the similarity is described in Japanese Patent Application No. 11-1 / 1999.
89388. Since the measured spectral reflection characteristic varies according to the remaining film thickness distribution, the spectral reflection characteristic varies depending on the variation of the irradiation position of the probe light. As a result, the measured remaining film thickness fluctuates, and the timing for determining the detected polishing end point fluctuates. In order to prevent this, as shown in FIG. 1, in the present embodiment, as in the first embodiment, the operation of the reflected light signal acquisition time control unit provided in the signal processing device increases the reflected signal light acquisition time. The reflected signal light is acquired from the irradiated area D. In the case of the present embodiment, the first mode in which a plurality of sets of spectral reflected light signals are acquired in the region D is particularly preferable. As in the case of the first embodiment, spectral reflection light signals are acquired every several msec from the first position 32 to the last position 33 within the measurement area D, and the results (residuals) obtained from the plurality of spectral reflection light signals are obtained. One or both of the determination of the film thickness or the polishing end point) is processed as follows.

【0031】即ち、プローブ光の照射領域Dに於いて複
数の反射信号光を取得すると、各測定点に対して取得さ
れた各反射信号光は一般に互いに異なり、各反射信号光
に対して決定(測定)される各残膜厚も各々異なるの
で、これら異なる、複数の残膜厚の統計処理により領域
Dの残膜厚を求めることができる。統計処理の好ましい
方法としては算術平均処理がある。また、領域Dが研磨
終了点に達したかどうかの判定は、各測定点の残膜厚か
ら判断される研磨終了点の各測定点での判定結果の論理
演算により行うことができる。即ち各測定点に対して残
膜厚が決定されると、各測定点が研磨終了点に達してい
るかどうかの判定が各測定点毎に行われる。これら各測
定点毎の判定結果に対して論理演算が行われる。例え
ば、二つ以上の測定点の研磨終了点信号(研磨終了点に
達していればYES、達していなければNO)の論理積
がYES(研磨終了点に達している)のときに研磨を終
了する。 以上のように、本実施形態の測定装置は、複
数の測定場所からの反射信号光により得られた複数の残
膜厚や、研磨終了点の複数の判定結果から統計処理や論
理演算を用いて総合的に残膜厚の測定や研磨終了点の判
定を行っているので、ウェハ内の残膜厚分布の影響を軽
減し正確に研磨状態の測定ができる。
That is, when a plurality of reflected signal lights are acquired in the irradiation region D of the probe light, the respective reflected signal lights acquired for each measurement point are generally different from each other, and determined for each reflected signal light ( Since each measured remaining film thickness is also different, the remaining film thickness of the region D can be obtained by statistical processing of these different plurality of remaining film thicknesses. A preferred method of statistical processing is arithmetic averaging. The determination as to whether or not the region D has reached the polishing end point can be made by a logical operation of the determination result at each measurement point at the polishing end point determined from the remaining film thickness at each measurement point. That is, when the remaining film thickness is determined for each measurement point, it is determined for each measurement point whether each measurement point has reached the polishing end point. A logical operation is performed on the determination result for each of these measurement points. For example, when the logical product of the polishing end point signals of two or more measurement points (YES if the polishing end point has been reached, NO if not reached) is YES (the polishing end point has been reached), the polishing is terminated. I do. As described above, the measurement apparatus of the present embodiment uses statistical processing and logical operation from a plurality of remaining film thicknesses obtained by reflected signal light from a plurality of measurement locations and a plurality of polishing end point determination results. Since the measurement of the remaining film thickness and the determination of the polishing end point are performed comprehensively, the influence of the distribution of the remaining film thickness in the wafer can be reduced and the polishing state can be accurately measured.

【0032】本実施形態の反射信号光の分光反射特性か
ら残膜厚または研磨終了点を検出する測定装置8は、特
に層間絶縁膜の平坦化研磨に好ましく適用されるが、こ
の他に図9示すような金属電極膜研磨プロセス、図10
示すような素子分離(Shallow Trench Isolation)にも
適用することが出来る。 [実施形態3]図4は本実施形態の測定装置のプローブ
光の照射領域と研磨対象物(ウェハ)の被研磨面との関
係を示し、図5は本実施形態の測定装置の概要図であ
る。本実施形態の測定装置の説明のための、研磨状態を
測定する対象のCMP装置の概要を図7に示す。図7の
CMP装置自体は実施形態1の装置と全く同じであるの
で、冗長さを避けるために説明を省く。図5の測定装置
は、遮光スリット15を追加的に具える点でのみ図12
の測定装置と異なる。また、図5は、遮光スリットの機
能を明確にするために、光線を図12におけるような光
軸表示ではなく、光束表示している。
The measuring apparatus 8 of the present embodiment for detecting the remaining film thickness or the polishing end point from the spectral reflection characteristics of the reflected signal light is preferably applied particularly to flattening and polishing of an interlayer insulating film. Metal electrode film polishing process as shown, FIG.
It can also be applied to element isolation (Shallow Trench Isolation) as shown. [Embodiment 3] FIG. 4 shows the relationship between the irradiation area of the probe light of the measuring apparatus of the present embodiment and the surface to be polished of the object to be polished (wafer), and FIG. 5 is a schematic diagram of the measuring apparatus of the present embodiment. is there. FIG. 7 shows an outline of a CMP apparatus for measuring a polishing state for explaining the measuring apparatus of the present embodiment. Since the CMP apparatus in FIG. 7 is exactly the same as the apparatus in the first embodiment, description thereof will be omitted to avoid redundancy. The measuring device of FIG. 5 differs from that of FIG.
Measurement device. Further, in FIG. 5, in order to clarify the function of the light-shielding slit, the light rays are displayed not in the optical axis as in FIG.

【0033】図5の測定装置にて、11は光源、20、
21はレンズ、15は遮光スリット、12はビームスプ
リッタ、22はレンズ、4はウェハ、23はレンズ、1
3は光検出器、30は信号処理装置である。光源11を
出射したプローブ光はレンズ20にて平行光にされ、遮
光スリット15により光束の大きさが調整され、レンズ
21およびビームスプリッタ(以下、BSと呼ぶ)12
を透過する。BS12を透過したプローブ光はレンズ2
2を透過し、ウェハ4にほぼ垂直に入射する。このとき
ウェハ4に照射されるビームスポットの大きさは遮光ス
リット15により調整される。ウェハ4で反射された反
射信号光はレンズ22で絞られ、BS12でその反射光
の一部が反射される。BS12で反射された反射信号光
はレンズ23で集光され、検出器13に入射する。検出
器13で反射信号光は光電変換されて反射光信号は信号
処理装置30に送られ、信号処理装置30ではその反射
光信号の変化により研磨状態が測定される。いま図9に
示すような金属電極膜の埋め込みのための金属電極膜の
研磨工程を考えると、金属電極薄膜積層後の余分な金属
薄膜が研磨により除去されるにつれて、金属電極薄膜表
面からの反射光は小さくなっていく。余分な金属薄膜が
除去されると金属電極膜の面積は変化しなくなるため、
反射信号光の強度も変化しなくなる。このような反射信
号光の強度変化をモニタすることで、ウェハの研磨終点
の検出を行うことが出来る。
In the measuring apparatus shown in FIG.
21 is a lens, 15 is a light shielding slit, 12 is a beam splitter, 22 is a lens, 4 is a wafer, 23 is a lens, 1
3 is a photodetector, 30 is a signal processing device. The probe light emitted from the light source 11 is converted into parallel light by a lens 20, the size of a light beam is adjusted by a light shielding slit 15, and the lens 21 and a beam splitter (hereinafter, referred to as BS) 12.
Through. The probe light transmitted through the BS 12 is the lens 2
2 and enter the wafer 4 almost perpendicularly. At this time, the size of the beam spot irradiated on the wafer 4 is adjusted by the light shielding slit 15. The reflected signal light reflected by the wafer 4 is stopped down by the lens 22, and a part of the reflected light is reflected by the BS 12. The signal light reflected by the BS 12 is condensed by the lens 23 and enters the detector 13. The reflected signal light is photoelectrically converted by the detector 13 and the reflected light signal is sent to the signal processing device 30. The signal processing device 30 measures the polishing state based on a change in the reflected light signal. Considering the polishing process of the metal electrode film for embedding the metal electrode film as shown in FIG. 9, as the excess metal thin film after the lamination of the metal electrode thin film is removed by polishing, the reflection from the surface of the metal electrode thin film is increased. Light is getting smaller. When the excess metal thin film is removed, the area of the metal electrode film does not change,
The intensity of the reflected signal light also does not change. By monitoring such a change in the intensity of the reflected signal light, it is possible to detect the polishing end point of the wafer.

【0034】本実施形態の測定装置の遮光スリット15
は、上記説明のようにスポット径の大きさを調整する機
能を有する。この遮光スリット15のスリット幅を広げ
ることで、ウェハに照射するプローブ光のスポット径を
大きくし、逆の場合には小さくする。スポット径を大き
くした場合には、図4のEに示すようにプローブ光は、
例えば複数のダイに渡ってウェハを照射し、この大きく
された照射領域は、測定領域が拡大されたことを意味す
る。このためウェハ内の広い測定領域での平均情報とし
て残膜厚を算出することが出来、多少測定位置が変化し
ても測定膜厚が大きくばらつくことはない。このため残
膜厚の変化を連続的に安定的に捉えることが出来、安定
して研磨終了点の判定を行うことが出来る。
The light shielding slit 15 of the measuring apparatus according to the present embodiment
Has a function of adjusting the size of the spot diameter as described above. Increasing the slit width of the light-shielding slit 15 increases the spot diameter of the probe light applied to the wafer, and decreases the diameter in the opposite case. When the spot diameter is increased, as shown in FIG.
For example, irradiating a wafer over a plurality of dies, and the enlarged irradiation area means that the measurement area is enlarged. For this reason, the remaining film thickness can be calculated as average information in a wide measurement area in the wafer, and the measured film thickness does not vary greatly even if the measurement position slightly changes. Therefore, the change in the remaining film thickness can be continuously and stably detected, and the polishing end point can be stably determined.

【0035】以上のように、本実施形態の測定装置は、
ウェハ内の残膜厚分布が研磨状態の測定精度の悪化に及
ぼす影響を軽減するので残膜厚分布があっても正確に研
磨状態が測定できる。 [実施形態4]図4は本実施形態の測定装置のプローブ
光の照射領域と研磨対象物(ウェハ)の被研磨面との関
係を示し、この関係は実施形態3の場合と同じである。
図6は本実施形態の測定装置の概要を示す。また図7に
本実施形態の測定装置の説明のための、研磨状態を測定
する対象のCMP装置の概要を示す。図7のCMP装置
自体は実施形態1の装置と全く同じであるので、冗長さ
を避けるために動作の説明を省く。図6の測定装置は、
図3にその概要を示した実施形態2の測定装置とは、遮
光スリット15を追加的に具える点でのみ異なる。図6
にて18は多波長成分を持つ白色光源であり、好ましく
はキセノンランプやハロゲンランプを使用することが出
来る。また、白色LEDも使用可能である。光源18か
ら出射したプローブ光はレンズ20を透過、遮光スリッ
ト15を通過することにより光束の大きさが調整され、
レンズ21およびBS12を透過し、レンズ22でほぼ
平行光にされ、研磨対象物(ウェハ)4に垂直に入射す
る。ウェハ4からの反射信号光はレンズ22を透過し、
BS12でその一部が反射される。BS12で反射され
た測定光はレンズ23でほぼ平行光にされ、ミラー14
で反射され、レンズ24を透過し、遮光スリット19で
1次以上の回折光成分が除去され、レンズ25を透過し
て回折格子16に入射する。回折格子16に入射した光
は分光され、異なる波長の光は異なる角度に回折され、
異なる角度に対応する複数の分離された微小な光検出素
子を具えたリニアセンサ17に入射することにより分光
反射光信号が測定される。
As described above, the measuring apparatus of the present embodiment
Since the influence of the distribution of the remaining film thickness in the wafer on the deterioration of the measurement accuracy of the polishing state is reduced, the polishing state can be accurately measured even if the distribution of the remaining film thickness exists. [Embodiment 4] FIG. 4 shows the relationship between the irradiation area of the probe light of the measuring apparatus of the present embodiment and the surface to be polished of the object to be polished (wafer), and this relationship is the same as in the case of Embodiment 3.
FIG. 6 shows an outline of the measuring apparatus of the present embodiment. FIG. 7 shows an outline of a CMP apparatus for measuring a polishing state for explaining the measuring apparatus of the present embodiment. Since the CMP apparatus in FIG. 7 itself is exactly the same as the apparatus in the first embodiment, description of the operation is omitted to avoid redundancy. The measuring device of FIG.
It differs from the measuring apparatus of Embodiment 2 whose outline is shown in FIG. 3 only in that a light-shielding slit 15 is additionally provided. FIG.
Is a white light source having a multi-wavelength component, preferably a xenon lamp or a halogen lamp. Also, white LEDs can be used. The probe light emitted from the light source 18 passes through the lens 20 and passes through the light-shielding slit 15, whereby the size of the light beam is adjusted,
The light passes through the lens 21 and the BS 12, is converted into substantially parallel light by the lens 22, and vertically enters the polishing target (wafer) 4. The reflected signal light from the wafer 4 passes through the lens 22,
A part thereof is reflected by the BS 12. The measurement light reflected by the BS 12 is made substantially parallel by the lens 23 and
The light is transmitted through the lens 24, the first-order or higher order diffracted light component is removed by the light-shielding slit 19, transmitted through the lens 25, and enters the diffraction grating 16. Light incident on the diffraction grating 16 is split, and light of different wavelengths is diffracted at different angles,
The spectral reflected light signal is measured by being incident on a linear sensor 17 having a plurality of separated minute light detecting elements corresponding to different angles.

【0036】本実施形態の測定装置の遮光スリット15
は、上記説明のようにスポット径の大きさを調整する機
能を有する。この遮光スリット15のスリット幅を広げ
ることで、ウェハに照射するプローブ光のスポット径を
大きくし、逆の場合には小さくする。スポット径を大き
くした場合には、図4のEに示すようにプローブ光は、
例えば複数のダイに渡ってウェハを照射し、この大きく
されたスポット径は測定領域が拡大されたことを意味す
る。このためウェハ内の広い測定領域での平均情報とし
て残膜厚を算出することが出来、多少測定位置が変化し
ても測定膜厚が大きくばらつくことはない。このため残
膜厚の変化を連続的に安定的に捉えることが出来、安定
して高精度に研磨終了点の判定を行うことが出来る。
The light shielding slit 15 of the measuring apparatus according to the present embodiment
Has a function of adjusting the size of the spot diameter as described above. Increasing the slit width of the light-shielding slit 15 increases the spot diameter of the probe light applied to the wafer, and decreases the diameter in the opposite case. When the spot diameter is increased, as shown in FIG.
For example, the wafer is irradiated over a plurality of dies, and the increased spot diameter means that the measurement area is enlarged. For this reason, the remaining film thickness can be calculated as average information in a wide measurement area in the wafer, and the measured film thickness does not vary greatly even if the measurement position slightly changes. Therefore, the change in the remaining film thickness can be continuously and stably grasped, and the polishing end point can be stably and accurately determined.

【0037】以上のように、本実施形態の測定装置は、
ウェハ内の残膜厚分布が研磨状態の測定精度の悪化に及
ぼす影響を軽減するので残膜厚分布があっても正確に研
磨状態が測定できる。
As described above, the measuring apparatus of the present embodiment
Since the influence of the distribution of the remaining film thickness in the wafer on the deterioration of the measurement accuracy of the polishing state is reduced, the polishing state can be accurately measured even if the distribution of the remaining film thickness exists.

【0038】以上実施形態1、2、3、4の測定装置の
説明で述べた測定方法を用いれば、測定領域を調節でき
るので、半導体デバイスのCMP研磨に於いて精度良く
残膜厚を測定し、精度良く且つ安定的に研磨終了点を検
知することが出来る。
Since the measurement area can be adjusted by using the measurement method described in the description of the measurement apparatus of the first, second, third, and fourth embodiments, the remaining film thickness can be accurately measured in CMP polishing of a semiconductor device. The polishing end point can be detected accurately and stably.

【0039】以上、実施形態2、4の多波長成分の光源
18としては白色光源のように可視域で連続的に比較的
広いスペクトル範囲を有する光源であっても、比較的半
値幅の狭い複数のスペクトルの光を発光する光源であっ
ても良い。また、以上の説明では研磨終了点の検知を残
膜厚の測定結果に基づいて行ったが、残膜厚は必ずしも
測定する必要はなく他の方法で直接検知しても良い。例
えば、図9に示すような金属電極膜の研磨工程では例え
ば分光反射光信号内に於ける極値の数の増減の検出に基
づいて行っても良い。
As described above, as the light source 18 of the multi-wavelength component in the second and fourth embodiments, even if it is a light source having a relatively wide spectral range continuously in the visible region, such as a white light source, a plurality of light sources having a relatively narrow half-value width are used. A light source that emits light having a spectrum of? In the above description, the end point of polishing is detected based on the measurement result of the remaining film thickness. However, the remaining film thickness is not necessarily measured, and may be directly detected by another method. For example, the metal electrode film polishing step as shown in FIG. 9 may be performed based on, for example, detection of an increase or decrease in the number of extreme values in a spectral reflection light signal.

【0040】また、実施形態1、2に於ける測定領域
は、個々の研磨装置の残膜厚分布の大きさ及び各ダイの
デバイスパターンに対応して、信号処理装置内に具えら
れた制御部が、適宜信号処理装置の信号取得時間の長さ
や信号取得回数を制御することにより調整される。
In the first and second embodiments, the control area provided in the signal processing apparatus corresponds to the size of the remaining film thickness distribution of each polishing apparatus and the device pattern of each die. Is adjusted by appropriately controlling the length of signal acquisition time and the number of signal acquisition times of the signal processing device.

【0041】更にまた、実施形態1、2の反射光信号の
取得時間の制御部は、信号処理装置の内部に具える場合
のみでなく、信号処理装置の外部に別置きで具える場合
も本発明の権利範囲に含まれることは言うまでもない。
Furthermore, the control unit of the acquisition time of the reflected light signal in the first and second embodiments is not only provided inside the signal processing device but also separately provided outside the signal processing device. It goes without saying that it is included in the scope of the invention.

【0042】更にまた、実施形態3、4に於ける測定領
域は、個々の研磨装置の残膜厚分布の大きさ及び各ダイ
のデバイスパターンに対応してスポット径を調整するこ
とにより行われ、通常は、直径数百ミクロンから直径数
十ミリまでの間である。
Furthermore, the measurement area in the third and fourth embodiments is measured by adjusting the spot diameter according to the size of the remaining film thickness distribution of each polishing apparatus and the device pattern of each die. It is typically between a few hundred microns in diameter and a few tens of millimeters in diameter.

【0043】以上実施形態3、4に共通して残膜厚分布
の測定精度悪化に及ぼす影響を軽減する効果以外に実質
的にプローブ光の強度を増加し、光検出器に入射する光
量を増加し測定を安定化させる効果もある。
In addition to the effect of reducing the influence of the remaining film thickness distribution on the measurement accuracy deterioration common to the third and fourth embodiments, the intensity of the probe light is substantially increased and the amount of light incident on the photodetector is increased. It also has the effect of stabilizing the measurement.

【0044】以上実施形態1、2、3、4で説明した測
定装置は、測定を図7のCMP装置の透光窓を通すこと
によって行っていたが、本発明はこの方法に限定される
ものではない。例えば、ウェハが研磨パッドと相対運動
を行う過程で、ウェハが研磨パッドの外側にずれて飛び
出した瞬間に測定することは好ましい方法である。また
研磨パッドがウェハよりも小さい研磨装置においては、
ウェハが研磨パッドからはみ出して露出している部分に
対して測定することもできる。以上のように、本発明は
特に研磨の方式に係わらず、ウェハの被研磨面にプロー
ブ光を照射してその反射信号光を測定出来さえすればあ
らゆるCMP装置を含む研磨装置に適用できる。
In the measuring apparatus described in the first, second, third, and fourth embodiments, the measurement is performed by passing through the light transmitting window of the CMP apparatus shown in FIG. 7, but the present invention is not limited to this method. is not. For example, it is a preferable method to measure at the moment when the wafer is shifted out of the polishing pad and jumps out while the wafer performs relative movement with the polishing pad. In a polishing apparatus in which the polishing pad is smaller than the wafer,
The measurement can also be performed on a portion of the wafer that is exposed outside the polishing pad. As described above, the present invention can be applied to any polishing apparatus including any CMP apparatus, regardless of the polishing method, as long as the surface to be polished of the wafer can be irradiated with probe light and its reflected signal light can be measured.

【0045】以上実施形態1、2、3、4の発明を限定
された概要図を用いて説明したが、本発明の範囲はこれ
らの図に示される範囲に限定されるものではなく、本発
明の精神の及ぶ全ての範囲に及ぶ。例えば、赤外光を発
する光源を用いれば、シリコンウェハに対して背面側か
らプローブ光を照射して測定が可能である。更には、赤
外光を発する光源を用いれば、透過信号光を用いて測定
が可能であるので、これらの方法で研磨状態を測定する
測定装置は本発明の範囲に入る。
The invention of the first, second, third and fourth embodiments has been described with reference to the limited schematic diagrams. However, the scope of the present invention is not limited to the scope shown in these drawings, and the present invention is not limited thereto. The whole sphere of spirit. For example, if a light source that emits infrared light is used, measurement can be performed by irradiating the silicon wafer with probe light from the back side. Furthermore, if a light source that emits infrared light is used, measurement can be performed using transmitted signal light. Therefore, a measuring apparatus that measures the polishing state by these methods falls within the scope of the present invention.

【0046】[0046]

【発明の効果】以上のように、実施形態1、2、3、4
の発明によれば、測定領域の調節を行うので、CMP装
置に於いて多少の残膜厚分布があっても精度良く研磨状
態を測定することができ、更に、実施形態1、2によれ
ば、更に複数の測定点での測定結果の統計処理、または
論理演算の片方または両方により測定を行うので、更に
多様なウェハや多様な研磨条件に対応することができ
る。
As described above, Embodiments 1, 2, 3, and 4
According to the invention of the above, since the measurement area is adjusted, it is possible to accurately measure the polishing state even if there is some residual film thickness distribution in the CMP apparatus. Further, since the measurement is performed by one or both of statistical processing of the measurement results at a plurality of measurement points or one or both of the logical operations, it is possible to cope with more various wafers and various polishing conditions.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態1、2と従来の測定装置に於けるウェ
ハ上の測定領域(照射領域)の比較を示す概念図であ
る。
FIG. 1 is a conceptual diagram showing a comparison between a measurement area (irradiation area) on a wafer in Embodiments 1 and 2 and a conventional measurement apparatus.

【図2】実施形態1の測定装置を示す概要図である。FIG. 2 is a schematic diagram showing a measuring device according to the first embodiment.

【図3】実施形態2の測定装置を示す概要図である。FIG. 3 is a schematic diagram illustrating a measurement device according to a second embodiment.

【図4】実施形態3、4と従来の測定装置に於けるウェ
ハ上の測定領域(照射領域)の比較を示す概念図であ
る。
FIG. 4 is a conceptual diagram showing a comparison between a measurement area (irradiation area) on a wafer in Embodiments 3 and 4 and a conventional measurement apparatus.

【図5】実施形態3の測定装置を示す概要図である。FIG. 5 is a schematic diagram illustrating a measuring device according to a third embodiment.

【図6】実施形態4の測定装置を示す概要図である。FIG. 6 is a schematic diagram illustrating a measuring device according to a fourth embodiment.

【図7】実施形態1〜4の測定装置の説明に用いるCM
P装置と測定装置の概要図である。
FIG. 7 is a CM used to describe the measuring apparatus according to the first to fourth embodiments.
It is a schematic diagram of a P device and a measuring device.

【図8】層間絶縁膜の研磨工程を示す薄膜の断面の概要
図であり、上図が研磨前の、下図が研磨後の状態を示
す。
FIG. 8 is a schematic view of a cross section of a thin film showing a step of polishing an interlayer insulating film, wherein the upper figure shows a state before polishing and the lower figure shows a state after polishing.

【図9】金属膜の研磨工程を示す薄膜の断面の概要図で
あり、上図が研磨前の、下図が研磨後の状態を示す。
FIG. 9 is a schematic diagram of a cross section of a thin film showing a polishing process of a metal film, wherein an upper diagram shows a state before polishing and a lower diagram shows a state after polishing.

【図10】素子分離工程を示すウェハ上の薄膜の断面の
概要図であり、上図が研磨前の、下図が研磨後の状態を
示す。
FIG. 10 is a schematic view of a cross section of a thin film on a wafer showing an element isolation step, wherein the upper figure shows a state before polishing and the lower figure shows a state after polishing.

【図11】従来の測定装置の説明に用いるCMP装置と
測定装置の概要図である。
FIG. 11 is a schematic diagram of a CMP apparatus and a measuring apparatus used for describing a conventional measuring apparatus.

【図12】従来の測定装置の概要図である。FIG. 12 is a schematic diagram of a conventional measuring device.

【符号の説明】[Explanation of symbols]

1 CMP装置 2 研磨体(研磨パッド) 3 研磨対象物保持部(ホルダ) 4 研磨対象物(ウェハ) 5 研磨剤供給部 6 研磨剤(スラリー) 7 定盤 8 測定装置 10 透光窓 11 光源 12 ビームスプリッタ(BS) 13 光検出器 14 ミラー 15 遮光スリット 16 分光器(回折格子) 17 光検出器(リニアセンサ) 18 光源 19 遮光スリット 20〜25 レンズ 30 信号処理装置 31 ダイ 32 最初の反射信号取得の位置 33 最後の反射信号取得の位置 41 層間絶縁膜 42 金属電極膜 43 誘電体膜 44 Six N膜 45 Si 46 トレンチ 50 反射光信号の取得時間の制御部を具える信号処理
装置 100 ホルダの回転方向 101 定盤の回転方向 C 従来の信号取得時間に対する測定領域(照射領
域) D 信号取得時間が長いときの測定領域(照射領域) C’ 従来のスポット径に対する測定領域(照射領域) E スポット径が大きいときの測定領域(照射領域)
DESCRIPTION OF SYMBOLS 1 CMP apparatus 2 Polishing body (polishing pad) 3 Polishing object holding | maintenance part (holder) 4 Polishing target (wafer) 5 Abrasive supply part 6 Abrasive (slurry) 7 Surface plate 8 Measuring apparatus 10 Translucent window 11 Light source 12 Beam splitter (BS) 13 Photodetector 14 Mirror 15 Shielding slit 16 Spectroscope (diffraction grating) 17 Photodetector (linear sensor) 18 Light source 19 Shielding slit 20-25 Lens 30 Signal processing device 31 Die 32 First reflection signal acquisition position 33 end of the reflected signal acquisition position 41 interlayer insulating film 42 a metal electrode film 43 dielectric film 44 Si x N film 45 Si 46 trenches 50 of acquisition time of the reflected optical signal control unit of the signal processing device 100 holder comprising a Rotation direction 101 Rotation direction of surface plate C Measurement area (irradiation area) with respect to conventional signal acquisition time D Signal acquisition time is long Measurement area (irradiation area) C 'Measurement area (irradiation area) relative to conventional spot diameter E Measurement area (irradiation area) when spot diameter is large

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/66 H01L 21/302 L Fターム(参考) 2F065 AA30 BB03 BB16 CC17 CC19 CC31 FF42 FF48 FF61 GG02 GG03 GG07 GG22 GG24 HH04 HH13 JJ02 JJ09 JJ25 LL04 LL12 LL28 LL30 LL42 LL46 LL67 NN12 NN20 PP13 QQ00 QQ14 QQ28 QQ38 QQ41 QQ42 3C058 AA07 AC02 BA01 BA07 CB01 CB03 DA17 4M106 AA01 AA10 AA11 CA24 DH03 DH07 DH12 DH31 DH38 DH39 DH57 DJ17 DJ20 5F004 AA01 AA11 BA20 CB02 CB09 CB16 DB08 EB02 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 21/66 H01L 21/302 LF term (Reference) 2F065 AA30 BB03 BB16 CC17 CC19 CC31 FF42 FF48 FF61 GG02 GG03 GG07 GG22 GG24 HH04 HH13 JJ02 JJ09 JJ25 LL04 LL12 LL28 LL30 LL42 LL46 LL67 NN12 NN20 PP13 QQ00 QQ14 QQ28 QQ38 QQ41 QQ42 3C058 AA07 AC02 BA01 BA07 CB01 CB03 DA17 4A106 DH01A12DH CB09 CB16 DB08 EB02

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】表面に薄膜を有する研磨対象物と研磨体と
の間に研磨剤を介在させた状態で前記研磨体と前記研磨
対象物とを相対移動させることにより前記薄膜を研磨に
より除去しながら、プローブ光を被研磨面である前記薄
膜上に照射して得られる反射信号光により研磨状態を測
定する装置であり、前記プローブ光を発する光源と、前
記反射信号光を受光する光検出器と、前記光検出器から
出力する反射光信号を信号処理して研磨状態を出力する
信号処理部と、前記被研磨面上での測定領域の調節手段
とを具えることを特徴とする測定装置。
1. A polishing method for removing a thin film by polishing by relatively moving the polishing body and the polishing object in a state where an abrasive is interposed between the polishing object and a polishing object having a thin film on the surface. A light source for emitting the probe light, and a photodetector for receiving the reflected signal light, the device being a device for measuring a polishing state by a reflected signal light obtained by irradiating the thin film as a surface to be polished with a probe light. A signal processing unit for processing a reflected light signal output from the photodetector to output a polishing state, and a means for adjusting a measurement area on the surface to be polished, .
【請求項2】前記測定領域の調節手段が、前記信号処理
部に具えられた反射光信号の取得時間の制御部であるこ
とを特徴とする請求項1記載の測定装置。
2. A measuring apparatus according to claim 1, wherein said adjusting means for adjusting the measuring area is a control section of the signal processing section for controlling the acquisition time of the reflected light signal.
【請求項3】前記測定領域の調節手段が、被研磨面への
前記プローブ光の照射領域の大きさを調節するための遮
光スリットから成ることを特徴とする請求項1記載の測
定装置。
3. A measuring apparatus according to claim 1, wherein said measuring area adjusting means comprises a light-shielding slit for adjusting the size of the irradiation area of the probe light on the surface to be polished.
【請求項4】前記光源から発する前記プローブ光が、複
数の波長成分を有し、前記反射信号光の分光特性の変化
から研磨状態を測定することを特徴とする請求項1〜3
何れか1項記載の測定装置。
4. The probe light emitted from the light source has a plurality of wavelength components, and a polishing state is measured from a change in spectral characteristics of the reflected signal light.
The measuring device according to claim 1.
【請求項5】前記光検出器が、前記反射信号光の正反射
成分のみを検出し、1次以上の回折光成分を検出しない
ことを特徴とする請求項1〜4何れか1項記載の測定装
置。
5. The photodetector according to claim 1, wherein the photodetector detects only a regular reflection component of the reflected signal light and does not detect a first-order or higher-order diffracted light component. measuring device.
【請求項6】前記研磨状態の測定が、薄膜の残膜厚の測
定または研磨終了点の測定の片方または両方であること
を特徴とする請求項1〜5何れか1項記載の測定装置。
6. The measuring apparatus according to claim 1, wherein the measurement of the polishing state is one or both of a measurement of a remaining film thickness of the thin film and a measurement of a polishing end point.
【請求項7】表面に薄膜を有する研磨対象物と研磨体と
の間に研磨剤を介在させた状態で前記研磨体と前記研磨
対象物とを相対移動させることにより前記薄膜を研磨に
より除去しながら、プローブ光を被研磨面である前記薄
膜上に照射して得られる反射信号光により研磨状態を測
定する測定方法であり、前記プローブ光を被研磨面に照
射する段階と、前記プローブ光の照射スポットを前記被
研磨面上で残膜厚分布の影響を軽減するために空間的に
走査する段階と、前記走査をしながら前記反射信号光を
受光する段階と、前記受光して得られた反射光信号の取
得時間を制御する段階と、を具えることを特徴とする測
定方法。
7. A polishing method for removing the thin film by polishing by relatively moving the polishing body and the polishing object in a state in which an abrasive is interposed between the polishing object and the polishing object having a thin film on the surface. A method for measuring a polishing state by reflection signal light obtained by irradiating the thin film which is the surface to be polished with probe light, and irradiating the surface with the probe light with the probe light; Spatially scanning the irradiation spot on the surface to be polished to reduce the influence of the remaining film thickness distribution, receiving the reflected signal light while performing the scanning, and receiving the light. Controlling the acquisition time of the reflected light signal.
【請求項8】表面に薄膜を有する研磨対象物と研磨体と
の間に研磨剤を介在させた状態で前記研磨体と前記研磨
対象物とを相対移動させることにより前記薄膜を研磨に
より除去しながら、プローブ光を被研磨面である前記薄
膜上に照射して得られる反射信号光により研磨状態を測
定する測定方法であり、残膜厚分布の影響を軽減するた
めに前記プローブ光のスポット径を調節する段階と、前
記プローブ光を被研磨面に照射する段階と、前記反射信
号光を受光する段階と、を具えることを特徴とする測定
方法。
8. The thin film is removed by polishing by relatively moving the polishing body and the polishing object in a state where an abrasive is interposed between the polishing object having a thin film on the surface and the polishing body. A method for measuring a polishing state by a reflected signal light obtained by irradiating a probe light on the thin film, which is a surface to be polished, and a spot diameter of the probe light to reduce an influence of a residual film thickness distribution. A measuring method, a step of irradiating the surface to be polished with the probe light, and a step of receiving the reflected signal light.
【請求項9】前記研磨状態の測定が、薄膜の残膜厚の測
定または研磨終了点の測定の片方または両方であること
を特徴とする請求項7、8何れか1項記載の測定方法。
9. The measuring method according to claim 7, wherein the measurement of the polishing state is one or both of the measurement of the remaining film thickness of the thin film and the measurement of the polishing end point.
【請求項10】前記研磨対象物が、表面に半導体デバイ
スの薄膜が形成された半導体ウェハであることを特徴と
する請求項7〜9何れか1項記載の測定方法。
10. The measuring method according to claim 7, wherein the object to be polished is a semiconductor wafer having a thin film of a semiconductor device formed on a surface thereof.
JP2000040476A 2000-02-18 2000-02-18 Polishing state measuring device and measuring method Pending JP2001225262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000040476A JP2001225262A (en) 2000-02-18 2000-02-18 Polishing state measuring device and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000040476A JP2001225262A (en) 2000-02-18 2000-02-18 Polishing state measuring device and measuring method

Publications (1)

Publication Number Publication Date
JP2001225262A true JP2001225262A (en) 2001-08-21

Family

ID=18563847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000040476A Pending JP2001225262A (en) 2000-02-18 2000-02-18 Polishing state measuring device and measuring method

Country Status (1)

Country Link
JP (1) JP2001225262A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010237219A (en) * 2010-06-09 2010-10-21 Lasertec Corp Film thickness measuring instrument and method of measuring film thickness
JP2015053438A (en) * 2013-09-09 2015-03-19 富士通セミコンダクター株式会社 Polishing method, method for manufacturing semiconductor device, and polishing endpoint detection program
KR101655076B1 (en) * 2015-10-27 2016-09-22 주식회사 케이씨텍 Chemical mechanical polishing apparatus
WO2018216129A1 (en) * 2017-05-24 2018-11-29 三菱電機ビルテクノサービス株式会社 Shape measurement device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010237219A (en) * 2010-06-09 2010-10-21 Lasertec Corp Film thickness measuring instrument and method of measuring film thickness
JP2015053438A (en) * 2013-09-09 2015-03-19 富士通セミコンダクター株式会社 Polishing method, method for manufacturing semiconductor device, and polishing endpoint detection program
KR101655076B1 (en) * 2015-10-27 2016-09-22 주식회사 케이씨텍 Chemical mechanical polishing apparatus
WO2018216129A1 (en) * 2017-05-24 2018-11-29 三菱電機ビルテクノサービス株式会社 Shape measurement device
JPWO2018216129A1 (en) * 2017-05-24 2019-11-07 三菱電機ビルテクノサービス株式会社 Shape measuring device
CN110546455A (en) * 2017-05-24 2019-12-06 三菱电机大楼技术服务株式会社 Shape measuring device

Similar Documents

Publication Publication Date Title
US7981309B2 (en) Method for detecting polishing end in CMP polishing device, CMP polishing device, and semiconductor device manufacturing method
EP1373828B1 (en) Method to measure features with asymmetrical profile
KR100386793B1 (en) Apparatus and method for measuring thickness of thin film and method and apparatus for manufacturing thin film device using the same
US6281974B1 (en) Method and apparatus for measurements of patterned structures
JP4460659B2 (en) Thin film thickness measuring method and apparatus, thin film device manufacturing method and apparatus using the same
JP2002124496A (en) Method and equipment for detecting and measuring end point of polishing process, and method and equipment for manufacturing semiconductor device using the same for detecting and measuring end point of polishing process
US7505148B2 (en) Matching optical metrology tools using spectra enhancement
JP4858798B2 (en) Polishing apparatus, polishing method, and semiconductor device manufacturing method using the polishing apparatus
US7428044B2 (en) Drift compensation for an optical metrology tool
JPH1133901A (en) Wafer grinding device
US20030224261A1 (en) Two-dimensional structure for determining an overlay accuracy by means of scatterometry
US6524163B1 (en) Method and apparatus for controlling a polishing process based on scatterometry derived film thickness variation
JP2005159203A (en) Thickness measuring method and its instrument, polishing rate calculating method, and cpm processing method and its apparatus
JP4427767B2 (en) Measuring method
JP3360610B2 (en) Detection method, detection device, and polishing device
JP2001225262A (en) Polishing state measuring device and measuring method
EP1037012A1 (en) Method and apparatus for measurements of patterned structures
JP2003249472A (en) Method and device for film thickness measurement and manufacturing method of thin film device
JPH10294297A (en) Polishing device
JP2000077371A (en) Detecting method, detector and polishing device
US7369254B2 (en) System and method for measuring dimension of patterns formed on photomask
US20050168753A1 (en) Optical measurement of device features using interferometric illumination
JP4147675B2 (en) Detection method, detection apparatus, and polishing apparatus
JP4487370B2 (en) Polishing state measuring apparatus, measuring method, polishing apparatus, and semiconductor device manufacturing method
JP2004191107A (en) Film thickness measuring method and its device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080730

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081121