JP3550594B2 - Apparatus for measuring thickness of multilayer sample and polishing apparatus having the same - Google Patents

Apparatus for measuring thickness of multilayer sample and polishing apparatus having the same Download PDF

Info

Publication number
JP3550594B2
JP3550594B2 JP21776897A JP21776897A JP3550594B2 JP 3550594 B2 JP3550594 B2 JP 3550594B2 JP 21776897 A JP21776897 A JP 21776897A JP 21776897 A JP21776897 A JP 21776897A JP 3550594 B2 JP3550594 B2 JP 3550594B2
Authority
JP
Japan
Prior art keywords
light
polishing
film thickness
film
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21776897A
Other languages
Japanese (ja)
Other versions
JPH1163934A (en
Inventor
武彦 上田
嘉次郎 潮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP21776897A priority Critical patent/JP3550594B2/en
Priority to US09/119,162 priority patent/US6489624B1/en
Publication of JPH1163934A publication Critical patent/JPH1163934A/en
Application granted granted Critical
Publication of JP3550594B2 publication Critical patent/JP3550594B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体基板、マイクロマシーン等の製造の過程において、表面に微小な凹凸を有する多層膜試料の膜厚を測定する膜厚測定装置、及びこの装置を有してなる研磨装置に関するものである。
【0002】
【従来の技術】
半導体デバイスの高密度化は限界を見せず進展を続けており、高密度化に伴う様々の障害のいくつかは、種々の技術、方法により克服されつつある。大きな課題のひとつとして、グローバルな(比較的大きなエリアでの)デバイス面の平坦化がある。デバイスの集積度が上がるにつれ、電極他の更なる積層化は避けられない。リソグラフィの短波長化に付随した、露光時の焦点深度短縮を考慮すると、少なくとも露光エリア程度の範囲で、層間層を精度良く平坦化することへの要求は大きい。
【0003】
従来より、成膜法などの改良により局所的に層間層を平坦化する方法が多く提案、実行されているが、今後さらに必要とされる、より大きなエリアでの効率的な平坦化技術として注目を集めているのが、CMP(Chemical Mechanical PolishingまたはPlanarization)とよばれる研磨工程である。
【0004】
CMPは、物理的研磨に化学的な作用(研磨材、溶液による溶かし出し)を併用してウェハーの表面凹凸を除いていく工程であり、グローバル平坦化技術の最有力な候補となっている。具体的には、酸、アルカリなどの研磨物の可溶性溶媒中に、研磨粒(シリカ、アルミナ、酸化セリウムなどが一般的)を分散させたスラリーと呼ばれる研磨剤を用い、適当な研磨布でウェハ表面を加圧して相対運動により摩擦することで研磨を進行させる。ウェハ全面において、加圧と相対運動速度を一様とすることで面内を一様に研磨することが可能になる。
【0005】
この工程は、従来の半導体プロセスとのマッチングの点などでも未だに多くの課題を残しているが、一般的な要求課題の大きなものとして、研磨工程の終了の検知がある。ことに、研磨工程を行いながらの(in-situの)研磨終了点の検出は、工程効率化のためにも要請が大きい。
【0006】
研磨工程の終了を検出する方法のひとつとして、目的研磨層と異なった層へ研磨が進んだ場合の摩擦変動を、ウェハやパッドを回転させるモーターのトルク変化によって検出する方法が用いられている。
【0007】
また、研磨パッドに光路を設けてウェハ表面に光を照射したり、ウェハキャリアに光路を設けてウェハ裏面からウェハ透過性の光(赤外光)を照射したりして、光学的な干渉によって研磨中の薄膜の膜厚を測定する方法も実用化に向け開発が進められている。
【0008】
これは、研磨されていく層間絶縁膜を計測する際に、レーザ光を研磨面に照射し、その反射光の強度の時間変化をモニタするものである。膜厚変動による照射光の干渉条件の変化から、光量の変動(膜厚減少速度が一定であれば、通常正弦波的変動となる)がおこる。これにより、膜厚即ち研磨量を算出することが可能になる。
【0009】
【発明が解決しようとする課題】
しかしながら、前記のような、CMPにおける研磨量や研磨終了点を研磨中にモニタする技術は、要請が高まっているにも関わらず決定的といえる解決方法が確立されていない。
【0010】
例えば、研磨終了点をモータートルクで検出する方法は、現時点においては、明らかに異なる層の研磨開始を検知する場合にのみ有効で、しかも精度の上で不十分である。
【0011】
また、干渉利用の膜厚計測の方法で問題になることの一つは、研磨ウェハの表面に微小な凹凸が存在することである。図5は、研磨ウェハを示す摸式図である。研磨ウェハにおいては、Si基板1の上にSiO2膜2が成膜されており、SiO2膜2中には、金属配線層3などが存在している。そして、一般に研磨前または研磨中の研磨ウェハの表面には、図5に示すように微小な凹凸が存在している。
【0012】
よって、この研磨ウェハの表面に光を投射して得られる反射光は、以下の光成分が重なったものとなる。
(a) 積層された膜による干渉光成分(凹部及び凸部でそれぞれ発生、図5のa)
(b) 凹部での干渉光と凸部での干渉光が更に干渉する成分(図5のb)
(c) 凹凸部の位相変化による回折光成分
【0013】
通常の光干渉を利用した膜厚検出では、受光面を平面と仮定し、積層膜の干渉によって得られる反射光量の山と谷の位置と光学定数(屈折率及び吸収係数)とから膜厚を求める。すなわち、前記(b) と(c) の成分はないものとして膜厚を求めている。よって、表面に凹凸がある研磨ウェハを測定した場合には、(b) と(c) の成分が誤差要因となって正確な測定ができないという問題点があった。
【0014】
このため、従来は、表面に凹凸のない平坦な部分を探し出して、その部分で測定を行う等の対策が必要であったが、研磨の途中において平坦な部分を探し出して測定を行うことは困難で実用的ではなかった。
【0015】
このように、研磨量を研磨中にモニタする技術が不十分なため、実際のプロセスにおいては、研磨時間による制御などで対処することが多く、その精度不足のため、必要以上の膜厚を成膜する必要に迫られることになっていた。
【0016】
本発明は、このような問題点を解決するためになされたもので、表面に微小な凹凸を有する多層膜試料であっても、正確に膜厚を測定することのできる膜厚測定装置、及びこの装置を有してなる研磨装置を提供することを課題とする。
【0017】
【課題を解決するための手段】
前記課題を解決するための第1の手段は、表面に微小な凹凸を有する多層膜試料膜厚を測定する装置であって、前記凹部と前記凸部との高さの差を H 、 前記凹部の幅をdとするとき、多層膜試料の表面に光をtan -1 / 2H )より大きな入射角θで斜めに投射する投光部と、入射角とほぼ等しい反射角で多層膜試料表面から反射された光を受光する受光部と、受光部で検出された光の干渉ハ゜ターンを検出して膜厚を測定する膜厚測定部とを有してなることを特徴とする多層膜試料の膜厚測定装置(請求項1)である。
【0018】
この膜厚測定装置においては、多層膜試料の表面に光を斜めに投射し、入射角とほぼ等しい反射角で多層膜試料表面から反射された光を受光しているので、前記(b) 、(c) に係る光は、凸部の陰になって受光されない。よって、(a) に係る光のみが受光されることになり、表面が平坦であるときと同様な原理で膜厚を測定することができる。
【0019】
前記課題を解決するための第2の手段は、前記第1の手段を有してなる研磨装置(請求項2)である。
【0020】
この研磨装置においては、正確に膜厚が測定できる多層膜試料の膜厚測定装置を有しているので、研磨の終了を正確に行うことができる。
【0021】
【発明の実施の形態】
以下、本発明の実施の形態を図を用いて説明する。図1は、本発明に係る膜厚測定装置を半導体用のウェハに応用した場合の測定原理を示す模式図である。研磨ウェハにおいては、Si基板1の上にSiO2膜2が成膜されており、SiO2膜2中には、金属配線層3などが存在している。
【0022】
この研磨ウェハに、斜めから光を投射し、入射角とほぼ等しい反射角で多層膜試料表面から反射された光を受光する。凹部と凸部との高さの差をH、凹部の幅をdとし、入射角と反射角をθとすると、θ≧tan-1d/(2H)のとき、凹部に入射した光は、凸部の側壁に当たって直接検出部には到達しない。側壁に当たった光は、金属配線層3に当たって吸収、反射されて検出部に到達しないか、多重反射により迷光となって検出部に入射する。多重反射により迷光となって検出部に入射した光は干渉には寄与しない。多重反射により光路長がコヒーレント長よりも長くなるためである。
【0023】
よって、この方式により、凹部で反射された光は、検出部において凸部からの反射光と干渉することがないので、凸部の反射光のみの情報(凸部の反射光のみの光干渉)を選択して得ることができ、あたかも凹凸がなく平坦な面からの信号であるかのように扱うことができる。
【0024】
図2は、本発明の実施の形態に係る装置の投光部の概略図である。Xeランプ(光源)11からの光は、集光レンズ12で集光され、モノクロメータ13で単色光とされる。そして、コリメータレンズ14により平行光とされ、反射ミラー15を介してゴニオメータ16に入射される。そして、ゴニオメータ16により入射角を規定され、被測定物17に斜めに照射される。モノクロメータ13により、各種の単色光を発生させ、各々について干渉データを得る。受光装置、測定回路については、従来の光干渉型膜厚測定器と同じであるので説明を省略する。
【0025】
図3に、本発明に係る多層膜試料の膜厚測定装置を有する研磨装置の、実施の形態の例を示す。図3において、研磨される被研磨材(ウェハ)21はウェハキャリア22に保持されている。研磨定盤23の表面には研磨パッド24が設けられており、研磨定盤23は、その中心軸の周りに回転している。ウェハキャリア22は、ウェハ21を研磨パッド24の上に押圧しながら回転すると共に往復運動を行い、研磨パッド24によりウェハ1を研磨する。研磨定盤23及び研磨パッド24には石英透過窓25が設けられている。26は、前述したような多層膜試料の膜厚測定装置であり、石英透過窓25を通してウェハ1表面に光を投射し、その反射光を処理して膜厚を測定する。そして、膜厚が規定厚さに達した時点で研磨を終了する。
【0026】
このように石英透過窓25を通して光を照射する方式の他、測定時にウェハを研磨定盤23及び研磨パッド24より外側にはみ出させ、はみ出したウェハ部分に光を投射して測定を行うようにしてもよい。
【0027】
【実施例】
図4に示すような試料を作成して測定を行った。まず、Si基板31を加熱し、SiO2熱酸化膜32を573nm作成した。その上に、アルミニウム33を700nmスパッタリングによって積層した。作成した積層膜(Si/SiO2熱酸化膜/アルミニウム)上にフォトレジストを塗布し、フォトマスクを設け、フォトレジストを感光させた。その後、アルミニウムをエッチングし、フォトレジストを除去した。最後にプラズマCVDでSiO2膜34を390nm積層して試料を完成させた。こうして作成された試料は、アルミニウムが1μmピッチでパターニングされた積層膜である。
【0028】
この試料に、図2に示す光学系により光を斜めに投射し、試料からの鏡面反射光を検出器によって受光し、反射光光度を測定した。なお、図示していないが、鏡面反射光を受光できるように、検出器もゴニオメータによって同時に動かしている。
【0029】
ゴニオメータによって、入射角を変化させるにつれて、反射スペクトルは次のような変化を示した。
入射角が小さい場合には、得られた分光反射スペクトルは複雑なもので、平坦な積層膜から得られるものとは大きく異なっていた。
しかし、入射角が35°以上となったとき、受光量は減少したが、分光反射スペクトルは、Si基板上にSiO2熱酸化膜573nm、アルミニウム700nm、SiO2390nmを積層させた平坦膜と同一のものが得られた。すなわち、斜め入射の光線を使用することにより、凹凸が存在する領域においても、凹凸が存在しない領域と同様の分光反射スペクトルが観測された。
【0030】
【発明の効果】
以上説明したように、本発明に係る多層膜試料の膜厚測定装置においては、多層膜試料の表面に光を斜めに投射し、入射角とほぼ等しい反射角で多層膜試料表面から反射された光を受光しているので、凹部からの反射光は、凸部の陰になって受光されない。よって、凸部表面からの反射光のみが受光されることになり、表面が平坦であるときと同様な原理で膜厚を測定することができる。
【0031】
また、本発明に係る研磨装置においては、正確に膜厚が測定できる多層膜試料の膜厚測定装置を有しているので、研磨の終了を正確に行うことができる。
【図面の簡単な説明】
【図1】本発明に係る膜厚測定装置の測定原理を示す模式図である。
【図2】本発明に係る膜厚測定装置の投光部の一例を示す概略図である。
【図3】本発明に係る研磨装置の実施の形態の例を示す図である。
【図4】本発明の実施例に使用した試料を示す図である。
【図5】研磨ウェハを示す模式図である。
【符号の説明】
1 …Si基板
2 …SiO2
3 …金属配線層
11…Xeランプ
12…集光レンズ
13…モノクロメータ
14…コリメータレンズ
15…反射ミラー
16…ゴニオメータ
17…被測定物
21…被研磨材(ウェハ)
22…ウェハキャリア
23…研磨定盤
24…研磨パッド
25…石英透過窓
26…膜厚測定装置
31…Si基板
32…SiO2熱酸化膜
33…アルミニウム
34…SiO2
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a film thickness measuring device for measuring the film thickness of a multilayer film sample having fine irregularities on the surface in the process of manufacturing a semiconductor substrate, a micro machine, and the like, and to a polishing device having the device. is there.
[0002]
[Prior art]
2. Description of the Related Art Densification of semiconductor devices continues to advance without showing any limitations, and some of the various obstacles associated with densification are being overcome by various techniques and methods. One of the major challenges is the flattening of global (relatively large area) device surfaces. As the degree of integration of the device increases, further lamination of electrodes and the like is inevitable. Considering a reduction in the depth of focus at the time of exposure, which accompanies a reduction in the wavelength of lithography, there is a great demand for accurately flattening the interlayer layer at least in the range of the exposure area.
[0003]
Conventionally, many methods of locally planarizing an interlayer layer by improving a film forming method and the like have been proposed and implemented, but are attracting attention as an efficient planarization technique for a larger area, which is required in the future. Is a polishing process called CMP (Chemical Mechanical Polishing or Planarization).
[0004]
CMP is a process for removing the surface irregularities of a wafer by using a chemical action (dissolution with an abrasive or a solution) in combination with physical polishing, and is the most promising candidate for global planarization technology. Specifically, a polishing agent called a slurry in which abrasive grains (typically silica, alumina, cerium oxide, etc.) are dispersed in a soluble solvent of a polishing material such as an acid or an alkali is used, and the wafer is polished with an appropriate polishing cloth. Polishing proceeds by pressing the surface and rubbing by relative motion. By making the pressure and the relative movement speed uniform over the entire surface of the wafer, it is possible to uniformly polish the surface.
[0005]
Although this process still has many problems in terms of matching with the conventional semiconductor process, etc., one of the general required problems is to detect the end of the polishing process. In particular, the detection of the polishing end point (in-situ) while performing the polishing process is greatly demanded for improving the process efficiency.
[0006]
As one method of detecting the end of the polishing process, a method of detecting a fluctuation in friction when polishing proceeds to a layer different from a target polishing layer by a change in torque of a motor for rotating a wafer or a pad is used.
[0007]
Also, an optical path is provided on the polishing pad to irradiate light to the wafer surface, or an optical path is provided to the wafer carrier to irradiate light (infrared light) that is permeable to the wafer from the back surface of the wafer. A method for measuring the thickness of a thin film being polished has also been developed for practical use.
[0008]
This is to irradiate a laser beam to a polished surface when measuring an interlayer insulating film to be polished, and to monitor a temporal change in the intensity of the reflected light. The change in the interference condition of the irradiation light due to the change in the film thickness causes a change in the light amount (a normal sinusoidal change if the film thickness reduction rate is constant). This makes it possible to calculate the film thickness, that is, the polishing amount.
[0009]
[Problems to be solved by the invention]
However, as to the technique for monitoring the polishing amount and the polishing end point during CMP during polishing as described above, a definitive solution has not yet been established despite increasing demands.
[0010]
For example, the method of detecting the polishing end point by the motor torque is effective at present only for detecting the start of polishing of a clearly different layer, and is insufficient in accuracy.
[0011]
One of the problems with the method of measuring the film thickness using interference is that minute irregularities exist on the surface of the polished wafer. FIG. 5 is a schematic diagram showing a polished wafer. In the polished wafer, an SiO 2 film 2 is formed on a Si substrate 1, and a metal wiring layer 3 and the like are present in the SiO 2 film 2. Generally, fine irregularities exist on the surface of the polished wafer before or during polishing as shown in FIG.
[0012]
Therefore, the reflected light obtained by projecting the light on the surface of the polished wafer has the following light components superimposed.
(a) Interference light components due to the laminated films (generated at concave portions and convex portions, respectively, FIG. 5A)
(b) A component where the interference light at the concave portion and the interference light at the convex portion further interfere (FIG. 5B).
(c) Diffracted light component due to phase change of uneven portion
In film thickness detection using ordinary optical interference, the light receiving surface is assumed to be flat, and the film thickness is determined from the positions of the peaks and valleys of the amount of reflected light obtained by the interference of the laminated film and the optical constants (refractive index and absorption coefficient). Ask. That is, the film thickness is determined assuming that there are no components (b) and (c). Therefore, when a polished wafer having irregularities on the surface is measured, there is a problem that the components (b) and (c) cause an error and accurate measurement cannot be performed.
[0014]
For this reason, conventionally, it was necessary to take measures such as searching for a flat portion having no unevenness on the surface and performing measurement at that portion, but it is difficult to search for a flat portion during polishing and perform measurement. Was not practical.
[0015]
As described above, the technology for monitoring the polishing amount during polishing is insufficient, and in the actual process, it is often dealt with by controlling the polishing time or the like. I was forced to film.
[0016]
The present invention has been made in order to solve such problems, even in a multilayer sample having minute irregularities on the surface, a film thickness measurement device capable of accurately measuring the film thickness, and An object of the present invention is to provide a polishing apparatus having this apparatus.
[0017]
[Means for Solving the Problems]
A first means for solving the above problem is an apparatus for measuring the thickness of a multilayer sample having fine irregularities on the surface, wherein the difference between the height of the concave portion and the convex portion is H , Where d is the width of d, a light projecting unit that projects light obliquely on the surface of the multilayer sample at an incident angle θ larger than tan −1 d / ( 2H ) , and a multilayer film that has a reflection angle substantially equal to the incident angle. A multilayer film comprising: a light receiving unit that receives light reflected from a sample surface; and a film thickness measuring unit that detects an interference pattern of light detected by the light receiving unit and measures a film thickness. This is a sample thickness measuring device (claim 1).
[0018]
In this film thickness measuring apparatus, light is obliquely projected on the surface of the multilayer sample and light reflected from the multilayer sample surface is received at a reflection angle substantially equal to the incident angle. The light according to (c) is not received because of the shadow of the convex portion. Therefore, only the light according to (a) is received, and the film thickness can be measured by the same principle as when the surface is flat.
[0019]
A second means for solving the above-mentioned problem is a polishing apparatus having the first means (claim 2).
[0020]
This polishing apparatus has a multilayer film sample thickness measuring apparatus capable of accurately measuring the film thickness, so that the polishing can be accurately completed.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing a measurement principle when the film thickness measuring apparatus according to the present invention is applied to a semiconductor wafer. In the polished wafer, an SiO 2 film 2 is formed on a Si substrate 1, and a metal wiring layer 3 and the like are present in the SiO 2 film 2.
[0022]
Light is projected onto the polished wafer obliquely, and light reflected from the multilayer sample surface is received at a reflection angle substantially equal to the incident angle. Assuming that the height difference between the concave portion and the convex portion is H, the width of the concave portion is d, and the incident angle and the reflection angle are θ, when θ ≧ tan −1 d / (2H), the light incident on the concave portion is It does not directly reach the detection unit by hitting the side wall of the projection. The light that hits the side wall is absorbed and reflected by the metal wiring layer 3 and does not reach the detection unit, or enters the detection unit as stray light due to multiple reflection. Light that has entered the detection unit as stray light due to multiple reflection does not contribute to interference. This is because the optical path length becomes longer than the coherent length due to multiple reflection.
[0023]
Therefore, according to this method, the light reflected by the concave portion does not interfere with the reflected light from the convex portion in the detection portion, and thus information on only the reflected light from the convex portion (light interference only from the reflected light from the convex portion). Can be selected, and the signal can be treated as if it were a signal from a flat surface with no irregularities.
[0024]
FIG. 2 is a schematic diagram of a light projecting unit of the device according to the embodiment of the present invention. Light from a Xe lamp (light source) 11 is condensed by a condenser lens 12 and converted to monochromatic light by a monochromator 13. Then, the light is collimated by the collimator lens 14 and is incident on the goniometer 16 via the reflection mirror 15. Then, the incident angle is defined by the goniometer 16 and the object 17 is irradiated obliquely. Various monochromatic lights are generated by the monochromator 13 and interference data is obtained for each of them. The light receiving device and the measuring circuit are the same as those of the conventional optical interference type film thickness measuring device, and the description is omitted.
[0025]
FIG. 3 shows an embodiment of a polishing apparatus having a multilayer film thickness measuring apparatus according to the present invention. In FIG. 3, a material to be polished (wafer) 21 is held by a wafer carrier 22. A polishing pad 24 is provided on the surface of the polishing platen 23, and the polishing platen 23 rotates around its central axis. The wafer carrier 22 rotates while reciprocating while pressing the wafer 21 onto the polishing pad 24, and polishes the wafer 1 with the polishing pad 24. The quartz platen 23 and the polishing pad 24 are provided with a quartz transmission window 25. Reference numeral 26 denotes an apparatus for measuring the thickness of the multilayer film sample as described above, which projects light onto the surface of the wafer 1 through the quartz transmission window 25 and processes the reflected light to measure the film thickness. Then, the polishing is finished when the film thickness reaches the specified thickness.
[0026]
In addition to the method of irradiating light through the quartz transmission window 25 as described above, the wafer is protruded outside the polishing platen 23 and the polishing pad 24 at the time of measurement, and the light is projected onto the protruding wafer portion to perform measurement. Is also good.
[0027]
【Example】
A sample as shown in FIG. 4 was prepared and measured. First, the Si substrate 31 was heated to form a 573 nm SiO 2 thermal oxide film 32. On top of this, aluminum 33 was laminated by 700 nm sputtering. A photoresist was applied on the formed laminated film (Si / SiO 2 thermal oxide film / aluminum), a photomask was provided, and the photoresist was exposed to light. Thereafter, the aluminum was etched and the photoresist was removed. Finally, the sample was completed by laminating a 390 nm SiO 2 film 34 by plasma CVD. The sample thus prepared is a laminated film in which aluminum is patterned at a pitch of 1 μm.
[0028]
Light was obliquely projected on this sample by the optical system shown in FIG. 2, and the specularly reflected light from the sample was received by the detector, and the luminous intensity of the reflected light was measured. Although not shown, the detector is simultaneously moved by the goniometer so that the specular reflected light can be received.
[0029]
As the angle of incidence was changed by the goniometer, the reflection spectrum showed the following changes.
When the incident angle was small, the obtained spectral reflection spectrum was complicated and greatly different from that obtained from a flat laminated film.
However, when the incident angle was 35 ° or more, the amount of received light decreased, but the spectral reflection spectrum was the same as that of a flat film in which a 573 nm SiO 2 thermal oxide film, 700 nm aluminum, and 390 nm SiO 2 films were stacked on a Si substrate. Was obtained. That is, by using the obliquely incident light beam, the same spectral reflection spectrum was observed in the region having the unevenness as in the region having no unevenness.
[0030]
【The invention's effect】
As described above, in the apparatus for measuring the thickness of a multilayer sample according to the present invention, light is obliquely projected onto the surface of the multilayer sample and reflected from the multilayer sample surface at a reflection angle substantially equal to the incident angle. Since the light is received, the reflected light from the concave portion is not received because it is shaded by the convex portion. Therefore, only the light reflected from the surface of the convex portion is received, and the film thickness can be measured by the same principle as when the surface is flat.
[0031]
In addition, the polishing apparatus according to the present invention includes the apparatus for measuring the thickness of a multilayer film sample that can accurately measure the film thickness, so that the polishing can be accurately completed.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a measurement principle of a film thickness measuring device according to the present invention.
FIG. 2 is a schematic view showing an example of a light projecting unit of the film thickness measuring device according to the present invention.
FIG. 3 is a view showing an example of an embodiment of a polishing apparatus according to the present invention.
FIG. 4 is a diagram showing a sample used in an example of the present invention.
FIG. 5 is a schematic view showing a polished wafer.
[Explanation of symbols]
1 ... Si substrate 2 ... SiO 2 film 3 ... metal wiring layer 11 ... Xe lamp 12 ... condenser lens 13 ... monochromator 14 ... collimator lens 15 ... reflecting mirror 16 ... goniometer 17 ... object to be measured 21 ... object to be polished (wafer )
22 ... wafer carrier 23 ... polishing platen 24 ... polishing pad 25 ... a quartz transmission window 26 ... film thickness measuring device 31 ... Si substrate 32 ... SiO 2 thermal oxide film 33 ... aluminum 34 ... SiO 2 film

Claims (2)

表面に微小な凹凸を有する多層膜試料膜厚を測定する装置であって、前記凹部と前記凸部との高さの差を H 、 前記凹部の幅をdとするとき、多層膜試料の表面に光をtan -1 / 2H )より大きな入射角θで斜めに投射する投光部と、入射角とほぼ等しい反射角で多層膜試料表面から反射された光を受光する受光部と、受光部で検出された光の干渉ハ゜ターンを検出して膜厚を測定する膜厚測定部とを有してなることを特徴とする多層膜試料の膜厚測定装置。An apparatus for measuring the thickness of a multilayer sample having fine irregularities on its surface, wherein a difference in height between the concave portion and the convex portion is H , and a width of the concave portion is d, and the surface of the multilayer sample is measured. A light projecting unit that projects light obliquely at an incident angle θ larger than tan −1 d / ( 2H ) , and a light receiving unit that receives light reflected from the multilayer sample surface at a reflection angle substantially equal to the incident angle. A film thickness measuring unit for measuring a film thickness by detecting an interference pattern of light detected by a light receiving unit. 請求項1に記載の多層膜試料の膜厚測定装置を有してなることを特徴とする研磨装置。A polishing apparatus comprising the apparatus for measuring a film thickness of a multilayer film sample according to claim 1.
JP21776897A 1997-07-18 1997-08-12 Apparatus for measuring thickness of multilayer sample and polishing apparatus having the same Expired - Lifetime JP3550594B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP21776897A JP3550594B2 (en) 1997-08-12 1997-08-12 Apparatus for measuring thickness of multilayer sample and polishing apparatus having the same
US09/119,162 US6489624B1 (en) 1997-07-18 1998-07-20 Apparatus and methods for detecting thickness of a patterned layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21776897A JP3550594B2 (en) 1997-08-12 1997-08-12 Apparatus for measuring thickness of multilayer sample and polishing apparatus having the same

Publications (2)

Publication Number Publication Date
JPH1163934A JPH1163934A (en) 1999-03-05
JP3550594B2 true JP3550594B2 (en) 2004-08-04

Family

ID=16709438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21776897A Expired - Lifetime JP3550594B2 (en) 1997-07-18 1997-08-12 Apparatus for measuring thickness of multilayer sample and polishing apparatus having the same

Country Status (1)

Country Link
JP (1) JP3550594B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100324321B1 (en) * 1999-05-25 2002-02-16 김영환 A measurement method and device for depth and gradient of trench in semiconductor device
NL1018943C2 (en) * 2001-09-13 2003-03-14 Tno Method and device for polishing a workpiece surface.
JP5167010B2 (en) * 2008-07-23 2013-03-21 株式会社荏原製作所 Polishing end point detection method and polishing apparatus

Also Published As

Publication number Publication date
JPH1163934A (en) 1999-03-05

Similar Documents

Publication Publication Date Title
US6645045B2 (en) Method of measuring thickness of a semiconductor layer and method of manufacturing a semiconductor substrate
JP4560163B2 (en) Endpoint detection using light beams of different wavelengths
US6489624B1 (en) Apparatus and methods for detecting thickness of a patterned layer
US6897079B2 (en) Method of detecting and measuring endpoint of polishing processing and its apparatus and method of manufacturing semiconductor device using the same
US5413941A (en) Optical end point detection methods in semiconductor planarizing polishing processes
KR100465929B1 (en) Method and apparatus for monitoring polishing state, polishing device, process wafer, semiconductor device, and method of manufacturing semiconductor device
US6247998B1 (en) Method and apparatus for determining substrate layer thickness during chemical mechanical polishing
US7052920B2 (en) Layer-thickness detection methods and apparatus for wafers and the like, and polishing apparatus comprising same
JP3327175B2 (en) Detection unit and wafer polishing apparatus provided with the detection unit
JP3360610B2 (en) Detection method, detection device, and polishing device
JP3550594B2 (en) Apparatus for measuring thickness of multilayer sample and polishing apparatus having the same
JP2005340679A (en) Polishing equipment, polishing end detecting method, and manufacturing method of semiconductor device
JP2001225261A (en) Polishing device
JP2000077371A (en) Detecting method, detector and polishing device
TW200300992A (en) Method and device for measuring film layer state, polishing device, and method of manufacturing semiconductor device
JP4487370B2 (en) Polishing state measuring apparatus, measuring method, polishing apparatus, and semiconductor device manufacturing method
JP4147675B2 (en) Detection method, detection apparatus, and polishing apparatus
JP4505893B2 (en) Detection apparatus and detection method
JPH1148134A (en) Method and device for detecting final point of polishing, and polishing device having it
JP2000223451A (en) Polishing state measuring method
JP3460134B2 (en) Detection method, film thickness measurement method, detection device, film thickness measurement device, and polishing device
JPH11204473A (en) Abrasive processing method and device therefor
JP2001284298A (en) Monitoring method for polishing state, polishing device and manufacturing method of semiconductor device
JPH1019537A (en) Device for measuring surface form, and polishing device using it
JPH09298175A (en) Polishing method and device therefor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term