JP2002343722A - Quartz glass furnace core tube for low pressure cvd - Google Patents

Quartz glass furnace core tube for low pressure cvd

Info

Publication number
JP2002343722A
JP2002343722A JP2001146939A JP2001146939A JP2002343722A JP 2002343722 A JP2002343722 A JP 2002343722A JP 2001146939 A JP2001146939 A JP 2001146939A JP 2001146939 A JP2001146939 A JP 2001146939A JP 2002343722 A JP2002343722 A JP 2002343722A
Authority
JP
Japan
Prior art keywords
quartz glass
radius
ceiling
core tube
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001146939A
Other languages
Japanese (ja)
Inventor
Taira Shin
平 辛
Masami Amano
正実 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2001146939A priority Critical patent/JP2002343722A/en
Publication of JP2002343722A publication Critical patent/JP2002343722A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Chemical Vapour Deposition (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a quartz glass furnace core tube for low pressure CVD in which height dimension nearly equal to that of a furnace core tube formed of metal material can be obtained although the furnace core tube is formed of quartz glass and high strength is realized. SOLUTION: In this quartz glass furnace core tube for low pressure CVD, a ceiling part 4 having a domed shape whose radius is R1 is combined with a cylindrical part 3 whose radius is R by a combining arc part 5 whose radius is R2 . The quartz glass furnace core tube has a shape wherein R1 =1.6R-2.4R and R2 =0.2R-0.4R and is used at an internal furnace temperature of at most 900 deg.C, and compression residual stress is made to exist on an outside surface layer of the combining arc part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は減圧CVD用石英ガ
ラス炉心管に係わり、特に天井部の半径と円筒部の半径
と結合円弧部の半径に特定の関係を持たせることにより
強度を向上させた減圧CVD用石英ガラス炉心管に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quartz glass furnace tube for low-pressure CVD, and more particularly, to improve strength by giving a specific relationship to a radius of a ceiling portion, a radius of a cylindrical portion, and a radius of a connecting arc portion. The present invention relates to a quartz glass furnace tube for low-pressure CVD.

【0002】[0002]

【従来の技術】LPCVDのように半導体ウェーハや液
晶パネルなどの熱処理時、炉内の低圧環境を実現するた
めに、炉心管が使用されている。従来、この炉心管には
金属製が使用されていた。
2. Description of the Related Art At the time of heat treatment of a semiconductor wafer or a liquid crystal panel as in LPCVD, a furnace tube is used to realize a low-pressure environment in a furnace. Conventionally, metal is used for this furnace tube.

【0003】炉心管内外が最大1気圧の圧力差となる場
合においては、金属材料の強度に比べて炉心管に発生す
る応力は小さい。特に、金属材料の強度は引張と圧縮の
応力状態がほぼ等しいので、炉心管に発生する応力は、
絶対値では圧縮応力が最大となり、引張応力は天井と円
筒の結合部の圧縮応力よりも小さい。
When the pressure difference between the inside and outside of the furnace tube is a maximum of 1 atm, the stress generated in the furnace tube is smaller than the strength of the metal material. In particular, since the strength of metallic materials is almost equal in tensile and compressive stress, the stress generated in the core tube is
In absolute value, the compressive stress is maximum, and the tensile stress is smaller than the compressive stress at the joint between the ceiling and the cylinder.

【0004】しかし、近年、半導体プロセスに対する高
純度化の要求により、金属製炉心管による被処理材料へ
の汚染が問題となり、高純度の材料が要求されている。
この要求に応える材料の一つとして現在石英ガラスが用
いられるようになっている。
However, in recent years, due to a demand for higher purity in a semiconductor process, contamination of a material to be processed by a metal core tube has become a problem, and a high-purity material has been demanded.
Quartz glass is now being used as one of the materials meeting this demand.

【0005】この石英ガラス材料の強度特性は、引張強
度が圧縮強度よりも遙かに小さい(通常約1/20)た
め、従来の金属製炉心管と同様な形状の石英炉心管では
天井部と円筒部の結合部に発生する引張応力は、石英ガ
ラスの引張強度を超えるおそれがある。この引張応力を
低減させるためには、ドーム形状の天井部をできる限り
半球状に近い(ドーム形状の天井部の半径が円筒部の半
径に近い)形状設計にする必要がある。
The strength characteristic of this quartz glass material is that the tensile strength is much smaller than the compressive strength (usually about 1/20). The tensile stress generated at the joint portion of the cylindrical portion may exceed the tensile strength of quartz glass. In order to reduce this tensile stress, it is necessary to design the dome-shaped ceiling as close as possible to a hemisphere (the radius of the dome-shaped ceiling is close to the radius of the cylinder).

【0006】[0006]

【発明が解決しようとする課題】しかし、このような設
計は引張応力の低減に有効であるが、炉内空間の有効利
用の観点から問題となる。すなわち、ドーム形状の天井
部の高さが炉全体の高さを増加させ、熱処理炉のコスト
およびランニングコストを高める。そのため、従来の金
属製炉心管の形状を維持したまま、金属から石英ガラス
材料に変換した減圧CVD用石英ガラス炉心管が要望さ
れている。
However, such a design is effective in reducing the tensile stress, but poses a problem from the viewpoint of effective utilization of the furnace space. That is, the height of the dome-shaped ceiling increases the height of the entire furnace, and increases the cost and running cost of the heat treatment furnace. Therefore, there is a demand for a quartz glass furnace tube for reduced pressure CVD in which a metal is converted into a quartz glass material while maintaining the shape of a conventional metal furnace tube.

【0007】また、従来のように石英ガラス炉心管の設
計で直径を大きくした場合、天井部と円筒部とを結合す
る結合円弧部に発生する引張応力は相似的に大きくなる
ため同じ曲率の場合、石英ガラスの肉厚を厚くする必要
がある。特に円筒部の直径が1mを越える様な大型石英
炉心管の場合、結合円弧部に数十MPaの引張応力が発
生し破損する危険性が高い。しかし、熱処理用治具の使
用による熱容量の増加および部材の大型化による炉心管
価格の上昇、ヒーターからの熱透過性の問題などを考慮
して肉厚を一定にし、かつ減圧で使用されるため、強度
的に満足するためには、結合円弧部の形状変更が必要で
ある。
Further, when the diameter is increased in the design of a quartz glass furnace tube as in the prior art, the tensile stress generated in the joint arc connecting the ceiling and the cylindrical portion increases in a similar manner. However, it is necessary to increase the thickness of the quartz glass. In particular, in the case of a large quartz furnace tube in which the diameter of the cylindrical portion exceeds 1 m, there is a high risk that a tensile stress of several tens MPa is generated in the joint arc portion and the tube is broken. However, considering the use of heat treatment jigs, the heat capacity is increased, the core tube price is increased due to the increase in the size of the members, the cost of the core tube is increased, and the problem of heat permeability from the heater is taken into consideration. In order to satisfy the strength, it is necessary to change the shape of the joint arc.

【0008】上記のような炉内空間の有効利用の観点を
考慮しなければ、単に天井部の半径を小さくして、そこ
に発生する引張応力を小さくすることができるが、炉心
管の高さに制限があるため、肉厚が一定の場合でも高さ
寸法が満足でき、高強度の減圧CVD用石英炉心管が要
望されている。
If the viewpoint of effective use of the furnace space as described above is not taken into consideration, the radius of the ceiling can be simply reduced to reduce the tensile stress generated therein. Therefore, there is a demand for a high-strength quartz furnace tube for reduced-pressure CVD that satisfies the height dimension even when the wall thickness is constant and has high strength.

【0009】本発明は上述した事情を考慮してなされた
もので、石英ガラス製であっても金属材料製炉心管並に
十分な高さ寸法が得られ、また、高強度の減圧CVD用
石英ガラス炉心管を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances. Even if it is made of quartz glass, it is possible to obtain a sufficiently high height equivalent to a furnace tube made of a metal material, and to obtain a high-strength quartz for low-pressure CVD. It is intended to provide a glass furnace tube.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
になされた本願請求項1の発明は、減圧熱処理炉内で使
用され、かつ、上部には外方に凸状の天井部が設けられ
下部が開放された円筒形状の減圧CVD用石英ガラス炉
心管において、天井部は半径Rのドーム形状をなし、
この天井部と半径Rの円筒部は半径Rの結合円弧部で
結合され、R=1.6R〜2.4R、R=0.2R
〜0.4Rの形状を有し、900℃以下の炉内温度で使
用され、結合円弧部の外側表層に圧縮残留応力を存在さ
せることを特徴とする減圧CVD用石英ガラス炉心管で
あることを要旨としている。
Means for Solving the Problems According to the first aspect of the present invention, which has been made to achieve the above object, the present invention is used in a reduced pressure heat treatment furnace, and has an outwardly convex ceiling provided at an upper portion thereof. the reduced pressure CVD for the quartz glass furnace tube of cylindrical bottom is opened, the ceiling portion forms a dome shape with a radius R 1,
The cylindrical portion of the ceiling portion and the radius R are combined in coupling arcuate portion of radius R 2, R 1 = 1.6R~2.4R, R 2 = 0.2R
A quartz glass furnace tube for reduced-pressure CVD, having a shape of ~ 0.4R, used at a furnace temperature of 900 ° C or less, and having a compressive residual stress in the outer surface layer of the joint arc. It is a gist.

【0011】本願請求項2の発明は、減圧熱処理炉内で
使用され、かつ、上部には外方に凸状の天井部が設けら
れ下部が開放された円筒形状の減圧CVD用石英ガラス
炉心管において、天井部は半径Rのドーム形状をな
し、天井部と半径Rの円筒部との間に半径Rの結合円
弧部で結合され、円筒部の半径Rは300mm以上であ
り、かつ、0.6R≧R≧0.2R、2.4R≧R
≧1.2R、9≧R/R≧3.8の曲率を持つこと
を特徴とする減圧CVD用石英ガラス炉心管であること
を要旨としている。
The invention according to claim 2 of the present invention is a cylindrical quartz glass furnace tube for low-pressure CVD, which is used in a low-pressure heat treatment furnace and has an upper portion provided with an outwardly convex ceiling portion and an open lower portion. in the ceiling part forms a dome shape with a radius R 1, is coupled by coupling arcuate portion of radius R 2 between the cylindrical portion of the ceiling portion and the radius R, the radius R of the cylindrical portion is not less than 300 mm, and, 0.6R ≧ R 2 ≧ 0.2R, 2.4R ≧ R 1
The gist is a quartz glass furnace tube for reduced pressure CVD characterized by having a curvature of ≧ 1.2R and 9 ≧ R 1 / R 2 ≧ 3.8.

【0012】[0012]

【発明の実施の形態】以下、本発明に係わる減圧CVD
用石英ガラス炉心管の実施の形態について添付図面を参
照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, reduced pressure CVD according to the present invention will be described.
An embodiment of a quartz glass furnace core tube for use will be described with reference to the accompanying drawings.

【0013】図1は本発明に係わる減圧CVD用石英ガ
ラス炉心管の実施形態の概念図である。
FIG. 1 is a conceptual view of an embodiment of a quartz glass furnace tube for reduced pressure CVD according to the present invention.

【0014】図1に示すように、石英ガラス炉心管1
は、透明石英ガラス製で半導体ウェーハが搭載されたウ
ェーハボートを収納する収納部2が形成される円筒部3
と、この円筒部3の上部に設けられ外方に凸状である天
井部4と、この天井部4と円筒部3を結合する結合円弧
部5と、下部に設けられた開口部6とを有している。
As shown in FIG. 1, a quartz glass furnace tube 1
Is a cylindrical portion 3 in which a storage portion 2 for storing a wafer boat on which a semiconductor wafer is mounted and which is made of transparent quartz glass is formed.
And a ceiling part 4 provided on the upper part of the cylindrical part 3 and having a convex shape outward, a connecting arc part 5 connecting the ceiling part 4 and the cylindrical part 3, and an opening part 6 provided on the lower part. Have.

【0015】円筒部3はウェーハボートが収納される収
納部2が形成されるに十分な大きさを有するような半径
Rの円筒部である。
The cylindrical portion 3 is a cylindrical portion having a radius R which is large enough to form the storage portion 2 for storing the wafer boat.

【0016】天井部4は、半径Rのドーム形状をな
し、R=1.6R〜2.4Rの関係を有している。
The ceiling part 4 forms a dome shape with a radius R 1, and has a relationship of R 1 = 1.6R~2.4R.

【0017】結合円弧部5は、半径Rの断面形状が円
弧状をなし、R=0.2R〜0.4Rの関係を有して
いる。また、この結合円弧部5の外側表層5sには圧縮
残留応力が存在している。
The coupling arcuate portion 5, the cross-sectional shape of radius R 2 is an arc shape, and has a relationship of R 2 = 0.2R~0.4R. In addition, a compressive residual stress exists in the outer surface layer 5s of the connecting arc portion 5.

【0018】上記石英ガラス炉心管1は、縦型熱処理炉
内で石英ガラス炉心管1の内側気体圧力が外側気体圧力
より高い状態で使用される場合の構造を示し、天井部4
の形状が外方に凸状になっている。
The quartz glass furnace tube 1 has a structure in which the inside gas pressure of the quartz glass furnace tube 1 is used in the vertical heat treatment furnace at a higher gas pressure than the outside gas pressure.
Are outwardly convex.

【0019】このような天井部4および結合円弧部5の
形状の決定は、下記に説明する本発明者等により得られ
た知見に基づくものであり、本発明者等が考案した強度
向上を図る石英ガラス炉心管の形状設計方法を用い、特
に、石英ガラス炉心管の使用条件に応じて、設計された
形状に基づく。
The determination of the shapes of the ceiling portion 4 and the connecting arc portion 5 is based on the knowledge obtained by the present inventors described below, and aims at improving the strength devised by the present inventors. The shape design method of the quartz glass furnace tube is used, and in particular, based on the designed shape according to the use conditions of the quartz glass furnace tube.

【0020】すなわち、石英ガラスの強度を改善する方
法として、天井部4の半径Rと円筒部3の半径Rと結
合円弧部5の半径Rに特定の関係を持たせると共に、
結合円弧部5の外側表層5sに圧縮残留応力を存在させ
ることにより、石英ガラス炉心管1の強度、特に結合円
弧部5の強度向上を図るものである。
That is, as a method of improving the strength of the quartz glass, a specific relationship is given to the radius R 1 of the ceiling portion 4, the radius R of the cylindrical portion 3, and the radius R 2 of the connecting arc portion 5.
The presence of a compressive residual stress in the outer surface layer 5s of the joint arc 5 enhances the strength of the quartz glass furnace tube 1, particularly the strength of the joint arc 5.

【0021】一般的に、LPCVDのような熱処理炉に
使用される炉心管の応力状態は以下の通りである。天井
部と円筒部の結合部では引張応力、他の部分では圧縮応
力となる。この応力状態は炉心管の構造(形状及び寸
法)に依存するが、炉心管の材料と関係がない。
Generally, the stress state of a furnace tube used in a heat treatment furnace such as LPCVD is as follows. Tensile stress occurs at the joint between the ceiling and the cylindrical portion, and compressive stress occurs at other portions. This stress state depends on the structure (shape and size) of the furnace tube, but is not related to the material of the furnace tube.

【0022】ここで、石英ガラス製の炉心管に金属製の
炉心管と同様な構造を採用しながら、熱処理使用時引張
応力の発生する部位に圧縮残留応力を発生させることに
より、使用時発生する引張応力を部分的、または全部打
ち消す方法を採用する。残留圧縮応力の形成は直温急冷
の方法、またはSi、O以外の原子の拡散による化学的
な方法などがある。この応力状態は表層では圧縮で、内
部では引張応力となる。
Here, while using the same structure as the metal core tube in the quartz glass core tube, a compressive residual stress is generated in a portion where a tensile stress is generated during use of the heat treatment, so that it is generated during use. A method of partially or completely canceling out the tensile stress is adopted. The formation of the residual compressive stress includes a method of direct temperature quenching or a chemical method by diffusion of atoms other than Si and O. This stress state is compression on the surface layer and tensile stress on the inside.

【0023】図2はLPCVD炉に使用される炉心管1
の形状を決定するのに用いられる炉心管の模式図であ
る。
FIG. 2 shows a furnace tube 1 used in an LPCVD furnace.
FIG. 3 is a schematic diagram of a core tube used to determine the shape of the core tube.

【0024】炉心管1の内外圧力差はpにおいては、ド
ーム形状の天井部4の最大圧縮応力
When the pressure difference between the inside and outside of the furnace tube 1 is p, the maximum compressive stress of the dome-shaped ceiling 4 is

【数1】σ=Rp/2t ……(1) 円筒部3の最大圧縮応力Σ = R 1 p / 2t (1) Maximum compressive stress of the cylindrical portion 3

【数2】σ=Rp/t ……(2) と、R1、R2とRの関係により、天井部4と円筒部3
の結合部(通常Rの円弧の結合円弧部)5では曲げに
よる引張応力が発生する。
Σ = Rp / t (2) and the relationship between R1, R2 and R, the ceiling part 4 and the cylindrical part 3
Coupling unit tensile stress caused by (normal arc of coupling the arc portion of the R 2) in 5 bending occurs in.

【0025】ここで、tは炉心管の肉厚である。図3は
真空使用時における炉心管1の引張応力発生状況の解析
結果を示す。一般的な炉心管構造においては、圧縮応力
よりも引張応力が小さいため、その影響は無視できる。
これにより、圧縮応力の視点から見れば、金属製の炉心
管に対して、R1=2Rの設計条件は適切であることが
容易に想像される(式(1)と式(2)の応力値が等し
い)。このような設計条件は通常金属製の圧力容器に採
用され、炉心管の構造にも利用されている。すなわち、
ドーム形状の天井部4の空間を充分小さく抑えた構造と
なる。
Here, t is the wall thickness of the furnace tube. FIG. 3 shows an analysis result of the state of occurrence of tensile stress in the furnace core tube 1 when using a vacuum. In a general core tube structure, the effect is negligible because the tensile stress is smaller than the compressive stress.
Thus, from the viewpoint of the compressive stress, it is easily imagined that the design condition of R1 = 2R is appropriate for the metal core tube (the stress values of the equations (1) and (2)). Are equal). Such a design condition is usually adopted for a metal pressure vessel, and is also used for the structure of a furnace tube. That is,
A structure in which the space of the dome-shaped ceiling portion 4 is sufficiently small is obtained.

【0026】しかし、石英ガラスは、圧縮強度よりも引
張強度が低い特徴を有する材料であり、発明者等が製造
した石英ガラスでは、圧縮強度は1130MPaであ
り、引張強度は48MPaである。このため、石英ガラ
ス製の炉心管では、引張応力は無視できなく、むしろ、
構造設計のネックとなる。
However, quartz glass is a material having a characteristic that its tensile strength is lower than its compressive strength, and the quartz glass manufactured by the present inventors has a compressive strength of 1130 MPa and a tensile strength of 48 MPa. For this reason, in a quartz core tube, the tensile stress cannot be ignored.
It becomes a bottleneck in structural design.

【0027】実用の炉心管構造は下記条件に示される範
囲に入る。
A practical core tube structure falls within the range indicated by the following conditions.

【0028】[0028]

【数3】 (Equation 3)

【0029】この構造条件においては、石英ガラスにと
って重要な引張応力は、圧力差pが約1気圧にある場
合、最悪の状態では約40MPaとなる。一般的には、
がRより大きいが、小さいほど、またRが大きい
ほど、発生する引張応力は小さい。さらに、肉厚tが大
きいほど、引張応力は小さい。
Under these structural conditions, the tensile stress important for quartz glass is about 40 MPa in the worst case when the pressure difference p is about 1 atm. In general,
As R 1 is greater than R is smaller, and as the R 2 is large, the tensile stress generated is small. Further, as the thickness t increases, the tensile stress decreases.

【0030】このような構造を石英ガラスで実現使用と
する場合、天井部4と円筒部3とを結合する結合円弧部
5の外面に最大約40MPaの圧縮残留応力を形成させ
ればよい。残留圧縮応力の形成は高温急冷の方法、また
はSi、O以外の原子の拡散による化学的な方法などが
ある。図1における半径R2を有する結合円弧部5の断
面A−Aに沿った残留応力は図4に示されている。構造
(形状と寸法)によって、必要な外側表層5sの最大圧
縮応力が異なる。この必要な外側表層5sの最大圧縮応
力は公知の応力解析方法によって計算される。
When such a structure is realized and used with quartz glass, a compressive residual stress of a maximum of about 40 MPa may be formed on the outer surface of the connecting arc portion 5 connecting the ceiling portion 4 and the cylindrical portion 3. The formation of the residual compressive stress may be performed by a high-temperature quenching method or a chemical method by diffusion of atoms other than Si and O. FIG. 4 shows the residual stress along the section AA of the connecting arc portion 5 having the radius R2 in FIG. The required maximum compressive stress of the outer surface layer 5s differs depending on the structure (shape and size). The required maximum compressive stress of the outer surface layer 5s is calculated by a known stress analysis method.

【0031】さらに、このような石英ガラス製炉心管1
を高温で使用するとき、粘性変形により、上記残留応力
は徐々に減じてしまい、上記強化効果が無くなってしま
う。
Further, such a quartz glass furnace tube 1
When used at a high temperature, the residual stress is gradually reduced due to viscous deformation, and the reinforcing effect is lost.

【0032】図5では、使用温度の条件における上記残
留応力の半減期を示す。ただし、図5の石英ガラスは発
明者等が製造した上記石英ガラスの粘性係数を有する。
石英ガラス炉心管1の実用的な寿命から見ると、使用温
度が900℃以下にあれば、上記石英ガラスの強化効果
が充分維持できると考えられる(約3700使用時
間)。そのため、本発明の石英ガラス炉心管は900℃
以下で使用するのが望ましい。
FIG. 5 shows the half-life of the residual stress under the condition of the operating temperature. However, the quartz glass of FIG. 5 has the viscosity coefficient of the quartz glass manufactured by the inventors.
Considering the practical life of the quartz glass furnace tube 1, it is considered that if the use temperature is 900 ° C. or less, the strengthening effect of the quartz glass can be sufficiently maintained (about 3700 use hours). Therefore, the quartz glass furnace tube of the present invention has a temperature of 900 ° C.
It is desirable to use it below.

【0033】次に本発明に係わる石英炉心管を用いた半
導体ウェーハの熱処理方法について説明する。なお、常
に石英炉心管の内側圧力を外側圧力よりも高く保った状
態で使用した例で説明する。
Next, a method for heat-treating a semiconductor wafer using a quartz furnace tube according to the present invention will be described. An example in which the inner pressure of the quartz furnace core tube is always kept higher than the outer pressure will be described.

【0034】図6に示すように、半導体ウェーハWを多
数ウェーハボート11に搭載し、このウェーハボート1
1を、断熱台12を介して炉支持台13に載置し、さら
に、炉支持台13載置されたウェーハボート11に石英
ガラス炉心管1を被せ、ウェーハボート11を石英ガラ
ス炉心管1に収納する。この状態で炉支持台13を上昇
させ、石英ガラス炉心管1およびウェーハボート11を
熱処理炉14に収納する。しかる後、ヒーター15によ
り炉内を900℃以下の炉内温度に加熱し、石英ガラス
炉心管1および石英ガラス炉心管1内の半導体ウェーハ
Wを加熱する。この状態で石英ガラス炉心管1の外部か
ら処理ガス16を供給し、半導体ウェーハWの熱処理を
行う。この半導体ウェーハWの熱処理工程において、天
井部4の半径Rは、R=1.6R〜2.4Rである
ので、半導体ウェーハWを多数ウェーハボート11に搭
載して、このウェーハボート11を石英ガラス炉心管1
に収納しても、半導体ウェーハWが石英ガラス炉心管1
に当ることがなく、また、石英ガラス炉心管1の結合円
弧部5の外側表層5sに最大の引張応力が発生するが、
円筒部3の半径R、天井部4の半径Rおよび結合円弧
部5の半径Rとの間にR=1.6R〜2.4R、R
=0.2R〜0.4Rの形状を有し、かつ、結合円弧
部5の外側表層5sに圧縮残留応力が存在しているの
で、この圧縮残留応力と上記発生する引張応力が打ち消
しあって、引張応力に起因する天井部4、結合円弧部5
の変形を防止することができる。外側表層5sの圧縮残
留応力は、図5に示すような使用温度が900℃のとき
の半減期を有し、約3700使用時間でも石英ガラス炉
心管1の強化効果が充分維持でき、長時間使用が可能と
なる。
As shown in FIG. 6, a large number of semiconductor wafers W are mounted on a wafer boat 11 and
1 is placed on a furnace support 13 via a heat insulating stand 12, and further, the wafer boat 11 on which the furnace support 13 is mounted is covered with the quartz glass furnace tube 1, and the wafer boat 11 is placed on the quartz glass furnace tube 1. To store. In this state, the furnace support 13 is raised, and the quartz glass core tube 1 and the wafer boat 11 are stored in the heat treatment furnace 14. Thereafter, the inside of the furnace is heated to a furnace temperature of 900 ° C. or lower by the heater 15, and the quartz glass furnace tube 1 and the semiconductor wafer W in the quartz glass furnace tube 1 are heated. In this state, a processing gas 16 is supplied from outside the quartz glass furnace tube 1 to perform a heat treatment on the semiconductor wafer W. In the heat treatment step of the semiconductor wafer W, the radius R 1 of the ceiling portion 4 is R 1 = 1.6R to 2.4R. Quartz glass furnace tube 1
The semiconductor wafer W is stored in the quartz glass core tube 1
And the maximum tensile stress is generated in the outer surface layer 5s of the joint arc portion 5 of the quartz glass furnace core tube 1.
Radius R of the cylindrical portion 3, between the radius R 2 of the radius R 1 and coupling the arc portion 5 of the ceiling portion 4 R 1 = 1.6R~2.4R, R
2 = 0.2R to 0.4R, and a compressive residual stress is present in the outer surface layer 5s of the joint arc 5 so that the compressive residual stress and the generated tensile stress cancel each other. , Ceiling part 4 due to tensile stress, joint arc part 5
Can be prevented from being deformed. The compressive residual stress of the outer surface layer 5s has a half-life when the use temperature is 900 ° C. as shown in FIG. 5, and the reinforcing effect of the quartz glass core tube 1 can be sufficiently maintained even for about 3700 use hours, and the Becomes possible.

【0035】さらに、本発明の方法により、石英ガラス
炉心管は以下のような構造と寸法を有し、石英ガラス内
に残留応力を発生させずに減圧CVD炉に安全に使用で
きる。
Further, according to the method of the present invention, the quartz glass furnace tube has the following structure and dimensions, and can be safely used in a low pressure CVD furnace without generating residual stress in the quartz glass.

【0036】すなわち、円筒部の半径Rは300mm以
上であり、円筒部半径Rと天井部の半径Rとの間には
2.4R≧R≧1.2R、円筒部半径Rと結合円弧部
の半径Rとの間には0.6R≧R≧0.2Rの関係
があり、さらに、天井部の半径Rと結合円弧部の半径
の間には、9≧R/R≧3.8の関係がある。
[0036] That is, the radius R of the cylindrical portion is not less than 300 mm, coupled arcs 2.4R ≧ R 1 ≧ 1.2R, the cylindrical portion radius R between the radius R 1 of the cylindrical portion radius R and the ceiling portion between the radius R 2 parts have relation 0.6R ≧ R 2 ≧ 0.2R, further between the radius R 2 of the coupling arcuate portion with a radius R 1 of the ceiling portion, 9 ≧ R 1 / R 2 ≧ 3.8.

【0037】このような構造を有する石英炉心管1で
は、熱処理炉での使用時、結合円弧部5に最大の引張応
力が発生し、その結合円弧部5にかかる引張応力は10
MPa未満になることから、一般的な石英ガラスの引張
強度40〜50MPaから考えて強度上問題がない状態
となる。このような構造を有する石英炉心管は、前記残
留応力付きの炉心管より、使用可能な温度範囲が広くな
り、一般には、1200℃まで使用することが可能であ
る。
In the quartz furnace core tube 1 having such a structure, when used in a heat treatment furnace, a maximum tensile stress is generated in the joint arc 5 and the tensile stress applied to the joint arc 5 is 10%.
Since it is less than MPa, there is no problem in strength considering the tensile strength of general quartz glass of 40 to 50 MPa. The quartz furnace tube having such a structure has a wider usable temperature range than the furnace tube with residual stress, and can generally be used up to 1200 ° C.

【0038】[0038]

【実施例】試験1: 図1に示す本発明に係わる石英ガ
ラス炉心管について、コンピュータを用い真空使用時に
おける炉心管の引張応力発生状況について構造解析シミ
ュレーションを行った。なお、円筒部の半径R=600
mm、天井部の半径R=1200mm、結合円弧部の
半径R=150mmとした。
Test 1: With respect to the quartz glass furnace tube according to the present invention shown in FIG. 1, a computer was used to perform a structural analysis simulation on the state of occurrence of tensile stress in the furnace tube when vacuum was used. The radius of the cylindrical portion R = 600
mm, the radius R 1 of the ceiling portion was 1200 mm, and the radius R 2 of the joint arc portion was 150 mm.

【0039】結果:図3に示す。Result: shown in FIG.

【0040】炉心管に発生する引張応力は、円筒部で最
小、結合円弧部で最大になっていることがわかった。な
お、炉心管内に残留応力が存在するため、実際発生の最
大引張応力は石英ガラスの強度範囲以内にある。
It was found that the tensile stress generated in the core tube was minimum at the cylindrical portion and maximum at the joint arc. Since residual stress exists in the furnace tube, the maximum tensile stress actually generated is within the strength range of quartz glass.

【0041】試験2: 図1に示すような本発明に係わ
る石英ガラス炉心管の構造を有する石英ガラス炉心管を
表1に示すように種々の寸法に変化させ、コンピュータ
を用い真空使用時における結合円弧部の最大引張応力を
算出した。
Test 2: A quartz glass furnace core tube having the structure of the quartz glass furnace tube according to the present invention as shown in FIG. 1 was changed to various dimensions as shown in Table 1, and a computer was used for vacuum bonding. The maximum tensile stress at the arc was calculated.

【0042】結果:表1に示す。Results: shown in Table 1.

【0043】[0043]

【表1】 [Table 1]

【0044】0.6R≧R2≧0.2R、2.4R≧R
1≧1.2R、かつ、9≧R1/R2≧3.8を満足す
る曲面の設計であれば、結合円弧部に発生する引張応力
は10MPa以下となり強度上問題のない石英ガラス炉
心管が製造できることがわかった。
0.6R ≧ R2 ≧ 0.2R, 2.4R ≧ R
If the curved surface design satisfies 1 ≧ 1.2R and 9 ≧ R1 / R2 ≧ 3.8, the tensile stress generated in the joint arc becomes 10 MPa or less, and a quartz glass furnace tube with no problem in strength is manufactured. I knew I could do it.

【0045】試験3: 本発明に係わる石英ガラス炉心
管に用いられる石英ガラスの残留応力の半減期と温度の
関係を調べる。
Test 3: The relationship between the half-life of the residual stress and the temperature of the quartz glass used for the quartz glass furnace tube according to the present invention is examined.

【0046】結果:図5に示す。Result: shown in FIG.

【0047】900℃では3700時間であることがわ
かった。
At 900 ° C., it was found to be 3700 hours.

【0048】[0048]

【発明の効果】本発明に係わる減圧CVD用石英ガラス
炉心管によれば、石英ガラス製であっても金属材料製炉
心管並に十分な高さ寸法が得られ、また、高強度の減圧
CVD用石英ガラス炉心管を提供することができる。
According to the quartz glass furnace tube for low-pressure CVD according to the present invention, even if it is made of quartz glass, a sufficient height can be obtained as high as that of a furnace tube made of a metal material, and a high-strength low-pressure CVD tube can be obtained. A quartz glass furnace tube for use can be provided.

【0049】すなわち、天井部は半径Rのドーム形状
をなし、この天井部と半径Rの円筒部は半径Rの結合
円弧部で結合され、R=1.6R〜2.4R、R
0.2R〜0.4Rの形状を有し、900℃以下の炉内
温度で使用され、結合円弧部の外側表層に圧縮残留応力
を存在させる減圧CVD用石英ガラス炉心管であるの
で、熱処理炉の無用空間の低減が図れて一度に多数の半
導体ウェーハを熱処理でき、さらに、長時間使用しても
変形することがなく、また、使用時の安全性が向上す
る。
[0049] That is, the ceiling portion forms a dome shape with a radius R 1, the cylindrical portion of the ceiling portion and the radius R are combined in coupling arcuate portion of radius R 2, R 1 = 1.6R~2.4R, R 2 =
Since it is a quartz glass furnace tube for reduced pressure CVD which has a shape of 0.2R to 0.4R, is used at a furnace temperature of 900 ° C. or less, and has a compressive residual stress in an outer surface layer of a joint arc portion, the heat treatment furnace The useless space can be reduced, and a large number of semiconductor wafers can be heat-treated at one time. Further, even if the semiconductor wafer is used for a long time, it is not deformed, and the safety in use is improved.

【0050】また、天井部は半径Rのドーム形状をな
し、天井部と半径Rの円筒部との間に半径Rの結合円
弧部で結合され、円筒部の半径Rは300mm以上であ
り、かつ、0.6R≧R≧0.2R、2.4R≧R
≧1.2R、9≧R/R≧3.8の曲率を持つ減圧
CVD用石英ガラス炉心管であるので、大口径の半導体
ウェーハWを一度に多数熱処理できると共に、長時間使
用が可能となり、さらに、減圧下で使用する大型の炉心
管でも肉厚を変更することなく強度的に満足する炉心管
が実現でき、炉心管の大型化によるコストアップの問
題、高さの制限の問題を解消することができ、さらに、
使用時の安全性の向上が図れる。
[0050] Further, the ceiling portion forms a dome shape with a radius R 1, is coupled by coupling arcuate portion of radius R 2 between the cylindrical portion of the ceiling portion and the radius R, the radius R of the cylindrical portion is at least 300mm And 0.6R ≧ R 2 ≧ 0.2R, 2.4R ≧ R 1
Since it is a quartz glass furnace tube for reduced pressure CVD having a curvature of ≧ 1.2R and 9 ≧ R 1 / R 2 ≧ 3.8, a large number of semiconductor wafers W having a large diameter can be heat-treated at one time and can be used for a long time. Furthermore, even with a large core tube used under reduced pressure, a core tube with satisfactory strength can be realized without changing the wall thickness, and the problem of cost increase due to the increase in the size of the core tube and the problem of height limitation are reduced. Can be eliminated, and
Safety during use can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる縦型熱処理炉用石英炉心管の概
念図。
FIG. 1 is a conceptual diagram of a quartz furnace tube for a vertical heat treatment furnace according to the present invention.

【図2】本発明に係わる縦型熱処理炉用石英炉心管の形
状決定に用いられる炉心管の模式図。
FIG. 2 is a schematic view of a furnace tube used for determining the shape of a quartz furnace tube for a vertical heat treatment furnace according to the present invention.

【図3】本発明に係わる縦型熱処理炉用石英炉心管の真
空使用時における炉心管の引張応力発生状況の解析結果
図。
FIG. 3 is an analysis result diagram of a tensile stress generation state of the furnace core tube when the vacuum furnace core tube for a vertical heat treatment furnace according to the present invention is used in vacuum.

【図4】図1における結合円弧部の断面A−Aに沿った
残留応力の説明図。
FIG. 4 is an explanatory view of a residual stress along a cross section AA of a joint arc portion in FIG. 1;

【図5】本発明に用いられる石英ガラスの使用温度の条
件における残留応力の半減期を示す試験結果図。
FIG. 5 is a test result diagram showing a half-life of residual stress under conditions of a use temperature of quartz glass used in the present invention.

【図6】本発明に係わる縦型熱処理炉用石英炉心管の使
用状態を示す概念図。
FIG. 6 is a conceptual diagram showing a use state of a quartz furnace core tube for a vertical heat treatment furnace according to the present invention.

【符号の説明】[Explanation of symbols]

1 減圧CVD用石英ガラス炉心管 2 収納部 3 円筒部 4 天井部 5 結合円弧部 5s 外側表層 6 開口部 R 円筒部の半径 R 天井部の半径 R 結合円弧部の半径 t 炉心管肉厚DESCRIPTION OF SYMBOLS 1 Quartz glass furnace tube for low-pressure CVD 2 Storage part 3 Cylindrical part 4 Ceiling part 5 Joining arc part 5s Outer surface layer 6 Opening R Radius of cylindrical part R 1 Radius of ceiling part R 2 Radius of joining arc part t Thickness of furnace tube

フロントページの続き Fターム(参考) 4G014 AH00 4K030 CA04 FA10 KA04 KA09 LA15 4K061 AA01 AA05 BA11 CA08 CA14 DA05 EA10 FA07 5F045 AA06 BB14 DP19 DQ05 EB03 EC01 Continued on front page F term (reference) 4G014 AH00 4K030 CA04 FA10 KA04 KA09 LA15 4K061 AA01 AA05 BA11 CA08 CA14 DA05 EA10 FA07 5F045 AA06 BB14 DP19 DQ05 EB03 EC01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 減圧熱処理炉内で使用され、かつ、上部
には外方に凸状の天井部が設けられ下部が開放された円
筒形状の減圧CVD用石英ガラス炉心管において、 天井部は半径Rのドーム形状をなし、この天井部と半
径Rの円筒部は半径R の結合円弧部で結合され、 R=1.6R〜2.4R、R=0.2R〜0.4R
の形状を有し、 900℃以下の炉内温度で使用され、 結合円弧部の外側表層に圧縮残留応力を存在させること
を特徴とする減圧CVD用石英ガラス炉心管。
Claims: 1. An upper part used in a reduced pressure heat treatment furnace.
Is a circle with a convex ceiling on the outside and an open bottom
In the tube-shaped quartz glass furnace tube for low-pressure CVD, the ceiling has a radius R1The dome shape of this ceiling and half
The cylindrical part of diameter R is radius R 2Are joined at the joining arc of1= 1.6R to 2.4R, R2= 0.2R-0.4R
It is used at a furnace temperature of 900 ° C or less and has compressive residual stress on the outer surface layer of the joint arc.
A quartz glass furnace tube for reduced pressure CVD characterized by the following.
【請求項2】 減圧熱処理炉内で使用され、かつ、上部
には外方に凸状の天井部が設けられ下部が開放された円
筒形状の減圧CVD用石英ガラス炉心管において、天井
部は半径Rのドーム形状をなし、天井部と半径Rの円
筒部との間に半径Rの結合円弧部で結合され、円筒部
の半径Rは300mm以上であり、かつ、0.6R≧R
≧0.2R、2.4R≧R≧1.2R、9≧R
≧3.8の曲率を持つことを特徴とする減圧CVD
用石英ガラス炉心管。
2. A cylindrical quartz glass furnace tube for low-pressure CVD, which is used in a low-pressure heat treatment furnace and has an upwardly projecting ceiling at an upper portion and an open lower portion, wherein the ceiling has a radius. No dome shape of R 1, is coupled by coupling arcuate portion of radius R 2 between the cylindrical portion of the ceiling portion and the radius R, the radius R of the cylindrical portion is not less than 300 mm, and, 0.6R ≧ R
2 ≧ 0.2R, 2.4R ≧ R 1 ≧ 1.2R, 9 ≧ R 1 /
Low pressure CVD characterized by having a curvature of R 2 ≧ 3.8
Quartz glass furnace tube.
JP2001146939A 2001-05-16 2001-05-16 Quartz glass furnace core tube for low pressure cvd Pending JP2002343722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001146939A JP2002343722A (en) 2001-05-16 2001-05-16 Quartz glass furnace core tube for low pressure cvd

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001146939A JP2002343722A (en) 2001-05-16 2001-05-16 Quartz glass furnace core tube for low pressure cvd

Publications (1)

Publication Number Publication Date
JP2002343722A true JP2002343722A (en) 2002-11-29

Family

ID=18992497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001146939A Pending JP2002343722A (en) 2001-05-16 2001-05-16 Quartz glass furnace core tube for low pressure cvd

Country Status (1)

Country Link
JP (1) JP2002343722A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112501590A (en) * 2020-11-09 2021-03-16 温州大学 MOCVD (metal organic chemical vapor deposition) equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236722A (en) * 1987-03-26 1988-10-03 Shinetsu Sekiei Kk Quartz glass products and production thereof
JPH05160055A (en) * 1991-12-03 1993-06-25 Toshiba Ceramics Co Ltd Furnace tube
JPH0740765U (en) * 1993-12-24 1995-07-21 光洋リンドバーグ株式会社 CVD device for square substrate processing
JPH09315831A (en) * 1996-05-29 1997-12-09 Asahi Glass Co Ltd Furnace core tube made of quartz glass and its production
JPH10163122A (en) * 1996-11-29 1998-06-19 Fukui Shinetsu Sekiei:Kk Semiconductor wafer heat treating apparatus and furnace core tube
JPH10183351A (en) * 1996-12-20 1998-07-14 Kokusai Electric Co Ltd Reaction tube for treating substrate
JP2002246324A (en) * 2001-02-20 2002-08-30 Toshiba Ceramics Co Ltd Quartz furnace core pipe for vertical heat treatment furnace

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236722A (en) * 1987-03-26 1988-10-03 Shinetsu Sekiei Kk Quartz glass products and production thereof
JPH05160055A (en) * 1991-12-03 1993-06-25 Toshiba Ceramics Co Ltd Furnace tube
JPH0740765U (en) * 1993-12-24 1995-07-21 光洋リンドバーグ株式会社 CVD device for square substrate processing
JPH09315831A (en) * 1996-05-29 1997-12-09 Asahi Glass Co Ltd Furnace core tube made of quartz glass and its production
JPH10163122A (en) * 1996-11-29 1998-06-19 Fukui Shinetsu Sekiei:Kk Semiconductor wafer heat treating apparatus and furnace core tube
JPH10183351A (en) * 1996-12-20 1998-07-14 Kokusai Electric Co Ltd Reaction tube for treating substrate
JP2002246324A (en) * 2001-02-20 2002-08-30 Toshiba Ceramics Co Ltd Quartz furnace core pipe for vertical heat treatment furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112501590A (en) * 2020-11-09 2021-03-16 温州大学 MOCVD (metal organic chemical vapor deposition) equipment

Similar Documents

Publication Publication Date Title
JP3463171B2 (en) Improvement of heat insulating glass panel
WO2009090899A1 (en) Placing table apparatus, processing apparatus and temperature control method
US20050082281A1 (en) Electric heater for a semiconductor processing apparatus
KR19980033343A (en) Glass Bulbs for Cathode Ray Tubes
US6988886B2 (en) Thermal treatment system for semiconductors
JP2002343722A (en) Quartz glass furnace core tube for low pressure cvd
JP2001351871A (en) Semiconductor manufacturing device
JPH11135040A (en) Glass bulb for cathode-ray tube
TWI298919B (en) A method of preparing a thin layer, the method including a step of correcting thickness by sacrificial oxidation, and an associated machine
JP4193527B2 (en) Semiconductor heat treatment equipment
JP4407331B2 (en) Semiconductor heat treatment equipment
WO2007020872A1 (en) Placing table structure, method for manufacturing placing table structure and heat treatment apparatus
JP2002373837A (en) Support structure for susceptor
JP3264430B2 (en) Glass panel for cathode ray tube
US6422744B1 (en) Method of testing a display device during the manufacture thereof
JP5495502B2 (en) Vacuum heat treatment equipment
JPS6221001Y2 (en)
Kim et al. Finite element analysis investigating thermal stress characteristics and weight reduction design for perfectly flat CRT
US20030036330A1 (en) Method of manufacturing a display device
JP4269967B2 (en) Silicon carbide outer tube and semiconductor heat treatment apparatus
JP2007081391A (en) Structure of mounting table, method of fabricating structure of mounting table and device for heat treatment
JP2008078429A (en) Board processing apparatus
WO2004001835A1 (en) Heat treating equipment, and methods of manufacturing substrate and semiconductor device
JPH01130523A (en) Vertical furnace for heat-treating semiconductor
JPH1196941A (en) Glass bulb for cathode-ray tube

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101124