JP2002246324A - Quartz furnace core pipe for vertical heat treatment furnace - Google Patents

Quartz furnace core pipe for vertical heat treatment furnace

Info

Publication number
JP2002246324A
JP2002246324A JP2001043453A JP2001043453A JP2002246324A JP 2002246324 A JP2002246324 A JP 2002246324A JP 2001043453 A JP2001043453 A JP 2001043453A JP 2001043453 A JP2001043453 A JP 2001043453A JP 2002246324 A JP2002246324 A JP 2002246324A
Authority
JP
Japan
Prior art keywords
core tube
furnace core
quartz
heat treatment
quartz furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001043453A
Other languages
Japanese (ja)
Inventor
Taira Shin
平 辛
Fumio Tokutake
文夫 徳岳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2001043453A priority Critical patent/JP2002246324A/en
Publication of JP2002246324A publication Critical patent/JP2002246324A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a vertical type quartz furnace core pipe the deformation of which is suppressed and utilization period of which is extended. SOLUTION: This vertical type quartz furnace core pipe for a heat treatment furnace is used in a state, where an inner side gas pressure Pi is higher than an outer side gas pressure Po, and the shape of a ceiling part 3 is projected to the outside. Or the vertical type quartz furnace core pipe for the heat treatment furnace is used in the state where the inner side gas pressure of the quartz furnace core pipe is lower than the outer side gas pressure, and the shape of the ceiling part is of recessed form.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は縦型熱処理炉用石英
炉芯管に係わり、石英炉芯管の外側気体圧力と内側気体
圧力との圧力差の正負により天井部形状が異なる縦型熱
処理炉用石英炉芯管に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quartz furnace core tube for a vertical heat treatment furnace, and a vertical heat treatment furnace having a different ceiling shape depending on whether the pressure difference between the outer gas pressure and the inner gas pressure of the quartz furnace core tube is positive or negative. The present invention relates to a quartz furnace core tube.

【0002】[0002]

【従来の技術】従来、半導体ウェーハを酸化、拡散、ア
ニールするなど熱処理をする場合には、高温における半
導体ウェーハを特殊な雰囲気におく必要がある。このた
め、半導体ウェーハを加熱する赤外線を効率良く透過で
き、高温に耐える石英炉芯管が多く用いられている。し
かし、石英ガラスは高温において粘性変形を起こす。こ
のような変形に対処するため、従来、石英炉芯管の内外
の気体圧力差にかかわらず、一般に石英炉芯管の肉厚を
増大させる方法が取られている。
2. Description of the Related Art Conventionally, when a semiconductor wafer is subjected to heat treatment such as oxidation, diffusion, and annealing, it is necessary to place the semiconductor wafer at a high temperature in a special atmosphere. For this reason, quartz furnace core tubes that can efficiently transmit infrared rays that heat semiconductor wafers and withstand high temperatures are often used. However, quartz glass undergoes viscous deformation at high temperatures. In order to cope with such a deformation, conventionally, a method of increasing the wall thickness of the quartz furnace core tube has been generally adopted regardless of the gas pressure difference between the inside and the outside of the quartz furnace core tube.

【0003】また、石英炉芯管の天井部の形状設計にも
気体圧力差の影響を考慮せず、変形防止の対策を有効に
講じていないのが実状である。さらに、高粘性の石英ガ
ラスを使用することにより、変形をそれなりに低減して
いるが、石英炉芯管のコスト向上に繋がる。
Further, in reality, the shape design of the ceiling portion of the quartz furnace core tube does not take into account the influence of the gas pressure difference, and no effective measures are taken to prevent deformation. Further, the use of high-viscosity quartz glass reduces the deformation to some extent, but leads to an increase in the cost of the quartz furnace core tube.

【0004】[0004]

【発明が解決しようとする課題】このように、縦型石英
炉芯管を高温で長時間使用する場合には、石英炉芯管の
変形により、その後の使用が不可能になり、熱処理プロ
セスのコストが増加するため、変形が抑制され、使用期
間を延ばすことができる縦型石英炉芯管が要望されてい
た。
As described above, when the vertical quartz furnace core tube is used at a high temperature for a long time, the quartz furnace core tube is deformed and cannot be used thereafter. Since the cost is increased, there has been a demand for a vertical quartz furnace core tube capable of suppressing deformation and extending the service period.

【0005】本発明は上述した事情を考慮してなされた
もので、変形が抑制され、使用期間を延ばすことができ
る縦型石英炉芯管を提供することを目的とする。
The present invention has been made in view of the above circumstances, and has as its object to provide a vertical quartz furnace core tube capable of suppressing deformation and extending a service period.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
になされた本願請求項1の発明は、上部に天井部が設け
られ、下部が開放された縦型熱処理炉用石英炉芯管にお
いて、縦型熱処理炉内で前記石英炉芯管の内側気体圧力
が外側気体圧力より高い状態で使用され、前記天井部の
形状が外部に凸状であることを特徴とする縦型熱処理炉
用石英炉芯管であることを要旨としている。ここで、天
井部とは、炉芯管の直筒部以上の部分を意味する。
Means for Solving the Problems According to the first aspect of the present invention, there is provided a quartz core tube for a vertical heat treatment furnace having a ceiling portion provided at an upper portion and an open lower portion. A quartz furnace for a vertical heat treatment furnace, wherein the inside gas pressure of the quartz furnace core tube is higher than the outside gas pressure in the vertical heat treatment furnace, and the shape of the ceiling is convex outward. The gist is that it is a core tube. Here, the ceiling means a portion of the furnace core tube that is equal to or greater than the straight tube portion.

【0007】本願請求項2の発明は、上部に天井部が設
けられ、下部が開放された縦型熱処理炉用石英炉芯管に
おいて、縦型熱処理炉内で前記石英炉芯管の内側気体圧
力が外側気体圧力より低い状態で使用され、前記天井部
の形状が凹状であることを特徴とする縦型熱処理炉用石
英炉芯管であることを要旨としている。
According to a second aspect of the present invention, there is provided a quartz furnace core tube for a vertical heat treatment furnace having an upper portion provided with a ceiling portion and an open lower portion, wherein a gas pressure inside the quartz furnace core tube is set in the vertical heat treatment furnace. Is used in a state lower than the outside gas pressure, and the shape of the ceiling is concave, and the gist is a quartz furnace core tube for a vertical heat treatment furnace.

【0008】本願請求項3の発明では、上記天井部は、
石英炉芯管の半径の0.2〜1.0倍の高さを有する凸
状または凹状であることを特徴とする請求項1または2
に記載の縦型熱処理炉用石英炉芯管であることを要旨と
している。
In the invention according to claim 3 of the present application, the ceiling portion is
3. A convex or concave shape having a height of 0.2 to 1.0 times the radius of the quartz furnace core tube.
The gist is a quartz furnace core tube for a vertical heat treatment furnace described in (1).

【0009】[0009]

【発明の実施の形態】以下、本発明に係わる縦型熱処理
炉用石英炉芯管の実施形態について添付図面を参照して
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a quartz furnace core tube for a vertical heat treatment furnace according to the present invention will be described below with reference to the accompanying drawings.

【0010】図1は本発明に係わる縦型熱処理炉用石英
炉芯管の実施形態の概念図である。
FIG. 1 is a conceptual view of an embodiment of a quartz furnace core tube for a vertical heat treatment furnace according to the present invention.

【0011】図1に示すように、石英炉芯管1は、透明
石英製で、円筒形状の収納部2と、この収納部2の上部
に設けられ外部に凸状である天井部3と、下部に設けら
れた開口部4とを有している。
As shown in FIG. 1, a quartz furnace core tube 1 is made of transparent quartz and has a cylindrical storage part 2, a ceiling part 3 provided on the storage part 2 and having a convex shape to the outside, and And an opening 4 provided at the lower part.

【0012】天井部3は、その凸状の突出高さDWが、
石英炉芯管1(収納部2)の内壁の半径Rの0.2〜
1.0倍の範囲、すなわち、DW=(0.2〜1.0)
Rに形成されている。このような形状にすることによ
り、天井部の熱変形を効果的に抑制することができる。
The ceiling 3 has a convex protrusion height DW.
0.2 to less than the radius R of the inner wall of the quartz furnace core tube 1 (storage part 2)
A range of 1.0, that is, DW = (0.2 to 1.0)
R is formed. By adopting such a shape, thermal deformation of the ceiling can be effectively suppressed.

【0013】上記石英炉芯管1は、縦型熱処理炉内で石
英炉芯管1の内側気体圧力が外側気体圧力より高い状態
(△p>0)で使用される場合の構造を示すもので、天
井部3の形状が外部に凸状になっている。
The above-mentioned quartz furnace core tube 1 has a structure in a case where the inside gas pressure of the quartz furnace core tube 1 is used in a vertical heat treatment furnace at a higher gas pressure than the outside gas pressure (高 い p> 0). The shape of the ceiling 3 is convex to the outside.

【0014】このような天井部3の形状の決定は、下記
に説明する本発明者等により得られた知見に基づくもの
であり、本発明者等が考案した構造剛性を強化する縦型
石英ガラス炉芯管の形状設計方法を用い、特に、縦型熱
処理炉用石英炉芯管の使用条件に応じて、設計された形
状に基づく。
The determination of the shape of the ceiling portion 3 is based on the knowledge obtained by the present inventors described below, and the vertical quartz glass designed to enhance the structural rigidity devised by the present inventors. The shape design method of the furnace core tube is used, and the shape is designed based on the use conditions of the quartz furnace core tube for a vertical heat treatment furnace.

【0015】すなわち、石英ガラスの粘性変形を制御す
る方法として、材料剛性因子と構造剛性因子の制御があ
る。
That is, as a method of controlling the viscous deformation of quartz glass, there is a control of a material rigidity factor and a structural rigidity factor.

【0016】材料剛性因子とは、基本的に石英ガラスの
粘性係数であり、粘性係数が増大するほど、同様な使用
環境における石英ガラスの変形速度は反比例して減少す
る。
The material stiffness factor is basically the viscosity coefficient of quartz glass. As the viscosity coefficient increases, the deformation rate of quartz glass in a similar use environment decreases in inverse proportion.

【0017】構造剛性因子とは、石英ガラスの部材の形
状である。
The structural rigidity factor is a shape of a quartz glass member.

【0018】例えば、図2に示す天井の平坦な石英炉芯
管では、図3に示すように、石英炉芯管の内側圧力およ
び自重により生じる変形が、次の3部分からなり、その
初期変形速度は次の式で示される。
For example, in the quartz furnace core tube having a flat ceiling shown in FIG. 2, as shown in FIG. 3, the deformation caused by the inner pressure of the quartz furnace core tube and its own weight consists of the following three parts. The speed is given by the following equation.

【0019】(1)天井の撓み速度:(1) Deflection speed of ceiling:

【数1】 (Equation 1)

【0020】(2)円筒の低下速度:(2) Cylinder lowering speed:

【数2】 (Equation 2)

【0021】(3)直径の膨らみ速度:(3) Swelling speed of diameter:

【数3】 (Equation 3)

【0022】ここで、Rは石英炉芯管の半径、Lは石英
炉芯管の高さ、tは石英炉芯管の肉厚、μは石英の粘性
係数、△Pは気体圧力差(内側圧力pが外側圧力p
より高いとき、正となる)、ρSiO2は石英の密度、
gは重力加速度である。また、αは約1.3となること
が変形の数値解析により分かる。図4は気体圧力差△p
による上記3つの変形速度への影響を示す。
Here, R is the radius of the quartz furnace core tube, L is the height of the quartz furnace core tube, t is the thickness of the quartz furnace core tube, μ is the viscosity coefficient of quartz, and ΔP is the gas pressure difference (inside Pressure p i is outside pressure p o
When higher, the positive), [rho SiO2 is the density of quartz,
g is the gravitational acceleration. Further, it can be seen from the numerical analysis of the deformation that α is about 1.3. FIG. 4 shows the gas pressure difference Δp
The effect on the above three deformation speeds is shown.

【0023】なお、図4の計算結果は、t=4mm、L
=1000mm、R=140mm、ρSiO2=2.2
g/cmとして得られるもので、粘性係数をかけた形
式で表される。図4に示すように、ある特定の気体圧力
差におかれない限り、円筒低下と直径膨らみの2つの変
形は天井撓みよりも小さいことが分かる。
It should be noted that the calculation result in FIG.
= 1000 mm, R = 140 mm, ρ SiO2 = 2.2
It is obtained as g / cm 3 and is expressed in a form multiplied by a viscosity coefficient. As shown in FIG. 4, it can be seen that unless deformed by a certain gas pressure difference, the two deformations, cylinder depression and diameter bulge, are smaller than ceiling deflection.

【0024】従って、以下、本発明に係わる石英炉芯管
は、その天井撓み変形を制御できる形状にすることを目
的とする。
Accordingly, it is an object of the present invention to provide a quartz furnace core tube according to the present invention in a shape capable of controlling the bending deformation of the ceiling.

【0025】上記式から分かるように、天井撓み変形速
度を0にする条件が存在する。
As can be seen from the above equation, there is a condition for setting the ceiling deflection deformation rate to zero.

【0026】すなわち、ρSiO2gt−△ρ=0のと
き、自重による撓み変形と内側圧力による膨らみは釣合
う。このときの天井肉厚tは次式となる。
That is, when ρ SiO2 gt− △ ρ = 0, the bending deformation due to its own weight and the swelling due to the inner pressure are balanced. The ceiling thickness t at this time is given by the following equation.

【0027】[0027]

【数4】 (Equation 4)

【0028】この式(4)からもわかるように、気体圧
力差が正となる場合には、この圧力差から、石英炉芯管
の肉厚を決定することにより、石英炉芯管の変形を防止
することができる。
As can be seen from this equation (4), when the gas pressure difference is positive, the thickness of the quartz furnace core tube is determined from this pressure difference, whereby the deformation of the quartz furnace core tube is reduced. Can be prevented.

【0029】しかし、石英炉芯管の具体的例として、圧
力差(△p)が8〜10mmHOの熱処理炉に、肉厚
t=4mmの石英炉芯管を使用したが、上記石英炉芯管
の肉厚条件は、使用気体圧力差に依存するため、圧力差
がある範囲を超えると、肉厚条件が満足されなかった。
[0029] However, as a specific example of the quartz furnace core tube, a heat treatment furnace of the pressure difference (△ p) is 8~10mmH 2 O, it was used a quartz furnace core tube wall thickness t = 4 mm, the quartz furnace Since the wall thickness condition of the core tube depends on the pressure difference of the gas used, if the pressure difference exceeds a certain range, the wall thickness condition was not satisfied.

【0030】そこで、本発明に係わる石英炉芯管の形状
を決定する根拠とした天井撓みの変形速度を制御する方
法について以下に説明する。この制御方法は製造可能な
石英炉芯管の肉厚において、天井部の形状を変えること
により行う。
Therefore, a method of controlling the deformation rate of the deflection of the ceiling as a basis for determining the shape of the quartz furnace core tube according to the present invention will be described below. This control method is performed by changing the shape of the ceiling portion in the thickness of the manufacturable quartz furnace core tube.

【0031】図5は、天井の形状を平坦、凹状および凸
状にした場合の天井撓み(膨らみ)の経時変化を示す。
FIG. 5 shows the temporal change of the flexure (bulge) of the ceiling when the shape of the ceiling is flat, concave and convex.

【0032】なお、ここで使用する条件として、R=1
40mm、t=4mm、log10μ=10.66P・
S、凹凸の曲面は球面で、外周より中心の方が20mm
凹、凸となり、気体圧力差△p=+15mmHOであ
る。この使用環境においては、凹状となる天井の変形は
膨らみ、平坦の20mm膨らみまでの変形速度は凸状天
井部の場合より大きい。
The condition used here is that R = 1
40mm, t = 4mm, log10μ = 10.66P
S, the curved surface of the unevenness is spherical, the center is 20 mm more than the outer circumference
It becomes concave and convex, and the gas pressure difference Δp = + 15 mmH 2 O. In this use environment, the deformation of the concave ceiling swells, and the deformation speed up to a flat 20 mm swell is higher than that of the convex ceiling.

【0033】また、平坦になってから、その変形速度は
初期の平坦となる天井部の初期変形速度と同様になる。
このときの変形速度は最大となる。天井部は凸状になる
に連れて、変形速度は徐々に減少していく。
After being flat, the deformation speed is the same as the initial deformation speed of the initially flat ceiling.
The deformation speed at this time becomes the maximum. The deformation speed gradually decreases as the ceiling becomes convex.

【0034】このような変形特徴により、気体圧力差が
正となる場合では、石英炉芯管の天井部を凸状にする
と、変形速度が最も遅いことが分かる。また、凸量が大
きくなるに連れて、変形速度が低減する。従って、気体
圧力差が正となる場合には、天井部の形状を凸状にする
ことにより、高温下で石英炉芯管を長時間使用しても、
天井部の変形を抑制できる。
According to such deformation characteristics, when the gas pressure difference is positive, the deformation speed is the slowest when the ceiling of the quartz furnace core tube is made convex. Also, as the amount of protrusion increases, the deformation speed decreases. Therefore, when the gas pressure difference is positive, by making the shape of the ceiling convex, even if the quartz furnace core tube is used for a long time under high temperature,
The deformation of the ceiling can be suppressed.

【0035】実際の使用環境により、凸状の量は天井半
径の0.2倍から1.0倍(DW=(0.2〜1.0)
R)にすることが好ましい。このような形状にすること
により、天井部の熱変形を効果的に抑制することができ
る。
Depending on the actual use environment, the amount of convexity is 0.2 to 1.0 times the radius of the ceiling (DW = (0.2 to 1.0))
R) is preferable. By adopting such a shape, thermal deformation of the ceiling can be effectively suppressed.

【0036】図1は気体圧力差が正となる場合に使用す
る石英炉芯管の具体的形状を示す。天井がDW=20m
mの凸状となっているのが特徴である。また、本具体的
形状における他の寸法は、L=1000mm、R=14
0mm、t=4mmである。実測により、当該熱処理条
件においては、炉芯管の天井の変形はほぼゼロとなっ
た。実際には、石英炉芯管の変形速度を勘案して、炉芯
管内外の圧力差を次の範囲に制御する熱処理プロセスを
使用することが好ましい。
FIG. 1 shows a specific shape of a quartz furnace core tube used when the gas pressure difference is positive. The ceiling is DW = 20m
It is characterized by having a convex shape of m. Other dimensions in this specific shape are L = 1000 mm, R = 14
0 mm and t = 4 mm. According to actual measurement, under the heat treatment conditions, the deformation of the ceiling of the furnace core tube was almost zero. In practice, it is preferable to use a heat treatment process for controlling the pressure difference between the inside and outside of the furnace core tube in the following range in consideration of the deformation speed of the quartz core tube.

【0037】[0037]

【数5】 (Equation 5)

【0038】次に本発明に係わる石英炉芯管を用いた半
導体ウェーハの熱処理方法について説明する。なお、常
に石英炉芯管の内側圧力を外側圧力よりも高く保ち(△
p>0)、天井部の形状が外に凸状の石英炉芯管を用い
た例で説明する。
Next, a method for heat-treating a semiconductor wafer using a quartz furnace core tube according to the present invention will be described. In addition, always keep the inner pressure of the quartz furnace core tube higher than the outer pressure (△
p> 0), and an example in which a quartz furnace core tube having an outwardly convex ceiling portion will be described.

【0039】図6に示すように、半導体ウェーハ5を多
数ウェーハボート6に搭載し、このウェーハボート6
を、断熱台7を介して炉支持台8に載置し、さらに、炉
支持台8に載置されたウェーハボート6に石英炉芯管1
を被せ、ウェーハボート6を石英炉芯管1に収納する。
この状態で炉支持台8を上昇させ、石英炉芯管1および
ウェーハボート6を熱処理炉9に収納する。しかる後、
ヒータ10により炉内を加熱し、石英炉芯管1および石
英炉芯管1内の半導体ウェーハ5を加熱する。この状態
で石英炉芯管1の外部から処理ガス11を供給し、半導
体ウェーハ5の熱処理を行う。この半導体ウェーハ5の
熱処理工程は、常に石英炉芯管1の内側圧力pが外側
圧力pよりも高く保たれており(△p>0)、また、
石英炉芯管1の天井部3の形状が凸状であるので、変形
速度が遅く、高温下で石英炉芯管1を長時間使用して
も、天井部3の変形が発生しない。
As shown in FIG. 6, a large number of semiconductor wafers 5 are mounted on a wafer boat 6,
Is placed on a furnace support 8 via a heat insulating table 7, and further, the quartz furnace core tube 1 is attached to a wafer boat 6 mounted on the furnace support 8.
And house the wafer boat 6 in the quartz furnace core tube 1.
In this state, the furnace support 8 is raised, and the quartz furnace core tube 1 and the wafer boat 6 are stored in the heat treatment furnace 9. After a while
The inside of the furnace is heated by the heater 10 to heat the quartz furnace core tube 1 and the semiconductor wafer 5 in the quartz furnace core tube 1. In this state, a processing gas 11 is supplied from outside the quartz furnace core tube 1 to perform a heat treatment on the semiconductor wafer 5. In the heat treatment step of the semiconductor wafer 5, the inner pressure p i of the quartz furnace core tube 1 is always kept higher than the outer pressure p o (△ p> 0).
Since the shape of the ceiling portion 3 of the quartz furnace core tube 1 is convex, the deformation speed is low, and even if the quartz furnace core tube 1 is used at a high temperature for a long time, the ceiling portion 3 does not deform.

【0040】さらに、天井部の形状が異なる石英炉芯管
の実施形態について説明する。
Further, an embodiment of a quartz furnace core tube having a different ceiling portion will be described.

【0041】図5に示す凹状と凸状の変形状態を逆にす
れば、気体圧力差が負となる場合の天井部変形が得られ
る。
By reversing the concave and convex deformation states shown in FIG. 5, ceiling deformation can be obtained when the gas pressure difference becomes negative.

【0042】この場合には、変形の方向が逆となる(撓
む)。すなわち、気体圧力差が負(△p<0)となる場
合、天井部を凹状にすることにより、天井部撓みの変形
速度を低減できる。
In this case, the direction of the deformation is reversed (bent). That is, when the gas pressure difference is negative (△ p <0), the ceiling is bent so that the deformation speed of the bending of the ceiling can be reduced.

【0043】図7は気体圧力差が負となる場合に使用す
る石英炉芯管の具体的形状を示す。天井部22がDW=
20mmの凹状となっているのが特徴である。また、本
具体的形状の他の寸法はL=1000mm、R=140
mm、t=4mmである。
FIG. 7 shows the specific shape of the quartz furnace core tube used when the gas pressure difference is negative. DW =
It is characterized by a concave shape of 20 mm. Other dimensions of this specific shape are L = 1000 mm, R = 140
mm, t = 4 mm.

【0044】このような図7に示す天井部22が凹状の
石英炉芯管21を用いて、常に石英炉芯管21の内側圧
力pを外側圧力pよりも低く(△p<0)保って熱
処理を行う場合には、半導体ウェーハの熱処理工程中、
天井部22の変形速度は遅く、高温下で石英炉芯管21
を長時間使用しても、天井部22の変形が発生しない。
The ceiling portion 22 shown in this FIG. 7 by using the concave quartz furnace core tube 21, always inside pressure p i of the quartz furnace core tube 21 lower than the outside pressure p o (△ p <0) When performing heat treatment while maintaining, during the heat treatment process of the semiconductor wafer,
The deformation rate of the ceiling part 22 is low,
Even if is used for a long time, the deformation of the ceiling part 22 does not occur.

【0045】[0045]

【発明の効果】本発明に係わる縦型熱処理炉用石英炉芯
管によれば、変形が抑制され、使用期間を延ばすことが
できる縦型熱処理炉用石英炉芯管を提供することができ
る。
According to the quartz furnace core tube for a vertical heat treatment furnace according to the present invention, it is possible to provide a quartz furnace core tube for a vertical heat treatment furnace capable of suppressing deformation and extending the service period.

【0046】すなわち、縦型熱処理炉用石英炉芯管の内
側気体圧力が外側気体圧力より高い状態で使用され、天
井部の形状が外部に凸状である縦型熱処理炉用石英炉芯
管であるので、天井部の熱変形を効果的に抑制すること
ができる。
That is, a quartz furnace core tube for a vertical heat treatment furnace is used in which the inner gas pressure of the quartz furnace core tube for a vertical heat treatment furnace is higher than the outer gas pressure, and the shape of the ceiling portion is convex outward. As a result, thermal deformation of the ceiling can be effectively suppressed.

【0047】また、縦型熱処理用石英炉芯管の内側気体
圧力が外側気体圧力より低い状態で使用され、天井部の
形状が凹状である縦型熱処理炉用石英炉芯管であるの
で、天井部の熱変形を効果的に抑制することができる。
Further, since the inside gas pressure of the vertical heat treatment furnace core tube is lower than the outside gas pressure, and the shape of the ceiling portion is concave, the vertical heat treatment furnace quartz tube core tube has a concave shape. Thermal deformation of the portion can be effectively suppressed.

【0048】また、天井部は、石英炉芯管の半径の0.
2〜1.0倍の高さを有する凸状または凹状であるの
で、内側気体圧力が外側気体圧力より高い状態で使用さ
れる場合、もしくは、内側気体圧力が外側気体圧力より
低い状態で使用される場合、高温下で石英炉芯管を長時
間使用しても、天井部の変形を効果的に抑制できる。
The ceiling part has a radius of 0. 0 of the core tube of the quartz furnace.
Since it is convex or concave having a height of 2 to 1.0 times, it is used when the inner gas pressure is higher than the outer gas pressure or when the inner gas pressure is lower than the outer gas pressure. In this case, even if the quartz furnace core tube is used at a high temperature for a long time, the deformation of the ceiling can be effectively suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる縦型熱処理炉用石英炉芯管の概
念図。
FIG. 1 is a conceptual diagram of a quartz furnace core tube for a vertical heat treatment furnace according to the present invention.

【図2】本発明に係わる縦型熱処理炉用石英炉芯管の形
状を決定するために用いられる石英炉芯管の断面図。
FIG. 2 is a cross-sectional view of a quartz furnace core tube used for determining the shape of the quartz furnace core tube for a vertical heat treatment furnace according to the present invention.

【図3】本発明に係わる縦型熱処理炉用石英炉芯管の負
荷と変形状態を示す概念図。
FIG. 3 is a conceptual diagram showing a load and a deformed state of a quartz furnace core tube for a vertical heat treatment furnace according to the present invention.

【図4】本発明に係わる縦型熱処理炉用石英炉芯管の形
状を決定するために用いられた計算式により算出された
石英炉芯管各部の変形速度を示す結果図。
FIG. 4 is a result diagram showing a deformation rate of each part of the quartz furnace core tube calculated by a calculation formula used for determining a shape of the quartz furnace core tube for a vertical heat treatment furnace according to the present invention.

【図5】本発明に係わる縦型熱処理炉用石英炉芯管の形
状を決定するために用いられた計算式により算出された
天井部形状別の天井部変形量を示す結果図。
FIG. 5 is a result diagram showing a ceiling deformation amount for each ceiling shape calculated by a calculation formula used for determining a shape of a quartz furnace core tube for a vertical heat treatment furnace according to the present invention.

【図6】本発明に係わる縦型熱処理炉用石英炉芯管の使
用状態を示す概念図。
FIG. 6 is a conceptual diagram showing a use state of a quartz furnace core tube for a vertical heat treatment furnace according to the present invention.

【図7】本発明に係わる縦型熱処理炉用石英炉芯管の他
の実施形態の概念図。
FIG. 7 is a conceptual diagram of another embodiment of a quartz furnace core tube for a vertical heat treatment furnace according to the present invention.

【符号の説明】[Explanation of symbols]

1 石英炉芯管 2 収納部 3 天井部 4 開口部 DESCRIPTION OF SYMBOLS 1 Quartz furnace core tube 2 Storage part 3 Ceiling part 4 Opening

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 上部に天井部が設けられ、下部が開放さ
れた縦型熱処理炉用石英炉芯管において、縦型熱処理炉
内で前記石英炉芯管の内側気体圧力が外側気体圧力より
高い状態で使用され、前記天井部の形状が外部に凸状で
あることを特徴とする縦型熱処理炉用石英炉芯管。
1. A quartz furnace core tube for a vertical heat treatment furnace having an upper portion provided with a ceiling portion and an open lower portion, wherein an inner gas pressure of the quartz furnace core tube is higher than an outer gas pressure in the vertical heat treatment furnace. A quartz furnace core tube for a vertical heat treatment furnace, wherein the quartz furnace core tube is used in a state, and the shape of the ceiling portion is convex outside.
【請求項2】 上部に天井部が設けられ、下部が開放さ
れた縦型熱処理炉用石英炉芯管において、縦型熱処理炉
内で前記石英炉芯管の内側気体圧力が外側気体圧力より
低い状態で使用され、前記天井部の形状が凹状であるこ
とを特徴とする縦型熱処理炉用石英炉芯管。
2. A quartz furnace core tube for a vertical heat treatment furnace having a ceiling portion provided at an upper portion and an open lower portion, wherein an inner gas pressure of the quartz furnace core tube is lower than an outer gas pressure in the vertical heat treatment furnace. A quartz furnace core tube for a vertical heat treatment furnace, used in a state, wherein the shape of the ceiling is concave.
【請求項3】 上記天井部は、石英炉芯管の半径の0.
2〜1.0倍の高さを有する凸状または凹状であること
を特徴とする請求項1または2に記載の縦型熱処理炉用
石英炉芯管。
3. The ceiling part has a radius of 0. 0 of a quartz furnace core tube.
The quartz furnace core tube for a vertical heat treatment furnace according to claim 1 or 2, wherein the tube is convex or concave having a height of 2 to 1.0 times.
JP2001043453A 2001-02-20 2001-02-20 Quartz furnace core pipe for vertical heat treatment furnace Pending JP2002246324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001043453A JP2002246324A (en) 2001-02-20 2001-02-20 Quartz furnace core pipe for vertical heat treatment furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001043453A JP2002246324A (en) 2001-02-20 2001-02-20 Quartz furnace core pipe for vertical heat treatment furnace

Publications (1)

Publication Number Publication Date
JP2002246324A true JP2002246324A (en) 2002-08-30

Family

ID=18905615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001043453A Pending JP2002246324A (en) 2001-02-20 2001-02-20 Quartz furnace core pipe for vertical heat treatment furnace

Country Status (1)

Country Link
JP (1) JP2002246324A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343722A (en) * 2001-05-16 2002-11-29 Toshiba Ceramics Co Ltd Quartz glass furnace core tube for low pressure cvd
JP2006080506A (en) * 2004-08-13 2006-03-23 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor
US9150953B2 (en) 2004-08-13 2015-10-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device including organic semiconductor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343722A (en) * 2001-05-16 2002-11-29 Toshiba Ceramics Co Ltd Quartz glass furnace core tube for low pressure cvd
JP2006080506A (en) * 2004-08-13 2006-03-23 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor
US9150953B2 (en) 2004-08-13 2015-10-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device including organic semiconductor

Similar Documents

Publication Publication Date Title
JP3125199B2 (en) Vertical heat treatment equipment
JP5547775B2 (en) Substrate processing apparatus, substrate processing method, control program, and recording medium
TW386246B (en) Heat treatment method
WO2005104204A1 (en) Heat treating device
US20190024232A1 (en) Substrate processing apparatus and substrate retainer
JP2002246324A (en) Quartz furnace core pipe for vertical heat treatment furnace
JP6122231B1 (en) Liquefied gas supply method
TWI309226B (en) Adsorption pad
JP2012172871A (en) Heat treatment apparatus and temperature measuring method of heat treatment apparatus
JP2006054214A (en) Thermal property decision method of substrate and method of determining heat treatment condition
JP2006315894A (en) Glass production apparatus and components of the same
US3560183A (en) Bending glass sheets
JP2001176811A (en) Wafer support device
JP2008184372A (en) Apparatus and method for manufacturing glass preform
JP3507624B2 (en) Heat treatment boat and heat treatment equipment
JPH08278003A (en) Support structure in furnace of radiant tube
JP2009186052A (en) Heat treatment furnace of flat plate-shaped member
JP2003289048A (en) Deformation preventing jig for silica glass reactor core tube for heat treatment
JP5000597B2 (en) Semiconductor wafer support
JP3112547B2 (en) Vacuum container
JP2020102518A (en) Deposition method
WO2004001835A1 (en) Heat treating equipment, and methods of manufacturing substrate and semiconductor device
KR101390379B1 (en) Connecting member of furnace for manufacturing semiconductor
JP2005093608A (en) Substrate treatment equipment
JP5495502B2 (en) Vacuum heat treatment equipment

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091008

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100216