JP2002343370A - Fuel cell system and its control method - Google Patents

Fuel cell system and its control method

Info

Publication number
JP2002343370A
JP2002343370A JP2001150352A JP2001150352A JP2002343370A JP 2002343370 A JP2002343370 A JP 2002343370A JP 2001150352 A JP2001150352 A JP 2001150352A JP 2001150352 A JP2001150352 A JP 2001150352A JP 2002343370 A JP2002343370 A JP 2002343370A
Authority
JP
Japan
Prior art keywords
fuel cell
solid oxide
temperature
oxide fuel
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001150352A
Other languages
Japanese (ja)
Other versions
JP3599684B2 (en
Inventor
Masayuki Yokoo
雅之 横尾
Kimitaka Watabe
仁貴 渡部
Masayasu Arakawa
正泰 荒川
Himeko Orui
姫子 大類
Yoshitaka Tabata
嘉隆 田畑
Satoshi Sugita
敏 杉田
Akira Takeuchi
章 竹内
Toshiaki Yanai
利明 谷内
Kazuhiko Nozawa
和彦 野沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2001150352A priority Critical patent/JP3599684B2/en
Publication of JP2002343370A publication Critical patent/JP2002343370A/en
Application granted granted Critical
Publication of JP3599684B2 publication Critical patent/JP3599684B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compact bi-temperature-control combination solid oxide fuel cell system which can maintain operation temperature constant of a solid oxide fuel battery cell without using an outside thermal supply or a combustor in a fuel battery. SOLUTION: The fuel cell system provided with a low-temperature solid oxide fuel cell 12 which uses hydrocarbon system gas as fuel and generates power by draining carbon monoxide, hydrogen and unreacted hydrocarbon system gas, and a high-temperature solid oxide fuel cell 14 which generates power with drainage gas 13 from the low-temperature solid oxide fuel cell 12 as fuel, is also provided with a flow divider 21 which divides flow of hydrocarbon system gas 11 supplied from outside into two branches in any ratio, one of which 22 is supplied to the low-temperature solid oxide fuel cell 12 and the other 23 is supplied to the high-temperature solid oxide fuel cell 14.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池システム
とその制御法に関し、特に、固体酸化物型燃料電池シス
テムとその制御法に関するものである。
The present invention relates to a fuel cell system and a control method thereof, and more particularly to a solid oxide fuel cell system and a control method thereof.

【0002】[0002]

【従来の技術】従来、炭化水素系ガスを燃料とする固体
酸化物型燃料電池システムとして、低温型の固体酸化物
型燃料電池と高温型の固体酸化物型燃料電池とからなる
燃料電池システム、すなわち、二温制御連結式固体酸化
物型燃料電池システムが知られている。
2. Description of the Related Art Conventionally, as a solid oxide fuel cell system using a hydrocarbon-based gas as a fuel, a fuel cell system comprising a low-temperature solid oxide fuel cell and a high-temperature solid oxide fuel cell, That is, a two-temperature control connection type solid oxide fuel cell system is known.

【0003】図4は従来の二温制御連結式固体酸化物型
燃料電池システムを説明する図である。図において、こ
の燃料電池システムは、炭化水素系ガス11を燃料ガス
とし、その部分酸化反応 C2n+2 + 0.5nO → nCO +(n+
1)H および発電を行う低温型の固体酸化物型燃料電池12
と、燃料電池12からの排出ガス13を受入れ、排出ガ
ス13中の、前記低温型の固体酸化物型燃料電池で未反
応の炭化水素系ガスの水蒸気改質反応 C2n+2 + nHO → nCO +(2n+1)
及び一酸化炭素の酸化反応 CO + 0.5O → CO 及び水素の酸化反応 H + 0.5O → HO 及び発電を行う高温型の固体酸化物型燃料電池14とを
連結させて設けたことを特徴とする二温制御連結式固体
酸化物型燃料電池システムである。
FIG. 4 shows a conventional dual-temperature controlled solid oxide type.
FIG. 2 is a diagram illustrating a fuel cell system. In the figure,
The fuel cell system according to
And the partial oxidation reaction CnH2n + 2 + 0.5nO2 → nCO + (n +
1) H2  -Temperature solid oxide fuel cell 12 for power generation
And the exhaust gas 13 from the fuel cell 12
Of the low-temperature solid oxide fuel cell in
Reforming Reaction of Hydrocarbon Gas CnH2n + 2 + NH2O → nCO + (2n + 1)
H2  And oxidation reaction of carbon monoxide CO + 0.5O2 → CO2  And hydrogen oxidation reaction H2 + 0.5O2 → H2O 2 and a high-temperature solid oxide fuel cell 14 for generating electricity
Dual temperature control connection type solid body characterized by being connected
It is an oxide fuel cell system.

【0004】この場合に、燃料電池12と14とは熱的
にも連結していて、燃料電池14で発生した熱の一部は
燃料電池12に流れて、燃料電池12の温度維持に役立
つ。
In this case, the fuel cells 12 and 14 are also thermally connected, and a part of the heat generated in the fuel cell 14 flows to the fuel cell 12 to help maintain the temperature of the fuel cell 12.

【0005】同様のシステムは、例えば特開2000−
268832号公報に開示されている。
A similar system is disclosed in, for example,
No. 2,688,832.

【0006】[0006]

【発明が解決しようとする課題】燃料電池システムが単
独で熱的な自立が出来ない場合は、外部から加熱する
か、燃料の一部を燃焼させて、反応熱をシステムの温度
維持に利用する必要がある。
When the fuel cell system cannot stand alone thermally, it is heated from the outside or a part of the fuel is burned, and the heat of reaction is used to maintain the temperature of the system. There is a need.

【0007】上記の低温型の固体酸化物燃料電池12に
おける部分酸化反応の出力密度は低く、例えば、メタン
を燃料とした部分酸化反応 CH + 0.5O → CO + 2H を利用した固体酸化物型燃料電池で現在達成されている
最大出力密度は単セルレベルで0.3W/cm程度(運
転温度800℃、運転電圧0.4V程度)である。 上
記の低温型の固体酸化物燃料電池12の理論開路電圧は
1.2V程度と高いので、実際には1V程度の高い電圧
で運転することが予想される。1Vの電圧で運転すると
想定すると、出力密度は高く見積もっても0.1W/cm
程度である。
The above low-temperature type solid oxide fuel cell 12
The power density of the partial oxidation reaction in
Oxidation reaction using CH as fuel CH4 + 0.5O2 → CO + 2H2  Currently achieved with solid oxide fuel cells using
Maximum power density is 0.3 W / cm at single cell level2Degree (luck
(The turning temperature is 800 ° C. and the operating voltage is about 0.4 V). Up
The theoretical open circuit voltage of the low temperature type solid oxide fuel cell 12 is
Since it is as high as about 1.2 V, a high voltage of about 1 V is actually used.
It is expected to drive in. When driving at a voltage of 1V
Assuming that the power density is 0.1 W / cm at best
2It is about.

【0008】これに対し、現在、上記の高温型の固体酸
化物型燃料電池14は単セルレベルで0.5W/cm
度(運転温度1000℃、運転電圧0.7V程度)と高
い出力密度が得られている。
On the other hand, at present, the high-temperature type solid oxide fuel cell 14 has a high output density of about 0.5 W / cm 2 at a single cell level (operating temperature of 1000 ° C. and operating voltage of about 0.7 V). Has been obtained.

【0009】従って、従来の二温制御連結式固体酸化物
型燃料電池では、低温型の固体酸化物型燃料電池12の
セル面積が大きくなりシステムも大型化する可能性があ
る。例えば、従来の図4のシステムに炭化水素系ガス1
1としてメタンが供給され、低温型の固体酸化物型燃料
電池12でシステムに供給されたメタンの95%が部分
酸化反応し、その部分酸化反応により発生した水素と一
酸化炭素は全て高温型の固体酸化物型燃料電池14で反
応し、低温型の固体酸化物型燃料電池12で反応しなか
った残りの5%のメタンを燃焼させてシステムを熱的に
自立させているとする。低温型の固体酸化物型燃料電池
12は電圧1V、温度800℃で、高温型の固体酸化物
型燃料電池14は電圧0.7V、温度1000℃で、そ
れぞれ運転すると、総合効率は63%程度であり、総合
出力を100kWとすると、低温型の固体酸化物型燃料
電池12で約32kW、高温型の固体酸化物型燃料電池
14で約68kWの出力となる。出力密度を低温型の固
体酸化物型燃料電池12は0.1W/cm、高温型の固
体酸化物型燃料電池14は0.5W/cmとしてセル面
積を概算すると、低温型の固体酸化物型燃料電池12の
セル面積は32m、高温型の固体酸化物型燃料電池1
4のセル面積は13.6mとなり、低温型の固体酸化
物型燃料電池12の容積が大きくなる。このような燃料
電池容積増大を抑制し、システムを小型化することが1
つの課題となる。
Therefore, in the conventional dual-temperature controlled solid oxide fuel cell, the cell area of the low-temperature solid oxide fuel cell 12 may be increased, and the system may be enlarged. For example, the conventional system shown in FIG.
Methane is supplied as 1 and 95% of the methane supplied to the system in the low-temperature type solid oxide fuel cell 12 undergoes a partial oxidation reaction, and all the hydrogen and carbon monoxide generated by the partial oxidation reaction are converted into a high-temperature type. It is assumed that the system is thermally independent by burning the remaining 5% of methane that has reacted in the solid oxide fuel cell 14 and has not reacted in the low-temperature solid oxide fuel cell 12. When the low-temperature type solid oxide fuel cell 12 is operated at a voltage of 1 V and a temperature of 800 ° C., and the high-temperature type solid oxide fuel cell 14 is operated at a voltage of 0.7 V and a temperature of 1000 ° C., the overall efficiency is about 63%. Assuming that the total output is 100 kW, the output of the low-temperature solid oxide fuel cell 12 is about 32 kW, and that of the high-temperature solid oxide fuel cell 14 is about 68 kW. Assuming that the power density of the low-temperature solid oxide fuel cell 12 is 0.1 W / cm 2 and that of the high-temperature solid oxide fuel cell 14 is 0.5 W / cm 2 , the cell area is roughly calculated. The physical fuel cell 12 has a cell area of 32 m 2 , and the high-temperature solid oxide fuel cell 1
4 has a cell area of 13.6 m 2 , and the volume of the low-temperature solid oxide fuel cell 12 is large. It is necessary to suppress such an increase in the fuel cell volume and downsize the system.
Issues.

【0010】燃料電池システムの内部条件や環境条件が
変化した時、固体酸化物型燃料電池セルの温度を一定に
保つことが出来ないと、温度変化により発生する熱応力
が固体酸化物型燃料電池セルに損傷を与える。
If the temperature of the solid oxide fuel cell cannot be kept constant when the internal conditions or environmental conditions of the fuel cell system change, the thermal stress generated by the temperature change may cause the solid oxide fuel cell to fail. Damage the cell.

【0011】劣化のない固体酸化物型燃料電池セルを基
に、自己の温度を維持する為の熱と反応の余剰熱が釣り
合うように設計された固体酸化物型燃料電池システムに
おいて、固体酸化物型燃料電池セルの性能の劣化が起こ
り、出力が低下すると、システムの熱損失が増加し、シ
ステム全体の温度が上昇する。この温度変化により発生
する熱応力が固体酸化物型燃料電池セルに損傷を与え
る。このような燃料電池セルの熱応力による損傷を防止
することが他の1つの課題となる。
[0011] In a solid oxide fuel cell system designed based on a solid oxide fuel cell that does not deteriorate so that the heat for maintaining its own temperature and the excess heat of the reaction are balanced. When the performance of the fuel cell degrades and the output decreases, the heat loss of the system increases and the temperature of the entire system increases. The thermal stress generated by this temperature change damages the solid oxide fuel cell. Another problem is to prevent the fuel cell from being damaged by thermal stress.

【0012】本発明の目的は、上述の課題を解決し、外
部からの熱供給や燃料電池内での燃焼器を用いずに固体
酸化物型燃料電池セルの運転温度を一定に保つ小型の二
温制御連結式固体酸化物型燃料電池システムを提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to reduce the size of a small-sized solid oxide fuel cell by keeping the operating temperature of the cell constant without using external heat supply or a combustor in the fuel cell. An object of the present invention is to provide a solid oxide fuel cell system coupled with temperature control.

【0013】[0013]

【課題を解決するための手段】上記課題を解決するため
に、本発明においては、請求項1に記載したように、炭
化水素系ガスを燃料とし、一酸化炭素、水素及び未反応
の炭化水素系ガスを排出して発電を行う低温型の固体酸
化物型燃料電池と、前記低温型の固体酸化物型燃料電池
からの排出ガスを燃料として発電を行う高温型の固体酸
化物型燃料電池とを備えた燃料電池システムであって、
外部から供給される炭化水素系ガス全体の流れを任意の
比率で二分岐させ、一方の分岐を前記低温型の固体酸化
物型燃料電池に供給し、他方の分岐を前記高温型の固体
酸化物型燃料電池に供給する分流器を有することを特徴
とする燃料電池システムを構成する。
According to the present invention, in order to solve the above-mentioned problems, a hydrocarbon-based gas is used as fuel, and carbon monoxide, hydrogen and unreacted hydrocarbons are used. A low-temperature solid oxide fuel cell that generates power by discharging system gas; and a high-temperature solid oxide fuel cell that generates power using the exhaust gas from the low-temperature solid oxide fuel cell as fuel. A fuel cell system comprising:
The entire flow of hydrocarbon-based gas supplied from the outside is branched into two at an arbitrary ratio, one branch is supplied to the low-temperature solid oxide fuel cell, and the other branch is the high-temperature solid oxide. A fuel cell system comprising a flow divider for supplying the fuel cell to the fuel cell.

【0014】また、本発明においては、請求項2に記載
したように、請求項1に記載の燃料電池システムを制御
する燃料電池システムの制御法であって、前記分流器に
おける、前記低温型の固体酸化物型燃料電池に供給する
炭化水素系ガスの比率を、前記低温型の固体酸化物型燃
料電池の温度が設定温度よりも低くなった際は減少さ
せ、前記低温型の固体酸化物型燃料電池の温度が前記設
定温度よりも高くなった際は増加させることを特徴とす
る燃料電池システムの制御法を構成する。
According to a second aspect of the present invention, there is provided a method for controlling a fuel cell system for controlling a fuel cell system according to the first aspect, wherein the low-temperature type of the shunt is provided. The ratio of the hydrocarbon-based gas to be supplied to the solid oxide fuel cell is reduced when the temperature of the low-temperature solid oxide fuel cell is lower than a set temperature, and the low-temperature solid oxide fuel cell is reduced. When the temperature of the fuel cell becomes higher than the set temperature, the temperature is increased to constitute a control method of the fuel cell system.

【0015】[0015]

【発明の実施の形態】本発明に係る二温制御連結式固体
酸化物型燃料電池システムにおいては、外部から供給さ
れる炭化水素系ガス全体の流れを任意の比率で二分岐さ
せ、一方の分岐を前記低温型の固体酸化物型燃料電池に
供給し、他方の分岐を前記高温型の固体酸化物型燃料電
池に供給する分流器を備えていることを特徴とし、この
特徴によって、低温型の固体酸化物型燃料電池セルの容
積を従来と比較して低減出来、システムの小型化が可能
となり、また、低温型の固体酸化物型燃料電池セルの運
転温度を一定に保ち、燃料電池セルの熱応力による損傷
を防止することが可能となる。
BEST MODE FOR CARRYING OUT THE INVENTION In a dual temperature controlled solid oxide fuel cell system according to the present invention, the entire flow of a hydrocarbon-based gas supplied from the outside is bifurcated at an arbitrary ratio, and Is supplied to the low-temperature solid oxide fuel cell, and the other branch is supplied to the high-temperature solid oxide fuel cell. The volume of the solid oxide fuel cell can be reduced compared to the conventional one, the system can be downsized, and the operating temperature of the low-temperature solid oxide fuel cell can be kept constant, Damage due to thermal stress can be prevented.

【0016】以下、本発明の実施の形態例について、図
面を用いて、詳細に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

【0017】図1は、本発明に係る二温制御連結式固体
酸化物型燃料電池システムを説明する図である。
FIG. 1 is a view for explaining a dual temperature control connection type solid oxide fuel cell system according to the present invention.

【0018】システムに供給されるメタン・エタン・プ
ロパン・ブタン等の炭化水素系ガス11は分流器21で
任意の割合に二分され、一方は炭化水素系ガス22とし
て、部分酸化反応及び発電を行う低温型の固体酸化物型
燃料電池12に流入し、もう一方は炭化水素系ガス23
として、一酸化炭素及び水素ガスの酸化による発電及び
水素の酸化により発生した水蒸気を用いて炭化水素系ガ
スの改質反応を行う高温型の固体酸化物型燃料電池14
に流入する。この場合、上記の一酸化炭素及び水素ガス
は、高温型の固体酸化物型燃料電池14に流入する低温
型の固体酸化物型燃料電池12からの排出ガス13中に
含まれている。
A hydrocarbon-based gas 11 such as methane, ethane, propane, and butane supplied to the system is divided into two at an arbitrary ratio by a flow divider 21, and one is used as a hydrocarbon-based gas 22 to perform a partial oxidation reaction and power generation. It flows into the low-temperature type solid oxide fuel cell 12 and the other flows into the hydrocarbon-based gas 23.
As a high-temperature solid oxide fuel cell 14 for performing a power generation by oxidation of carbon monoxide and hydrogen gas and a reforming reaction of a hydrocarbon-based gas using water vapor generated by oxidation of hydrogen.
Flows into. In this case, the carbon monoxide and the hydrogen gas are contained in the exhaust gas 13 from the low-temperature solid oxide fuel cell 12 flowing into the high-temperature solid oxide fuel cell 14.

【0019】本実施の形態例のシステムに、炭化水素系
ガス11としてメタンが供給され、分流器21により二
分され、システムに供給されたメタンの例えば50%が
低温型の固体酸化物型燃料電池12に供給され、その内
部で部分酸化反応し、システムに供給された残りの50
%のメタンが高温型の固体酸化物型燃料電池14に供給
され、その内部で水蒸気改質反応 CH + HO → CO + 3H し、部分酸化反応及び水蒸気改質反応により発生した水
素と一酸化炭素は全て高温型の固体酸化物型燃料電池1
4で反応するとする。このとき、低温型の固体酸化物型
燃料電池12を電圧1V、温度800℃で運転し、高温
型の固体酸化物型燃料電池14を電圧0.7V、温度1
000℃で運転すると、発電効率は63%程度となる。
この効率は従来のシステムにおいて、炭化水素系ガス1
1としてメタンが供給され、低温型の固体酸化物型燃料
電池12でシステムに供給されたメタンの95%が部分
酸化反応し、部分酸化反応により発生した水素と一酸化
炭素は全て高温型の固体酸化物型燃料電池14で反応
し、システムに供給されたメタンの5%を燃焼させてシ
ステムを熱的に自立させた場合の効率に等しい。
The system according to the present embodiment includes a hydrocarbon-based system.
Methane is supplied as the gas 11,
And 50% of the methane supplied to the system
The fuel is supplied to the low-temperature solid oxide fuel cell 12,
Partial oxidation reaction in the part, the remaining 50 supplied to the system
% Methane supplied to high temperature solid oxide fuel cell 14
And inside the steam reforming reaction CH4 + H2O → CO + 3H2  Water generated by the partial oxidation reaction and steam reforming reaction
All elements and carbon monoxide are high temperature solid oxide fuel cells 1
Let's say you want to react with 4. At this time, the low-temperature type solid oxide type
The fuel cell 12 is operated at a voltage of 1 V and a temperature of 800 ° C.
Type solid oxide fuel cell 14 at a voltage of 0.7 V and a temperature of 1
When operated at 000 ° C., the power generation efficiency is about 63%.
This efficiency is the same as that of the conventional system.
Methane is supplied as 1 and low-temperature solid oxide fuel
95% of the methane supplied to the system by battery 12
Oxidation reaction and hydrogen generated by partial oxidation reaction and monoxide
All carbon reacts in high-temperature solid oxide fuel cell 14
And burns 5% of the methane supplied to the system
Equivalent to the efficiency of a thermally independent stem.

【0020】本実施の形態例のシステムにおいて総合出
力を100kWとすると、低温型の固体酸化物型燃料電
池12で約17kW、高温型の固体酸化物型燃料電池1
4で約83kWの出力となる。出力密度を低温型の固体
酸化物型燃料電池12は0.1W/cm、高温型の固体
酸化物型燃料電池14は0.5W/cmとして、セル面
積を概算すると、低温型の固体酸化物型燃料電池12の
セルは17m、高温型の固体酸化物型燃料電池14の
セルは16.6mとなる。
Assuming that the total output of the system of this embodiment is 100 kW, the low-temperature solid oxide fuel cell 12 has a capacity of about 17 kW, and the high-temperature solid oxide fuel cell 1
4 gives an output of about 83 kW. When the power density of the low-temperature type solid oxide fuel cell 12 is set to 0.1 W / cm 2 and the high-temperature type solid oxide fuel cell 14 is set to 0.5 W / cm 2 , the cell area is roughly calculated. The cell of the oxide fuel cell 12 is 17 m 2 , and the cell of the high-temperature solid oxide fuel cell 14 is 16.6 m 2 .

【0021】本実施の形態例のシステムでは高温型の固
体酸化物型燃料電池14内において、炭化水素系ガス2
3の改質反応を行っている。しかし、その場合でも高温
型の固体酸化物型燃料電池14の容積は内部で炭化水素
系ガス23の改質反応を行わない場合(すなわち、炭化
水素系ガス23を供給しない場合)と同程度に抑えるこ
とが出来る。従って、100kWの本システムにおける
トータルのセル面積は33.6mであり、従来のシス
テムにおけるトータルのセル面積45.6mに比較し
て27%程度の小型化が実現している。
In the system of the present embodiment, the hydrocarbon-based gas 2 is stored in the high-temperature solid oxide fuel cell 14.
3 reforming reaction. However, even in this case, the volume of the high-temperature type solid oxide fuel cell 14 is about the same as when the reforming reaction of the hydrocarbon-based gas 23 is not performed inside (that is, when the hydrocarbon-based gas 23 is not supplied). Can be suppressed. Accordingly, the cell area of the total in the system of 100kW is 33.6M 2, miniaturization of about 27% as compared to the cell area 45.6 m 2 total in the conventional system is realized.

【0022】本実施の形態例のシステムは、分流器21
において、低温型及び高温型の固体酸化物型燃料電池
(12及び14)に供給する炭化水素系ガス(22及び
23)の比率を制御することによって、低温型及び高温
型の固体酸化物型燃料電池(12及び14)の温度が制
御される。
The system according to the present embodiment has a flow divider 21
Controlling the ratio of the hydrocarbon-based gas (22 and 23) to be supplied to the low-temperature and high-temperature solid oxide fuel cells (12 and 14) The temperature of the batteries (12 and 14) is controlled.

【0023】図2に示すように、低温型の固体酸化物型
燃料電池12の温度Tを測定し、Tが設定した運転
温度よりも低下した場合には高温型の固体酸化物型燃料
電池14に供給する比率を増加させて(すなわち、低温
型の固体酸化物型燃料電池12に供給する比率を減少さ
せて)高温型の固体酸化物型燃料電池14の温度を上昇
させ、Tが設定した運転温度よりも上昇した場合には
低温型の固体酸化物型燃料電池12に供給する比率を増
加させて(すなわち、高温型の固体酸化物型燃料電池1
4に供給する比率を減少させて)高温型の固体酸化物型
燃料電池14の温度を低下させ、Tが設定した運転温
度と一致している場合には低温型及び高温型の固体酸化
物型燃料電池(12及び14)に供給する炭化水素系ガ
ス(22及び23)の比率を維持するように制御され
る。低温型の固体酸化物型燃料電池12の温度は、高温
型の固体酸化物型燃料電池14からの熱の流入によって
維持されているので、このような制御方法によって、低
温型の固体酸化物型燃料電池12の温度は一定に維持さ
れる。低温型の固体酸化物型燃料電池12の温度が一定
に維持されていれば、高温型の固体酸化物型燃料電池1
4から低温型の固体酸化物型燃料電池12への熱の流れ
も定常状態に達するので、高温型の固体酸化物型燃料電
池14の温度も一定となる。
As shown in FIG. 2, the temperature TL of the low-temperature type solid oxide fuel cell 12 is measured, and when the TL falls below the set operating temperature, the high-temperature type solid oxide fuel cell 12 is measured. The rate of supply to the battery 14 is increased (ie, the rate of supply to the low-temperature type solid oxide fuel cell 12 is reduced), and the temperature of the high-temperature type solid oxide fuel cell 14 is increased, and T L is increased. Is higher than the set operating temperature, the supply rate to the low-temperature solid oxide fuel cell 12 is increased (that is, the high-temperature solid oxide fuel cell 1).
The temperature of the high-temperature type solid oxide fuel cell 14 is lowered (by reducing the ratio supplied to the fuel cell 4), and if the TL matches the set operating temperature, the low-temperature type and high-temperature type solid oxide Is controlled so as to maintain the ratio of the hydrocarbon-based gas (22 and 23) supplied to the fuel cell (12 and 14). Since the temperature of the low-temperature solid oxide fuel cell 12 is maintained by the flow of heat from the high-temperature solid oxide fuel cell 14, the low-temperature solid oxide fuel cell is controlled by such a control method. The temperature of the fuel cell 12 is kept constant. If the temperature of the low-temperature solid oxide fuel cell 12 is kept constant, the high-temperature solid oxide fuel cell 1
Since the flow of heat from 4 to the low-temperature solid oxide fuel cell 12 also reaches a steady state, the temperature of the high-temperature solid oxide fuel cell 14 also becomes constant.

【0024】図3に、低温型の固体酸化物型燃料電池1
2に供給する炭化水素系ガス22の比率を0から1迄変
化させた時の燃料電池システムの総合発電効率を示す。
低温型の固体酸化物型燃料電池12を電圧1V、温度8
00℃で運転し、高温型の固体酸化物型燃料電池14を
電圧0.7V、温度1000℃で運転すると仮定してい
る。低温型の固体酸化物型燃料電池12に供給する炭化
水素系ガス11の比率を増加させるほどシステム効率は
上昇し、システムの温度維持に利用する発熱が減少す
る。逆に低温型の固体酸化物型燃料電池12に供給する
炭化水素系ガス11の比率を減少させるほどシステム効
率は下降し、システムの温度維持に利用する発熱が増加
する。なお、上記の比率が0あるいは1である場合に
は、外部から供給される炭化水素系ガス11の流れを2
つの分岐に分けたことにはならず、これらの場合は本発
明の対象外となる。
FIG. 3 shows a low-temperature type solid oxide fuel cell 1.
2 shows the total power generation efficiency of the fuel cell system when the ratio of the hydrocarbon-based gas 22 supplied to 2 is changed from 0 to 1.
The low-temperature type solid oxide fuel cell 12 is applied with a voltage of 1 V and a temperature of 8
It is assumed that the fuel cell is operated at 00 ° C. and the high-temperature solid oxide fuel cell 14 is operated at a voltage of 0.7 V and a temperature of 1000 ° C. As the ratio of the hydrocarbon-based gas 11 supplied to the low-temperature solid oxide fuel cell 12 increases, the system efficiency increases, and the amount of heat used to maintain the temperature of the system decreases. Conversely, as the ratio of the hydrocarbon-based gas 11 supplied to the low-temperature solid oxide fuel cell 12 decreases, the system efficiency decreases, and the heat used to maintain the temperature of the system increases. When the above ratio is 0 or 1, the flow of the hydrocarbon-based gas 11 supplied from the outside is set to 2
This is not to say that it is divided into two branches, and these cases are out of the scope of the present invention.

【0025】環境条件が変化しても、この制御によりシ
ステムの温度維持に利用する熱量を調整出来るので、固
体酸化物型燃料電池12、14の温度を一定に保つこと
が可能となり、熱応力による固体酸化物型燃料電池セル
の損傷を防ぐことが出来る。
Even if environmental conditions change, the amount of heat used for maintaining the temperature of the system can be adjusted by this control, so that the temperature of the solid oxide fuel cells 12, 14 can be kept constant, and the Damage to the solid oxide fuel cell can be prevented.

【0026】固体酸化物型燃料電池セルの性能が劣化し
ても、分流器21により低温型の固体酸化物型燃料電池
12に供給する炭化水素系ガス22の比率を増加させれ
ば、出力の低下及び固体酸化物型燃料電池セルの昇温を
防ぎ、熱応力による固体酸化物型燃料電池セルの損傷を
防ぐことが出来る。
Even if the performance of the solid oxide fuel cell is deteriorated, if the ratio of the hydrocarbon gas 22 supplied to the low-temperature solid oxide fuel cell 12 by the flow divider 21 is increased, the output can be reduced. It is possible to prevent the temperature of the solid oxide fuel cell from lowering and prevent the solid oxide fuel cell from being damaged by thermal stress.

【0027】以上に説明したように、本発明に係る燃料
電池システムは、発電効率を維持しながら炭化水素系ガ
スの部分酸化反応及び発電を行う低温型の固体酸化物型
燃料電池での反応量を減少出来る為、低温型の固体酸化
物型燃料電池セルの面積を減少させることが出来、シス
テムの小型化を可能とする。また、本発明に係る燃料電
池システムの制御法を用いれば、燃料を燃焼させること
なく、温度維持に利用する熱量を調節することにより、
固体酸化物型燃料電池の温度が変化することを防ぎ、熱
応力によるセルの損傷を防ぐことが出来る。
As described above, in the fuel cell system according to the present invention, the reaction amount in a low-temperature solid oxide fuel cell that performs a partial oxidation reaction of a hydrocarbon gas and power generation while maintaining power generation efficiency. Therefore, the area of the low-temperature solid oxide fuel cell can be reduced, and the size of the system can be reduced. Further, by using the control method of the fuel cell system according to the present invention, without burning the fuel, by adjusting the amount of heat used for maintaining the temperature,
It is possible to prevent the temperature of the solid oxide fuel cell from changing, and to prevent cell damage due to thermal stress.

【0028】[0028]

【発明の効果】本発明の実施により、外部からの熱供給
や燃料電池内での燃焼器を用いずに固体酸化物型燃料電
池セルの運転温度を一定に保つ小型の二温制御連結式固
体酸化物型燃料電池システムを提供することが可能とな
る。
As described above, according to the present invention, a small two-temperature control connection type solid which keeps the operating temperature of the solid oxide fuel cell constant without using external heat supply or a combustor in the fuel cell. An oxide fuel cell system can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る二温制御連結式固体酸化物型燃料
電池システムを説明する図である。
FIG. 1 is a diagram illustrating a dual temperature controlled solid oxide fuel cell system according to the present invention.

【図2】本発明に係る二温制御連結式固体酸化物型燃料
電池システム制御法を示す図である。
FIG. 2 is a diagram showing a method for controlling a solid oxide fuel cell system with dual temperature control according to the present invention.

【図3】低温型の固体酸化物燃料電池に供給する炭化水
素系ガスの比率とシステムの総合発電効率の関係を示す
図である。
FIG. 3 is a diagram showing the relationship between the ratio of hydrocarbon-based gas supplied to a low-temperature solid oxide fuel cell and the overall power generation efficiency of the system.

【図4】従来の二温制御連結式固体酸化物型燃料電池シ
ステムを説明する図である。
FIG. 4 is a diagram illustrating a conventional solid oxide fuel cell system with dual temperature control connection.

【符号の説明】[Explanation of symbols]

11…システムに供給される炭化水素系ガス、12…低
温型の固体酸化物型燃料電池、13…低温型の固体酸化
物型燃料電池からの排出ガス、14…高温型の固体酸化
物型燃料電池、21…システムに供給される炭化水素系
ガスの分流器、22…分流器から低温型の固体酸化物型
燃料電池に流入する炭化水素系ガス、23…分流器から
高温型の固体酸化物型燃料電池に流入する炭化水素系ガ
ス。
11: hydrocarbon-based gas supplied to the system; 12: low-temperature solid oxide fuel cell; 13: exhaust gas from low-temperature solid oxide fuel cell; 14: high-temperature solid oxide fuel Battery, 21: Divider of hydrocarbon-based gas supplied to the system, 22: Hydrocarbon-based gas flowing from the diverter to the low-temperature type solid oxide fuel cell, 23: High-temperature type solid oxide from the diverter Hydrocarbon-based gas flowing into a fuel cell.

フロントページの続き (72)発明者 荒川 正泰 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 (72)発明者 大類 姫子 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 (72)発明者 田畑 嘉隆 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 (72)発明者 杉田 敏 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 (72)発明者 竹内 章 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 (72)発明者 谷内 利明 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 (72)発明者 野沢 和彦 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 Fターム(参考) 5H026 AA06 5H027 AA06 KK46 MM09 Continuation of the front page (72) Inventor Masayasu Arakawa 2-3-1 Otemachi, Chiyoda-ku, Tokyo Nippon Telegraph and Telephone Corporation (72) Inventor Himeko 2-3-1 Otemachi, Chiyoda-ku, Tokyo Sun Inside the Telegraph and Telephone Corporation (72) Yoshitaka Tabata 2-3-1 Otemachi, Chiyoda-ku, Tokyo Nippon Telegraph and Telephone Corporation (72) Satoshi Sugita 2-3-1 Otemachi, Chiyoda-ku, Tokyo No. Nippon Telegraph and Telephone Corporation (72) Inventor Akira Takeuchi 2-3-1 Otemachi, Chiyoda-ku, Tokyo Nippon Telegraph and Telephone Corporation (72) Toshiaki Taniuchi 2--3, Otemachi, Chiyoda-ku, Tokyo No. 1 Nippon Telegraph and Telephone Corporation (72) Inventor Kazuhiko Nozawa 2-3-1, Otemachi, Chiyoda-ku, Tokyo F-term within Nippon Telegraph and Telephone Corporation (reference) 5H026 AA06 5H027 AA06 KK46 MM09

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】炭化水素系ガスを燃料とし、一酸化炭素、
水素及び未反応の炭化水素系ガスを排出して発電を行う
低温型の固体酸化物型燃料電池と、前記低温型の固体酸
化物型燃料電池からの排出ガスを燃料として発電を行う
高温型の固体酸化物型燃料電池とを備えた燃料電池シス
テムであって、外部から供給される炭化水素系ガス全体
の流れを任意の比率で二分岐させ、一方の分岐を前記低
温型の固体酸化物型燃料電池に供給し、他方の分岐を前
記高温型の固体酸化物型燃料電池に供給する分流器を有
することを特徴とする燃料電池システム。
1. A fuel comprising a hydrocarbon gas as a fuel, carbon monoxide,
A low-temperature solid oxide fuel cell that generates power by discharging hydrogen and unreacted hydrocarbon-based gas, and a high-temperature solid oxide fuel cell that generates power using the exhaust gas from the low-temperature solid oxide fuel cell as fuel. A solid oxide fuel cell, wherein the entire flow of hydrocarbon-based gas supplied from the outside is branched into two at an arbitrary ratio, and one of the branches is a low-temperature solid oxide fuel cell. A fuel cell system, comprising: a shunt for supplying a fuel cell and supplying the other branch to the high-temperature type solid oxide fuel cell.
【請求項2】請求項1に記載の燃料電池システムを制御
する燃料電池システムの制御法であって、前記分流器に
おける、前記低温型の固体酸化物型燃料電池に供給する
炭化水素系ガスの比率を、前記低温型の固体酸化物型燃
料電池の温度が設定温度よりも低くなった際は減少さ
せ、前記低温型の固体酸化物型燃料電池の温度が前記設
定温度よりも高くなった際は増加させることを特徴とす
る燃料電池システムの制御法。
2. The control method for a fuel cell system according to claim 1, wherein the flow of the hydrocarbon-based gas supplied to the low-temperature solid oxide fuel cell in the flow divider is performed. The ratio is decreased when the temperature of the low-temperature solid oxide fuel cell is lower than a set temperature, and when the temperature of the low-temperature solid oxide fuel cell is higher than the set temperature. Is a method for controlling a fuel cell system, characterized by increasing.
JP2001150352A 2001-05-21 2001-05-21 Control method of fuel cell system Expired - Fee Related JP3599684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001150352A JP3599684B2 (en) 2001-05-21 2001-05-21 Control method of fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001150352A JP3599684B2 (en) 2001-05-21 2001-05-21 Control method of fuel cell system

Publications (2)

Publication Number Publication Date
JP2002343370A true JP2002343370A (en) 2002-11-29
JP3599684B2 JP3599684B2 (en) 2004-12-08

Family

ID=18995380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001150352A Expired - Fee Related JP3599684B2 (en) 2001-05-21 2001-05-21 Control method of fuel cell system

Country Status (1)

Country Link
JP (1) JP3599684B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011525295A (en) * 2008-07-21 2011-09-15 スタクセラ・ゲーエムベーハー Fuel cell system having two fuel cell stacks connected in series
JP2018152206A (en) * 2017-03-10 2018-09-27 東京瓦斯株式会社 Fuel cell system and fuel cell control program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011525295A (en) * 2008-07-21 2011-09-15 スタクセラ・ゲーエムベーハー Fuel cell system having two fuel cell stacks connected in series
KR101352525B1 (en) * 2008-07-21 2014-01-17 스탁세라 게엠베하 Fuel cell system having two fuel cell stacks connected in series
JP2018152206A (en) * 2017-03-10 2018-09-27 東京瓦斯株式会社 Fuel cell system and fuel cell control program

Also Published As

Publication number Publication date
JP3599684B2 (en) 2004-12-08

Similar Documents

Publication Publication Date Title
JP7127039B2 (en) Methods, systems and uses of systems for the generation and co-generation of hydrogen and electricity.
JP2793365B2 (en) Fuel cell plant fuel flow control
US4904548A (en) Method for controlling a fuel cell
JP2007311072A (en) Fuel cell system and its operation method
JPH10106605A (en) Fuel cell power generating system and operation method thereof
JP2002343370A (en) Fuel cell system and its control method
JP2003059521A (en) Combined system of solid oxide fuel cell and industrial process utilizing combustion and its operating method
JP2004349093A (en) Fuel cell plant
JPH07192742A (en) Catalyst layer temperature control system of fuel reformer for fuel cell
JP2001015134A (en) Combined power generating device of fuel cell with gas turbine
JPH04284365A (en) Fuel cell power generating device
WO2012032744A1 (en) Fuel cell system
JP2003183005A (en) Operating method for reformer for fuel cell
JP3830842B2 (en) Solid oxide fuel cell and power generation method using the same
JP7066561B2 (en) Fuel cell module and program
JP2851395B2 (en) Fuel cell power generation system
JP2006342047A (en) Reformer, method for controlling pump in fuel cell system, and control unit
JP2003115316A (en) Fuel cell system and its control method
JP2004111130A (en) Thermoelectric ratio changing method for fuel cell-micro gas turbine combined power generation facility
JPH07235321A (en) Fuel cell power generation system, its operating method, and operation control method for it
JPH04243538A (en) Method and device for controlling catalyst layer temperature of fuel reformer for fuel battery use
JP2002175828A (en) Fuel-reforming system for fuel cell
JPS63292575A (en) Fuel cell power generating system
JPS63231878A (en) Power generating method by fuel cell and its system
JP2002367644A (en) Fuel reforming system, and fuel cell system using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040914

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees